
Internet Draft M. Stiemerling
Document: draft-stiemerling-nat-fw-config-00.txt J. Quittek
Expires: May 2002 NEC Europe Ltd.

 November 2001

Simple NAT and Firewall Configuration (SNFC) Protocol Version 1.0

 <draft-stiemerling-nat-fw-config-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Distribution of this document is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This memo specifies a protocol for configuring Network Address
 Translators (NATs) and firewalls dynamically to create address
 bindings and open pinholes. NATs and firewalls are a problem for
 applications using voice and video streaming, such as IP telephony,
 because they need to establish voice or video channels dynamically.
 The Simple NAT and Firewall Control (SNFC) protocol allows clients to
 send requests for this purpose to serving NATs and/or firewalls. The
 protocol is designed to provide a very simple and basic solution that
 can easily be implemented and used.

https://datatracker.ietf.org/doc/html/draft-stiemerling-nat-fw-config-00.txt
https://datatracker.ietf.org/doc/html/draft-stiemerling-nat-fw-config-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Stiemerling & Quittek [Page 1]

Internet-Draft Simple NAT and Firewall Configuration November 2001

Table of Contents

1 Introduction ... 2
2 Terminology .. 2
3 SNFC Protocol Overview 4
4 SNFC Messages .. 5
4.1 Common Definitions ... 5
4.2 Message Definitions .. 6
4.3 Replies .. 6
5 Message Processing in Server 8
5.1 Syntax Checking .. 8
5.2 Session State Machine 8
5.2.1 Transistions from State CLOSED 9
5.2.2 Transistions from State OPEN 10
5.3 Binding State Machine 10
5.3.1 Transport Parameter Set Checking 11
5.3.2 Transitions from State BID_UNUSED 12
5.3.3 Transitions from BIND_IN_ONLY and BIND_OUT_ONLY 13
5.3.4 Transitions from State FULL_BINDING 14
6 Controling SNFC Sessions 15
7 Controling Bindings and Pinholes 17
8 Security Considerations 19
9 References ... 19
10 Authors' Address .. 20
11 Full Copyright Statement 20

1. Introduction

 In today's network environments the use of firewalls and Network
 Address Translators (NATs) is widespread. Firewalls and NATs improve
 network security and in the times of IPv4 address depletion NATs are
 keeping the Internet growing. However, NATs and firewalls also are an
 obstacle to many applications, because in order to traverse them,
 application specific and session specific configuration is required.

 A good example (and the main driver for developing SNFC) is IP
 telephony. For a connection two voice channels - one for each
 direction - need to be established. Typically, UDP is used to carry
 voice data, but for most NATs and firewalls it is a problem to
 provide the required address mapping and to open corresponding
 pinholes for UDP traffic without manual configuration. Possible
 solutions are application level gateways linked to the NAT/firewall
 or signaling between the application and the NAT/firewall.

 Providing a signaling-based solution is the main goal of the midcom
 working group [2,3]. The group currently discusses requirements for a
 signaling protocol [4]. The SNFC protocol described in this document

 shall contribute to the requirements discussion by demonstrating how
 a very simple and straight forward approach to such a protocol can

Stiemerling & Quittek [Page 2]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 look like. The SNFC protocol is a client/server protocol with the
 NAT/firewall (middlebox) serving application-level clients (midcom
 agents) requesting address bindings and firewall configurations. It
 contains only four different kinds of requests and very simple state
 machines that are completely specified below.

 This memo describes the architectural background for the SNFC
 protocol and its basic concepts in section 3. Section 4 defines all
 SNFC messages, and section 5 specifies processing of the messages at
 a NAT/firewall including the complete specification of state
 machines. Section 6 explains how a client can open and close a SNFC
 session, and section 7 explains how it can request address bindings
 and pinhole configurations. Both sections include example message
 sequences for these actions. Most of the security issues are
 discussed in section 8. They are very important, because many network
 security concepts strongly depend on proper firewall configuration.

2. Terminology

 This section defines the terminology that is used throughout this
 document.

 NAT Network Address Translation,
 according to [1]: Network Address
 Translation is a method by which IP
 addresses are mapped from one address
 realm to another, providing
 transparent routing to end hosts

 firewall A general firewall contains two
 components: a packet filter examining
 information of Layer 2-4 and an
 Application Level Gateway (ALG). In
 this document we restrict use of the
 term `firewall' refers to packet
 filters unless metioned explicitly

 NAT/firewall A NAT or a firewall or a combination
 of both

 internal side The private network of a NAT (cf.
 [1], Section 2.8) or the protected
 network of a firewall

 external side The public network of a NAT (cf. [1],
 Section 2.7) or firewall.

 inner or internal IP Address An IP address which is located at the

 internal side of a NAT/firewall

Stiemerling & Quittek [Page 3]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 outer or external IP Address An IP address which is located at the
 external side of a NAT/firewall.

 transport parameter set A set consisting of three items: an
 IP address, a port number, and an IP
 protocol type.

 inner transport parameter set Transport parameter set with inner IP
 address and port number.

 outer transport parameter set transport parameter set with an outer
 IP address and port number.

 inner binding A binding of an inner transport
 parameter set of a host (TP0) to and
 an outer transport parameter set of a
 NAT/firewall (TP2), as shown in
 Figure 1.

 +----------+ +--------+ +----------+
 | internal |TP0 TP1| |TP2 TP3| external |
 | host |-------------| NAT/FW |-------------| Host |
 +----------+ private/ +--------+ public +----------+
 protected network
 network

 Figure 1: Addresses of internal hosts, NAT/firewall,
 and external hosts

 outer Binding A binding of an outer transport
 parameter set of a host (TP3) to and
 an outer transport parameter set of a
 NAT/firewall (TP2), as shown in
 Figure 1.

 uni-directional binding An inner binding or an outer binding

 bi-directional binding A combination of an inner binding and
 an outer binding

 full binding A bi-directional binding

 pin-hole A configuration of the firewall
 allowing packets matching a binding
 to pass the firewall. Like bindings,
 a pinhole may be uni-directional or
 bi-directional.

Stiemerling & Quittek [Page 4]

Internet-Draft Simple NAT and Firewall Configuration November 2001

3. SNFC Protocol Overview

 The SNFC protocol is intended to comply with the midcom architecture
 specified in [2]. The protocol allows a client (midcom agent) to
 establish a SNFC session with a server. An important component of
 session establishment is the authentication and authorization of the
 client, because configuring a firewall is a very sensitive issue of
 security concepts.

 For the transmission between client and server TCP is used, this
 avoids dealing with flow control issues and gives the opportunity of
 using Transport Layer Security (TLS [5]) mechanism. Instead of TLS,
 IPSEC [6,7] may be used as well. The protocol uses ASCII encodings,
 because this simplifies documentation, implementation and debugging.
 This encoding is not considered to reduce scalability significantly.

 Once a session is established, the client can request the
 establishments of address bindings at a NAT controlled by the server
 and the opening of pinholes at a firewall controlled by the server.
 The approach of SNFC is to use the same requests for both purposes.
 For example a `bind_in' request (described in sections 4 and 5)
 requests sends an inner transport parameter set to the server and
 requests the allocation of outer transport parameter set at the NAT
 and a binding between both sets:

 - In case of a pure NAT, the outer transport parameters are
 allocated and a binding is established providing proper address
 translation.

 - In case of a pure firewall, the allocated outer transport
 parameter set is identical with the internal one sent with the
 request, and just a pinhole is configured allowing packets
 matching the transport parameter set to pass.

 - In case of a combined NAT/firewall, the outer transport parameters
 are allocated, a binding is established providing proper address
 translation, and a pinhole is configured for allowing the packets
 matching the binding to pass.

 This integration of requests for address binding and for pinhole
 configuration leads to a very simple protocol with just two requests
 for binding and pinhole control.

4. SNFC Messages

 The message formats described below are defined using the Augmented
 BNF (ABNF) defined in RFC 2234 [8]. The definitions for `DIGIT',
 `HEXDIG', `WSP', `CRLF', `CR', `VCHAR' and `LF' are imported from

https://datatracker.ietf.org/doc/html/rfc2234

appendix A of RFC 2234 and not repeated here.

Stiemerling & Quittek [Page 5]

https://datatracker.ietf.org/doc/html/rfc2234#appendix-A

Internet-Draft Simple NAT and Firewall Configuration November 2001

4.1. Common Definitions

 The following definitions are used in the subsequent chapters to
 define the SNFC protocol messages.

 IPAddress = IPv4Address / IPv6Address / "0"
 IPv4Address = 1*3DIGIT 3("." 1*3DIGIT)
 IPv6Address = 1*4HEXDIG 7(":" 1*4HEXDIG)
 Port = 1*DIGIT
 MID = 1*DIGIT ; Message ID number

 The MID is an identifier for the client, to recognize which reply
 belongs to which request, i.e. the MID in the reply is allways the
 same as in the request.

 BID = 1*DIGIT ; Binding ID number

 The BID is the handle for the Firewall/NAT to identify the correct
 pin-hole and it may correlate with the corresponding pin-hole number
 in the Firewall/NAT. A BID of zero means not allocated BID.

 PT = "UDP" / "TCP" / "ICMP" / "ANY" ; IP protocol type
 Authentication = 1*VCHAR
 Challenge = 1*VCHAR
 Message = 1*VCHAR
 Timeout = 1*DIGIT ; timeout in seconds
 TPS = IPAddress WSP Port WSP PT ; transport param. set
 TPS_in = TPS ; internal TPS
 TPS_ex = TPS ; external TPS
 Version = "SNFC/1.0"

4.2. Message Definitions

 The following ABNF definitions define the set of SNFC requests which
 can be sent from a client to a server.

 request = "open" WSP MID WSP Version WSP Authentication CRLF
 request =/ "close" WSP MID CRLF
 request =/ "bind_in" WSP MID WSP BID WSP TPS WSP Timeout CRLF
 request =/ "bind_out" WSP MID WSP BID WSP TPS WSP Timeout CRLF

 The `open' and the `close' request are exclusively used for session
 control. The `bind_in' and the `bind_out' request are exclusively
 used for binding and pinhole control.

4.3. Replies

 Every reply message starts with a three digit reply code and ends
 with `CRLF'. The three digits in a reply code have a special meaning.

 The first digit identifies the class of a reply message. The

Stiemerling & Quittek [Page 6]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 following classes exist:

 1yz transient positive response
 2yz permanent positive response
 3yz transient negative response
 4yz permanent negative response
 5yz asynchronous notification

 The classes 1yz and 3yz are currently not used by SNFC version 1.0.
 They are defined only for future SNFC extensions.

 The second digit encodes the specific category. The following
 categories exist:

 x1z syntax errors that don't fit any other category
 x2z replies for requests concening session control
 x3z replies for requests concening binding and pinhole control

 The third digit gives a finer gradation of meaning in each category
 specified by the second digit. Below is the ABNF definition of all
 reply messages and codes:

 Reply =/ "410" WSP MID CRLF ; syntax Error
 Reply =/ "411" WSP MID CRLF ; unknown or illegal request
 Reply =/ "510" WSP Message CRLF ; illegal message

 Reply = "220" WSP MID CRLF ; OK
 Reply =/ "420" WSP MID CRLF ; protocol version mismatch
 Reply =/ "421" WSP MID WSP Challenge CRLF ; authentication failed
 Reply =/ "520" WSP Message CRLF ; session closed

 Reply =/ "231" WSP MID WSP BID WSP TPS
 WSP Timeout CRLF ; OK for uni-direct. binding
 Reply =/ "232" WSP MID WSP BID WSP TPS_in WSP TPS_ex
 WSP Timeout CRLF ; OK for full binding
 Reply =/ "233" WSP MID WSP BID CRLF ; binding removed
 Reply =/ "430" WSP MID CRLF ; unknown or illegal BID
 Reply =/ "431" WSP MID CRLF ; binding Refused
 Reply =/ "432" WSP MID CRLF ; illegal IP Address
 Reply =/ "433" WSP MID CRLF ; protocol type not supported
 Reply =/ "434" WSP MID CRLF ; illegal port number
 Reply =/ "435" WSP MID CRLF ; cannot modify binding
 Reply =/ "530" WSP BID CRLF ; binding timed out

Stiemerling & Quittek [Page 7]

Internet-Draft Simple NAT and Firewall Configuration November 2001

5. Message Processing in Server

 This section describes the processing steps performed by a SNFC
 server after receiving a message. Common to all incoming messages is
 that first the syntax is checked. Then we distinguish messages
 concerning session control ans messages concerning the control of
 address bindings. For both kinds, we define a state machine and
 discuss states and transitions.

5.1. Syntax Checking

 When the server receives a message, it first tries to recognize a
 request consisting of the command string and a message identifier
 (MID). Messages generated by syntax checking are:

 - `410' reply
 - `411' reply
 - `510' reply

 If the server is not able to extract both the command string and the
 message identifier, then the message is discarded. An asynchronous
 `510' reply may be generated in this case. Otherwise, the command
 string is checked to be valid, i.e. to be one of the strings `open',
 `close', bind_in', bind_out', `refresh', or `remove'. If the string
 is invalid, a `411' reply is sent and processing of the message
 stops. If a syntax error is detected, a `410' reply is sent and
 processing of the message stops. Otherwise, the message is further
 processed as described below.

5.2. Session State Machine

 The session state machine has just two states: CLOSED and OPEN.
 Transisions between these states only appear in conjunction with one
 or two of the following messages:

 - `open' request
 - `close' request
 - `220' reply
 - `420' reply
 - `421' reply
 - `520' reply

 Additionally, a `510' reply may be generated in the CLOSED state as
 described below.

 Figure 2 shows the state machine of a single session with all
 possible transitions. Please note that a server may serve several
 clients at a time by running several concurrent sessions.

Stiemerling & Quittek [Page 8]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 open 42X
 close 220
 520
 +-----------+
 | v
 +-------------------+
 | CLOSED |
 +-------------------+
 | ^ close 220
 open 220 | | open 42X
 v | 520
 +-------------------+
 | OPEN |
 +-------------------+
 | ^
 +-----------+
 open 220

 Figure 2: Session state machine

 The initial state of all sessions is CLOSED. If a client establishes
 a connection to the server by successfully creating a socket, then a
 session in state CLOSED is assigned to this connection. For closed
 sessions only two requests are accepted: `open' and `close'. All
 other requests received in this state are discarded. An asynchronous
 `510' reply may be generated in this case. In the OPEN state, all
 SNFC messages are accepted. However, only `open' and `close' messages
 have an impact on the session state.

5.2.1. Transistions from State CLOSED

 If an `open' request is received, then first the contained `Version'
 string is checked. If the version indicated by the string is not
 compatible to one of the versions supported by the server, then a
 `420' reply is generated, the connection is closed, and the state
 machine remains in state CLOSED. Otherwise, the contained
 `Authentication' string is analysed. If the authentcation check is
 successful, a `220' reply is generated and the session enters state
 OPEN. Otherwise, a `421' reply is generated and the session remains
 in state CLOSED with the connection still established.

 At any time the server may generate an asynchronous `520' reply
 followed by closing the connection. In this case the session will
 remain in state CLOSED. Particularly, the server may generate a `520'
 reply, if a connection is established and the time the session
 remains in state CLOSED exceeds a given timeout value.

Stiemerling & Quittek [Page 9]

Internet-Draft Simple NAT and Firewall Configuration November 2001

5.2.2. Transistions from State OPEN

 If a `close' request is received, then the server generates a `220'
 reply and the session enters state CLOSED with the connection being
 closed. The same transition occurs if the server decides to close the
 session. Then it generates a `520' reply, closes the connection, and
 enters session state CLOSED.

 If an `open' request is received, it is processed as in the CLOSED
 state. First the contained `Version' string is checked. If the
 version indicated by the string is not compatible to one of the
 versions supported by the server, then a `420' reply is generated,
 the connection is closed, and the state machine enters state CLOSED.
 Otherwise, the contained `Authentication' string is analysed. If the
 authentcation check is successful, a `220' reply is generated and the
 session remains in state OPEN. Otherwise, a `421' reply is generated
 and the session enters state CLOSED with the connection kept
 established.

 At any time the server may generate an asynchronous `520' reply
 followed by closing the connection. In this case the session will
 enter state CLOSED.

5.3. Binding State Machine

 When the session state machine is in state OPEN, the server accepts
 further requests regarding bindings. The state machine of a binding
 contains four states: BID_UNUSED, BIND_IN_ONLY, BIND_OUT_ONLY,
 FULL_BINDING. Transistion between the states occur in conjunction
 with the following messages:

 - `bind_in' request
 - `bind_out' request
 - `23X' replies
 - `43X' replies
 - `530' reply

 All of these requests and replies refer to exactly one binding which
 is indicated by the BID field of the message. The BID uniquely
 identifies a binding. BIDs are allocated and assigned to bindings by
 the server. If a request contains a BID which unused because it is
 not assigned to any binding, then the server will discard the request
 and generate a `430' reply. BID 0 is an exception, it is reserved
 for a special purpose and it is never assigned to an existing
 binding.

 For all BIDs other than 0 there exists a state machine as shown in
 Figure 3. If the server receives a `bind_in` or a `bind_out' request
 containing BID 0 then a new BID is allocated. Before the request can

 be executed, a new binding state machine is instantiated for this BID

Stiemerling & Quittek [Page 10]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 with the initial state BID_UNUSED.

 bind_X(BID=0) 43X
 bind_X(BID=0,timeout=0) 233
 +-----------+
 | v
 bind_out(BID=0) 231 +---------------+ bind_in(BID=0) 231
 +--------------| BID_UNUSED |--------------+
 | +---------------+ |
 | ^ bind_X(timeout=0) 233 |
 v | bind_X 43X v
 +---------------+ | 530 +---------------+
 +->| BIND_OUT_ONLY |----->+<-----------| BIND_IN_ONLY |<-+
 | +---------------+ ^ +---------------+ |
 | | | | | | |
 +--------+ | +---------------+ | +--------+
 bind_out 231 +------->| FULL_BINDING |<-------+ bind_in 231
 bind_in 232 +---------------+ bind_out 232
 | ^
 +-----------+
 bind_X 232

 Figure 3: Binding state machine

 When a binding state machines makes a transition to the state
 BID_UNUSED (including transitions from state BID_UNUSED), then the
 BID is considered to be unused. The client should not use this BID
 any further, because it may be re-used by the server when allocating
 a new BID.

5.3.1. Transport Parameter Set Checking

 When a `bind_in` or a `bind_out' request is processed, the transport
 parameter set contained in the message is checked. The checking
 procedure is common for all states:

 - The IP address is checked whether it is an inner IP address in
 case of a `bind_in' request or an outer address in case of a
 `bind_out' request, respectively. If the check fails or if the IP
 address is considered invalid for some other reason, then the
 server generates a `432' reply.

 - The protocol type is checked, whether it is valid and supported.
 If the check fails, a `433' reply is generated.

 - The port number is checked whether it is valid. If the check
 fails, a `434' reply is generated.

Stiemerling & Quittek [Page 11]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 If the checks are successful the server may perform further checks on
 the combination of the elements of the transport parameter set, for
 example it may check available resource or it may consult a policy-
 based access control system checking whether the client is allowed to
 make the current request. If one of these checks fails, then the
 server generates a `431' reply. Otherwise the server will continue
 with establishing the requested binding.

5.3.2. Transitions from State BID_UNUSED

 In state BID_UNUSED, only `bind_in` and `bind_out' requests with BID
 0 can have an effect on the state machine. The server first performs
 the parameter checks described above. If one of them fails, the
 binding state machine remains in state BID_UNUSED.

 If the timeout specified by the request message is 0, then the server
 generates a `233' reply and the binding state machine remains in
 state BID_UNUSED.

 If a `bind_in' request passes all checks described above, then the
 server allocates an external address provided by the Firewall/NAT and
 it establishes a uni-directional binding of the requested transport
 parameter set with the new allocated address. Then the state machine
 for this BID enters the state BIND_IN_ONLY and the server generates a
 `231' reply reporting

 - the BID allocated for this binding,

 - the transport parameter set of the bound external address,

 - the timeout in seconds after which the binding will automatically
 be removed by the server. The timeout chosen by the server is
 less than or equal to the value specified by the client in the
 `bind_in' request message.

 If a `bind_out' request passes the checks, the server allocates an
 internal address provided by the Firewall/NAT and it establishes a
 uni-directional binding of the requested transport parameter set to
 the new allocated address. Then the state machine for this BID
 enters the state BIND_OUT_ONLY and the server generates a `231' reply
 reporting

 - the BID allocated for this binding,

 - the transport parameter set of the bound internal address,

 - the timeout in seconds after which the binding will automatically
 be removed by the server. The timeout chosen by the server is
 less than or equal to the value specified by the client in the

 `bind_out' request message.

Stiemerling & Quittek [Page 12]

Internet-Draft Simple NAT and Firewall Configuration November 2001

5.3.3. Transitions from BIND_IN_ONLY and BIND_OUT_ONLY

 In state BIND_IN_ONLY and BIND_OUT_ONLY a uni-directional address
 binding is established. This might be sufficient for UDP connections,
 but not for TCP. In these states the client can request to extend the
 binding to a bi-directional one by sending a `bind_out' request in
 state BIND_IN_ONLY or by sending a `bind_in' request in state
 BIND_OUT_ONLY, respectively. The request must contain the BID of the
 already existing uni-directional binding.

 If the request fails the transport parameter set checking, then the
 server generates the according `43X' reply and also it removes the
 already established uni-directional binding. The binding state
 machine then enters state BID_UNUSED. If the timeout specified by
 the request message is 0, then the server generates a `233' reply and
 removes the already established uni-directional binding. The binding
 state machine then enters state BID_UNUSED.

 Otherwise, if the request passes the checks of the transport
 parameter set, the server creates a bi-directional binding to the
 already known BID and chooses a timeout less than or equal to the
 value specified by the request. The server generates a `232' reply
 reporting the chosen timeout and the internal and the external
 address allocated at the NAT/firewall. The BID state machine enters
 state FULL_BINDING.

 Other options for the client are requests for

 - updating the timeout,

 - modifying the binding while keeping the BID and keeping the
 address allocated by the server,

 - removing the binding.

 Each of these actions requires the client sending another `bind_in'
 request in state BIND_IN_ONLY or sending another `bind_out' request
 in state BIND_OUT_ONLY.

 For timeout update and for binding removal the client must use
 exactly the transport parameter set already contained in the previous
 requests for this BID. The server must ensure that such unchanged
 transport parameters pass the transport parameter check.

 If the timeout specified in the request message is 0, the server will
 remove the binding and generate a `233' reply, and the binding state
 machine enters state BID_UNUSED.

 If the timeout specified in the message is larger than 0, the server

 must process an update of the binding's timeout without any

Stiemerling & Quittek [Page 13]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 interruption of the NAT/firewall operation for this binding. The
 server chooses a timeout less than or equal to the value in the
 request message and reports it by generating `231' reply. The
 binding state machine remains in its state.

 If the transport parameters specified in the request message differ
 from the ones used in the previous message, then they are checked by
 the server. A `43X' reply is generated on failure of one of these
 checks. Then the server is supposed to modify the binding. If it is
 not capable of doing so, it generates a `435' reply, removes the
 binding and the binding state machine enters state BID_UNUSED.

 Otherwise, the server will replace the established binding with a new
 one. The modified binding will keep the address allocated by the
 server, but bind it to the transport parameter set contained in the
 message. The BID remains unchanged. Then the server generates a `231'
 reply confirming the change and reporting the chosen timeout. The
 binding state machine remains in its state.

 At any time, the server may remove the binding. It must do so at
 latest if the timeout expires. But also at any earlier time it may do
 so, for example if the policy for granting binding requests has
 changed, if a mis-use of the binding was detected, or if the server
 cannot continue the operation of the binding for technical reasons.
 In such a case the server generates an asynchronous `530' message
 indicating the removal of the binding and the binding state machine
 enters state BID_UNUSED.

5.3.4. Transitions from State FULL_BINDING

 In state FULL_BINDING the client can request to

 - update the timeout,

 - remove the binding,

 - modify the binding while keeping the BID and keepig the addresses
 allocated by the server.

 For timeout update and for binding removal the client can use a
 `bind_in' request or a `bind_out' request. The request must use
 exactly the transport parameter set already contained in the previous
 `bind_in' request or `bind_out' request, respectively. The server
 must ensure that such unchanged transport parameters pass the
 transport parameter check.

 If the timeout specified in the request message is 0, the server will
 remove the binding and generate a `233' reply, and the binding state
 machine enters state BID_UNUSED.

Stiemerling & Quittek [Page 14]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 If the timeout specified in the message is larger than 0, the server
 must process an update of the binding's timeout without any
 interruption of the NAT/firewall operation for this binding. The
 server chooses a timeout less than or equal to the value in the
 request message and reports it by generating `231' reply. The
 binding state machine remains in its state.

 If the transport parameter set specified in the request message
 differ from the ones used in the previous message, then they are
 checked by the server. A `43X' reply is generated on failure of one
 of these checks. Then the server is supposed to modify the binding.
 If it is not capable of doing so, it generates a `435' reply, removes
 the binding and the binding state machine enters state BID_UNUSED.

 Otherwise, the server will replace the established binding with a new
 one. The modified binding will keep the addresses allocated by the
 server, but bind it to the transport parameter set contained in the
 message. The BID remains unchanged. Then the server generates a `232'
 reply confirming the change and reporting the chosen timeout. The
 binding state machine remains in state FULL_BINDING.

 At any time, the server may remove the binding. It must do so at
 latest if the timeout expires. But also at any earlier time it may do
 so, for example if the policy for granting binding requests has
 changed, if a mis-use of the binding was detected, or if the server
 cannot continue the operation of the binding for technical reasons.
 In such a case the server generates an asynchronous `530' message
 indicating the removal of the binding and the binding state machine
 enters state BID_UNUSED.

6. Controling SNFC Sessions

 After a secure TCP connection has been established between client and
 server (for example by using TLS [5] or IPSEC [6][7]), the SNFC
 session requires an initial authentication of the client. This might
 be technically superfluous, for example if the client already
 authenticated itself when establishing the connection, but it is an
 inevitable step of establishing a SNFC session. The client
 authenticates itself by sending an `open' request containing an
 authentication string. This might be a shared secret (cookie) in
 simple authentication systems.

 For more secure challenge-reply authentication, the client first
 sends an `open' request with an arbitrary authentication string.
 When - as expected - the authentication failed, the server the server
 returns a challengestring in the following `421' reply. Then the
 client sends a second `open' request now containing the correct

 authentication string derived from the challenge string. This
 procedure is illustrated by the following Example (a).

Stiemerling & Quittek [Page 15]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 For message flow examples in this memo we use the following
 indication of the direction of a message:

 C->S: from the client to the server
 C<-S: from the server to the client
 --: comment line
 . . .: some unspecified messages

 Example (a): successful authentication
 -- TCP connection establishment and TLS or IPSEC establishment
 -- client sends dummy authentication string: 0
 C->S: open 1300 SNFC/1.0 0
 -- server returns challenge string
 C<-S: 421 1300 13e66f34b7416ab9389ccc5b441290aa
 -- client sends correct authentication
 C->S: open 1301 SNFC/1.0 ab54346de6933ff4556a1b23efd70082
 C<-S: 220 1301
 -- session now in state OPEN
 . . .
 -- SNFC message exchange
 . . .
 -- client closes session
 C->S: close 40163
 C<-S: 220 Ok
 -- session now in state CLOSED
 -- connection terminated

 If the client fails to authenticate itself after a number of invalid
 `open' requests, the server may disconnect itself from the client.
 The server in Example (b) disconnects after two invalid `open'
 requests.

 Example (b): failed authentication
 -- TCP connection establishment and TLS or IPSEC establishment
 -- client sends invalid authentication string
 C->S: open 55000 SNFC/1.0 34EFA
 -- server returns challenge string
 C<-S: 421 55000 13e66f34b7416ab9389ccc5b441290aa
 -- client sends invalid authentication string
 C->S: open 55333 SNFC/1.0 125d5
 C->S: 421 55333 13e66f34b7416ab9389ccc5b441290aa
 -- server in state CLOSED, client disconnected

 The client closes a session by sending a `close' request. All
 established bindings configured by this client will remain
 established until their timeout expires. Also the server may
 terminate an open session by sending an asynchronous `520' reply.

Stiemerling & Quittek [Page 16]

Internet-Draft Simple NAT and Firewall Configuration November 2001

7. Controling Bindings and Pinholes

 The client can request to establish, entend, modify and remove uni-
 directional and bi-directional bindings and pinholes. All of these
 requests, are variants of a `bind_in' or a `bind_out' request. The
 `bind_in' request name is derived from `establish a binding of the
 transport parameter set of an external address of the NAT/firewall to
 the parameter set of an internal address'. A successful `bind_in'
 request allows a data stream matching the corresponding parameter set
 to pass the NAT/firewall from the external network to the internal
 one. The `bind_out' request is defined analogously.

 Each binding has a timeout value, which determines when a binding is
 automatically removed by the SNFC server. The client makes a timeout
 proposal in his `bind_in' or `bind_out' request and the server may
 accept this proposal or choose a smaller timeout value. For example
 the server may be configured to accept all timeout values up to a
 predefined maximum value. The server informs the client about the
 chosen timeout in by the next reply.

 Control of bindings nad pinholes is illustrated by Example (c)
 showing the establishment and removal of a uni-directional UDP
 binding and pinhole.

 Example (c): control of uni-directional UDP binding and pinhole
 -- server is in state OPEN.
 -- request with BID=0 for binding inner IP address 10.11.1.45
 -- and UDP port 16175 for 180 seconds
 C->S: bind_in 2044 0 10.11.1.45 16175 UDP 180
 -- server allocates external IP address 195.37.70.5 and UDP port
 -- 13222 and binds it to the internal transport parameter set
 -- for 180 seconds. BID=1248.
 C<-S: 231 2044 1248 195.37.70.5 13222 UDP 180
 -- binding established and pinhole open
 -- no more messages concerning this BID for 245 seconds
 . . .
 -- binding and pinhole not needed anymore
 -- request to remove by setting timeout to 0
 C->S: bind_in 2067 1248 10.11.1.45 16175 UDP 0
 -- binding and pinhole removed
 C<-S: 233 2067 1248

 Example (d) shows the message flow of a similar request, but in this
 case the server is a pure firewall without any NAT function.
 Therefore the allocated transport parameter set is equal to the one
 in the request.

 Example (d): control of uni-directional UDP pinhole only

 -- server is in state OPEN.
 -- request with BID=0 for binding inner IP address 195.37.70.163

Stiemerling & Quittek [Page 17]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 -- and UDP port 16175 for 180 seconds
 C->S: bind_in 2144 0 195.37.70.163 16175 UDP 180
 -- server does not allocate its own address, but it opens
 -- a pinhole for the requested transport parameter set.
 C<-S: 231 2144 1249 195.37.70.163 16175 UDP 180
 -- pinhole open
 -- no more messages concerning this BID for 245 seconds
 . . .
 -- pinhole not needed anymore
 -- request to remove by setting timeout to 0
 C->S: bind_in 2164 1249 195.37.70.163 16175 UDP 0
 -- pinhole removed
 C<-S: 233 2164 1249

 The message flow for controling a bi-directional binding and pinhole
 is illustrated by Example (e). It also shows the extension of the
 timeout.

 Example (e): control of bi-directional TCP binding and pinhole
 -- server is in state OPEN.
 -- request with BID=0 for binding inner IP address 10.11.1.50
 -- and TCP port 4524 for 540 seconds
 C->S: bind_in 8888 0 10.11.1.50 4524 TCP 540
 -- server allocates external IP address 195.37.70.5 and TCP port
 -- 17250 and binds it to the internal transport parameter set
 -- for 300 seconds. BID=1250.
 C<-S: 231 8888 1250 195.37.70.5 17250 TCP 300
 -- request with BID=1250 for binding outer IP address
 -- 134.169.34.13 and TCP port 22343 for 540 seconds
 C->S: bind_out 8889 1250 134.169.34.13 22343 TCP 540
 -- server allocates internal IP address 10.11.1.2 and TCP port
 -- 5537 and binds it to the external transport parameter set
 -- for 300 seconds.
 C<-S: 232 8889 1250 10.11.1.2 5537 TCP 195.37.70.5 17250 TCP 300
 -- no more messages concerning this BID for 280 seconds
 . . .
 -- binding and pinhole used and need longer as prior granted
 -- request to extend timeout by 200 seconds
 C->S: bind_in 9023 1250 10.11.1.50 4524 TCP 260
 -- request granted
 C<-S: 232 9023 1250 10.11.1.2 5537 TCP 195.37.70.5 17250 TCP 260
 -- no more messages concerning this BID for 120 seconds
 . . .
 -- binding and pinhole not needed anymore
 -- request to remove by setting timeout to 0
 C->S: bind_out 9077 1250 134.169.34.13 22343 TCP 0
 -- binding and pinhole removed
 C<-S: 233 9077 1250

Stiemerling & Quittek [Page 18]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 The last Example (f) shows the rejection of a request, because an
 illegal internal IP address is used.

 Example (f): Rejection of illegal internal IP address
 -- server is in state OPEN
 C->S: BIND_IN 458 0 102.12.12.251 1254 UDP 300
 C<-S: 432 458
 -- no new binding or pinhole established

8. Security Considerations

 By their nature Firewalls and NATs are a very sensitive points
 concerning network security. In general it appears to be
 contradictive to open a port at a firewall for configuring pinholes,
 because this might make the firewall vulnerable. Therefore,
 effective means are required for inhibiting mis-use of the SNFC
 service.

 A SNFC server should use a restricted list of clients that are
 allowed to use the service. Beyond checking the clients IP address
 and requiring authentication when building up a secure TCP connection
 with TLS or IPSEC., the server should expect the client to
 authenticate itself by using a shared secret or based on a public key
 infrastructure.

 The TCP connection also needs to be protected for ensuring integrity
 of the requests made by the client. Finally, confidentiality of the
 data exchang between client and server is required to hide
 information about the participants of communication services that are
 enabled by SNFC.

9. References

[1] Srisuresh,P., and Holdrege, M., "IP Network Translator (NAT)
 Terminology and Considerations", RFC 2663, August 1999

[2] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., Rayhan, A.,
 "Middlebox Communication Architecture and framework", Internet
 Draft, work in progress, <draft-ietf-midcom-framework-04.txt>,
 October 2001

[3] Huitema, C., "MIDCOM Scenarios", Internet Draft, work in progress,
 <draft-ietf-midcom-scenarios-02.txt>, May 2001

[4] Swale, R.P., Mart, P.A., Sijben, P., "Middlebox Control (MIDCOM)
 Protocol Architecture and Requirements", Internet Draft, work in
 progress, <draft-ietf-midcom-requirements-02.txt>, July 2001

https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/draft-ietf-midcom-framework-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-midcom-scenarios-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-midcom-requirements-02.txt

Stiemerling & Quittek [Page 19]

Internet-Draft Simple NAT and Firewall Configuration November 2001

[5] Dierks, T., Allen, C., "The TLS Protocol Version 1.0", RFC 2246,
 January 1999

[6] Kent, S., and Atkinson, R., "IP Authentication Header", RFC 2402,
 November 1998

[7] Kent, S., and Atkinson, R., "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998

[8] Crocker, D., and Overell, P., "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997

10. Authors' Address

 Martin Stiemerling
 NEC Europe Ltd.
 Network Laboratories
 Adenauerplatz 6
 69115 Heidelberg
 Germany

 Phone: +49 6221 90511-13
 Email: stiemerling@ccrle.nec.de

 Juergen Quittek
 NEC Europe Ltd.
 Network Laboratories
 Adenauerplatz 6
 69115 Heidelberg
 Germany

 Phone: +49 6221 90511-15
 EMail: quittek@ccrle.nec.de

11. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2234

 the copyright notice or references to the Internet Society or other

Stiemerling & Quittek [Page 20]

Internet-Draft Simple NAT and Firewall Configuration November 2001

 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Stiemerling & Quittek [Page 21]

