
httpbis D. Stenberg
Internet-Draft Mozilla
Intended status: Best Current Practice T. Wicinski
Expires: May 4, 2017 Salesforce
 October 31, 2016

TCP Tuning for HTTP
draft-stenberg-httpbis-tcp-03

Abstract

 This document records current best practice for using all versions of
 HTTP over TCP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Stenberg & Wicinski Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TCP for HTTP October 2016

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. Socket planning . 3
2.1. Number of open files 3
2.2. Number of concurrent network messages 3
2.3. Number of incoming TCP SYNs allowed to backlog 3
2.4. Use the whole port range for local ports 4
2.5. Lower the TCP FIN timeout 4
2.6. Reuse sockets in TIME_WAIT state 4
2.7. TCP socket buffer sizes and Window Scaling 4
2.8. Set maximum allowed TCP window sizes 5
2.9. Timers and timeouts 5

3. TCP handshake . 5
3.1. TCP Fast Open . 5
3.2. Initial Congestion Window 6
3.3. TCP SYN flood handling 6

4. TCP transfers . 6
4.1. Packet Pacing . 6
4.2. Explicit Congestion Control 6
4.3. Nagle's Algorithm . 6
4.4. Delayed ACKs . 7
4.5. Keep-alive . 7

5. Re-using connections . 8
5.1. Slow Start after Idle 8
5.2. TCP-Bound Authentications 8

6. Closing connections . 8
6.1. Half-close . 8
6.2. Abort . 8
6.3. Close Idle Connections 8
6.4. Tail Loss Probes . 9

7. IANA Considerations . 9
8. Security Considerations 9
9. References . 9
9.1. Normative References 9
9.2. Informative References 9
9.3. URIs . 10

Appendix A. Acknowledgments 10
Appendix B. Operating System Settings for Linux 10

 Authors' Addresses . 12

1. Introduction

 HTTP version 1.1 [RFC7230] as well as HTTP version 2 [RFC7540] are
 defined to use TCP [RFC0793], and their performance can depend
 greatly upon how TCP is configured. This document records the best

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc0793

Stenberg & Wicinski Expires May 4, 2017 [Page 2]

Internet-Draft TCP for HTTP October 2016

 current practice for using HTTP over TCP, with a focus on improving
 end-user perceived performance.

 These practices are generally applicable to HTTP/1 as well as HTTP/2,
 although some may note particular impact or nuance regarding a
 particular protocol version.

 There are countless scenarios, roles and setups where HTTP is being
 using so there can be no single specific "Right Answer" to most TCP
 questions. This document intends only to cover the most important
 areas of concern and suggest possible actions.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Socket planning

 Your HTTP server or intermediary may need configuration changes to
 some system tunables and timeout periods to perform optimally.
 Actual values will depend on how you are scaling the platform,
 horizontally or vertically, and other connection semantics. Changing
 system limits and altering thresholds will change the behavior of
 your web service and its dependencies. These dependencies are
 usually common to other services running on the same system, so good
 planning and testing is advised.

 This is a list of values to consider and some general advice on how
 those values can be modified on Linux systems.

2.1. Number of open files

 A modern HTTP server will serve a large number of TCP connections and
 in most systems each open socket equals an open file. Make sure that
 limit isn't a bottle neck.

2.2. Number of concurrent network messages

 Raise the number of packets allowed to get queued when a particular
 interface receives packets faster than the kernel can process them.

2.3. Number of incoming TCP SYNs allowed to backlog

 The number of new connection requests that are allowed to queue up in
 the kernel. These can be connections that are in SYN RECEIVED or
 ESTABLISHED states. Historically, operating systems used a single

https://datatracker.ietf.org/doc/html/rfc2119

Stenberg & Wicinski Expires May 4, 2017 [Page 3]

Internet-Draft TCP for HTTP October 2016

 backlog queue for both of these states. Newer implemntations use two
 separate queues: one for connections in SYN RECEIVED and one for
 those which are ESTABLISHED state (better known as the accept queue).

2.4. Use the whole port range for local ports

 To make sure the TCP stack can take full advantage of the entire set
 of possible sockets, give it a larger range of local port numbers to
 use.

2.5. Lower the TCP FIN timeout

 High connection completion rates will consume ephemeral ports
 quickly. Lower the time during which connections are in FIN-WAIT-2/
 TIME_WAIT states so that they can be purged faster and thus maintain
 a maximal number of available sockets. The primitives for the
 assignment of these values were described in [RFC0793], however
 significantly lower values are commonly used.

2.6. Reuse sockets in TIME_WAIT state

 When running backend servers on a managed, low latency network you
 might allow the reuse of sockets in TIME_WAIT state for new
 connections when a protocol complete termination has occurred. There
 is no RFC that covers this behaviour.

2.7. TCP socket buffer sizes and Window Scaling

 Systems meant to handle and serve a huge number of TCP connections at
 high speeds need a significant amount of memory for TCP socket
 buffers. On some systems you can tell the TCP stack what default
 buffer sizes to use and how much they are allowed to dynamically grow
 and shrink. Window Scaling is typically linked to socket buffer
 sizes.

 The minimum and default tend to require less proactive amendment than
 the maximum value. When deriving maximum values for use, you should
 consider the BDP (Bandwidth Delay Product) of the target environment
 and clients. Consider also that 'read' and 'write' values do not
 require to be synchronised, as the BDP requirements for a load
 balancer or middle-box might be very different when acting as a
 sender or receiver.

 Allowing needlessly high values beyond the expected limitations of
 the platform might increase the probability of retransmissions and
 buffer induced delays within the path. Extensions such as ECN
 coupled with AQM can help mitigate this undesirable behaviour
 [RFC7141].

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7141

Stenberg & Wicinski Expires May 4, 2017 [Page 4]

Internet-Draft TCP for HTTP October 2016

 [RFC7323] covers Window Scaling in greater detail.

2.8. Set maximum allowed TCP window sizes

 You may have to increase the largest allowed window size. Window
 scaling must be accommodated within the maximal values, however it is
 not uncommon to see the maximum definable higher than the scalable
 limit; these values can statically defined within socket parameters
 (SO_RCVBUF,SO_SNDBUF).

2.9. Timers and timeouts

 On a modern shared platform it can be common to plan for both long
 and short lived connections on the same implementation. However, the
 delivery of static assets and a 'web push' or 'long poll' service
 provide very different quality of service promises.

 Fail 'fast': TCP resources can be highly contended. For fault
 tolerance reasons a server needs to be able to determine within a
 reasonable time frame whether a connection is still active or
 required. e.g. If static assets typically return in 100s of
 milliseconds, and users 'switch off' after <10s keeping timeouts of
 >30s make little sense and defining a 'quality of service'
 appropriate to the target platform is encouraged. On a shared
 platform with mixed session lifetimes, applications that require
 longer render times have various options to ensure the underlying
 service and upstream servers in the path can identify the session as
 not failed: HTTP continuations, Redirects, 202s or sending data.

 Clients and servers typically have many timeout options, a few
 notable options are: Connect(client), time to request(server), time
 to first byte(client), between bytes(server/client), total connection
 time(server/client). Some implementations merge these values into a
 single 'timeout' definition even when statistics are reported
 individually. All should be considered as the defaults in many
 implementations are highly underiable, even infinite timeouts have
 been observed.

3. TCP handshake

3.1. TCP Fast Open

 TCP Fast Open (a.k.a. TFO, [RFC7413]) allows data to be sent on the
 TCP handshake, thereby allowing a request to be sent without any
 delay if a connection is not open.

 TFO requires both client and server support, and additionally
 requires application knowledge, because the data sent on the SYN

https://datatracker.ietf.org/doc/html/rfc7413

Stenberg & Wicinski Expires May 4, 2017 [Page 5]

Internet-Draft TCP for HTTP October 2016

 needs to be idempotent. Therefore, TFO can only be used on
 idempotent, safe HTTP methods (e.g., GET and HEAD), or with
 intervening negotiation (e.g, using TLS). It should be noted that
 TFO requires a secret to be defined on the server to mitigate
 security vulnerabilities it introduces. TFO therefore requires more
 server side deployment planning than other enhancements.

 Support for TFO is growing in client platforms, especially mobile,
 due to the significant performance advantage it gives.

3.2. Initial Congestion Window

 [RFC6928] specifies an initcwnd (initial congestion window) of 10,
 and is now fairly widely deployed server-side. There has been
 experimentation with larger initial windows, in combination with
 packet pacing. Many implementations allow initcwnd to be applied to
 specific routes which allows a greater degree of flexibility than
 some other TCP parameters.

 IW10 has been reported to perform fairly well even in high volume
 servers.

3.3. TCP SYN flood handling

 TCP SYN Flood mitigations [RFC4987] are necessary and there will be
 thresholds to tweak.

4. TCP transfers

4.1. Packet Pacing

 TBD

4.2. Explicit Congestion Control

 Apple deploying in iOS and OSX [1].

4.3. Nagle's Algorithm

 Nagle's Algorithm [RFC0896] is the mechanism that makes the TCP stack
 hold (small) outgoing packets for a short period of time so that it
 can potentially merge that packet with the next outgoing one. It is
 optimized for throughput at the expense of latency.

 HTTP/2 in particular requires that the client can send a packet back
 fast even during transfers that are perceived as single direction
 transfers. Even small delays in those sends can cause a significant
 performance loss.

https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc0896

Stenberg & Wicinski Expires May 4, 2017 [Page 6]

Internet-Draft TCP for HTTP October 2016

 HTTP/1.1 is also affected, especially when sending off a full request
 in a single write() system call.

 In POSIX systems you switch it off like this:

 int one = 1;
 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));

4.4. Delayed ACKs

 Delayed ACK [RFC1122] is a mechanism enabled in most TCP stacks that
 causes the stack to delay sending acknowledgement packets in response
 to data. The ACK is delayed up until a certain threshold, or until
 the peer has some data to send, in which case the ACK will be sent
 along with that data. Depending on the traffic flow and TCP stack
 this delay can be as long as 500ms.

 This interacts poorly with peers that have Nagle's Algorithm enabled.
 Because Nagle's Algorithm delays sending until either one MSS of data
 is provided _or_ until an ACK is received for all sent data, delaying
 ACKs can force Nagle's Algorithm to buffer packets when it doesn't
 need to (that is, when the other peer has already processed the
 outstanding data).

 Delayed ACKs can be useful in situations where it is reasonable to
 assume that a data packet will almost immediately (within 500ms)
 cause data to be sent in the other direction. In general in both
 HTTP/1.1 and HTTP/2 this is unlikely: therefore, disabling Delayed
 ACKs can provide an improvement in latency.

 However, the TLS handshake is a clear exception to this case. For
 the duration of the TLS handshake it is likely to be useful to keep
 Delayed ACKs enabled.

 Additionally, for low-latency servers that can guarantee responses to
 requests within 500ms, on long-running connections (such as HTTP/2),
 and when requests are small enough to fit within a small packet,
 leaving delayed ACKs turned on may provide minor performance
 benefits.

 Effective use of switching off delayed ACKs requires extensive
 profiling.

4.5. Keep-alive

 TCP keep-alive is likely disabled - at least on mobile clients for
 energy saving purposes. App-level keep-alive is then required for

https://datatracker.ietf.org/doc/html/rfc1122

Stenberg & Wicinski Expires May 4, 2017 [Page 7]

Internet-Draft TCP for HTTP October 2016

 long-lived requests to detect failed peers or connections reset by
 stateful firewalls etc.

5. Re-using connections

5.1. Slow Start after Idle

 Slow-start is one of the algorithms that TCP uses to control
 congestion inside the network. It is also known as the exponential
 growth phase. Each TCP connection will start off in slow-start but
 will also go back to slow-start after a certain amount of idle time.

5.2. TCP-Bound Authentications

 There are several HTTP authentication mechanisms in use today that
 are used or can be used to authenticate a connection rather than a
 single HTTP request. Two popular ones are NTLM and Negotiate.

 If such an authentication has been negotiated on a TCP connection,
 that connection can remain authenticated throughout the rest of its
 lifetime. This discrepancy with how other HTTP authentications work
 makes it important to handle these connections with care.

6. Closing connections

6.1. Half-close

 The client or server is free to half-close after a request or
 response has been completed; or when there is no pending stream in
 HTTP/2.

 Half-closing is sometimes the only way for a server to make sure it
 closes down connections cleanly so that it doesn't accept more
 requests while still allowing clients to receive the ongoing
 responses.

6.2. Abort

 No client abort for HTTP/1.1 after the request body has been sent.
 Delayed full close is expected following an error response to avoid
 RST on the client.

6.3. Close Idle Connections

 Keeping open connections around for subsequent connection reuse is
 key for many HTTP clients' performance. The value of an existing
 connection quickly degrades and after only a few minutes the chance

Stenberg & Wicinski Expires May 4, 2017 [Page 8]

Internet-Draft TCP for HTTP October 2016

 that a connection will successfully get reused by a web browser is
 slim.

6.4. Tail Loss Probes

 draft [2]

7. IANA Considerations

 This document does not require action from IANA.

8. Security Considerations

 TBD

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

9.2. Informative References

 [RFC0896] Nagle, J., "Congestion Control in IP/TCP Internetworks",
RFC 896, DOI 10.17487/RFC0896, January 1984,

 <http://www.rfc-editor.org/info/rfc896>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc896
http://www.rfc-editor.org/info/rfc896
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122

Stenberg & Wicinski Expires May 4, 2017 [Page 9]

Internet-Draft TCP for HTTP October 2016

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <http://www.rfc-editor.org/info/rfc6928>.

 [RFC7141] Briscoe, B. and J. Manner, "Byte and Packet Congestion
 Notification", BCP 41, RFC 7141, DOI 10.17487/RFC7141,
 February 2014, <http://www.rfc-editor.org/info/rfc7141>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <http://www.rfc-editor.org/info/rfc7323>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

9.3. URIs

 [1] https://developer.apple.com/videos/wwdc/2015/?id=719

 [2] http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01

Appendix A. Acknowledgments

 This specification builds upon previous work and help from Mark
 Nottingham, Craig Taylor

Appendix B. Operating System Settings for Linux

 Here are some sample operating system settings for the Linux
 operating system, along with the section it refers to.

Section 2.1

 fs.file-max = <number of files>

Section 2.2

 net.core.netdev_max_backlog = <number of packets>

Section 2.3

https://datatracker.ietf.org/doc/html/rfc4987
http://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc6928
http://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc7141
http://www.rfc-editor.org/info/rfc7141
https://datatracker.ietf.org/doc/html/rfc7323
http://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/rfc7413
http://www.rfc-editor.org/info/rfc7413
https://developer.apple.com/videos/wwdc/2015/?id=719
http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01

Stenberg & Wicinski Expires May 4, 2017 [Page 10]

Internet-Draft TCP for HTTP October 2016

 net.core.somaxconn = <number>

Section 2.4

 net.ipv4.ip_local_port_range = 1024 65535

Section 2.5

 net.ipv4.tcp_fin_timeout = <number of seconds>

Section 2.6

 net.ipv4.tcp_tw_reuse = 1

Section 2.7

 net.ipv4.tcp_wmem = <minimum size> <default size> <max size in bytes>

Section 2.7

 net.ipv4.tcp_rmem = <minimum size> <default size> <max size in bytes>

Section 2.8

 net.core.rmem_max = <number of bytes>

Section 2.8

 net.core.wmem_max = <number of bytes>

Section 5.1

 net.ipv4.tcp_slow_start_after_idle = 0

Section 4.3 Turning off Nagle's Algorithm:

 int one = 1;
 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));

Section 4.4

 On recent Linux kernels (since Linux 2.4.4), Delayed ACKs can be
 disabled like this:

 int one = 1;
 setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));

Stenberg & Wicinski Expires May 4, 2017 [Page 11]

Internet-Draft TCP for HTTP October 2016

 Unlike disabling Nagle's Algorithm, disabling Delayed ACKs on Linux
 is not a one-time operation: processing within the TCP stack can
 cause Delayed ACKs to be re-enabled. As a result, to use
 "TCP_QUICKACK" effectively requires setting and unsetting the socket
 option during the life of the connection.

Authors' Addresses

 Daniel Stenberg
 Mozilla

 Email: daniel@haxx.se
 URI: http://daniel.haxx.se

 Tim Wicinski
 Salesforce

 Email: tjw.ietf@gmail.com

http://daniel.haxx.se

Stenberg & Wicinski Expires May 4, 2017 [Page 12]

