
Workgroup: DetNet Working Group

Internet-Draft: draft-stein-srtsn-01

Published: 29 August 2021

Intended Status: Informational

Expires: 2 March 2022

Authors: Y(J). Stein

RAD

Segment Routed Time Sensitive Networking

Abstract

Routers perform two distinct user-plane functionalities, namely

forwarding (where the packet should be sent) and scheduling (when

the packet should be sent). One forwarding paradigm is segment

routing, in which forwarding instructions are encoded in the packet

in a stack data structure, rather than programmed into the routers.

Time Sensitive Networking and Deterministic Networking provide

several mechanisms for scheduling under the assumption that routers

are time synchronized. The most effective mechanisms for delay

minimization involve per-flow resource allocation.

SRTSN is a unified approach to forwarding and scheduling that uses a

single stack data structure. Each stack entry consists of a

forwarding portion (e.g., IP addresses or suffixes) and a scheduling

portion (deadline by which the packet must exit the router). SRTSN

thus fully implements network programming for time sensitive flows,

by prescribing to each router both to-where and by-when each packet

should be sent.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 March 2022.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Forwarding and Scheduling

3. Stack-based Methods for Latency Control

4. The Time Sensitive Router

5. Segment Routed Time Sensitive Networking

6. Stack Entry Format

7. Stack Size

8. Control Plane

9. Security Considerations

10. IANA Considerations

11. Informative References

Author's Address

1. Introduction

Packet Switched Networks (PSNs) use statistical multiplexing to

fully exploit link data rate. On the other hand, statistical

multiplexing in general leads to end-to-end propagation latencies

significantly higher than the minimum physically possible, due to

packets needing to reside in queues waiting for their turn to be

transmitted.

Recently Time Sensitive Networking (TSN) and Deterministic

Networking (DetNet) technologies have been developed to reduce this

queueing latency for time sensitive packets [RFC8557]. Novel TSN

mechanisms are predicated on the time synchronization of all

forwarding elements (Ethernet switches, MPLS Label Switched Routers,

SDN whitebox switches, or IP routers, to be called here simply

routers). Once routers agree on time to high accuracy, it is

theoretically possible to arrange for time sensitive packets to

experience "green waves", that is, never to wait in queues. For

example, scheduling timeslots for particular flows eliminates packet

¶

¶

¶

https://trustee.ietf.org/license-info

interference, but eliminates the statistical multiplexing advantage

of PSNs. In addition, the scheduling calculation and programming of

the network to follow this calculation doesn't scale well to large

networks.

Segment Routing (SR) technologies provide a scalable method of

network programming, but until now has not been applied to

scheduling. The SR instructions are contained within a packet in the

form of a first-in first-out stack dictating the forwarding

decisions of successive routers. Segment routing may be used to

choose a path sufficiently short to be capable of providing

sufficiently low end-to-end latency but does not influence the

queueing of individual packets in each router along that path.

2. Forwarding and Scheduling

Routers (recall that by routers we mean any packet forwarding

device) perform two distinct functions on incoming packets, namely

forwarding and scheduling. By forwarding we mean obtaining the

incoming packet, inspecting the packet's headers, deciding on an

output port, and for QoS routing a specific output queue belonging

to this output port, based on the header information and a

forwarding information base, optionally editing the packet (e.g.,

decrementing the TTL field or performing a stack operation on a MPLS

label), and placing the packet into the selected output queue.

Scheduling consists of selecting which output queue and which packet

from that output queue will be the next packet to be physically

transmitted over the output port. In simple terms one can think of

forwarding and scheduling as "which output port" and "which packet"

decisions, respectively; that is, forwarding decides to which output

port to send each packet, and scheduling decides which packet to

send next.

Segment routing (as well as connection-oriented mechanisms) slightly

simplify the meaning of forwarding to deciding "where" to send the

incoming packet, while TSN slightly simplifies the meaning of

scheduling to deciding "when" to send the outgoing packet.

Routers optionally perform a third user plane operation, namely per

output port and/or per flow traffic conditioning. By conditioning we

mean policing (discarding packets based on a token bucket

algorithm), shaping (delaying packets), (W)RED, etc. Since we will

only be interested in per-packet per router behavior we will neglect

conditioning, which is either per router (not distinguishing between

packets) or per flow (the same for all routers along the path).

As aforementioned, forwarding decisions always select an output

port, but when there are QoS criteria additionally select an output

¶

¶

¶

¶

¶

¶

queue belonging to that port. The use of multiple queues per output

port is to aid the scheduling, which then becomes a matter of

selecting an output queue and always taking the packet at the end of

the queue (the packet that has waited the longest). For example, the

simplest nontrivial scheduling algorithm is "strict priority". In

strict priority packets are assigned to queues according to their

priority (as indicated by Priority Code Point or DiffServ Code Point

field). The strict priority scheduler always first checks the queue

with highest priority; if there is a packet waiting there it is

selected for transmission, if not the next highest priority queue is

examined and so on. Undesirably strict priority may never reach

packets in low priority queues (Best Effort packets), so alternative

algorithms, e.g., Weighted Fair Queueing, are used to select from

priority queues more fairly.

TSN is required for networks transporting time sensitive traffic,

that is, packets that are required to be delivered to their final

destination by a given time. In the following we will call the time

a packet is sent by the end user application (or the time it enters

a specific network) the "birth time", the required delivery time to

the end-user application (or the time it exists a specific network)

the "final deadline" and the difference between these two times

(i.e., the maximally allowed end-to-end propagation time though the

network) the "delay budget".

Unlike strict priority or WFQ algorithms, TSN scheduling algorithms

may directly utilize the current time of day. For example, in the

TSN scheduling algorithm known as time-aware scheduling (gating),

each output queue is controlled by a timed gate. At every time only

certain output queues have their gates "open" and can have their

packets scheduled, while packets are not scheduled from queues with

"closed" gates. By appropriately timing the opening and closing of

gates of all routers throughout the network, packets in time

sensitive flows may be able to traverse their end-to-end path

without ever needlessly waiting in output queues. In fact, time-

aware gating may be able to provide a guaranteed upper bound for

end-to-end delay.

However, time-aware scheduling suffers from two major disadvantages.

First, opening the gates of only certain queues for a given time

duration, results in this time duration being reserved even if there

are very few or even no packets in the corresponding queues. This is

precisely the undesirable characteristic of Time Division

Multiplexing networks that led to their replacement by Packet

Switched Networks. Minimizing time durations increases efficiency,

but at the cost of obliging a time sensitive packet that just missed

its gate to wait until the next gate opening, endangering its

conforming to the delay budget.

¶

¶

¶

¶

In order to avoid such problems, one needs to know a priori the

birth times of all time sensitive packets, the lengths of all links

between routers, and the loading of all routers. Based on this input

one can calculate optimal gating schedules for all routers in the

network and distribute this information to all the routers. This

calculation is computationally expensive and updating all the

routers is communicationally expensive. Moreover, admitting a new

time-sensitive flow requires recalculation of all the gating

schedules and updating all the routers. This recalculation and

communications load is practical only for small networks and a

relatively small numbers of flows.

3. Stack-based Methods for Latency Control

One can envision mechanisms for reducing end-to-end propagation

latency in a network with time-synchronized routers that do not

suffer from the disadvantages of time sensitive scheduling. One such

mechanism would be to insert the packet's birth time (time created

by end-user application or time entering the network) into the

packet's headers. Each router along the way could use this birth

time by prioritizing packets with earlier birth times, a policy

known as Longest in System (LIS). These times are directly

comparable, due to our assuming the synchronization of all routers

in the network. This mechanism may indeed lower the propagation

delay, but at each router the decision is sub-optimal since a packet

that has been in the network longer but that has a longer

application delay budget will be sent before a later packet with a

tighter delay budget.

An improved mechanism would insert into the packet headers the

desired final deadline, i.e., the birth time plus the delay budget.

Each router along the way could use this final destination time by

prioritizing packets with earlier deadlines, a policy known as

Earliest Deadline First (EDF). This mechanism may indeed lower the

propagation delay, but at each router the decision is sub-optimal

since a packet that has been in the network longer but is close to

its destination will be transmitted before a later packet which

still has a long way to travel.

A better solution to the problem involves precalculating individual

"local" deadlines for each router, and each router prioritizing

packets according to its own local deadline. As an example, a packet

sent at time 10:11:12.000 with delay budget of 32 milliseconds

(i.e., final deadline time of 10:11:12.032) and that needs to

traverse three routers might have in its packet headers three local

deadlines, 10:11:12:010, 10:11:12.020, and 10:11:12.030. The first

router employs EDF using the first local deadline, the second router

similarly using the second local deadline, and the ultimate router

using the last local deadline.

¶

¶

¶

¶

The most efficient data structure for inserting local deadlines into

the headers is a "stack", similar to that used in Segment Routing to

carry forwarding instructions. The number of deadline values in the

stack equals the number of routers the packet needs to traverse in

the network, and each deadline value corresponds to a specific

router. The Top-of-Stack (ToS) corresponds to the first router's

deadline while the Bottom-of-Stack (BoS) refers to the last's. All

local deadlines in the stack are later or equal to the current time

(upon which all routers agree), and times closer to the ToS are

always earlier or equal to times closer to the BoS.

The stack may be dynamic (as is the forwarding instruction stack in

SR-MPLS) or static with an index (as is the forwarding instruction

stack in SRv6).

For private networks it is possible for the stack to be inserted by

the user equipment that is the source of the packet, in which case

the top of stack local deadline corresponds to the first router to

be encountered by the packet. However, in such a case the user

equipment must also be time synchronized for its time values to be

directly compatible. In an improved strategy the stack is inserted

into the packet by the ingress router, and thus its deadlines are in

concert with time in the network. In such case the first deadline

will not explicitly appear in the stack and the initial ToS

corresponds to the second router in the network to be traversed by

the packet. In either case each router in turn pops from the stack

the ToS local deadline and uses that local deadline in its

scheduling (e.g., employing EDF).

Since the ingress router inserts the deadline stack into the packet

headers, no other router needs to be aware of the requirements of

the time sensitive flows. Hence admitting a new flow only requires

updating the information base of the ingress router. In an efficient

implementation the ingress router's information base has deadline

offset vectors for each time sensitive flow. Upon receipt of a

packet from user equipment, the ingress router first determines if

the packet belongs to a time sensitive flow. If so, it adds the

current time to the deadline offset vector belonging to the flow and

inserts it as a stack into the packet headers.

An explicit example is depicted in Figure 1. Here packets of a

specific time sensitive flow are required to be received by the

remote user equipment within 200 microseconds of being transmitted

by the source user equipment. The packets traverse a wireless link

with delay 2 microseconds to reach the router R1 (the ingress

router). They then travel to router R2 over an optical fiber

experiencing a propagation delay of 18 microseconds, from there to

router R3 experiencing an additional 38 microseconds of fiber delay,

from there to router R4 (the egress router) experiencing 16

¶

¶

¶

¶

microseconds of fiber delay. Finally, they travel over a final

wireless link taking again 2 microseconds.

Figure 1: Example with propagation latencies

We conclude that the total constant physical propagation time is

2+18+38+16+2=76 microseconds. Moreover, assume that we know that in

each router there is an additional constant time of 1 microsecond to

receive the packet at the line rate and 5 microseconds to process

the packet, that is, 6 microseconds per router or 24 microseconds

for all four routers. We have thus reached the conclusion that the

minimal time to traverse the network is 76+24=100 microseconds

Since our delay budget is 200 microseconds, we have spare time of

200-100=100 microseconds for the packets to wait in output queues.

If we have no further information, we can divide this spare 100

microseconds equally among the 4 routers, i.e., 25 microseconds per

router. Thus, the packet arrives at the first router after 2

microseconds, is received and processed after 2+6=8 microseconds,

and is assigned a local deadline to exit the first router of 8+25=33

microseconds. The worst case times of arrival and transmission at

each point along the path are depicted in Figure 2. Note that in

general it may be optimal to divide the spare time in unequal

fashion.

Figure 2: Example with worst case times

Assuming that the packet left router 1 the full 33 microseconds

after its transmission, it will arrive at router 2 after an

additional 18 microseconds, that is, after 51 microseconds. After

the mandatory 6 microseconds of reception and processing and the 25

microseconds allocated for queueing, we reach the local deadline to

exit router 2 by 82 microseconds. Similarly, the local deadline to

exit router 3 is 151 microseconds, and the deadline to exit router 4

is 198 microseconds. After the final 2 microseconds consumed by the

wireless link the packet will arrive at its destination after 200

microseconds as required

¶

 +----+ 2 +----+ 18 +----+ 38 +----+ 16 +----+ 2 +----+

 | UE |-----| R1 |-------| R2 |-------| R3 |-------| R4 |-----| UE |

 +----+ +----+ +----+ +----+ +----+ +----+

¶

¶

 +----+ 2 +----+ 18 +----+ 38 +----+ 16 +----+ 2 +----+

 | UE |-----| R1 |-------| R2 |-------| R3 |-------| R4 |-----| UE |

 +----+ +----+ +----+ +----+ +----+ +----+

 | | | | | | | | | |

 | | | | | | | | | |

 0 2 33 51 82 120 151 167 198 200

¶

Based on these worst case times the ingress router can now build the

deadline offset vector (33, 82, 151, 198) referenced to the time the

packet left the source user equipment, or referenced to the time the

packet arrives at the ingress router of (31, 80, 149, 196).

Now assume that a packet was transmitted at time T and hence arrives

at the ingress router at time T + 2 microseconds. The ingress router

R1, observing the deadline offset vector referenced to this time,

knows that the packet must be released no more than 31 microseconds

later, i.e., by T + 33 microseconds. It furthermore inserts a local

deadline stack [T+82, T+151, T+198] into the packet headers.

The second router R2 receives the packet with the local deadline

stack, pops the ToS revealing that it must ensure that the packet

exits by T + 82 microseconds. It properly prioritizes and sends the

packet with the new stack [T+151, T+198]. Router R3 pops deadline

T+151, and sends the packet with local deadline stack containing a

single entry [T+198]. The final router pops this final local

deadline and ensures that the packet is transmitted before that time

The local deadline stacks are depicted in Figure 3.

Figure 3: Example with local deadline stacks

The precise mechanism just described is by no means the only way to

compute local deadlines. Furthermore, combining time-aware

scheduling solely at the ingress router, with EDF at all the other

routers, can provide "green waves" with provable upper bounds to

delay. However, optimizing such a scheme at scale may still be

challenging. A randomized algorithm for setting up such a case is

described in [AndrewsZhang].

¶

¶

¶

 +----+ 2 +----+ 18 +----+ 38 +----+ 16 +----+ 2 +----+

 | UE |-----| R1 |-------| R2 |-------| R3 |-------| R4 |-----| UE |

 +----+ +----+ | +----+ | +----+ | +----+ +----+

 | | | | | | | | | | | | |

 | | | | | | | | | | | | |

 0 2 33 | 51 82 | 120 151 | 167 198 200

 | | |

 V V V

 +---+ +---+ +---+

 | 82| |151| |198|

 |---| |---| +---+

 |151| |198|

 |---| +---+

 |198|

 +---+

¶

4. The Time Sensitive Router

While a stack is the ideal data structure to hold the local

deadlines in the packet, different data structures are used to hold

the time sensitive packets (or their descriptors) in the routers.

The standard data structure used in routers is the queue which,

being a first in first out memory, is suitable for a policy of

first-to-arrive first-to-exit, and not for EDF or other stack-based

time sensitive mechanisms. More suitable data structures are sorted

lists, search trees, and priority heaps. While such data structures

are novel in this context, efficient hardware implementations exist.

If all the time sensitive flows are of the same priority, then a

single such data structure may be used for all time sensitive flows.

If there are time sensitive flows of differing priorities, then a

separate such data structure is required for each level of priority

corresponding to a time sensitive flow, while the conventional queue

data structure may be used for priority levels corresponding to

flows that are not time sensitive.

For example, assume two different priorities of time sensitive flows

and a lower priority for Best Effort traffic that is not time

sensitive. If applying strict priority the scheduler would first

check if the data structure for the highest priority contains any

packets. If yes, it transmits the packet with the earliest local

deadline. If not, it checks the data structure for the second

priority. If it contains any packets it transmits the packet with

the earliest deadline. If not, it checks the Best Effort queue. If

this queue is nonempty it transmits the next packet in the queue,

i.e., the packet that has waited in this queue the longest.

Separate prioritization and EDF is not necessarily the optimal

strategy. An alternative (which we call Liberal EDF, or LEDF) would

be for the scheduler to define a worst case (i.e., maximal) packet

transmission time MAXTT (for example, the time taken for a 1500 byte

packet to be transmitted at the output port's line rate). Instead of

checking whether the data structure for the highest priority

contains any packets at all, LEDF checks whether its earliest

packet's local deadline is earlier than MAXTT from the current time.

If it is, it is transmitted; if it is not the next priority is

checked, knowing that even were a maximal size packet to be

transmitted the scheduler will still be able to return to the higher

priority packet before its local deadline.

5. Segment Routed Time Sensitive Networking

Since Segment Routing and the TSN mechanism just described both

utilize stack data structures it is advantageous to combine their

information into a single unified SRTSN stack. Each entry in this

¶

¶

¶

¶

stack contain two subentries, the forwarding instruction (e.g., the

address of the next router or the label specifying the next link)

and a scheduling instruction (the local deadline).

Each SRTSN stack entry fully prescribes the forwarding and

scheduling behavior of the corresponding router, both to-where and

by-when the packet should be sent. The insertion of a stack into

packets thus fully implements network programming for time sensitive

flows.

For example, Figure 4 depicts the previous example but with the

unified SRTSN stacks. Ingress router R1 inserts a SRTSN stack with

three entries into the packet received. In this example the

forwarding sub-entry contains the identifier or address of the next

router, except for the Bottom of Stack entry that contains a special

BoS code (e.g., identifier zero). The ToS entry thus contains the

address of router R3 and the time by which the packet must exit

router R2, namely T + 82 microseconds. Router R2 pops this ToS

leaving a SRTSN stack with 2 entries. Router R3 pops the new ToS

instructing it to forward the packet to router R4 by time T + 151

microseconds, leaving a stack with a single entry. Router R4 pops

the ToS and sees that it has reached bottom of stack. It then

forwards the packet according to the usual rules of the network (for

example, according to the IP address in the IP header) by local

deadline T + 198 microseconds.

Figure 4: Example with combined SRTSN stacks

6. Stack Entry Format

A number of different time formats are in common use in networking

applications and can be used to encode the local deadlines. The

¶

¶

¶

 +----+ 2 +----+ 18 +----+ 38 +----+ 16 +----+ 2 +----+

 | UE |-----| R1 |-------| R2 |-------| R3 |-------| R4 |-----| UE |

 +----+ +----+ | +----+ | +----+ | +----+ +----+

 | | | | | | | | | | | | |

 | | | | | | | | | | | | |

 0 2 33 | 51 82 | 120 151 | 167 198 200

 | | |

 V V V

 +-------+ +-------+ +-------+

 |R2; 82| |R3; 151| |BoS;198|

 |-------| |-------| +-------+

 |R3; 151| |BoS;198|

 |-------| +-------+

 |BoS;198|

 +-------+

longest commonly utilized format is 80-bit PTP-80 timestamp defined

in IEEE 1588v2 Precision Time Protocol [IEEE1588]. There are two

common 64-bit time representations: the NTP-64 timestamp defined in

[RFC5905] (32 bits for whole seconds and 32 bits for fractional

seconds); and the PTP-64 timestamp (32 bits for whole seconds and 32

bits for nanoseconds). Finally, there is the NTP-32 timestamp (16

bits of whole seconds and 16 bits of fractional seconds) that is

often insufficient due to its low resolution (15 microseconds).

However, we needn't be constrained by these common formats, since

our wraparound requirements are minimal. As long as we have no

ambiguity in times during the flight of a packet, which is usually

much less than a second, the timestamp is acceptable. Thus, we can

readily use a nonstandard 32-bit timestamp format with say 12 bits

of seconds (wraparound over 1 hour) and 20 bits for microseconds, or

say 8 bits for whole seconds (wraparound over 4 minutes) and 24 bits

of tenths of microseconds.

For the forwarding sub-entry we could adopt like SR-MPLS standard

32-bit MPLS labels (which contain a 20-bit label and BoS bit), and

thus SRTSN stack entries could be 64-bits in size comprising a 32-

bit MPLS label and the aforementioned nonstandard 32-bit timestamp.

Alternatively, an SR-TSN stack entry could be 96 bits in length

comprising a 32-bit MPLS label and either of the standardized 64-bit

timestamps.

For IPv4 networks one could employ a 32-bit IPv4 address in place of

the MPLS label. Thus, using the nonstandard 32-bit timestamp the

entire stack entry could be 64 bits. For dynamic stack

implementations a BoS bit would have to be included.

SRv6 uses 128-bit IPv6 addresses (in addition to a 64-bit header and

possibly options), and so 160-bit or 192-bit unified entries are

directly derivable. However, when the routers involved are in the

same network, address suffixes suffice to uniquely determine the

next router.

7. Stack Size

We can now address the question of the total overhead added by the

SRTSN stack. Were each stack entry to comprise a 128-bit IPv6

address and a 64-bit timestamp then each stack entry would consume

24 bytes! In such a case a 10-hop stack would be larger than an

average IPv4 packet.

But we needn't be so wasteful! Our deadline wraparound requirements

are minimal as a timestamp is unambiguous when the wraparound

duration exceeds twice the maximum time path time. In a single

network the forwarding sub-entry may consist of a router address

¶

¶

¶

¶

¶

¶

suffix, or even an index uniquely identifying each router. In fact,

it is easy to see that each entry need only be ceil(

log2(Nrouters)) + ceil(log2(2 max-path-time / time-resolution)) +

1 bits in duration.

For small networks this translates to about 16 bits per entry and

for medium sized ones 32 bits per entry. So, an entire 4-hop stack

may still occupy about as much as a single IPv6 address!

8. Control Plane

In the above discussion we assumed that the ingress router knows the

deadline offset vector for each time sensitive flow. This vector may

be calculated by a centralized management system and sent to the

ingress router, or may be calculated by the ingress router itself.

In the former case there is central SRTSN orchestrator, which may be

based on a Network Management System, or on an SDN controller, or on

a Path Computation Element server. The SRTSN orchestrator needs to

be know the propagation delays for all the links in the network,

which may be determined using time domain reflectometry, or via one-

way delay measurement OAM, or retrieved from a network planning

system. The orchestrator may additionally know basic parameters of

the routers, including minimal residence time, data rate of the

ports, etc. When a time sensitive path needs to be set up, the SRTSN

orchestrator is given the source and destination and the delay

budget. It first determines feasibility by finding the end-to-end

delay of the shortest path (shortest being defined in terms of

latency, not hop count). It then selects a path (usually, but not

necessarily, the shortest one) and calculates the deadline offset

vector. The forwarding instructions and offset vector (as well as

any other required flow-based information, such as data rate or drop

precedence) are then sent to the ingress router. As in segment

routing, no other router in the network needs to be informed.

In the latter case the ingress router is given the destination and

the delay budget. It sends a setup message to the destination as in

RSVP-TE, however, in this case arrival and departure timestamps are

recorded for every router along the way. The egress router returns

the router addresses and timestamps. This process may be repeated

several times and minimum gating applied to approximate the link

propagation times. Assuming that the path's delay does not exceed

the delay budget, the path and deadline offset vector may then be

determined.

The method of [AndrewsZhang] uses randomization in order to avoid

the need for centralized coordination of flows entering the network

at different ingress routers. However, this advantage comes at the

expense of much higher achievable delay budgets.

¶

¶

¶

¶

¶

¶

[RFC5905]

[RFC8557]

[IEEE1588]

[AndrewsZhang]

9. Security Considerations

SRTSN concentrates the entire network programming semantics into a

single stack, and thus tampering with this stack would have

devastating consequences. Since each stack entry must be readable by

its corresponding router, protecting the stack would necessitate key

distribution between the ingress router and every router along the

path.

A simpler mechanism would be for the ingress router to sign the

stack with a public key known to all routers in the network, and to

append this signature to the stack. If the signature is not present

or is incorrect the packet should be discarded.

10. IANA Considerations

This document requires no IANA actions.

11. Informative References

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/rfc/rfc5905>.

Finn, N. and P. Thubert, "Deterministic Networking

Problem Statement", RFC 8557, DOI 10.17487/RFC8557, May

2019, <https://www.rfc-editor.org/rfc/rfc8557>.

IEEE, "Standard for a Precision Clock Synchronization

Protocol for Networked Measurement and Control Systems",

IEEE 1588-2008, DOI 10.1109/IEEESTD.2008.4579760, 2008,

<https://doi.org/10.1109/IEEESTD.2008.4579760>.

Andrews, M. and L. Zhang, "Minimizing end-to-end

delay in high-speed networks with a simple coordinated

schedule", Journal of Algorithms 52 57-81, 2003.

Author's Address

Yaakov (J) Stein

RAD

Email: yaakovjstein@gmail.com

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5905
https://www.rfc-editor.org/rfc/rfc8557
https://doi.org/10.1109/IEEESTD.2008.4579760
mailto:yaakovjstein@gmail.com

	Segment Routed Time Sensitive Networking
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Forwarding and Scheduling
	3. Stack-based Methods for Latency Control
	4. The Time Sensitive Router
	5. Segment Routed Time Sensitive Networking
	6. Stack Entry Format
	7. Stack Size
	8. Control Plane
	9. Security Considerations
	10. IANA Considerations
	11. Informative References
	Author's Address

