
Internet Engineering Task Force H. Stenn
Internet-Draft D. Mills
Obsoletes: 7822 (if approved) Network Time Foundation
Intended status: Standards Track March 21, 2018
Expires: September 22, 2018

Network Time Protocol Version 4 (NTPv4) Extension Fields
draft-stenn-ntp-extension-fields-06

Abstract

 Network Time Protocol version 4 (NTPv4) defines the optional usage of
 extension fields. An extension field, as defined in RFC 5905
 [RFC5905] and RFC 5906 [RFC5906], resides after the end of the NTP
 header and supplies optional capabilities or information that is not
 conveyed in the standard NTP header. This document updates RFC 5905
 [RFC5905] by clarifying some points regarding NTP extension fields
 and their usage with legacy Message Authentication Codes (MACs).

 This proposal deprecates RFC 7822 [RFC7822].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Stenn & Mills Expires September 22, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft NTPv4 Extension Fields March 2018

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions Used in This Document 3
2.1. Requirements Language 3
2.2. Terms and Abbreviations 3

3. NTP MAC - RFC 5906 Update 4
3.1. RFC5906 Section 4. - Autokey Cryptography 4
3.2. RFC5906 Section 10. - Autokey Protocol Messages 4
3.3. RFC5906 Section 11.5. - Error Recovery 4
3.4. RFC5906 Section 13. - IANA Consideration 4

4. NTP Extension Fields - RFC 5905 Update 4
4.1. OLD: RFC5905 7.5 - NTP Extension Field Format 4
4.2. NEW: RFC5905 Section 7.5 - NTP Extension Field Format . . 5

 4.3. NEW: RFC5905 Section 7.5.1 - Extension Fields and MACs . 7
4.3.1. Legacy MAC/EF Parsing Pseudocode 10

4.4. OLD: RFC5905 Section 9.2. - Peer Process Operations . . . 13
4.5. NEW: RFC5905 Section 9.2. - Peer Process Operations . . . 14

5. Acknowledgements . 14
6. IANA Considerations . 14
7. Security Considerations 15
8. Normative References . 15

 Authors' Addresses . 16

1. Introduction

 An NTP packet consists of a set of fixed fields that may be followed
 by optional fields. Two types of optional fields are defined:
 extension fields (EFs) as defined in Section 7.5 of RFC 5905
 [RFC5905], and legacy Message Authentication Codes (legacy MACs).

 If a legacy MAC is used, it resides at the end of the packet. This
 field can be either a 4-octet crypto-NAK or data that has
 traditionally been 16, 20 or 24 octets long.

 Additional information about the content of a MAC is specified in RFC
5906 [RFC5906], but since that RFC is Informational an implementor

 that was not planning to provide Autokey would likely never read that
 document. The result of this would be interoperability problems, at
 least. To address this problem, this proposal also includes copying
 and clarifying some of the content of RFC 5906 and putting it into

RFC 5905. Because there is a reasonable expectation that RFC 5906

https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906#section-4
https://datatracker.ietf.org/doc/html/rfc5906#section-10
https://datatracker.ietf.org/doc/html/rfc5906#section-11.5
https://datatracker.ietf.org/doc/html/rfc5906#section-13
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905#section-7.5
https://datatracker.ietf.org/doc/html/rfc5905#section-7.5.1
https://datatracker.ietf.org/doc/html/rfc5905#section-9.2
https://datatracker.ietf.org/doc/html/rfc5905#section-9.2
https://datatracker.ietf.org/doc/html/rfc5905#section-7.5
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5906

Stenn & Mills Expires September 22, 2018 [Page 2]

Internet-Draft NTPv4 Extension Fields March 2018

 will be deprecated, this document does not propose changes or updates
 to RFC 5906.

 NTP extension fields are defined in RFC 5905 [RFC5905] as a generic
 mechanism that allows the addition of future extensions and features
 without modifying the NTP header format (Section 16 of RFC 5905
 [RFC5905]).

 With the knowledge and experience we have gained over time, it has
 become clear that simplifications, clarifications, and improvements
 can be made to the NTP specification around EFs and MACs.

 This proposal adjusts the requirements around EFs and MACs, allows
 EFs to be on 4-octet boundaries of any acceptable length, and
 provides methods to disambiguate packet parsing in the unexpected and
 unlikely case where an implementation would choose to send a packet
 that could be ambiguously parsed by the receiver.

 This proposal deprecates RFC 7822 [RFC7822].

 This document better specifies and clarifies extension fields as well
 as the requirements and parsing of a legacy MAC, with changes to
 address errors found after the publication of RFC 5905 [RFC5905] with
 respect to extension fields. Specifically, this document updates

Section 7.5 of RFC 5905 [RFC5905], clarifying the relationship
 between extension fields and MACs, and expressly defines the behavior
 of a host that receives an unknown extension field.

2. Conventions Used in This Document

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2.2. Terms and Abbreviations

 EF - Extension Field

 MAC - Message Authentication Code

 NTPv4 - Network Time Protocol, Version 4 RFC 5905 [RFC5905]

https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905#section-16
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905#section-7.5
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Stenn & Mills Expires September 22, 2018 [Page 3]

Internet-Draft NTPv4 Extension Fields March 2018

3. NTP MAC - RFC 5906 Update

 This document copies and updates some information in RFC 5906
 [RFC5906] and puts it in to RFC 5905, as follows:

3.1. RFC5906 Section 4. - Autokey Cryptography

 This section describes some of the cryptography aspects of Autokey.
 The third paragraph describes the use of 128- and 160-bit message
 digests. The enumeration of 128- and 160-bit message digests is not
 meant to be limiting - other message digest lengths MAY be
 implemented. This paragraph also describes some of the recommended
 semantic ranges of the key ID. This information belongs in RFC 5905.
 The key ID value is particularly significant because it provide
 additional disambiguation protection when deciding if the next data
 portion is either a legacy MAC or an extension field.

3.2. RFC5906 Section 10. - Autokey Protocol Messages

 This section describes the extension field format, including initial
 flag bits, a Code field, and 8-bit Field Type, and the 16-bit Length.
 This proposal expands and clarifies this information and puts it into

RFC 5905.

 This section says "The reference implementation discards any packet
 with a field length of more than 1024 characters." but this is no
 longer true.

3.3. RFC5906 Section 11.5. - Error Recovery

 This section describes the crypto-NAK, which should be described in
RFC 5905.

3.4. RFC5906 Section 13. - IANA Consideration

 This section lists the Autokey-related Extension Field Types,
 including Flag Bits, Codes, and Field Types, which should be
 described in RFC 5905, or perhaps in some other document.

4. NTP Extension Fields - RFC 5905 Update

 This document updates Section 7.5 of RFC 5905 [RFC5905] as follows:

4.1. OLD: RFC5905 7.5 - NTP Extension Field Format

 In NTPv4, one or more extension fields can be inserted after the
 header and before the MAC, which is always present when an extension
 field is present. Other than defining the field format, this

https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5906#section-4
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5906#section-10
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5906#section-11.5
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5906#section-13
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905#section-7.5
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Stenn & Mills Expires September 22, 2018 [Page 4]

Internet-Draft NTPv4 Extension Fields March 2018

 document makes no use of the field contents. An extension field
 contains a request or response message in the format shown in
 Figure 14.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type | Field Length |
 +-------------------------------+-------------------------------+
 . .
 . Value .
 . .
 +-------------------------------+-------------------------------+
 | Padding (as needed) |
 +---+

 Figure 14: Extension Field Format

 All extension fields are zero-padded to a word (four octets)
 boundary. The Field Type field is specific to the defined function
 and is not elaborated here. While the minimum field length
 containing required fields is four words (16 octets), a maximum field
 length remains to be established.

 The Length field is a 16-bit unsigned integer that indicates the
 length of the entire extension field in octets, including the Padding
 field.

4.2. NEW: RFC5905 Section 7.5 - NTP Extension Field Format

 In NTPv4, one or more extension fields can be inserted after the
 header and before the possibly optional legacy MAC. A MAC SHOULD be
 present when an extension field is present. A MAC is always present
 in some form when NTP packets are authenticated. This MAC SHOULD be
 either a legacy MAC or a MAC-EF. It MAY be both. Other than
 defining the field format, this document makes no use of the field
 contents. An extension field contains a request or response message
 in the format shown in Figure 14.

https://datatracker.ietf.org/doc/html/rfc5905#section-7.5

Stenn & Mills Expires September 22, 2018 [Page 5]

Internet-Draft NTPv4 Extension Fields March 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type | Field Length |
 +-------------------------------+-------------------------------+
 . .
 . Value .
 . .
 +-------------------------------+-------------------------------+
 | Padding (as needed) |
 +---+

 Figure 14: Extension Field Format

 All extension fields are zero-padded to a word (four octet) boundary.
 The Field Type is specific to the defined function and detailed
 information about the Field Type is not elaborated here. The minimum
 size of an Extension Field is a 32-bit word (4 octets), and while the
 maximum extension field size MUST be 65532 octets or less, an NTP
 packet SHOULD NOT exceed the network MTU.

 The Length field is a 16-bit unsigned integer that indicates the
 length of the entire extension field in octets, including any Padding
 octets. The bottom two bits of the Field Length SHOULD be zero, and
 the size of the extension field SHOULD end on a 32-bit (4 octet)
 boundary. [RFC5905 Section 7.5 says "All extension fields are zero-
 padded to a word (four octets) boundary." but does not use 'MUST'
 language. Is it overkill to reiterate this requirement here? Should
 we use SHOULD or MUST regarding the bottom two bits or the boundary
 of the EF? It is possible, down the road, that we might find some
 use for those bottom 2 bits, even if we require a 32-bit boundary on
 the last octet of an EF.]

 The Field Type contains the following sub-elements:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 |R|E| Code | Type | (Field Length) |
 +-------------------------------+-------------------------------+

 Field Type Format

 Where the following Field Type flags are defined:

 R: 0 for a "Query", 1 for a "Response"

 E: 0 for "OK", 1 for an "Error". Unused, and will be deprecated.

Stenn & Mills Expires September 22, 2018 [Page 6]

Internet-Draft NTPv4 Extension Fields March 2018

 [The 'R' flag is currently used by Autokey, and by the proposed I-DO
 extension field. This flag is used after the packet is accepted.]

 [The 'E' flag was proposed for use by Autokey, after the packet was
 accepted. As it was never used and no other use-cases have been
 identified, we are recommending this flag be deprecated at some point
 in the future.]

 [The EF Code subtype is currently used by RFC 5906, Autokey
 [RFC5906]. The EF Code subtype is used by the proposed Extended
 Information EF proposal, and is expected to be used by the NTS
 Extension Field, at least.]

 The Autokey EF currently uses the most Code values - 10 of them,
 which equates to the least-significant 4 bits of the high-order
 octet. It is possible that additional flag bits will be allocated;
 in the past, the high-order 2 bits were reserved, and for a time two
 additional bits were proposed. Make no assumptions about the unused
 bits in this octet.

 The Field Type, Value, and Padding fields are specific to the defined
 function and are not elaborated here; appropriate Field Type flags,
 the EF Code, and EF Type values are defined in an IANA registry, and
 the Length, Value, and Padding values are defined by the document
 referred to by the registry. If a host receives an extension field
 with an unknown Field Type, the host SHOULD ignore the extension
 field and MAY drop the packet altogether, depending on local policy.

 The Length field is a 16-bit unsigned integer that indicates the
 length of the entire extension field in octets, including any
 Padding.

 While the minimum field length of an EF that contains no value fields
 is one word (four octets), and the minimum field length of an EF that
 contains required fields is two words (8 octets), the maximum field
 length MUST NOT be longer than 65532 octets due to the maximum size
 of the data represented by the Length field, and SHOULD be small
 enough that the size of the NTP packet received by the client does
 not exceed the smallest MTU between the sender and the recipient.
 The bottom two bits of the Field Length SHOULD be zero and the EF
 data SHOULD be aligned to a 32-bit (4 octet) boundary.

4.3. NEW: RFC5905 Section 7.5.1 - Extension Fields and MACs

 With the inclusion of additional Extension Fields, there is now a
 potential that a poorly-designed implementation would produce an
 ambiguous parsing in the presence of a legacy MAC. If an
 implementation offers even a modicum of care, there will be no

https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5905#section-7.5.1

Stenn & Mills Expires September 22, 2018 [Page 7]

Internet-Draft NTPv4 Extension Fields March 2018

 ambiguity when parsing an NTP packet that contains a legacy MAC from
 an existing implementation.

 The first protection from this ambiguity comes from the fact that
 current conforming implementations only support the Autokey EF, which
 uses EF Type 2 and a legacy MAC. While the Experimental UDP Checksum
 Complement specified by RFC 7821 [RFC7821] uses EF Type 5, it
 specifically prohibits the use of a MAC, and the 0x2000 bit in its
 assigned EF specification of 0x2005 originally signified that a MAC
 is optional when this EF is seen. While the 0x2000 bit is no longer
 proposed as a means to flag that the MAC is optional, any usage of
 this EF with a Code field of either 0x2005 or 0x0005 can be trivially
 recognized as an Experimental UDP Checksum Complement EF, which does
 not, indeed, MUST NOT be followed by a MAC.

 [As a side note, the requirement in RFC 7821 [RFC7821] that the UDP
 Checksum Complement EF must have a 28 octet length is demonstrably
 not needed if this proposal is accepted. It only needs 8 octets: 4
 octets of EF header, 2 octets of must-be-zero padding, and 2 octets
 of Checksum Complement.]

 If an implementation uses the LAST-EF extension field, the presence
 of this field means "I am the last EF in this NTP Packet. Any
 subsequent packet data MUST be a legacy MAC." In this case, there is
 no parsing ambiguity.

 If a system sends its MAC as a MAC-EF and does not send a legacy MAC,
 there is no parsing ambiguity.

 The only time there is a potential for a parsing ambiguity is when a
 legacy MAC is provided and neither of the previous two cases are
 present. Even in this case, there is minimal risk.

 An implementation MAY choose to add padding to any EF, or at least
 any EF that comes before a legacy MAC, to avoid an EF that is 16, 20,
 or 24 octets in length. Doing this would generally avoid any risk of
 mis-parsing. But this should not be needed for the following
 reasons.

 An Extension Field contains a 2-octet Field Type, a 2-octet Field
 Length, and any payload (data and/or padding). If the NTP Packet
 parsing is at a point where it is evaluating data after the base
 packet, one of the following situations exists:

 If the Field Length is not an even multiple of 4, we are not
 looking at an extension field. In this case, the only possibility
 of having a valid packet is if the data is part of a legacy MAC.

https://datatracker.ietf.org/doc/html/rfc7821
https://datatracker.ietf.org/doc/html/rfc7821
https://datatracker.ietf.org/doc/html/rfc7821
https://datatracker.ietf.org/doc/html/rfc7821

Stenn & Mills Expires September 22, 2018 [Page 8]

Internet-Draft NTPv4 Extension Fields March 2018

 If the Field Length is valid, i.e., an even multiple of 4 octets,
 one of the following three cases must be present:

 First, the Field Length will be less than the remaining data.
 This means subsequent data must parse as some number of
 Extension Fields, optionally followed by a legacy MAC.

 Second, the Field Length will exactly match the remaining data.

 The third case is where the Field Length is longer than the
 remaining packet data. In this case, the current parse cannot
 be a valid extension field, and if the packet is valid, the
 data must be a legacy MAC.

 Semantic checking may also be done to validate a potential legacy
 MAC. A legacy MAC is a four-octet Key Identifier followed by a
 message digest. The usual message digest is 16 octets long but may
 be another size, depending on the digest algorithm. In the Reference
 Implementation and in implementations that follow the guidelines for
 the values of the Key Identifier, a Key Identifier between 1 and
 65535, inclusive, is a symmetric key, while a Key Identifier that is
 > 65535 is an Autokey RFC 5906 [RFC5906], or similar. If the
 receiving system does not recognize the Key Identifier, the data
 CANNOT be a valid legacy MAC. If the receiving system recognizes the
 Key Identifier, then it also has knowledge of the digest algorithm
 and can make sure the digest payload is the proper length. If this
 is not the case, then the data CANNOT be a valid legacy MAC. In this
 case, it MIGHT be a valid extension field.

 It is trivial to parse the data after the base NTP packet and come up
 with a list of potential parsings. A local policy choice can specify
 the precedence of the parsing options in this case.

 If none of the parsings validate, the packet fails authentication.
 An implementation has three local policy choices available if LAST-EF
 is not used and a legacy MAC may be provided. First, the
 implementation may specify EF-precedence. Second, the implementation
 may specify legacy-MAC-precedence. Finally, the implementation may
 specify "best fit" precedence. In this last case, the packet will
 meet one of the three following criteria: First, none of the parsings
 will match. Again, this is a case of failed authentication. Second,
 exactly one parsing will match and that parsing will be accepted.
 Third, multiple parsings will match, in which case the implementation
 may choose its behavior.

 Additionally, most EFs will require a MAC. If there is a
 syntactically-valid parsing that does not include a MAC but
 previously scanned EFs require a MAC, then in a multiple-choice

https://datatracker.ietf.org/doc/html/rfc5906
https://datatracker.ietf.org/doc/html/rfc5906

Stenn & Mills Expires September 22, 2018 [Page 9]

Internet-Draft NTPv4 Extension Fields March 2018

 parsing scenario where one of the choices does not include a MAC the
 "no MAC provided" choice SHOULD be eliminated.

 Note well that this rare situation can be completely avoided by using
 LAST-EF, or by indicating that no legacy MAC will be used.

 Finally, in many cases at least one side will know if a MAC is
 required or not. Client configurations of all types, unicast,
 broadcast, multicast, and manycast, that state that a key will be
 used to communicate with a server SHOULD reject packets claiming to
 be from the server that do not include a MAC. Symmetric associations
 also are configured with similar knowledge and requirements.

4.3.1. Legacy MAC/EF Parsing Pseudocode

 Here are two potential pseudocode implementations showing how data
 after the base NTP packet could be analyzed to identify EFs and a
 possible legacy MAC.

 Example 1: Generate a list of possible parsings:

Stenn & Mills Expires September 22, 2018 [Page 10]

Internet-Draft NTPv4 Extension Fields March 2018

 struct pkt_parse {
 foo * ef_ptr;
 foo * legacy_mac;
 struct pkt_parse * next;
 };

 struct pkt_parse pkt_parse_chain = NULL;

 EOPacket = address of last data in packet;
 here = address of the EOBasePacket;
 more_efs = 1;
 while (1) {
 int candidate = 0;
 int ef_len = 0;

 if (EOPacket > here) {
 p = emalloc(pkt_parse); // *p is zeroed
 if (this could be a legacy MAC) { // we know the keyid
 p->legacy_mac = here;
 candidate = 1;
 }
 if (more_efs && this could be an EF) { // Length field valid
 p->ef_ptr = here;
 ef_len = (the length of the EF);
 here += ef_len;
 if (this is a LAST_EF) {
 more_efs = 0;
 }
 candidate = 1;
 } else {
 more_efs = 0;
 }
 }

 if (candidate) {
 p->next = pkt_parse_chain;
 pkt_parse_chain = p;
 } else {
 free(p);
 break;
 }
 }

 Example 1: Generate a list of possible parsings

 and at this point we can scan thru the items in pkt_parse_chain to do
 deeper checks, throwing away the parsings that don't make sense.

Stenn & Mills Expires September 22, 2018 [Page 11]

Internet-Draft NTPv4 Extension Fields March 2018

 This opens up more questions if we get multiple parsings and at least
 1 of them is "valid". It's also perfectly reasonable to decide to
 produce a single parse based on precedence rules: Prefer legacy MAC,
 or prefer EF.

 Example 2: Another possible way to handle EF/legacy-MAC parsing:

 // We're at the end of the base NTP packet.
 // A legacy MAC is allowed:
 // - immediately after the base packet
 // - immediately after one or more Autokey EFs (a non-issue, below)
 // - immediately after a LAST-EF

 ef_ok = 1; // An EF is allowed here
 legacy_mac_ok = 1; // Legacy MAC allowed here
 saw_mac = 0; // We haven't seen a MAC yet
 authlen = LEN_PKT_NOMAC; // Length of a base packet
 leg_mac = rbufp->recv_length - authlen; // # bytes after base

 while (leg_mac > 0) { // Data after base packet
 if (leg_mac % 4 != 0 || leg_mac < MIN_MAC_LEN) {
 return: Bad packet length;
 }

 // If ef_ok, this could be an EF or legacy MAC
 skeyid = ntohl(pkt[authlen / 4]);
 opcode = skeyid >> 16;
 len = skeyid & 0xffff;

 if (ef_ok && GET_EXT_FIELD_TYPE(opcode) == EF_FT_LAST) {
 if (leg_mac > MAX_MAC_LEN) {
 return: Too much data after LAST_EF;
 }
 // Anything here MUST be a legacy MAC
 ef_ok = 0;
 legacy_mac_ok = 1;
 } else {
 if (4 == leg_mac && 0 == skeyid) {
 break; // Likely crypto-NAK
 }

 if (legacy_mac_ok && leg_mac <= MAX_MAC_LEN) {
 int ksize;

 // If we find a keyid, we know its alg/length
 ksize = auth_findkeysize(skeyid);
 if (ksize != -1
 && ksize == leg_mac

Stenn & Mills Expires September 22, 2018 [Page 12]

Internet-Draft NTPv4 Extension Fields March 2018

 && (it validates)) {
 saw_mac = 1;
 break;
 }
 // If we got here, it can't be a valid
 // legacy MAC. It's still a potential EF.
 }

 if (!ef_ok) {
 break;
 }

 // At this point, this SHOULD be an EF

 if (len % 4 != 0
 || len < 4
 || len + authlen > rbufp-> recv_length) {
 return: Bad length;
 }

 switch (GET_EXT_FIELD_TYPE(opcode)) {
 case EF_FT_AK: // Autokey
 // extract calling group name for later
 break;
 case EF_FT_LAST: // LAST-EF
 legacy_mac_ok = 1;
 break;
 default:
 legacy_mac_ok = 0;
 break;
 }
 }

 authlen += len;
 leg_mac -= len;
 }

 if (leg_mac < 0) {
 return: Malformed packet
 }

 Example 2: Another way to handle EF/legacy-MAC parsing

4.4. OLD: RFC5905 Section 9.2. - Peer Process Operations

 ...

https://datatracker.ietf.org/doc/html/rfc5905#section-9.2

Stenn & Mills Expires September 22, 2018 [Page 13]

Internet-Draft NTPv4 Extension Fields March 2018

 FXMIT. ... This message includes the normal NTP header data shown in
 Figure 8, but with a MAC consisting of four octets of zeros. ...

4.5. NEW: RFC5905 Section 9.2. - Peer Process Operations

 ...

 FXMIT. ... This message includes the normal NTP header data shown in
 Figure 8, but with a MAC consisting of four octets of zeros. This
 MAC can be a legacy MAC or a MAC-EF. If it's a MAC-EF, the crypto-
 NAK MUST be the only MAC in the MAC-EF payload. ...

5. Acknowledgements

 The authors wish to acknowledge the contributions of Sam Weiler,
 Danny Mayer, and Tal Mizrahi.

6. IANA Considerations

 This memo requests IANA to allocate the following bits in the NTP
 Extension Field Types table:

 0x8000: R: Response (0: Request, 1: Response)

 0x4000: E: Error (0: OK, 1: Error) - Unused, deprecation expected

 The following table should be the functionally the same as the
 existing NTP Extension Field Table.

https://datatracker.ietf.org/doc/html/rfc5905#section-9.2

Stenn & Mills Expires September 22, 2018 [Page 14]

Internet-Draft NTPv4 Extension Fields March 2018

 +------------+---+
 | Field Type | Meaning |
 +------------+---+
0x0000	crypto-NAK (with Field Length of 0)
0x0000	RESERVED: Permanently Unassigned
0x0001	RESERVED: Unassigned
0x0002	Autokey: No-Operation Request
0x8002	Autokey: No-Operation Response
0x0102	Autokey: Association Message Request
0x8102	Autokey: Association Message Response
0x0202	Autokey: Certificate Message Request
0x8202	Autokey: Certificate Message Response
0x0302	Autokey: Cookie Message Request
0x8302	Autokey: Cookie Message Response
0x0402	Autokey: Autokey Message Request
0x8402	Autokey: Autokey Message Response
0x0502	Autokey: Leapseconds Value Message Request
0x8502	Autokey: Leapseconds Value Message Response
0x0602	Autokey: Sign Message Request
0x8602	Autokey: Sign Message Response
0x0702	Autokey: IFF Identity Message Request
0x8702	Autokey: IFF Identity Message Response
0x0802	Autokey: GQ Identity Message Request
0x8802	Autokey: GQ Identity Message Response
0x0902	Autokey: MV Identity Message Request
0x8902	Autokey: MV Identity Message Response
0x0005	Checksum Complement
0x1005	Checksum Complement
 +------------+---+

 Current Extension Fields

7. Security Considerations

 Additional information TBD

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5905
https://www.rfc-editor.org/info/rfc5905

Stenn & Mills Expires September 22, 2018 [Page 15]

Internet-Draft NTPv4 Extension Fields March 2018

 [RFC5906] Haberman, B., Ed. and D. Mills, "Network Time Protocol
 Version 4: Autokey Specification", RFC 5906,
 DOI 10.17487/RFC5906, June 2010,
 <https://www.rfc-editor.org/info/rfc5906>.

 [RFC7821] Mizrahi, T., "UDP Checksum Complement in the Network Time
 Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March
 2016, <https://www.rfc-editor.org/info/rfc7821>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/info/rfc7822>.

Authors' Addresses

 Harlan Stenn
 Network Time Foundation
 P.O. Box 918
 Talent, OR 97540
 US

 Email: stenn@nwtime.org

 David L. Mills
 Network Time Foundation
 P.O. Box 918
 Talent, OR 97540
 US

 Email: mills@udel.edu

https://datatracker.ietf.org/doc/html/rfc5906
https://www.rfc-editor.org/info/rfc5906
https://datatracker.ietf.org/doc/html/rfc7821
https://www.rfc-editor.org/info/rfc7821
https://datatracker.ietf.org/doc/html/rfc7822
https://www.rfc-editor.org/info/rfc7822

Stenn & Mills Expires September 22, 2018 [Page 16]

