
Workgroup: LAMPS

Internet-Draft: draft-stjohns-csr-attest-02

Published: 7 June 2023

Intended Status: Standards Track

Expires: 9 December 2023

Authors: M. StJohns

NthPermutation Security LLC

Attestation Attributes for Use with Certification Signing Requests

Abstract

This document describes two ASN.1 Attribute definitions, and an ASN.

1 CLASS definition for an attestation statement structure that may

be used to encode key attestation data for inclusion in PKCS10

certificate requests and in other circumstances.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 December 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

2. Definitions

3. ASN.1 Elements

3.1. Object Identifiers

3.2. CertificateChoice

3.3. AttestAttribute

3.4. AttestCertsAttribute

3.5. AttestStatement

4. IANA Considerations

4.1. Object Identifier Allocations

4.1.1. Module Registration - SMI Security for PKIX Module

Identifer

4.1.2. Object Identifier Registrations - SMI Security for S/

MIME Attributes

4.2. "SMI Security for PKIX Attestation Statement Formats"

Registry

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Examples

A.1. Simple Attestation Example

A.2. Example TPM V2.0 Attestation Attribute - Non Normative

Appendix B. ASN.1 Module for Attestation

Acknowledgements

Author's Address

1. Introduction

This document creates two ATTRIBUTE/Attribute definitions. The first

Attribute may be used to carry a set of certificates or public keys

that may be necessary to validate an attestation. The second

Attribute carries a structure that may be used to carry key

attestation statements, signatures and related data. Both of these

Attribute definitions are intended to be used to carry the

attestation data a Certification Authority (CA) may need to decide

to issue a certificate containg the attested key.

The AttestStatement structure provides an encoding that may be used

regardless of the actual format and mechanisms used by an given type

of attestation. In its simplest expansion it encodes a SEQUENCE of

an OBJECT IDENTIFIER and a related ASN.1 type.

For the purposes of this document, a "certificate" is a signed

binding of a public key and some identifying or use information. An

X.509 Certificate is one example, but the structures described below

¶

¶

Attestation Engine

Attestation Key

Attester

Ancillary Attestation Data

allow for the carriage of any identifiable type of certificate.

Examples include Card Verifiable Certificates [TR-03110-3] and

[EQMV] implicit certificates.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2. Definitions

The following definitions should be used in the context of this

document primarily to understand the relationship of an attestation

to the ASN.1 structures used to carry an attestation in PKIX

structures. As of the date of this document, the IETF lacked a

common nomenclature for attestation-related terms.

The secure hardware and firmware used to compose and sign an

attestation.

Either the private key used to sign an attestation statement, or

the related public key used to verify the attestation statement,

depending on context.

The entity that directs the creation of an attestation statement

and who owns, controls, or is permitted to use the private

attestation key.

Any data provided from a source external to the attestation

engine as part of the creation of an attestation statement and/or

any additional data needed for the verification of an attestation

statement. The externally provided data could be a relying party

originated nonce, a time stamp, session information or other data

meant to be bound in time to the attestation statement. Other

additional data may be an internally formatted key, or other data

needed to bridge between the attestation statement and PKIX or

other relying or interpretating regimes. The format of externally

provided data is not under the control of the attestation engine,

but may need to be transformed, such as by hashing, before it may

be incorporated within the attestation statement processing. For

example, a relying party may need both the "externalData"

argument for the TPM 2.0 TPM2_Certify command, and the

TPMT_PUBLIC structure containing the key being certified to

verify an attestation.

¶

¶

¶

¶

¶

¶

¶

Attestation Statement

Attestation

Key Attestation

The object, any optional ancillary data incorporated during the

creation of that object, and the signature over that object,

created by an attestation engine at the request of an Attester to

provide evidence of a fact or set of facts within the cognizance

of the attestation engine at a particular point in time."

Sometimes referred to simply as an "attestation".

The implicit or explicit collection of an attestation statement,

any ancillary data, an attestation key, and a chain of trust for

that key. By convention, this contains at least the minimum data

needed to cryptographically validate an attestation statement and

extract any policy meaning.

An attestation created with respect to a particular key or key

pair.

3. ASN.1 Elements

3.1. Object Identifiers

Placeholder for now, waiting on guidance.

3.2. CertificateChoice

This is an ASN.1 CHOICE construct used to represent an encoding of a

broad variety of certificate types.

¶

¶

¶

¶

-- Root of IETF's PKIX OID tree

id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)

 dod(6) internet(1) security(5) mechanisms(5) pkix(7) }

-- S/Mime attributes - can be used here.

id-aa OBJECT IDENTIFIER ::= {iso(1) member-body(2) usa(840)

 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) attributes(2)}

-- Branch for attestation statement types

id-ata OBJECT IDENTIFIER ::= { id-pkix (TBD1) }

¶

¶

CertificateChoice ::=

 CHOICE {

 cert Certificate, -- typical X.509 cert

 opaqueCert [0] IMPLICIT OCTET STRING, -- Format implicitly agreed upon

 -- by sender and receiver

 typedCert [1] IMPLICIT TypedCert,

 typedFlatCert [2] IMPLICIT TypedFlatCert

 }

¶

"Certificate" is a standard X.509 certificate that MUST be compliant

with RFC5280. Enforcement of this constraint is left to the relying

parties.

"opaqueCert" should be used sparingly as it requires the receiving

party to implictly know its format. It is encoded as an OCTET

STRING.

"TypedCert" is an ASN.1 construct that has the charateristics of a

certificate, but is not encoded as an X.509 certificate. The

certTypeField indicates how to interpret the certBody field. While

it is possible to carry any type of data in this structure, it's

intended the content field include data for at least one public key

formatted as a SubjectPublicKeyInfo (see [RFC5912]).

"TypedFlatCert" is a certificate that does not have a valid ASN.1

encoding. Think compact or implicit certificates as might be used

with smart cards. certType indicates the format of the data in the

certBody field, and ideally refers to a published specification.

3.3. AttestAttribute

By definition, Attributes within a Certification Signing Request are

typed as ATTRIBUTE. This attribute definition contains one or more

attestation statements of a type "AttestStatement".

¶

¶

¶

TYPED-CERT ::= TYPE-IDENTIFIER -- basically an object id and a matching ASN1

 -- structure encoded as a sequence

CertType ::= TYPED-CERT.&id

TypedCert ::= SEQUENCE {

 certType TYPED-CERT.&id({TypedCertSet}),

 content TYPED-CERT.&Type ({TypedCertSet}{@certType})

 }

TypedCertSet TYPED-CERT ::= {

 ... -- Empty for now,

 }

¶

¶

TypedFlatCert ::= SEQUENCE {

 certType OBJECT IDENTIFIER,

 certBody OCTET STRING

}

¶

¶

3.4. AttestCertsAttribute

The "AttestCertsAttribute" contains a sequence of certificates that

may be needed to validate the contents of an attestation statement

contained in an attestAttribute. By convention, the first element of

the SEQUENCE SHOULD contain the object that contains the public key

needed to directly validate the attestAttribute. The remaining

elements should chain that data back to an agreed upon root of trust

for the attestation.

3.5. AttestStatement

An AttestStatement is an object of class ATTEST-STATEMENT encoded as

a sequence fields, of which the type of the "value" field is

controlled by the value of the "type" field, similar to an Attribute

definition.

id-aa-attestStatement OBJECT IDENTIFIER ::= { id-aa (TBDAA2) }

AttestAttribute ATTRIBUTE ::= {

 TYPE AttestStatement

 IDENTIFIED BY id-aa-attestStatement

}

¶

¶

id-aa-attestChainCerts OBJECT IDENTIFIER ::= { id-aa (TBDAA1) }

attestCertsAttribute ATTRIBUTE ::= {

 TYPE SEQUENCE OF CertificateChoice

 COUNTS MAX 1

 IDENTIFIED BY id-aa-attestChainCerts

}

¶

¶

Depending on whether the "value" field contains an entire signed

attestation, or only the toBeSigned portion, the algId field may or

may not be present. If present it contains the AlgorithmIdentifier

of the signature algorithm used to sign the attestation statement.

If absent, either the value field contains an indication of the

signature algorithm, or the signature algorithm is fixed for that

specific type of AttestStatement.

Similarly for the "signature" field, if the "value" field contains

only the toBeSigned portion of the attestation statement, this field

SHOULD be present. The "signature" field may by typed as any valid

ASN.1 type. Opaque signature types SHOULD specify the use of sub-

typed OCTET STRING. For example:

If possible, the ATTEST-STATEMENT SHOULD specify an un-wrapped

representation of a signature, rather than an OCTET STRING or BIT

STRING wrapped ASN.1 structure. I.e., by specifying ECDSA-Sig-Value

from PKIXAlgs-2009 (see [RFC5912]) to encode an ECDSA signature.

ATTEST-STATEMENT ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Type, -- NOT optional

 &algidPresent ParamOptions DEFAULT absent,

 &sigPresent ParamOptions DEFAULT absent,

 &ancillaryPresent ParamOptions DEFAULT absent,

 &sigType DEFAULT OCTET STRING

 &ancillaryType DEFAULT OCTET STRING

} WITH SYNTAX {

 TYPE &Type

 IDENTIFIED BY &id

 [ALGID IS &algidPresent]

 [SIGNATURE [TYPE &sigType] IS &sigPresent]

 [ANCILLARY [TYPE &ancillaryType] IS &ancillaryPresent]

}

AttestStatement { ATTEST-STATEMENT:IOSet} ::= SEQUENCE

 {

 type ATTEST-STATEMENT.&id({IOSet}),

 value ATTEST-STATEMENT.&Type({IOSet}{@type}),

 algId [0] IMPLICIT AlgorithmIdentifier OPTIONAL,

 signature [1] ATTEST-STATEMENT.&sigType OPTIONAL -- NOT implicit

 ancillaryData [2] ATTEST-STATEMENT.&ancillaryType OPTIONAL

 }

¶

¶

¶

MyOpaqueSignature ::= OCTET STRING¶

¶

The ancillaryData field contains data provided externally to the

attestation engine,and/or data that may be needed to relate the

attestation to other PKIX elements. The format or content of the

externally provided data is not under the control of the attestation

engine. For example, this field might contain a freshness nonce

generated by the relying party, a signed time stamp, or even a hash

of protocol data or nonce data. See below for a few different

examples.

4. IANA Considerations

The IANA is requested to open one new registrie, allocate a value

from the "SMI Security for PKIX Module Identifier" registry for the

included ASN.1 module, and allocate values from "SMI Security for S/

MIME Attributes" to identify two Attributes defined within.

4.1. Object Identifier Allocations

4.1.1. Module Registration - SMI Security for PKIX Module Identifer

Decimal: IANA Assigned - Replace TBDMOD

Description: Attest-2023 - id-mod-pkix-attest-01

References: This Document

4.1.2. Object Identifier Registrations - SMI Security for S/MIME

Attributes

Attest Statement

Decimal: IANA Assigned - Replace TBDAA2

Description: id-aa-attestStatement

References: This Document

Attest Certificate Chain

Decimal: IANA Assigned - Replace TBDAA1

Description: id-aa-attestChainCerts

References: This Document

ECDSA-Sig-Value ::= SEQUENCE {

 r INTEGER,

 s INTEGER

}

¶

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

4.2. "SMI Security for PKIX Attestation Statement Formats" Registry

Please open up a registry for Attestation Statement Formats within

the SMI-numbers registry, allocating an assignment from id-pkix

("SMI Security for PKIX" Registry) for the purpose.

Decimal: IANA Assigned - replace TBD1

Description: id-ata

References: This document

Initial contents: None

Registration Regime: Specification Required. Document must

specify an ATTEST-STATEMENT definition to which this Object

Identifier shall be bound.

Columns:

Decimal: The subcomponent under id-ata

Description: Begins with id-ata

References: RFC or other document

5. Security Considerations

The attributes and structures defined in this document are primarily

meant to be used as additional Attributes for a PKCS10 Certification

Signing Request (CSR). As such, it's up to the receiving/relying

party to place as much or as little trust in the contents of these

attributes as necessary to satisfy its own policies.

A relying party will need either a specification defining how an

attestation type was formed and how to validate that type, or a

trusted method of verifying the attestation. In the former case, a

relying party should consider the information available from any

certificate chain covering the attesting key when deciding to accept

the attestation.

Most attestations will need to provide a method to convert the

attested key representation into the equivalent SubjectPublicKey

info structure and the attested key MUST be compared for equivalence

to the public key provided in the CSR before accepting the

attestation.

The relying party, as always, is responsible for setting the rules

for what it will accept. The presence of an AttestAttribute is not

required by any current standard, but such attribute may provide the

relying party with additional assurance as a prerequisite to issuing

certificates or other credentials. That acceptance criteria is out

of scope for this document. Whether to require an AttestAttribute or

its contents in any specific use case is out-of-scope for this

document.

¶

* ¶

* ¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

[RFC2119]

[EQMV]

[RFC5912]

[RFC8551]

[TPM20]

[TR-03110-3]

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

6.2. Informative References

Certicom Research, "Elliptic Curve Qu-Vanstone Implicit

Certificate Scheme (ECQV)", Standards for Efficient

Cryptography SEC-4, January 2013, <https://www.secg.org/

sec4-1.0.pdf>.

Hoffman, P. and J. Schaad, "New ASN.1 Modules for the

Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,

DOI 10.17487/RFC5912, June 2010, <https://www.rfc-

editor.org/info/rfc5912>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

Trusted Computing Group, "Trusted Platform Module Library

- Part 1: Architecture", TPM 2.0 Module Library Part1,

00-01.59, November 2019.

Trusted Computing Group, "Trusted Platform Module Library

- Part 2: Structures", TPM 2.0 Module Library Part2,

00-01.59, November 2019.

Trusted Computing Group, "Trusted Platform Module Library

- Part 2: Commands", TPM 2.0 Module Library Part2,

00-01.59, November 2019.

Federal Office for Information Security, "Advanced

Security Mechanisms for Machine Readable Travel Documents

and eIDAS Token - Part 3 Common Specifications V2.21",

Federal Republic of Germany, Technical Guideline

TR-03110, December 2016, <https://www.bsi.bund.de/

SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/

TR03110/BSI_TR-03110_Part-3-V2_2.pdf?

__blob=publicationFile&v=1>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.secg.org/sec4-1.0.pdf
https://www.secg.org/sec4-1.0.pdf
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/BSI_TR-03110_Part-3-V2_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/BSI_TR-03110_Part-3-V2_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/BSI_TR-03110_Part-3-V2_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/BSI_TR-03110_Part-3-V2_2.pdf?__blob=publicationFile&v=1

Appendix A. Examples

A.1. Simple Attestation Example

This is a fragment of ASN.1 meant to demonstrate an absolute minimal

definition of an ATTEST-STATEMENT. A similar fragment could be used

to define an ATTEST-STATEMENT for an opaque HSM vendor specific

atterstation model.

A.2. Example TPM V2.0 Attestation Attribute - Non Normative

What follows is a fragment of an ASN.1 module that might be used to

define an attestation statment attribute to carry a TPM V2.0 key

attestation - i.e., the output of the TPM2_Certify command. This is

an example and NOT a registered definition. It's provided simply to

give an example of how to write an ATTEST-STATEMENT definition and

module.

¶

-- This OCTET STRING is not like any other OCTET STRING

-- Please see https://example.com/simple-attest.txt,

-- Structure labled "Mike's simple attest" for the

-- structure of this field and how to verify the attestation

MikesSimpleAttestData ::= OCTET STRING

mikesSimpleAttestOid OBJECT IDENTIFIER ::= { id-mikes-root 1 }

MikesSimpleAttest ATTEST-STATEMENT ::= {

 TYPE MikesSimpleAttestData

 IDENTIFIED BY mikesSimpleAttestOid

 -- These are all implied

 -- ALGID IS absent

 -- SIGNATURE is absent

 -- ANCILLARY is absent

}

¶

¶

-- IMPORT these.

-- PKI normal form for an ECDSA signature

ECDSA-Sig-Value ::= SEQUENCE {

 r INTEGER,

 s INTEGER

 }

-- Octet string of size n/8 where n is the

-- bit size of the public modulus

RSASignature ::= OCTET STRING

-- One or the other of these depending on the value in TPMT_SIGNATURE

TpmSignature CHOICE ::= {

 ecSig [0] IMPLICIT ECDSA-Sig-Value,

 rsaSig [1] IMPLICIT RSASignature

 }

-- The TPM form of the public key being attested.

-- Needed to verify the attestation - this is the TPMT_PUBLIC structure.

TpmtPublic ::= OCTET STRING

-- The TPMS_ATTEST structure as defined in TPM2.0

-- Unwrapped from the TPM2B_ATTEST provided

-- by the TPM2_Certify command.

TpmsAttest ::= OCTET STRING

-- The qualifying data provided to a TPM2_Certify call, may be absent

-- This is the contents of data field of the TPM2B_DATA structure.

QualifyingData ::= OCTET STRING

TpmAncillary ::= SEQUENCE {

 toBeAttestedPublic TpmtPublic,

 qualifyingData QualifyingData OPTIONAL

 }

-- This represents a maximally unwrapped TPM V2.0 attestation. The

-- output of TPM2_Certify is a TPM2B_ATTEST and a TPMT_SIGNATURE.

-- The former is unwrapped into a TPMS_ATTEST and the latter is

-- decomposed to provide the contents of the algId and signature fields.

--

-- This attestation statement can be verified by:

-- Signature siggy = Signature.getInstance (stmt.algId);

-- siggy.init (attestPublicKey, VERIFY);

-- siggy.update ((short)stmt.value.length) // todo: big or little endian

-- siggy.update (stmt.value.data)

-- bool verified = siggy.verify (getSigData(stmt.signature)); //

unwrap the signature

--

TpmV2AttestStatement ATTEST STATEMENT ::= {

 TYPE TpmsAttest

 IDENTIFIED BY id-ata-tpmv20-1

 ALGID IS present

 SIGNATURE TYPE TpmSignature IS present

 ANCILLARY TYPE TpmAncillary IS present

 }

¶

This attestation is the result of executing a TPM2_Certify command

over a TPM key. See [TPM20] for more details.

The data portion of the value field encoded as OCTET STRING is the

attestationData from the TPM2B_ATTEST produced by the TPM. In other

words, strip off the TPM2B_ATTEST "size" field and place the

TPMS_ATTEST encoded structure in the OCTET STRING data field.

The algId is derived from the "sigAlg" field of the TPMT_SIGNATURE

structure.

The signature field is a TpmSignature, created by transforming the

TPMU_SIGNATURE field to the appropriate structure given the

signature type.

The ancillary field contains a structure with the TPMT_PUBLIC

structure that contains the TPM's format of the key to be attested.

The attestation statement data contains a hash of this structure,

and not the key itself, so the hash of this structure needs to be

compared to the value in the attestation attestation statement. If

that passes, the key needs to be transformed into a PKIX style key

and compared to the key in the certificate signing request to

complete the attestation verification.

The ancillary field also contains an optional OCTET STRING which is

used if the TPM2_Certify command is called with a non-zero length

"qualifyingData" argument to contain that data.

An AttestCertChain attribute MUST be present if this attribute is

used as part of a certificate signing request.

Appendix B. ASN.1 Module for Attestation

The following module imports definitions from modules defined in

[RFC5912] and [RFC8551].

IANA Note: Please replace TBDMOD, TBD1 and TBD2 with assigned

values.

¶

¶

¶

¶

¶

¶

¶

¶

¶

-- This module provides a definition for two attributes thay may be

-- used to carry key attestation information within a

-- CertificationSigningRequest (aka PKCS10), or for other purposes.

-- IANA - Value needed

Attest-2023

 {iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) id-mod(0) id-mod-pkix-attest-01(TBDMOD) }

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

IMPORTS

Attribute, SingleAttribute, id-pkix, Certificate

FROM PKIX1Explicit-2009

 {iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-explicit-02(51)}

ATTRIBUTE,AttributeSet

FROM PKIX-CommonTypes-2009

 {iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) id-mod(0) id-mod-pkixCommon-02(57)}

ParamChoice

FROM AlgorithmInformation-2009

 {iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58)}

id-aa

FROM SecureMimeMessageV3dot1

 { iso(1) member-body(2) us(840) rsadsi(113549)

 pkcs(1) pkcs-9(9) smime(16) modules(0) msg-v3dot1(21) }

-- Repeated here for easy reference.

-- id-aa OBJECT IDENTIFIER ::= {iso(1) member-body(2) usa(840)

-- rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) attributes(2)}

-- IANA - Values needed

-- Branch for attestation statement types

id-ata OBJECT IDENTIFIER ::= { id-pkix (TBD1) }

-- A general comment is that a certificate is a signed binding between

-- public key and some identifying info. Below "cert" is an X.509

-- "Certificate". "opaqueCert" is just string of bytes that the

-- receiving CA must know how to parse given information not carried

-- in this object. "typedCert" and "typedFlatCert" both use an OID to

-- identify their types, but differ in that the encoding for typedCert

-- is always valid ASN1, whereas the typedFlatCert is just a string of

-- bytes that must be interpreted according to the type. Note that a

-- typedFlatCert MAY contain an encapsulated ASN1 object, but this is

-- not the best use of the type and is hereby discouraged.

CertificateChoice ::=

 CHOICE {

 cert Certificate, -- typical X.509 cert

 opaqueCert [0] IMPLICIT OCTET STRING,

 typedCert [1] IMPLICIT TypedCert, -- not ASN1 parseable

 typedFlatCert [2] IMPLICIT TypedFlatCert

 }

-- Cribbed from definition of CONTENT-TYPE

-- Alternately as TypedCert ::= SingleAttribute

--

TYPED-CERT ::= TYPE-IDENTIFIER -- object id and a matching ASN1

 -- structure encoded as a sequence

CertType ::= TYPED-CERT.&id

TypedCert ::= SEQUENCE {

 certType TYPED-CERT.&id({TypedCertSet}),

 content TYPED-CERT.&Type ({TypedCertSet}{@certType})

 }

TypedCertSet TYPED-CERT ::=

 ... -- Empty for now,

 }

-- The receiving entity is expected to be able to parse the certBody

-- field given the value of the certType field. This differs from

-- TypedCert in that the contents of the certBody field are not

-- necessarily well formed ASN1 in this case the certType tells you

-- how to parse the body of the OCTET STRING,

TypedFlatCert ::= SEQUENCE {

 certType OBJECT IDENTIFIER,

 certBody OCTET STRING

}

-- A sequence of certificates used to validate an attestation chain.

-- By convention, the first certificate in the chain is the one that

-- contains the public key used to verify the attestation. If the

-- related attestStatementAttribute contains more than a single

-- attestation, this attribute is expected to contain all of the

-- certificates needed to validate all attestations

id-aa-attestChainCerts OBJECT IDENTIFIER ::= { id-aa (TBDAA1) }

attestCertCertsAttribute ATTRIBUTE ::= {

 TYPE SEQUENCE OF CertificateChoice

 COUNTS MAX 1

 IDENTIFIED BY id-aa-attestChainCerts

 }

-- If the signature is provided separately, the value field need not

-- contain the signature. Note that some attestation methods include

-- a signature method in the part signed by the signature and some do

-- not.

ATTEST-STATEMENT ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Type, -- NOT optional

 &algidPresent ParamOptions DEFAULT absent,

 &sigPresent ParamOptions DEFAULT absent,

 &sigType DEFAULT OCTET STRING

 &ancillaryPresent ParamOptions DEFAULT absent,

 &ancillaryType DEFAULT OCTET STRING

} WITH SYNTAX {

 TYPE &Type

 IDENTIFIED BY &id

 [ALGID IS &algidPresent]

 [SIGNATURE [TYPE &sigType] IS &sigPresent]

 [ANCILLARY [TYPE &ancillaryType] IS &ancillaryPresent]

}

AttestStatement { ATTEST-STATEMENT:IOSet} ::= SEQUENCE

 {

 type ATTEST-STATEMENT.&id({IOSet}),

 value ATTEST-STATEMENT.&Type({IOSet}{@type}),

 algId [0] IMPLICIT AlgorithmIdentifier OPTIONAL,

 signature [1] ATTEST-STATEMENT.&sigType OPTIONAL -- NOT implicit

 ancillaryData [2] ATTEST-STATEMENT.&ancillaryType OPTIONAL

 }

-- An attribute that contains a attestation statement.

id-aa-attestStatement OBJECT IDENTIFIER ::= { id-aa (TBDAA2) }

attestAttribute ATTRIBUTE ::= {

 TYPE AttestStatement

 IDENTIFIED BY id-aa-attestStatement

 }

END
¶

Acknowledgements

Thanks to Russ Housley for a first and useful pass over the original

ASN.1. Thanks to Mike Ounsworth for not complaining too much when I

wrote this. Placeholder here for people who spend time reviewing the

draft!

Author's Address

Michael StJohns

NthPermutation Security LLC

Germantown, MD 20874

United States of America

Email: msj@nthpermutation.com

¶

mailto:msj@nthpermutation.com

	Attestation Attributes for Use with Certification Signing Requests
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Definitions
	3. ASN.1 Elements
	3.1. Object Identifiers
	3.2. CertificateChoice
	3.3. AttestAttribute
	3.4. AttestCertsAttribute
	3.5. AttestStatement

	4. IANA Considerations
	4.1. Object Identifier Allocations
	4.1.1. Module Registration - SMI Security for PKIX Module Identifer
	4.1.2. Object Identifier Registrations - SMI Security for S/MIME Attributes

	4.2. "SMI Security for PKIX Attestation Statement Formats" Registry

	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Examples
	A.1. Simple Attestation Example
	A.2. Example TPM V2.0 Attestation Attribute - Non Normative

	Appendix B. ASN.1 Module for Attestation
	Acknowledgements
	Author's Address

