
Workgroup: Network Working Group

Internet-Draft: draft-stewart-tsvwg-sctpecn-06

Published: 20 October 2023

Intended Status: Informational

Expires: 22 April 2024

Authors: R. Stewart

Netflix, Inc.

M. Tüxen

Münster Univ. of Appl. Sciences

Explicit Congestion Notification for the Stream Control Transmission

Protocol

Abstract

This document describes the addition of the Explicit Congestion

Notification (ECN) to the Stream Control Transmission Protocol

(SCTP).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 April 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Conventions

3. Terminology

4. Chunk and Parameter Formats

4.1. ECN Support Parameter (32768)

4.2. ECN Echo (12)

4.3. CWR Chunk(13)

5. Procedures

5.1. SCTP Initialization

5.2. The SCTP Sender

5.3. The SCTP Receiver

5.4. Congestion on the SACK Path

5.5. Retransmitted SCTP Packets

5.6. SCTP Window Probes

6. Socket API Considerations

7. IANA Considerations

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

At the time SCTP was initially defined in [RFC2960], ECN as

specified in [RFC2481] was still an experimental document. This left

the authors of SCTP in a position where they could not directly

refer to ECN without creating a normative reference in a standards

track document to an experimental RFC. To work around this problem

the authors of SCTP decided to add two reserved chunk types for ECN

(CWR and ECNE) but did not fully specify how they were to be used

except in a vague way within an appendix of the document. This

worked around the document reference problem, but left ECN and its

implementation for SCTP unspecified. This document is intended to

fill in the details of ECN processing in SCTP in a standards track

document.

This document assumes that the reader is familiar with ECN

[RFC3168]. Readers unfamiliar with ECN are strongly encouraged to

first read [RFC3168] since this document will not repeat any of the

details on how the various IP level bits are set. This document will

use the same terminology has [RFC3168]. For example the term ECT is

used to indicate that the IP level packet is marked indicating the

transport (SCTP) supports ECN.

¶

¶

ECT:

not-ECT:

CE:

Type: 16 bits (unsigned integer)

Length: 16 bits (unsigned integer)

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Terminology

All integer fields defined in this document included in an SCTP

packet MUST be transmitted in network byte order, unless otherwise

stated.

The term used to indicate that the IP level packet is marked

indicating the transport is willing to support ECN for this

packet.

The term used to indicate that the IP level packet is

marked indicating the transport is NOT willing to support ECN for

this packet.

The term used to indicate that the IP level packet is marked

indicating that a router in the network has marked the packet as

having experienced congestion.

4. Chunk and Parameter Formats

4.1. ECN Support Parameter (32768)

Figure 1: ECN Support Chunk Parameter

This field holds the IANA defined parameter type for the "ECN

Support" chunk parameter. IANA is requested to assign the value

32768 (0x8000) (suggested) for this parameter type.

This field holds the length in bytes of the chunk parameter; the

value MUST be 4.

The ECN Support Chunk Parameter MAY appear in INIT and INIT ACK

chunks and MUST NOT appear in any other chunk.

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Parameter Type = 32768 | Parameter Length = 4 |

+-+

¶

¶

¶

Flags: 8 bits

Length: 16 bits (unsigned integer)

Lowest TSN Number: 32 bits (unsigned integer)

Number CE Marked Packets: 32 bits (unsigned integer)

4.2. ECN Echo (12)

Figure 2: ECN Echo Chunk

Set to all zeros on transmit and ignored on receipt.

This field holds the length in bytes of the chunk; the value MUST

be 12.

This parameter contains the lowest TSN number contained in the

last packet received that was marked by the network with a CE

indication.

This parameter contains the total number of CE marked packets

that has been seen since the first CE mark received while waiting

for a CWR chunk. Note that the CE counter will overflow from

0xffffffff to 0 if a CWR chunk is not recieved.

Note that the appendix of [RFC4960] did not have the field Number CE

Marked Packets. Implementations SHOULD accept an 8 byte form of this

chunk that does not include this field. In such a case the

implementation SHOULD treat the missing field as indicating one CE

marked packet for any purpose for which the implementation is using

this field.

4.3. CWR Chunk(13)

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Chunk Type=12 | Flags=00000000| Chunk Length = 12 |

+-+

| Lowest TSN Number |

+-+

| Number CE Marked Packets Seen since CWR |

+-+

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Chunk Type=13 | Flags=0000000R| Length = 8 |

+-+

| TSN Number |

+-+

Flags: 8 bits

Length: 16 bits (unsigned integer)

TSN Number: 32 bits (unsigned integer)

Figure 3: CWR Chunk

The R Bit indicates if the CWR is a retransmission of an earlier

CWR that may have been lost. If this bit is set, then the TSN

number included is the latest TSN that a CWR has been responded

to. If the R bit is clear, than the TSN indicated is the latest

TSN for that destination.

This field holds the length in bytes of the chunk; the value MUST

be 8.

This parameter contains the TSN number to which the sender has

reduced his congestion window to.

5. Procedures

5.1. SCTP Initialization

In the SCTP association setup phase, the source and destination SCTP

endpoints exchange information about their willingness to use ECN.

After the completion of this negotiation, an SCTP sender sets an ECT

codepoint in the IP header of data packets to indicate to the

network that the transport is capable and willing to participate in

ECN for this packet. This indicates to the routers that they may

mark this packet with the CE codepoint.

If the SCTP association does not wish to use ECN notification for a

particular packet, the sending SCTP sets the ECN codepoint to not-

ECT, and the SCTP receiver ignores the CE codepoint in the received

packet.

For this discussion we will call the endpoint initiating the SCTP

association as EP-A and the listening SCTP endpoint as EP-Z.

Before an SCTP association can use ECN, EP-A sends an INIT chunk

which includes the ECN Support parameter. By including the ECN

Support parameter the sending endpoint (EP-A) will participate in

ECN as both a sender and a receiver. Specifically, as a receiver, it

will respond to incoming data packets that have the CE codepoint set

in the IP header by sending an ECN Echo chunk bundled with the next

outgoing SACK Chunk. As a sender, it will respond to incoming

packets that include an ECN Echo chunk by reducing the congestion

window and sending a CWR chunk when appropriate.

Including an ECN Support parameter in an INIT or INIT-ACK does not

commit the SCTP sender to setting the ECT codepoint in any or all of

the packets it may transmit. However, the commitment to respond

appropriately to incoming packets with the CE codepoint set remains.

¶

¶

¶

¶

¶

¶

¶

¶

When EP-Z sends INIT-ACK chunk, it also includes an ECN Support

parameter. Including the ECN Support parameter indicates that the

SCTP transmitting the INIT-ACK chunk is ECN-Capable.

The following rules apply to the use of ECN for an SCTP association.

If the SCTP Endpoint supports ECN a sender of either an INIT or

INIT-ACK chunk MUST always include the ECN Supported Parameter.

After the exchange of the INIT and INIT-ACK if both endpoints

have not indicated support of ECN by including an ECN Supported

Parameter, then ECT MUST NOT be set on any IP packets sent by any

endpoint which is ECN capable. Furthermore upon receiving IP

packets with a CE codepoint set, the ECN capable endpoint SHOULD

ignore the CE codepoint.

If both endpoints have included an ECN Supported Parameter in the

INIT and INIT-ACK exchange, then both endpoints MUST follow the

ECN procedures defined in the rest of this document.

A sending endpoint SHOULD set the ECT code points on IP packets

that carry DATA chunk. This includes IP packets that have other

control chunks bundled with the Data.

5.2. The SCTP Sender

For an SCTP association using ECN, new data packets are transmitted

with an ECT codepoint set in the IP header. When only one ECT

codepoint is needed by a sender for all packets sent on an SCTP

association ECT(0) SHOULD be used. If the sender receives an ECN-

Echo chunk packet, then the sender knows that congestion was

encountered in the network on the path from the sender to the

receiver. The indication of congestion should be treated just as a

congestion loss in non-ECN-Capable SCTP. That is, the SCTP source

halves the congestion window "cwnd" for the destination address that

the sender transmitted the data to and reduces the slow start

threshold "ssthresh". A packet containing an ECN-Echo chunk

shouldn't trigger new data to be sent. SCTP follows the normal

procedures for increasing the congestion window when it receives a

packet with a SACK chunk without the ECN Echo chunk.

SCTP should not react to congestion indications more than once every

round-trip time. That is, the SCTP sender's congestion window should

be reduced only once in response to a series of dropped and/or CE

packets from a single window of data. In addition, the SCTP source

should not decrease the slow-start threshold, ssthresh, if it has

been decreased within the last round trip time.

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

One method to accomplish this is as following:

During association setup, create a new state variable

ECN_ECHO_TSN and ECN_ECHO_LAST for each destination. The

initial value of these variables are set to the initial TSN

that will be assigned minus 1.

When an ECN Echo chunk arrives, use the TSN in the ECN Echo to

establish which destination the packet was sent to. We will

call this destination the selected destination. If the chunk

cannot be found note that an override is occurring from the

selected destination (if found) select its ECN Echo TSN.

Compare the ECN Echo TSN with the ECN_ECHO_TSN for the selected

destination. If an override is not noted and the value of the

ECN_ECHO_TSN is greater than the ECN Echo TSN proceed to step

4; else proceed to step 6.

Reduce the cwnd and ssthresh for the selected destination the

same as if a loss was detected during a fast retransmit. For

details, see [RFC9260] Section 7.2.3 and Section 7.2.4.

Record in the ECN_ECHO_TSN value, the last TSN that was sent

and recorded in ECN_ECHO_LAST the TSN number from the ECN Echo

Chunk.

If the implementation is tracking the number of marked packets,

record the value found in the 'Number CE Marked Packets Seen

since CWR' field and also add this number to the running loss

count. If such a count is not being maintained, then proceed to

step 8.

If the implementation is tracking the number of marked packets,

compare the number in the ECN Echo Chunk TSN to the

ECN_ECHO_LAST. If it is greater than ECN_ECHO_LAST, update

ECN_ECHO_LAST with this value. Take the difference between the

stored 'Number CE Marked Packets' field and the value from the

newly arriving 'Number CE Marked Packets' and add this

difference to the total loss count. Then update the stored

'Number CE Marked Packets' with the ECN Echo Chunk TSN.

Create a CWR chunk with the value found in the ECN_ECHO_LAST

for the selected destination. If an override was noted, set the

'O' bit within the CWR flags. Queue this chunk for transmission

to the peer destination. Note if there is already such a chunk

in queue to be sent, remove that chunk and replace it with the

new chunk.

After the sending SCTP reduces its congestion window in response to

a ECN Echo, incoming SACKs that continue to arrive can "clock out"

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

outgoing packets as allowed by the reduced congestion window. Note

that continued arrival of ECN Echo chunks should still be processed

as described above, possibly reducing the cwnd, but always sending a

CWR to the receiving SCTP. This assures that the ECN Echo and CWR

are robust with regard to loss in either direction and that the

implementation, if it desires, can maintain an accurate loss count

per destination.

Note, originally in the appendix of [RFC4960] a definition was

supplied for the ECN Echo chunk. This definition did not include the

'Number CE Marked Packets' field. An implementation SHOULD accept

such a chunk, delineating it from the standards track version by the

fact that the length field will be 8 bytes instead of 12. When

processing this older style chunk, the 'Number CE Marked Packets'

SHOULD be treated as if it contains the number 1. This may cause

incorrect loss counts but will not cause any issues with SCTP's ECN

handling.

5.3. The SCTP Receiver

When an SCTP endpoint first receives a CE data packet at the

destination end-system, the SCTP data receiver creates an ECN Echo

chunk and records the lowest TSN number found in the data packet. It

also sets the 'Number CE Marked Packets' to 1 and queues this chunk

for transmission at the next opportunity. If there is any ACK

withholding implemented, as in current "delayed-SACK" SCTP

implementations where the SCTP receiver can send an SACK for two

arriving data packets, then the ECN Echo chunk will not be sent

until the SACK is sent. If the next arriving data packet also has

the CE codepoint set, then the receiver updates the queued ECN Echo

chunk to have a higher TSN value (the lowest one in the newly

arriving data packet) and increments the 'Number CE Marked Packets'

field in the queued chunk.

Multi-homing requires one added restriction upon the ECN Echo chunk,

such a chunk MUST be bundled with a SACK, and the SACK MUST follow

the ECN Echo Chunk. This ordering is necessary so that the receiver

of the ECN Echo chunk will at least one time find the proper

destination to which the chunk was originally sent. Without this

restriction it is possible a SACK could arrive ahead of the ECN Echo

Chunk, no matter what the sending order, causing the sender to free

the DATA chunk and thus loose the association with what destination

it was sent to. For the same reason we also require the ECN Echo

Chunk be earlier in the packet ahead of the SACK so that the SACK is

not processed before the ECN Echo Chunk.

After transmission of the ECN Echo chunk, usually bundled with the

SACK, the receiver does not discard the ECN Echo chunk. Instead it

keeps the chunk in its queue and continues to send this chunk

¶

¶

¶

¶

bundled with at least a SACK chunk on each outgoing packet, updating

it as described above if other CE codepoint data packets arrive. The

ECN Echo chunk should only be discarded when a CWR Chunk arrives

holding a TSN value that is greater than or equal to the value

inside the ECN Echo Chunk.

This provides robustness against the possibility of a dropped SACK

packet carrying an ECN Echo chunk. The SCTP receiver continues to

transmit the ECN Echo chunk in subsequent SACK packets until the

correct CWR is received.

After the receipt of the CWR chunk, acknowledgments for subsequent

non-CE data packets will not have an ECN Echo chunk bundled with

them. If another CE packet is received by the data receiver, the

receiver would once again send SACK packets bundled with a newly

created ECN Echo chunk. The receipt of a CWR packet guarantees that

the data sender has received the ECN Echo chunk for the TSN

specified, and reduced its congestion window at some point after it

sent the data packet for which the CE codepoint was set.

When processing a CWR, it is important that the receiver of the CWR

validate the source address from which the CWR came from. It SHOULD

match the destination the ECN Echo was sent to unless the override

bit is set in the CWR Chunk.

5.4. Congestion on the SACK Path

For the current generation of SCTP congestion control algorithms,

pure acknowledgement packets (e.g., packets that do not contain any

accompanying data) MUST be sent with the not-ECT codepoint. Current

SCTP receivers have no mechanisms for reducing traffic on the SACK-

path in response to congestion notification. Mechanisms for

responding to congestion on the SACK-path are areas for current and

future research. For current SCTP implementations, a single dropped

SACK generally has only a very small effect on SCTP's sending rate.

5.5. Retransmitted SCTP Packets

This document specifies ECN-capable SCTP implementations MUST NOT

set either ECT codepoint (ECT(0) or ECT(1)) in the IP header for

retransmitted data packets, and that the SCTP data receiver SHOULD

ignore the ECN field on arriving data packets that are outside of

the receiver's current window. The reasons for this can be found in

[RFC3168] Section 6.1.5.

5.6. SCTP Window Probes

When the SCTP data receiver advertises a zero window, the SCTP data

sender sends window probes to determine if the receiver's window has

increased. Window probe packets for SCTP do contain user data (one

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3168]

[RFC8174]

[RFC9260]

[RFC2481]

chunk). If a window probe packet is dropped in the network, this

loss can be detected by the receiver. Therefore, the SCTP data

sender MAY set an ECT codepoint on the initial send of the window

probe, but the SCTP sender MUST NOT set the ECT codepoint on

retransmissions of that TSN.

6. Socket API Considerations

This section describes how the socket API defined in [RFC6458] needs

to be extended to support ECN as defined in this document.

Please note that this section is informational only.

7. IANA Considerations

TBD.

8. Security Considerations

[RFC3168] defines the security considerations for ECN. These same

consideration that are described for TCP are applicable to SCTP.

9. References

9.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/info/rfc3168>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Stewart, R., Tüxen, M., and K. Nielsen, "Stream Control

Transmission Protocol", RFC 9260, DOI 10.17487/RFC9260,

June 2022, <https://www.rfc-editor.org/info/rfc9260>.

9.2. Informative References

Ramakrishnan, K. and S. Floyd, "A Proposal to add

Explicit Congestion Notification (ECN) to IP", RFC 2481,

DOI 10.17487/RFC2481, January 1999, <https://www.rfc-

editor.org/info/rfc2481>.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc2481
https://www.rfc-editor.org/info/rfc2481

[RFC2960]

[RFC4960]

[RFC6458]

Stewart, R., Xie, Q., Morneault, K., Sharp, C.,

Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,

Zhang, L., and V. Paxson, "Stream Control Transmission

Protocol", RFC 2960, DOI 10.17487/RFC2960, October 2000,

<https://www.rfc-editor.org/info/rfc2960>.

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/info/rfc4960>.

Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.

Yasevich, "Sockets API Extensions for the Stream Control

Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011, <https://www.rfc-editor.org/info/

rfc6458>.

Acknowledgments

Special thanks to Xuesong Dong for being a coauthor on early

versions of the document.

Thanks to Richard Scheffenegger for his helpful comments and review.

Authors' Addresses

Randall R. Stewart

Netflix, Inc.

15214 Pendio Drive

Bella Collina, FL 34756

United States of America

Email: randall@lakerest.net

Michael Tüxen

Münster University of Applied Sciences

Stegerwaldstrasse 39

48565 Steinfurt

Germany

Email: tuexen@fh-muenster.de

¶

¶

https://www.rfc-editor.org/info/rfc2960
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc6458
mailto:randall@lakerest.net
mailto:tuexen@fh-muenster.de

	Explicit Congestion Notification for the Stream Control Transmission Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Terminology
	4. Chunk and Parameter Formats
	4.1. ECN Support Parameter (32768)
	4.2. ECN Echo (12)
	4.3. CWR Chunk(13)

	5. Procedures
	5.1. SCTP Initialization
	5.2. The SCTP Sender
	5.3. The SCTP Receiver
	5.4. Congestion on the SACK Path
	5.5. Retransmitted SCTP Packets
	5.6. SCTP Window Probes

	6. Socket API Considerations
	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Authors' Addresses

