
 Internet Engineering Task Force I. Stoica UC, Berkeley
 Internet Draft H. Zhang CMU
 Expires April 2003 N. Venkitaraman Motorola Labs
 J. Mysore Motorola Labs

 October 2002

Per Hop Behaviors Based on Dynamic Packet State
<draft-stoica-diffserv-dps-02.txt>

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 Abstract

 This document proposes a family of Per-Hop Behaviors (PHBs)
 based on Dynamic Packet State (DPS) in the context of the
 differentiated service architecture. With these PHBs, distributed
 algorithms can be devised to implement services with flexibility,
 utilization, and assurance levels similar to those that can be
 provided with per-flow mechanisms.

 With Dynamic Packet State, each packet carries in its header, in
 addition to the PHB codepoint, some PHB-specific state. The state
 is initialized by the ingress node. Interior nodes process each
 incoming packet based on the state carried in the packet's
 header, updating both its internal state and the state in the
 packet's header before forwarding it to the next hop. By using
 DPS to coordinate actions of edge and interior nodes along the
 path traversed by a flow, distributed algorithms can be designed

https://datatracker.ietf.org/doc/html/draft-stoica-diffserv-dps-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 to approximate the behavior of a broad class of "stateful"
 networks using networks in which interior nodes do not maintain

 Stoica et al Expires April 2003 [Page 1]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 per-flow state. We give examples of services that can be implemented by
 PHBs based on DPS. We also discuss several possible solutions for encoding
 Dynamic Packet State that have the minimum incompatibility with IPv4.

 1. Introduction

 While the diffserv architecture [Blake98] is highly scalable,
 the services it can provide have lower flexibility, utilization,
 or assurance levels than services provided by architectures
 that employ per-flow management at every node. It is debatable
 whether this should be of significant concern. For example, the
 low utilization by the premium traffic may be acceptable if the
 majority of traffic will be best effort, either because the
 best effort service is "good enough" for majority applications
 or the price difference between premium traffic and best effort
 traffic is too high to justify the performance difference between
 them. Alternatively, if the guaranteed nature of service
 assurance is not needed, i.e., statistical service assurance is
 sufficient for premium service, we can then achieve higher
 network utilization. Providing meaningful statistical service
 is still an open research problem. A discussion of these topics
 is beyond the scope of this document. Furthermore, there is usually
 a tradeoff between the complexity of the QoS mechanism and the
 efficiency of the resource usage. While intserv-style guaranteed
 service can achieve high resource utilization, premium service
 needs a much simpler mechanism.

 This document proposes a new set of PHBs based on Dynamic Packet
 State (DPS). These PHBs have relative low complexities (do not
 require per-flow state), but can be used to implement distributed
 algorithms to provide services with flexibility, utilization,
 and assurance levels similar to those that can be achieved with
 per-flow mechanisms. DS domains implemented with these type of PHBs
 should interoperate with DS domains implemented with other PHBs.

 With Dynamic Packet State, each packet carries in its header, in
 addition to the PHB codepoint, some PHB-specific state. The state
 is initialized by an ingress node, when the packet enters the DS
 domain. Interior nodes process each incoming packet based on the
 state carried in the packet's header, updating both its internal
 state and the state in the packet's header before forwarding it.
 By using DPS to coordinate actions of edge and interior nodes
 along the path traversed by a flow, distributed algorithms can
 be designed to approximate the behavior of a broad class of
 "stateful" networks. Consequently, introducing PHBs based on DPS
 will significantly increase the flexibility and capabilities of
 the services that can be built within the diffserv architecture.
 In particular, we will show that a variety of QoS services can
 be implemented by PHBs based on DPS. These include weighted fair

 share service, and distributed admission control service.

 In this document, we use flow to refer to a subset of packets
 that traverse the same path inside a DS domain between two edge

 Stoica et al Expires April 2003 [Page 2]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 nodes. Thus, with the highest level of traffic aggregation, a
 flow consists of all packets between the same pair of ingress
 and egress nodes.

 This document is organized as follows. Section 2 gives a general
 description of PHBs based on DPS. Section 3 presents several
 services that can be implemented with PHBs based on DPS.

Section 4 discusses alternative techniques of storing state in
 the packet's header. Sections 5 briefly discusses some issues
 related to the specification of DPS PHB's, such as codepoints,
 tunneling behavior, and interaction with other PHB's.

Section 6 discusses security issues.

 2. Description of Per-Hop Behaviors Based on Dynamic Packet State

 Unlike common PHB codepoints [Blake98, Heinanen99, Jacobson98],
 a PHB codepoint based on DPS has extra state associated with it.
 This state is initialized by ingress nodes and carried by packets
 inside the DS domain. The state semantic is PHB dependent.
 The values taken by the state can be either flow, path, or
 packet dependent. The state carried by packets can be used by
 interior nodes for a variety of purposes such as, packet
 scheduling, updating the local node's state, or extending the
 codepoint space.

 When a PHB based on DPS is defined, in addition to the guidelines
 given in [Blake98], the following items must be specified:

 o state semantic - the meaning of the information carried by
 the packets

 o state placement - where is the information stored in the
 packet's header

 o encoding format - how is the information encoded in packets

 For example, consider a PHB that implements the Stateless
 Prioritized Fair Queue Sharing algorithm, which is described in

Section 3.1. In this case, the state carried by a packet is
 based on an estimate of the current rate of the flow to which
 the packet belongs. The state can be placed either (a) between
 layer two and layer three headers, (b) as an IP option, or
 (c) in the IP header (see Section 4). Finally, the rate can be
 encoded by using a floating point like format as described in

Section 4.1.1.

 In addition, the following requirement, called the transparency
 requirement, must be satisfied

 o All changes performed at ingress nodes or within the DS

 domain on packets' headers (possible for the purpose of
 the state) must be undone by egress nodes

 Stoica et al Expires April 2003 [Page 3]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 Any document defining a PHB based on DPS must specify a default
 placement of the state in the packet header and a default bit
 encoding format. However, to increase the flexibility, it is
 acceptable for documents to define alternate state placements and
 encoding formats. Any router that claims to be compatible with a
 particular PHB based on DPS must support at least the default
 placement and the default bit encoding format.

 3. Examples of Services that can be Implemented by PHBs Based on DPS

 To illustrate the power and the flexibility of the PHBs based on
 DPS, we give a few examples. In the first, we address the
 congestion control problem by approximating the functionality
 of a "reference" network in which each node performs fair queuing.

 3.1. Stateless Prioritized Fair Queue-sharing (SPFQ)

 We first explain SPFQ using an idealized fluid model and then
 present its packetized version.

 3.1.1 Fluid Model Algorithm: Bit Labeling

 We first restate the key observation in CSFQ [Stoica98] that we
 will also use. In a router implementing fair queuing, all flows
 that are bottlenecked at a router have the same output rate.
 We call this the rate threshold(r_t(t)).

 Let C be the capacity of an output link at a router, and r_i(t)
 the arrival rate of flow i in bits per second. Let A(t) denote
 the total arrival rate of n flows: A(t)= r_1(t) + r_2(t) + ... +
 r_n(t). If A(t) <= C then no bits are dropped. But if A(t) > C,
 then r_t(t) is the unique solution to C = min(r_1(t), r_t(t)) +
 min(r_2(t), r_t(t)) + ... + min(r_n(t), r_t(t)).

 In general, if max-min bandwidth allocations are achieved, each
 flow i receives service at a rate given by min(r_i(t), r_t(t)).

 For every flow, in any given second, we consider up to r_t(t)
 bits of the flow as being conforming, and all bits in excess of
 that as being non-conforming. If we mark every bit of a flow as
 being conforming or non-conforming, we can obtain the allocation
 provided by a fair queuing router, by simply having routers
 accept all conforming bits of a flow and dropping all
 non-conforming bits.

 What we need now, is a labeling algorithm at the ingress node, that
 would enable a router to distinguish between conforming and non-
 conforming traffic. Consider the simple sequential labeling algorithm:

 label(bit)

 served += 1
 bit->label = served
 where the value of 'served' is reset to 0, after every second.

 Stoica et al Expires April 2003 [Page 4]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 Let us suppose that the rate at which each flow is sending bits is
 constant. The result of this algorithm is that during any given second,
 the bits from a flow sending at rate r_i bits per second are marked
 sequentially from 1 to r_i; and the label is reset to 0 at the end of
 each second. Then, for any given flow, accepting bits with label
 1 to 'r_a', would be equivalent to providing the flow with a
 rate of 'r_a' bits per second. So, if all bits carry such a
 label, a router can simply identify non-conforming bits
 to be those with label > r_t and drop them. Consequently, no
 flow can receive a service in excess of r_t . Furthermore, as
 all bits with label <= r_t are accepted, all flows sending at a rate
 less than or equal to r_t will not have any of their bits dropped.

 As described in [Venkitar02], a key advantage of such a labeling
 procedure is that it allows us to convey rate information as well
 as intra-flow priority using the same field in the packet header.

 3.1.2 Packet Labeling

 In order to extend the sequential labeling algorithm given
 for the fluid model to a packetized model, we essentially
 need to take variable packet sizes into account. Hence,
 instead of incrementing the counter 'served' by 1 (which
 is the size of any packet in a network with purely single-bit
 packets), we increment the value of 'served' by the size of
 the packet. Given below is a pseudo code for the packetized
 version of the sequential marking algorithm.

 label(pkt)
 served += pkt->size
 pkt->label = served
 where the value of served is reset to 0, after a fixed size epoch.

 All ingress routers in a DS domain must use epochs of equal duration.
 The size of the epoch is a design parameter that should be chosen
 to reflect a tradeoff between mimicking the fluid model
 accurately and not giving an unfair advantage to flows that
 arrived most recently in the system. To understand this tradeoff,
 suppose that the epoch is chosen to be very long and that a new
 flow arrives in the middle of an epoch. Then the bits from the
 new flow would be labeled starting from a value of one and would
 have a higher priority throughout the rest of the epoch than
 the bits of flows that have been sending bits from the beginning
 of the epoch.

 3.1.3 Forwarding Decision in a Router

 [Stoica98], [Cao00], [Barnes01] and [Venkitar02] discuss algorithms
 for updating the rate threshold (r_t) based on link state, i.e,

 based on parameters such as queue length and the aggregate
 accepted rate of packets. The forwarding decision in a router
 is then made based on the following algorithm:

 Stoica et al Expires April 2003 [Page 5]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 enque(pkt)
 if (pkt->label <= r_t)
 Accept(pkt)
 else
 Drop(pkt)

 3.1.4 Additional Services based on SPFQ

 We now present examples of labeling methods at the edge that can
 provide different services while retaining the same forwarding
 behavior.

 3.1.4.1 Weighted SPFQ

 The SPFQ algorithm can be readily extended to support flows with
 different weights. Let w_i be the weight of flow i. An allocation
 is weighted fair if all bottlenecked flows have the same value
 for r_i/w_i. The only major change required to achieve weighted
 fair allocation is in the ingress labeling algorithm, where we
 need to use 'served/w_i' instead of 'served'. This enables
 per-flow service differentiation without maintaining per-flow
 state in the core nodes of the network.

 3.1.4.2 Minimum bandwidth allocation

 From the forwarding algorithm given in section 2, it is clear
 that the packets marked with lower values of label are dropped
 only after all packets with larger labels have been dropped.
 This suggests that packets marked with the smallest label (of 0)
 will not be dropped as long as the aggregate rate of such packets
 does not exceed the link capacity. So, for a flow requiring a
 minimum bandwidth allocation of 'b_min', labeling packets with
 the smallest label at a rate of 'b_min' would ensure that the
 flow will receive the rate that it has been guaranteed within a
 reasonable time window (assuming that there is no packet loss due
 to channel error). An admission control mechanism should be used
 to ensure that the aggregate reserved rate does not exceed the
 capacity of the link. A distributed admission control mechanism,
 such as the one proposed in section 3.2 can be used for this purpose.

 3.2 Distributed Admission Control

 The previous examples focused on data path mechanisms and services.
 In this section, we will show that PHBs based on DPS can also
 implement control plane services such as distributed admission control.

 Admission control is a central component in providing quantitatively
 defined QoS services. The main job of the admission control test is
 to ensure that the network resources are not over-committed. In

 particular it has to ensure that the sum of the reservation rates of
 all flows that traverse any link in the network is no larger than the
 link capacity C.

 Stoica et al Expires April 2003 [Page 6]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 A new reservation request is granted if it passes the admission
 test at each hop along its path. There are two main approaches to
 implementing admission control. Traditional reservation-based
 networks adopt a distributed architecture in which each node is
 responsible for its local resources, and where nodes are assumed to
 maintain per-flow state. To support the dynamic creation and
 deletion of fine grained flows, a large quantity of dynamic per
 flow state needs to be maintained in a distributed fashion.
 Complex signaling protocols (e.g., RSVP and ATM UNI) are used
 to maintain the consistency of this per-flow state.

 A second approach is to use a centralized bandwidth broker that
 maintains the topology as well as the state of all nodes in the
 network. In this case, the admission control can be implemented by
 the broker, eliminating the need for maintaining distributed state.
 Such a centralized approach is more appropriate for an environment
 where most flows are long lived, and set-up and tear-down events
 are rare. However, to support fine grained and dynamic flows, there
 may be a need for a distributed broker architecture, in which the
 broker database is replicated or partitioned. Such an architecture
 eliminates the need for a signaling protocol, but requires another
 protocol to maintain the consistency of the different broker
 databases. Unfortunately, since it is impossible to achieve perfect
 consistency, this may create race conditions and/or resource
 fragmentation.

 A third approach is to use a simplified provisioning model that is
 not aware of the details of the network topology, but instead
 admits a new flow if there is sufficient bandwidth available for
 the flow's packets to travel anywhere in the network with adequate
 QoS. This simplified model may be based on static provisioning and
 service level agreements, or on a simple dynamic bandwidth broker.
 In any case, the tradeoff made in return for the simplicity is
 that the admission control decision must be more conservative, and
 a much smaller level of QoS-controlled service can be supported.

 In the following, we show that by using a PHB based on DPS, it is
 possible to implement distributed admission control for guaranteed
 services in a DS domain. In our scheme, for each reservation, the
 ingress node generates a request message that is forwarded along the
 path. In turn, each interior node decides whether or not to accept
 the request. When the message reaches the egress node it is returned
 to the ingress, which makes the final decision. We do not make any
 reliability assumptions about the request messages. In addition, the
 algorithms does not require reservation termination messages. In the
 following we describe the per-hop admission control. [StoZha99]
 describes how this scheme can be integrated with RSVP to provide
 end-to-end delay bounded services.

 3.2.1. Per-Hop Admission Control

 The solution is based on two main ideas. First, we always maintain a
 conservative upper bound of the aggregate reservation R, denoted

 Stoica et al Expires April 2003 [Page 7]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 R_bound, which we use for making admission control decisions.
 R_bound is updated with a simple rule:

 R_bound = R_bound + r

 whenever a request for a rate r is received and R_bound + r <= C. It
 should be noted that in order to maintain the invariant that R_bound is
 an upper bound of R, this algorithm does not need to detect duplicate
 request messages, generated either due to retransmission in case of
 packet loss or retry in case of partial reservation failures. Of course,
 the obvious problem with the algorithm is that R_bound will diverge
 from R. At the limit, when R_bound reaches the link capacity C, no new
 requests can be accepted even though there might be available capacity.

 To address this problem, we introduce a separate algorithm, based on
 DPS, that periodically estimates the aggregate reserved rate. Based
 on this estimate we compute a second upper bound for R, and then use
 it to re-calibrate the upper bound R_bound. An important aspect of
 the estimation algorithm is that it can be actually shown that the
 discrepancy between the upper bound and the actual reserved rate R
 is bounded. Then the re-calibration process reduces to choosing the
 minimum of the two upper bounds.

 3.2.2. Estimation Algorithm for the Aggregate Reservation

 To estimate the aggregate reservation, denoted R_est, we again use DPS.
 In this case, the state of each packet consists of the amount of bits a
 flow is entitled to send during the interval between the time when the
 previous packet was transmitted up to the time when the current packet
 is transmitted. Note that unlike the previous examples, in this case
 the state carried by the packet does not affect the packet's processing
 by interior nodes. This state is solely used to compute each node's
 aggregate reservation.

 The estimation performed by interior nodes is based on the following
 simple observation: the sum of state values of packets of all flows
 received during an interval (a, a + T_W] is a good approximation for
 the total number of bits that all flows are entitled to send during
 this interval. Dividing this sum by T_W, we obtain the aggregate
 reservation rate. This is basically the rate estimation algorithm,
 though we need to account for several estimation errors. In particular,
 we need to account for the fact that not all reservations continue for
 the entire duration of interval (a, a + T_W].

 We divide time into intervals of length T_W. Let (u1, u2] be such an
 interval, where u2 = u1 + T_W. Let T_I be the maximum
 inter-departure time between two consecutive packets in the same
 flow and T_J be the maximum jitter of a flow, both of which are
 much smaller than T_W. Further, each interior node is associated

 a global variable Ra which is initialized at the beginning of
 each interval (u1, u2] to zero, and is updated to Ra + r every
 time a request for a reservation r is received and the admission
 test is passed, i.e., R_bound + r <= C.

 Stoica et al Expires April 2003 [Page 8]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 Let Ra(t) denote the value of this variable at time t. Since
 interior nodes do not differentiate between the original and
 duplicate requests, Ra(t) is an upper-bound of the sum of all
 reservations accepted during the interval (u1, t]. (For simplicity,
 here we assume that a flow which is granted a reservation during
 the interval (u1, u2] becomes active no later than u2.) Then, it
 can be shown that the aggregate reservation at time u2, R(u2),
 is bounded by

 R(u2) < R_est(u2)/(1-f) + Ra(u2), (7)

 where f = (T_I + T_J)/T_W. Finally, this bound is used to
 re-calibrate the upper bound of the aggregate reservation
 R_bound(u1) as follows

 R_bound(u2) = min(R_bound(u2), R_est(u2)/(1-f) + Ra(u2)). (8)

 Figure 1 shows the pseudocode of the admission decision and of the
 aggregate reservation estimation algorithm at ingress and interior
 nodes. We make several observations. First, the estimation algorithm
 uses only the information in the current interval. This makes the
 algorithm robust with respect to loss and duplication of signaling
 packets since their effects are "forgotten" after one time interval.
 As an example, if a node processes both the original and a duplicate
 of the same reservation request during the interval (u1, u2],
 R_bound will be updated twice for the same flow. However, this
 erroneous update will not be reflected in the computation of
 R_est(u3), since its computation is based only on the state values
 received during (u2, u3]. As a consequence, it can be show that the
 admission control algorithm can asymptotically reach a link
 utilization of C (1 - f)/(1 + f) [StoZha99].

 A possible optimization of the admission control algorithm is to add
 reservation termination messages. This will reduce the discrepancy
 between the upper bound R_bound and the aggregate reservation R.
 However, in order to guarantee that R_bound remains an upper bound
 for R, we need to ensure that a termination message is sent at most
 once, i.e., there are no retransmissions if the message is lost. In
 practice, this property can be enforced by edge nodes, which
 maintain per-flow state.

 To ensure that the maximum inter-departure time is no larger than
 T_I, the ingress node may need to send a dummy packet in the case
 when no data packet arrives for a flow during an interval T_I. This
 can be achieved by having the ingress node to maintain a timer with
 each flow. An optimization would be to aggregate all "micro-flows"
 between each pair of ingress and egress nodes into one flow, and
 compute the state value based on the aggregated reservation rate,

 and insert a dummy packet only if there is no data packet for the
 aggregate flow during an interval.

 Stoica et al Expires April 2003 [Page 9]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 Figure 1 - Admission control and rate estimation algorithm.

 Ingress node

 on packet p departure:
 i = get_flow(p);
 state(p) <- r[i] * (crt_time - prev_time[i]);
 prev_time[i] = crt_time;

 Interior node

 Reservation Estimation | Admission Control

 on packet p arrival: | on reservation request r:
 b <- state(p); | /* admission ctrl. test */
 L = L + b; | if (R_bound + r <= C)
 | Ra = Ra + r;
 on time-out T_W: | R_bound = R_bound + r;
 /* estimated reservation */ | accept(r);
 R_est = L / T_W; | else
 R_bound = min(R_bound, | deny(r);
 R_est/(1 - f) + Ra);|
 Ra = 0; |

 4. Carrying State in Packets

 There are at least three ways to encode state in the packet
 header: (1) introduce a new IP option, and insert the option at the
 ingress router, (2) introduce a new header between layer 2 and layer
 3, and (3) use the existing IP header.

 Option number 23 has been assigned for adding DPS state in packets.
 Inserting an IP option, has the potential to provide a large
 space for encoding state. However it will require all routers within
 a DS domain to process IP options, which could complicate packet
 processing.

 Introducing a new header between layer 2 and layer 3 would require
 solutions be devised for different layer 2 technologies. In the
 context of MPLS [Rosen98, Rosen99] networks, the state can be
 encoded in a special label. One way to do this is by using a
 particular encoding of the experimental use field indicating a
 nested label on the label stack that carried the PHB-specific state
 information rather than an ordinary label. In this case, the label
 on the top of the stack would indicate the label-switched path, and
 the inner label the PHB-specific state. This would require a small

 addition to the MPLS architecture to allow two labels to be pushed
 or popped in unison, and treated as a single entity on the label
 stack.

 Stoica et al Expires April 2003 [Page 10]

 Internet Draft PHBs based on Dynamic Packet State October 2002

4.1. Encoding State within an IP header

 In this section, we discuss the third option: storing the additional
 states in the IP header. The biggest problem with using the IP header
 is to find enough space to insert the extra information. The main
 challenge is to remain fully compatible with current standards and
 protocols. In particular, we want the network domain to be transparent
 to end-to-end protocols, i.e., the egress node should restore the
 fields changed by ingress and interior nodes to their original values.
 In this respect, we observe that there is an ip_off field in the IPv4
 header to support packet fragmentation/reassembly which is rarely
 used. For example, by analyzing the traces of over 1.7 million packets
 on an OC-3 link [nlanr], we found that less than 0.22% of all packets
 were fragments. In addition, ther are a relatively small number of
 distinct fragment sizes. Therefore, it is possible to use a fraction
 of ip_off field to encode the fragment sizes, and the remaining bits
 to encode DPS information. The idea can be implemented as follows.
 When a packet arrives at an ingress node, the node checks whether a
 packet is a fragment or needs to be fragmented. If neither of these
 is true, all 13 bits of the ip_off field in the packet header will be
 used to encode DPS values. If the packet is a fragment, the fragment
 size is recoded into a more efficient representation and the rest of
 the bits is used to encode the DPS information. The fragment size field
 will be restored at the egress node.

 In the above, we make the implicit assumption that a packet can be
 fragmented only by ingress nodes, and not by interior nodes. This is
 consistent with the diffserv view that the forwarding behavior of a
 network's component is engineered to be compatible throughout a domain.

 In summary, this gives us up to 13 bits in the current IPv4 header to
 encode the PHB specific state.

 4.2. Example of State Encoding

 The state encoding is PHB dependent. In this section, we give
 examples of encoding the state for the services described in

Section 3.

 4.2.1. Encoding Flow's Rate

 Recall that in SPFQ, the PHB state is determined by the
 current rate of the flow to which the packet belongs. One possible
 way to represent the rate estimate is to restrict it to only a
 small number of possible values. For example if we limit it to 128
 values, only seven bits are needed to represent this rate. While
 this can be a reasonable solution in practice, in the following we
 propose a more sophisticated representation that allows us to
 express a larger range of values.

 Let r denote the packet label. In the most general case r could be
 a floating poing number. To represent r we use an m bit mantissa
 and an n bit exponent. Since r >= 0, it is possible to gain

 Stoica et al Expires April 2003 [Page 11]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 an extra bit for mantissa. For this we consider two cases:
 (a) if r >= 2^m we represent r as the closest value of the form
 u 2^v, where 2^m <= u <= 2^(m+1). Then, since the (m+1)-th most
 significant bit in the u's representation is always 1, we can
 ignore it. As an example, assume m = 3, n = 4, and r = 19 = 10011.
 Then 19 is represented as 18 = u*2^v, where u = 9 = 1001 and v = 1.
 By ignoring the first bit in the representation of u the mantissa
 will store 001, while the exponent will be 1.
 (b) On the other hand, if r < 2^m, the mantissa will contain r,
 while the exponent will be 2^n - 1. For example, for m = 3,
 n = 4, and r = 6 = 110, the mantissa is 110, while the exponent
 is 1111. Converting from one format to another can be efficiently
 implemented. Figure 2 shows the conversion code in C. For
 simplicity, here we assume that integers are truncated rather than
 rounded when represented in floating point.

 Figure 2. The C code for converting between integer and floating
 point formats. m represents the number of bits used by
 the mantissa; n represents the number of bits in the
 exponent.

 intToFP(int val, int *mantissa, int *exponent) {
 int nbits = get_num_bits(val);
 if (nbits <= m) {
 *mantissa = val;
 *exponent = (1 << n) - 1;
 } else {
 *exponent = nbits - m - 1;
 *mantissa = (val >> *exponent) - (1 << m);
 }
 }

 FPToInt(int mantissa, int exponent) {
 int tmp;
 if (exponent == ((1 << n) - 1))
 return mantissa;
 tmp = mantissa | (1 << m);
 return (tmp << exponent)
 }
 --

 By using m bits for mantissa and n for exponent, we can represent
 any integer in the range [0..(2^(m+1)-1) * 2^(2^n - 1)] with a
 relative error bounded by (-1/2^(m+1), 1/2^(m+1)). For example,
 with 7 bits, by allocating 3 for mantissa and 4 for exponent, we can
 represent any integer in the range [1..15*2^15] with a relative error
 of (-6.25%, 6.25%). The worst relative error case occurs when the
 mantissa is 8. For example the number r = 271 = 100001111 is encoded

 as u = 1000, v=5, with a relative error of (8*2^5 - 271)/271 =
 -0.0554 = -5.54%. Similarly, r = 273 = 100010001 is encoded as
 u = 1001, v = 5, with a relative error of 5.55%.

 Stoica et al Expires April 2003 [Page 12]

 Internet Draft PHBs based on Dynamic Packet State October 2002

4.2.2. Encoding Reservation State

 As shown in Figure 1, when estimating the aggregate reservation, the
 PHB state represents the number of bits that a flow is entitled to
 send during the interval between the time when the previous packet
 of the flow has been transmitted until the current packet is
 transmitted. This number can be simply encoded as an integer b. To
 reduce the range, a possibility is to store b/l instead of b, where
 l is the length of the packet.

 4.3. Encoding Multiple Values

 Since the space in the packet's header is a scarce resource,
 encoding multiple values is particularly challenging. In this
 section we discuss two general methods that helps to alleviate this
 difficulty.

 In the first method, the idea is to leverage additional knowledge
 about the state semantic to achieve efficient encoding. In
 particular one value can be stored as a function of other values.
 For example, if a value is known to be always greater than the
 other values, the larger value can be represented in floating point
 format, while the other values may be represented as fractions of
 this value.

 The idea of the second method is to have different packets within a
 flow carry different state formats. This method is appropriate for
 PHBs that do not require all packets of a flow to carry the same
 state. For example, in estimating the aggregate reservation (see

Section 3.2) there is no need for every packet to carry the number
 of bits the flow is entitled to send between the current time and the
 time when the previous packet has been transmitted. The only
 requirement is that the distance between any two consecutive packets
 that carry such values to be no larger than T_I. Other packets in
 between can carry different information. Similarly, if we encode the
 IP fragment size in the packet's state, the packet has to carry this
 value only if the IP fragment is not zero. When the IP fragment is
 zero the packet can carry other state instead. On the other hand, note
 that in SPFQ, it is mandatory that every packet be labelled by the
 ingress edge, as this value is used in making forward/drop decisions
 by ingress routers.

 5. Specification Issues

 This section briefly describes some issues related to drafting
 specifications for PHB's based on DPS.

 5.1. Recommended Codepoints

 At this time it is appropriate to use values drawn from the 16

 codepoints [Nichols98] reserved for local and experimental use
 (xxxx11) to encode PHBs based on DPS.

 Stoica et al Expires April 2003 [Page 13]

 Internet Draft PHBs based on Dynamic Packet State October 2002

 5.2. Interaction with other PHBs

 The interaction of DPS PHB's with other PHB's obviously depends on the
 PHB semantic. It should be noted that the presence of other PHB's in
 a node may affect the computation and update of DPS state as well as
 the actual forwarding behavior experienced by the packet.

 5.3. Tunneling

 When packets with PHBs based on DPS are tunneled, the end-nodes must
 make sure that (1) the tunnel is marked with a PHB that does not
 violate the original PHB semantic, and (2) the PHB specific state is
 correctly updated at the end of the tunnel. This requirement might be
 met by using a tunnel PHB that records and updates packet state, and
 then copying the state from the encapsulating packet to the inner
 packet at the tunnel endpoint. Alternatively, the behavior of the
 tunnel might be measured or precomputed in a way that allows the
 encapsulated packet's DPS state to be updated at the decapsulation
 point without requiring the tunnel to support DPS behavior.

 6. Security Considerations

 The space allocated for the PHB state in the packet header must be
 compatible with IPsec. In this context we note that using the fragment
 offset to carry PHB state does not affect IPsec's end-to-end security,
 since the fragment offset is not used for cryptographic calculations
 [Kent98]. Thus, as it is the case with the DS field [Nichols98], IPSec
 does not provide any defense against malicious modifications of the
 PHB state. This leaves the door open for theft of service, which inturn
 May cause denial of service to other conforming users.
 For example, in SPFQ, a label based on a small rate estimate may cause
 disproportionate bandwidth being allocated to the flow inside the DS
 domain. In the example in Section 3.2.2, the under estimation of the
 aggregate reservation can lead to resource overprovision.
 One way to expose denial of service attacks is by auditing. In this
 context, we note that associating state with PHBs makes it easier to
 perform efficient auditing at interior nodes. For example, in SPFQ,
 an eventual attack can be detected by simply measuring a flow rate
 and then comparing it against the label carried by the flow's packets.

 Security considerations covered in [Blake98] that correspond to
 diffserv code points also apply to PHB code points for DPS.

 7. Conclusions

 In this document we have proposed an extension of the diffserv
 architecture by defining a new set of PHBs that are based on
 Dynamic Packet State. By using DPS to coordinate actions of edge
 and interior nodes along the path traversed by a flow, distributed

 algorithms can be designed to approximate the behavior of a broad
 class of "stateful" networks within the diffserv architecture. Such
 an extension will significantly increase the flexibility and
 capabilities of the services that can be provided by diffserv.

 Stoica et al Expires April 2003 [Page 14]

 Internet Draft PHBs based on Dynamic Packet State October 2002

8. References

 [Barnes01] R. Barnes, R. Srikant, J. Mysore, N. Venkitaraman.
 Analysis of Stateless Fair Queuing Algorithms, Proc. of the 35th
 Annual Conference on Information Sciences and Systems, March 2001.

 [Blake98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
 W. Weiss. An Architecture for Differentiated Services, RFC 2475
 December 1998.

 [Cao00] Z. Cao, Z Wang and E. Zegura, Rainbow Fair Queueing: Fair
 Bandwidth Sharing Without Per-Flow State, Proc. of INFOCOM 2000.

 [Heinanen99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski.
 Assured Forwarding PHB Group, RFC 2597, June 1999.

 [Jacobson98] V. Jacobson, K. Poduri and K. Nichols. An
 Expedited Forwarding PHB, RFC 2598, June 1999.

 [Kent98] S. Kent and R. Atkinson. IP Authentication Header,
RFC 2402, November 1998.

 [Nichols98] K. Nichols, S. Blake, F. Baker, and D. L. Black.
 Definition of the Differentiated Services Field (DS Field) in the
 ipv4 and ipv6 Headers, RFC 2474, December 1998.

 [Stoica98] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless
 Fair Queueing: Achieving Approximately Fair Bandwidth Allocations
 in High Speed Networks. In Proceedings ACM SIGCOMM'98,
 pages 118-130, Vancouver, September 1998.

 [StoZha99] I. Stoica and H. Zhang. Providing Guaranteed Services
 Without Per-flow Management. In Proceedings of ACM SIGCOMM'99,
 Boston, September 1999.

 [Venkitar02] N. Venkitaraman, J. Mysore, M. Needham. Core-Stateless
 Utility Function based Rate Allocation. Proceedings of PfHSN'2002,
 Berlin, April 2002.

9. Author's Addresses

 Ion Stoica Hui Zhang
 645 Soda Hall Wean Hall 7115
 Computer Science Division School of Computer Science
 University of California, Berkeley Carnegie Mellon University
 Berkeley, CA 94720 Pittsburgh, PA 15213
 istoica@cs.berkeley.edu hzhang@cs.cmu.edu

 Narayanan Venkitaraman Jayanth Mysore
 Motorola Labs Motorola Labs,

https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2597
https://datatracker.ietf.org/doc/html/rfc2598
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2474

 1301 E. Algonquin Rd. 1301 E. Algonquin Rd.
 Schaumburg, IL 60196 Schaumburg, IL 60196
 venkitar@labs.mot.com jayanth@labs.mot.com

 Stoica et al Expires April 2003 [Page 15]

 Internet Draft PHBs based on Dynamic Packet State October 2002

10. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 Stoica et al Expires April 2003 [Page 16]

