
Network Working Group J. Strassner
Internet Draft Huawei Technologies
Intended status: Standard Track
Expires: November 09, 2015 May 09, 2015

Generic Policy Information Model for
Simplified Use of Policy Abstractions (SUPA)

draft-strassner-supa-generic-policy-info-model-01

Abstract

 The Simplified Use of Policy Abstractions (SUPA) addresses the
 needs of operators and application developers to represent
 multiple types of policy rules. This document defines a single
 common extensible framework for representing different types of
 policy rules, in the form of a set of information models, that is
 independent of language, protocol, repository, and the level of
 abstraction of the content of the policy rule. This enables a
 common set of concepts defined in this set of information models
 to be mapped into different data models that use different
 languages, protocols, and repositories to optimize their usage.
 The definition of common policy concepts also provides better
 interoperability by ensuring that each data model can share a set
 of common concepts, independent of its level of detail or the
 language, protocol, and/or repository that it is using.

 Specifically, this document defines three information models:

 1. A framework for defining the concept of policy,
 independent of how policy is defined or used; this is
 called the SUPA Generic Policy Information Model (SGPIM)
 2. A framework for defining a policy model that uses the
 event-condition-action paradigm; this is called the SUPA
 Eca Policy Rule Information Model (EPRIM)
 3. A framework for defining a policy model that uses a
 declarative (e.g., intent-based) paradigm; this is called
 the SUPA Logic Statement Information Model (SLSIM)

 The combination of the SGPIM and the EPRIM, or the SGPIM and the
 SLSIM, provide an extensible framework for defining policy that
 uses an event-condition-action or declarative representation that
 is independent of data repository, data definition language, query
 language, implementation language, and protocol.

Strassner, et al. Expires November 09, 2015 [Page 1]

Internet-Draft SUPA Generic Policy Model May 2015

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.
 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on October 26, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided
 without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 7
2. Conventions used in this document 7
3. Terminology .. 7

3.1. Acronyms... 7
3.2. Definitions ... 8

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Strassner, et al. Expires November 09, 2015 [Page 2]

Internet-Draft SUPA Generic Policy Model May 2015

Table of Contents (continued)

3.2.1. Core Terminology 8
3.2.1.1. Information Model 8
3.2.1.2. Data Model 9
3.2.1.3. Container 9
3.2.1.4. PolicyContainer 9

3.2.2. Policy Terminology 9
3.2.2.1. SUPAPolicy 10
3.2.2.2. SUPAPolicyStatement 10
3.2.2.3. SUPAECAPolicyRule 11
3.2.2.4. SUPALogicStatement 12
3.2.2.5. SUPAMetadata 13
3.2.2.6. SUPAPolicyTarget 13
3.2.2.7. SUPAPolicySubject 13

3.2.3. Modeling Terminology 14
3.2.3.1. Inheritance 14
3.2.3.2. Relationship 14
3.2.3.3. Association 14
3.2.3.4. Aggregation 14
3.2.3.5. Composition 15
3.2.3.6. Association Class 15
3.2.3.7. Multiplicity 15
3.2.3.8. Navigability 15
3.2.3.9. Abstract Class 16
3.2.3.10. Concrete Class 16

3.2.4. Mathematical Logic Terminology 16
3.2.4.1. Predicate 16
3.2.4.2. Logic Operators 16

3.2.4.2.1. Propositional Logic Connectives 16
3.2.4.2.2. First Order Logic Quantifiers 17

3.2.4.3. Propositional Logic 17
3.2.4.4. First-Order Logic 17

3.3. Symbology .. 18
3.3.1. Inheritance 18
3.3.2. Association 18
3.3.3. Aggregation 18
3.3.4. Composition 19
3.3.5. Association Class 19
3.3.6. Logical Connectives 19
3.3.7. Quantifiers 19

4. Policy Abstraction Architecture 20
4.1. Motivation ... 21
4.2. SUPA Approach .. 21
4.3. SUPA Generic Policy Information Model Overview 22
4.4. Structure of SUPA Policies 24

4.4.1. ECA Policy Rule Structure 24
4.4.2. Logical Statement Structure 25

4.5. SGPIM Assumptions 27

4.6. Scope of Previous Work 28

Strassner, et al. Expires November 09, 2015 [Page 3]

Internet-Draft SUPA Generic Policy Model May 2015

Table of Contents (continued)

5. SGPIM Model ... 29
5.1. Overview ... 29
5.2. The Abstract Class "SUPAPolicy" 29

5.2.1. SUPAPolicy Attributes 31
5.2.1.1. The Attribute "supaObjectIDContent" 31
5.2.1.2. The Attribute "supaObjectIDFormat" 31
5.2.1.3. The Attribute "supaPolicyName" 32

5.2.2. SUPAPolicy Relationships 32
5.2.2.1. The Relationship "HasSUPAPolicies" 32
5.2.2.2. The Association Class "HasSUPAPolicyDetail" .. 32

5.3. The Abstract Class "SUPAPolicyAtomic" 32
5.4. The Abstract Class "SUPAPolicyComposite" 33

5.4.1. SUPAPolicyComposite Attributes 33
5.4.1.1. The Attribute "supaPCIsMatchAll" 33
5.4.1.2. The Attribute "supaPCFailureStrategy" 34

5.4.2. SUPAPolicyComposite Relationships 34
5.4.2.1. The Aggregation "HasSUPAECAPolicyRules" 34

 5.4.2.2. The Association Class
 "HasSUPAECAPolicyRulesDetail" 34

5.5. The Abstract Class "SUPAPolicyStatement" 35
5.5.1. SUPAPolicyStatement Attributes 37

5.5.1.1. The Attribute "supaPolicyStmtAdminStatus" 37
5.5.1.2. The Attribute "supaPolicyStmtExecStatus" 37

5.5.2. SUPAPolicyStatement Subclasses 38
5.5.2.1. The Concrete Class "SUPAEncodedClause" 38

5.5.2.1.1. The Attribute "supaClauseContent" 38
5.5.2.1.2. The Attribute "supaClauseFormat" 39
5.5.2.1.3. The Attribute "supaClauseResponse" 39

5.5.3. SUPAPolicyStatement Relationships 39
5.5.3.1. The Aggregation "HasSUPAPolicyStatements" 39

 5.5.3.2. The Association Class
 "HasSUPAPolicyStmtDetail" 39

5.6. The Abstract Class "SUPAPolicySubject" 40
5.6.1. SUPAPolicySubject Attributes 41
5.6.2. SUPAPolicySubject Relationships 41

5.6.2.1. The Relationship "HasSUPAPolicySubjects" 41
 5.6.2.2. The Association Class
 "HasSUPAPolicySubjDetail" 41

5.7. The Abstract Class "SUPAPolicyTarget" 42
5.7.1. SUPAPolicyTarget Attributes 42

5.7.1.1. The Attribute "supaPolicyTargetEnabled" 42
 5.7.2. SUPAPolicyTarget Relationships

5.7.2.1. The Relationship "HasSUPAPolicyTargets" 43
 5.7.2.2. The Association Class "HasSUPAPolicyTgtDetail" 43

5.8. The Abstract Class "SUPAPolicyTerm" 43
5.8.1. SUPAPolicyTerm Attributes 44

5.8.1.1 The Attribute "supaPolTermExprContent" 44

5.8.1.2. The Attribute "supaPolTermExprFormat" 44

Strassner, et al. Expires November 09, 2015 [Page 4]

Internet-Draft SUPA Generic Policy Model May 2015

Table of Contents (continued)

5.8.2. SUPAPolicyTerm Relationships 45
5.8.2.1. The Aggregation "SUPAPolicyTermsInStmt" 45

 5.8.2.2. The Association Class
 "SUPAPolicyTermsInStmtDetail" 45

5.8.3. SUPAPolicyTerm Subclasses 45
5.8.3.1. The Concrete Class "SUPAPolicyVariable" 46
5.8.3.2. The Concrete Class "SUPAPolicyOperator" 46

5.8.3.2.1. The Attribute "supaPolOpType" 46
5.8.3.3. The Concrete Class "SUPAPolicyValue" 47

5.9. The Abstract Class "SUPAPolicyMetadata" 48
5.9.1. SUPAPolicyMetadata Attributes 48
5.9.2. SUPAPolicyMetadata Relationships 48

6. SUPA ECAPolicyRule Information Model 49
6.1. Overview ... 49
6.2. Constructing a SUPAECAPolicyRule 50
6.3. Working With SUPAECAPolicyRules 51
6.4. The Concrete Class "SUPAECAPolicyRule" 52

6.4.1. SUPAECAPolicyRule Attributes 53
6.4.1.1. The Attribute "supaECAPRDeployStatus"......... 53
6.4.1.2. The Attribute "supaECAPRExecStatus"........... 53

6.4.2. SUPAECAPolicyRule Relationships 54
6.4.3. SUPAECAPolicyRule Subclasses 54

 6.4.2.1. The Concrete Class "SUPAECAPolicyRuleAtomic" . 54
 6.4.2.2. The Concrete Class
 "SUPAECAPolicyRuleComposite" 54

6.5. SUPAPolicyStatement Subclasses 55
 6.5.1. Designing SUPAPolicyStatements Using
 SUPABooleanClauses 55

6.5.2. The Abstract Class"SUPABooleanClause" 56
6.5.2.1. SUPABooleanClause Attributes 57

6.5.2.1.1. The Attribute "supaBoolIsNegated" 57
6.5.2.2. SUPABooleanClause Relationships 57

 6.5.2.2.1. The Relationship "HasSUPABooleanClauses" 57
6.5.3. SUPABooleanClause Subclasses 57

 6.5.3.1. The Abstract Class "SUPABooleanClauseAtomic" . 57
 6.5.3.1.1. The Abstract Class "SUPAPolicyVariable" . 58
 6.5.3.1.1.1. Problems with the RFC3460 Version
 of PolicyVariable 59
 6.5.3.1.1.2. The Abstract Class
 "SUPAPolicyVariable" 59
 6.5.3.1.2. The Concrete Class "SUPAPolicyOperator" . 59

6.5.3.1.3. The Abstract Class "SUPAPolicyValue" 60
 6.5.3.1.3.1. Problems with the RFC3460 Version
 of PolicyValue 60
 6.5.3.1.3.2. The Abstract Class "SUPAPolicyValue" 60

6.5.4. The Abstract Class "SUPABooleanClauseComposite" ... 60
6.5.4.1. SUPABooleanClauseComposite Attributes 60

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

6.5.4.2. SUPABooleanClauseComposite Relationships 60

Strassner, et al. Expires November 09, 2015 [Page 5]

Internet-Draft SUPA Generic Policy Model May 2015

Table of Contents (continued)

6.6. The Abstract Class "SUPAECAComponent" 61
6.7. The Abstract Class"SUPAEvent" 61
6.8. The Abstract Class"SUPACondition" 61
6.9. The Abstract Class"SUPAAction" 61

7. SUPA Logic Statement Information Model 62
7.1. Overview ... 62
7.2. Constructing a SUPAPLStatement 62
7.3. Working With SUPAPLStatements 62
7.4. The Abstract Class "SUPALogicClause" 62
7.5. The Abstract Class "SUPAPLStatement" 62

7.5.1. SUPAPLStatement Attributes 62
7.5.2. SUPAPLStatement Relationships 62
7.5.3. SUPAPLStatement Subclasses 62
7.5.3.1. The Concrete Class "SUPAPLArgument" 62
7.5.3.2. The Concrete Class "SUPAPLPremise" 62
7.5.3.3. The Concrete Class "SUPAPLConclusion" 62

7.6. Constructing a SUPAFOLStatement 63
7.7. Working With SUPAFOLStatements 63

7.7.1. SUPAFOLStatement Attributes 63
7.7.2. SUPAFOLStatement Relationships 63
7.7.3. SUPAFOLStatement Subclasses 63
7.7.3.1. The Concrete Class "SUPAGoalHead" 63
7.7.3.2. The Concrete Class "SUPAGoalBody" 63

7.8. Combining Different Types of SUPAFOLStatements 63
8. Examples .. 63

8.1. SUPAECAPolicyRule Examples 63
8.2. SUPALogicStatement Examples 63
8.3. Mixing SUPAECAPolicyRules and SUPALogicStatements 63

9. Security Considerations 63
10. IANA Considerations .. 63
11. Acknowledgments .. 64
12. References ... 64

12.1. Normative References 64
12.2. Informative References 64

 Authors' Addresses ... 65

Strassner, et al. Expires November 09, 2015 [Page 6]

Internet-Draft SUPA Generic Policy Model May 2015

1. Introduction

 The Simplified Use Policy Abstractions (SUPA) addresses the needs
 of operators and application developers to represent multiple types
 of policy rules using a common structure for defining policy rules
 that is independent of language, protocol, repository, and the
 level of abstraction of the content of the policy rule. This common
 framework currently takes the form of a set of three information
 models. The SUPA Generic Policy Information Model (SGPIM) defines
 a common set of policy management concepts that are independent of
 the type of policy rule, while the SUPA ECA Policy Rule Information
 Model (EPRIM) and SUPA Logic Statement Information Model (SLSIM)
 define information models that are specific to the needs of
 Event-Condition-Action (ECA) policy rules and statements that are
 subsets of either Propositional Logic (PL) or First-Order Logic
 (FOL), respectively.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC2119]. In
 this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to
 be interpreted as carrying [RFC2119] significance.

3. Terminology

 This section defines acronyms, terms, and symbology used in the
 rest of this document.

3.1. Acronyms

 CLI Command Line Interface
 CNF Conjunctive Normal Form
 DNF Disjunctive Normal Form
 ECA Event-Condition-Action
 EPRIM ECA Policy Rule Information Model
 FOL First Order Logic
 NETCONF Network Configuration protocol
 OAM&P Operations, Administration, Management, and Provisioning
 OID Object IDentifier

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Strassner, et al. Expires November 09, 2015 [Page 7]

Internet-Draft SUPA Generic Policy Model May 2015

 PAP Policy Administration Point
 PDP Policy Decision Point
 PEP Policy Enforcement Point
 PIP Policy Information Point
 PL Propositional Logic
 PR Policy Repository
 PXP Policy Execution Point
 SGPIM SUPA Generic Policy Information Model
 SLSIM SUPA Logic Statement Information Model
 SUPA Simplified Use of Policy Abstractions
 TMF TeleManagent Forum (TM Forum)
 UML Unified Modeling Language
 URI Uniform Resource Identifier
 YANG A data definition language for use with NETCONF
 ZOOM Zero-touch Orchestration, Operations, and Management

3.2. Definitions

 This section defines the terminology that is used in this document.

3.2.1. Core Terminology

 The following subsections define the terms "information model" and
 "data model".

3.2.1.1. Information Model

 An information model is a representation of concepts of interest
 to an environment in a form that is independent of data repository,
 data definition language, query language, implementation language,
 and protocol.

 Note: this definition is different than that of [RFC3198]. An
 information model is defined in [RFC3198] as: "An abstraction and
 representation of the entities in a managed environment, their
 properties, attributes, and operations, and the way that they
 relate to each other. It is independent of any specific repository,
 software usage, protocol, or platform." The SUPA definition is
 more specific, and corrects the following ambiguities:

 o Most information models do not define operations; this is
 typically implementation-specific and a function of (at least)
 the language, protocol, and data repository used.
 o It is unclear what the difference is between the terms
 "properties" and "attributes" (these are typically synonyms in
 modeling terminology)
 o It is unclear what is meant by "software usage".
 o It is unclear what is meant by "platform".

https://datatracker.ietf.org/doc/html/rfc3198
https://datatracker.ietf.org/doc/html/rfc3198

Strassner, et al. Expires November 09, 2015 [Page 8]

Internet-Draft SUPA Generic Policy Model May 2015

3.2.1.2. Data Model

 A data model is a representation of concepts of interest to an
 environment in a form that is dependent on data repository, data
 definition language, query language, implementation language, and
 protocol (typically, but not necessarily, all three).

 Note: this definition is different than that of [RFC3198]. A data
 model is defined in [RFC3198] as: "A mapping of the contents of an
 information model into a form that is specific to a particular type
 of data store or repository." The SUPA definition is more specific.
 For example, it takes into account differences between two
 implementations that use the same protocol, implementation
 language, and data repository, but which have different data
 definition and/or query protocols.

3.2.1.3. Container

 A container is an object whose instances may contain zero or more
 additional objects, including container objects. A container
 provides storage, query, and retrieval of its contained objects
 in a well-known, organized way.

3.2.1.4. PolicyContainer

 In this document, a PolicyContainer is a special type of container
 that provides at least the following three functions:

 1. It uses metadata to define how its content is interpreted
 2. It separates the content of the policy from the
 representation of the policy
 3. It provides a convenient control point for OAMP operations

 The combination of these three functions enables a PolicyContainer
 to define the behavior of how its constituent components will be
 accessed, queried, stored, retrieved, and how they operate.

3.2.2. Policy Terminology

 The following terms define different policy concepts used in the
 SUPA Generic Policy Information Model (SGPIM). Note that the
 prefix "SUPA" is used for all classes and relationships defined
 in the SGPIM to ensure name uniqueness. Similarly, the prefix
 "supa" is defined for all SUPA class attributes.

https://datatracker.ietf.org/doc/html/rfc3198
https://datatracker.ietf.org/doc/html/rfc3198

Strassner, et al. Expires November 09, 2015 [Page 9]

Internet-Draft SUPA Generic Policy Model May 2015

3.2.2.1. SUPAPolicy

 A SUPAPolicy is an abstract class that is a type of
 PolicyContainer.

 SUPAPolicy is defined generically as a means to monitor and control
 the changing and/or maintaining of the state of one or more managed
 objects [1]. In this context, "manage" means that at least create,
 read, query, update, and delete unctions are supported.

 A SUPAPolicy MUST have at least one SUPAPolicyStatement that are
 used to define the content of the policy. A SUPAPolicy MAY be
 qualified (i.e., may aggregate these objects to more completely
 specify the behavior of the SUPAPolicy) by a set of zero or more
 SUPAPolicySubjects, SUPAPolicyTargets, and/or SUPAPolicyMetadata
 objects. Note that these three classes are defined as abstract, in
 order to simplify mapping to, and optimization of, data models.
 When defined in an information model, the SUPAPolicy class MUST
 have separate aggregation relationships with the SUPAPolicySubject,
 SUPAPolicyTarget, and SUPAPolicyMetadata classes. When implemented
 in a data model, the set of SUPAPolicyStatement, SUPAPolicyTarget,
 SUPAPolicySubject, and SUPAPolicyMetadata object instances, SHOULD
 all be part of a single PolicyContainer object.

3.2.2.2. SUPAPolicyStatement

 A SUPAPolicyStatement is an abstract class that contains an
 individual or group of related functions; this set of functions
 defines a set of actions to take. Examples of actions include
 getting information, stating facts about the system being managed,
 writing a change to a configuration of one or more managed objects,
 and querying information about one or more managed objects.

 SUPAPolicyStatements are objects in their own right, which
 facilitates their reuse. SUPAPolicyStatements can also be combined
 in a whole-part (containment) relationship under a SUPAPolicy,
 thereby forming a SUPAECAPolicyRule or a SUPALogicStatement. When
 defined in an information model, a SUPAPolicyStatement MUST be
 represented as a separate object that aggregates its constituent
 components. However, a data model MAY map this definition to a
 more efficient form (e.g., flattening the SUPAPolicyStatement and
 its aggregated object instances into a single object instance).

Strassner, et al. Expires November 09, 2015 [Page 10]

Internet-Draft SUPA Generic Policy Model May 2015

3.2.2.3. SUPAECAPolicyRule

 An Event-Condition-Action (ECA) Policy (SUPAECAPolicyRule) is an
 abstract class that MUST contain at least one SUPAPolicyStatement.
 Optionally, it MAY contain one or more SUPAPolicySubjects, one or
 more SUPAPolicyTargets, and one or more SUPAPolicyMetadata objects.

 The SUPAPolicyStatement defines the content of the Policy Rule as
 a three-tuple, consisting of an event clause, a condition clause,
 and an action clause. Each of these three clauses MUST have at
 least one term corresponding to the type of clause that it is; it
 MAY have more than one.

 These three terms collectively specify what triggers the evaluation
 of the SUPAECAPolicyRule, whether all of the conditions specified
 have been satisfied or not, and if the conditions are satisfied,
 the set of actions to be executed. This differentiates a
 SUPAECAPolicyRule from a SUPALogicStatement, which specifies what
 actions to perform, but not how to perform them.

 If there are more than one term, then these terms MUST be combined
 using any combination of logical AND, OR, and NOT operators to
 form a Boolean clause (i.e., a clause whose value is either TRUE
 or FALSE). For example, a valid event clause could be: "three
 events of type A AND NOT an event of type B".

 These three clauses enable the semantics of a SUPAECAPolicyRule
 to be clearly differentiated from the semantics of other types of
 SUPAPolicies that use SUPAPolicyStatements (and other parts of
 the SPGIM), such as SUPALogicStatements.

 The semantics of a SUPAECAPolicyRule are defined as follows:

 o The event clause defines a Boolean statement that, if true,
 MUST trigger the evaluation of the condition clause of the
 SUPAECAPolicyRule.
 o The condition clause defines a Boolean statement that, if
 true, MUST start the execution of the actions of the
 SUPAECAPolicyRule.
 o The action clause is an aggregation of actions that MUST be
 executed if the event and condition clauses so dictate.
 o A SUPAECAPolicyRule MAY specify a set of SUPAPolicySubjects
 that have authored the SUPAECAPolicyRule.
 o A SUPAECAPolicyRule MAY specify a set of SUPAPolicyTargets
 that define a set of managed objects that the actions of the
 SUPAECAPolicyRule MAY monitor and/or change their state.
 o The behavior of the event, condition, and action clauses MAY
 be specified using one or more SUPAMetadata objects that have

 been aggregated by the SUPAECAPolicyRule.

Strassner, et al. Expires November 09, 2015 [Page 11]

Internet-Draft SUPA Generic Policy Model May 2015

 When defined in an information model, each of the event, condition,
 and action clauses MUST be represented as an aggregation between a
 SUPAECAPolicyRule (the aggregate) and a set of event, condition, or
 action objects (the components). However, a data model MAY map
 these definitions to a more efficient form (e.g., by flattening
 these three types of object instances, along with their respective
 aggregations, into a single object instance).

3.2.2.4. SUPALogicStatement

 A SUPALogicStatement is an abstract class that MUST contain at
 least one SUPAPolicyStatement. A SUPALogicStatement defines what
 actions to take, but not how to execute those actions. This
 differentiates it from a SUPAECAPolicyRule, which explicitly
 defines what triggers the evaluation of the SUPAECAPolicyRule,
 what conditions must be satisfied in order to execute the actions
 of the SUPAECAPolicyRule, and what actions to execute. A
 SUPALogicStatement is commonly called declarative, or intent-based,
 policy.

 This document defines two forms of a SUPALogicStatements. The first
 uses Propositional Logic (PL, see Section 3.2.4.2), while the
 second uses First-Order Logic (FOL, see Section 3.2.4.3).

 Note that this document does not refer to a SUPALogicStatement as
 a "rule", since both types of SUPALogicStatements defined in this
 document are technically not "rules". Rather, they are types of
 zero-order and first-order logic statements.

 If the SUPALogicStatement is expressed in PL, then it MUST consist
 of only the propositional connectives (i.e., negation, conjunction,
 disjunction, implication, and bi-implication (see Section 3.2.4.1).
 Furthermore, statements in a PL are limited to simple declarative
 propositions that MUST NOT use quantified variable or predicates.

 If the SUPALogicStatement is expressed in FOL, then it MUST consist
 of a set of logical predicates (i.e., a Boolean-valued function).
 The predicate can use all propositional connectives as well as two
 additional quantifiers (i.e., the universal quantifier and the
 existential quantifier).

 A logical predicate MUST consist of a head clause, and MAY also
 contain a body clause. This enables the semantics of a
 SUPALogicStatement to be clearly differentiated from the semantics
 of other types of SUPAPolicies that use SUPAPolicyStatements (and
 other parts of the SPGIM), such as SUPAECAPolicyRules. While in
 principle higher order logics can be defined, this document is
 limited to defining a SUPALogicStatement using either PL or FOL.

Strassner, et al. Expires November 09, 2015 [Page 12]

Internet-Draft SUPA Generic Policy Model May 2015

 When implemented in an information model, each PL or FOL statement
 MUST be defined as objects (i.e., a subclass of the
 SUPALogicStatement class; see Section 7). When an FOL statement is
 implemented in an information model, both the head and body clauses
 MUST be defined as objects (or sets of objects). However, a data
 model MAY map either a PL statement or an FOL statement to a more
 efficient form (e.g., by flattening the head and body objects into
 a single object).

3.2.2.5. SUPAMetadata

 Metadata is, literally, data about data. SUPAMetadata is an
 abstract class that contains prescriptive and/or descriptive
 information about the object(s) that it is attached to. While
 metadata can be attached to any information model element, this
 document only considers metadata attached to classes and
 relationships.

 When defined in an information model, each instance of the
 SUPAMetadata class MUST have its own aggregation relationship
 with the set of objects that it applies to. However, a data model
 MAY map these definitions to a more efficient form (e.g.,
 flattening the object instances into a single object instance).

3.2.2.6. SUPAPolicyTarget

 SUPAPolicyTarget is an abstract class that defines a set of
 managed objects that may be affected by the actions of a
 SUPAPolicyStatement. A SUPAPolicyTarget may use one or more
 mechanisms to identify the set of managed objects that it
 affects; examples include OIDs and URIs.

 When defined in an information model, each instance of the
 SUPAPolicyTarget class MUST have its own aggregation
 relationship with each SUPAPolicy that uses it. However, a
 data model MAY map these definitions to a more efficient form
 (e.g., flattening the SUPAPolicyTarget, SUPAMetadata, and
 SUPAPolicy object instances into a single object instance).

3.2.2.7. SUPAPolicySubject

 SUPAPolicySubject is an abstract class that defines a set of
 managed objects that authored this SUPAPolicyStatement. This is
 required for auditability. A SUPAPolicySubject may use one or more
 mechanisms to identify the set of managed objects that authored it;
 examples include OIDs and URIs.

Strassner, et al. Expires November 09, 2015 [Page 13]

Internet-Draft SUPA Generic Policy Model May 2015

 When defined in an information model, each instance of the
 SUPAPolicySubject class MUST have its own aggregation relationship
 with each Policy that uses it. However, a data model MAY map these
 definitions to a more efficient form (e.g., flattening the
 PolicySubject, Metadata, and Policy object instances into a single
 object instance).

3.2.3. Modeling Terminology

 The following terms define different types of relationships used
 in the information models of the SUPA Generic Policy Information
 Model (SGPIM).

3.2.3.1. Inheritance

 Inheritance makes an entity at a lower level of abstraction (e.g.,
 the subclass) a type of an entity at a higher level of abstraction
 (e.g., the superclass). A subclass does NOT change the
 characteristics or behavior of the superclass that it inherits
 from. However, a subclass MAY add new attributes and relationships
 that distinguish it from the attributes and relationships defined
 by its superclass.

3.2.3.2. Relationship

 A relationship is a generic term that represents how a first set
 of entities interact with a second set of entities. A recursive
 relationship sets the first and second entity to the same entity.
 There are three basic types of relationships, as defined in the
 subsections below: associations, aggregations, and compositions.

3.2.3.3. Association

 An association represents a generic dependency between a first
 and a second set of entities.

3.2.3.4. Aggregation

 An aggregation is a stronger type (i.e., more restricted
 semantically) of association, and represents a whole-part
 dependency between a first and a second set of entities. Three
 objects are defined by an aggregation: the first entity, the second
 entity, and a new third entity that represents the combination of
 the first and second entities. The entity owning the aggregation is
 referred to as the "aggregate", and the entity that is aggregated is
 referred to as the "part".

Strassner, et al. Expires November 09, 2015 [Page 14]

Internet-Draft SUPA Generic Policy Model May 2015

3.2.3.5. Composition

 A composition is a stronger type (i.e., more restricted
 semantically) of aggregation, and represents a whole-part
 dependency with two important behaviors. First, an instance of the
 part is included in at most one instance of the aggregate at a
 time. Second, any action performed on the composite entity (i.e.,
 the aggregate) is propagated to its constituent part objects. For
 example, if the composite entity is deleted, then all of its
 constituent part entities are also deleted. This is not true of
 aggregations or associations - in both, only the entity being
 deleted is actually removed, and the other entities are unaffected.

3.2.3.6. Association Class

 A relationship may be implemented as an association class. This is
 used to define the relationship as having its own set of features.

 More specifically, if the relationship is implemented as an
 association class, then the attributes of the association class, as
 well as other relationships that the association class participates
 in, may be used to define the semantics of the relationship.

 If the relationship is not implemented as an association class, then
 no additional semantics (beyond those defined by the type of the
 relationship) are expressed by the relationship.

3.2.3.7. Multiplicity

 A specification of the range of allowable cardinalities that a set
 of entities may assume. This is always a pair of ranges, such as
 1 - 1 or 0..n - 2..5.

3.2.3.8. Navigability

 A relationship may have a restriction on the ability of an object
 at one end of the relationship to access the object at the other
 end of the relationship. In this document, two choices are possible:

 1. Each object is navigable by the other, which is indicated
 by NOT providing any additional symbology, or
 2. An object A can navigate to object B, but object B cannot
 navigate to object A. This is indicated by an open-headed
 arrow pointing to the object that cannot navigate to the
 other object. In this example, the arrow would be pointing
 at object B.

Strassner, et al. Expires November 09, 2015 [Page 15]

Internet-Draft SUPA Generic Policy Model May 2015

3.2.3.9. Abstract Class

 An abstract class is a class that cannot be directly instantiated.

3.2.3.10. Concrete Class

 A concrete class is a class that can be directly instantiated.

3.2.4. Mathematical Logic Terminology

 This section defines terminology for mathematical logic.

3.2.4.1. Predicate

 A predicate is a Boolean-valued function (i.e., a function whose
 values are interpreted as either TRUE or FALSE, depending on the
 values of its variables).

3.2.4.2. Logic Operators

 A logical connective is a symbol or word that defines how to
 connect two or more sentences in a language.

3.2.4.2.1. Propositional Logic Connectives

 There are five propositional logic connectives, defined as follows:

 o Negation, or a logical NOT operator, is an operation that,
 when applied to a proposition, produces a new proposition
 "not p", which has the opposite truth value of p.
 o Conjunction, or a logical AND operator, is an operation on two
 logical values that produces a value of TRUE if and only if
 both of its operands are TRUE.
 o Disjunction, or a logical OR operator, is an operation on two
 logical values that produces a value of FALSE if and only if
 both of its operands are FALSE.
 o Implication, or the conditional operator, is used to form
 statements of the form "if <proposition A> is TRUE, then
 <proposition B> is also TRUE (i.e., this statement is FALSE
 only when A is TRUE and B is FALSE).
 o Bi-implication, or the bi-conditional operator, is used to
 form statements of the form "<proposition A> is TRUE if and
 only if <proposition B> is TRUE (i.e., this statement is TRUE
 if and only if both propositions are FALSE or if both
 propositions are TRUE).

Strassner, et al. Expires November 09, 2015 [Page 16]

Internet-Draft SUPA Generic Policy Model May 2015

3.2.4.2.2. First Order Logic Quantifiers

 Quantification specifies the number of objects that satisfies a
 formula. This document uses two such quantifiers, which are
 defined as follows:

 o Universal quantification asserts that a predicate within the
 scope of this operator is TRUE of every value of a variable of
 the predicate. It is commonly interpreted as "for all".
 o Existential quantification asserts that a predicate within the
 scope of this operator is TRUE for at least one value of a
 variable of the predicate. It is commonly interpreted as
 "there exists, "there is at least one", or "for some".

3.2.4.3. Propositional Logic

 Propositional Logic (PL) may be simply defined as a language
 consisting of a set of statements; the value of each statement is
 either TRUE or FALSE. More formally, a (propositional) Argument
 consists of a sequence of Premises and a Conclusion. An Argument is
 valid if the Conclusion is TRUE whenever all Premises are TRUE.

 PL may be thought of as a set of declarative propositions.

3.2.4.4. First-Order Logic

 First-Order Logic (FOL) may be simply defined as a language
 consisting of a set of statements; each statement is a predicate.

 A predicate is a Boolean-valued function (i.e., the value of the
 function evaluates to either TRUE or FALSE, depending on the value
 of its variables). Predicates can also be compared.

 FOL uses quantified variables. The universal quantifier and/or the
 existential quantifier can be used to define what values can be
 instantiated by the predicated variables.

Strassner, et al. Expires November 09, 2015 [Page 17]

Internet-Draft SUPA Generic Policy Model May 2015

3.3. Symbology

 The following symbology is used in this document:

3.3.1. Inheritance

 Inheritance: a subclass inherits the attributes and relationships
 of its superclass, as shown below:

 +------------+
 | Superclass |
 +------+-----+
 / \
 I
 I
 I
 +------+-----+
 | Subclass |
 +------------+

3.3.2. Association

 Association: Class B depends on Class A, as shown below:

 +---------+ +---------+
 +---------+ +---------+ | | \| |
 | Class A |------| Class B | | Class A |------| Class B |
 +---------+ +---------+ | | /| |
 +---------+ +---------+

 association with no association with
 navigability restrictions navigability restrictions

3.3.3. Aggregation

 Aggregation: Class B is the part, Class A is the aggregate,
 as shown below:

 +---------+ +---------+ +---------+
 | |/ \ +---------+ | |/ \ \| | | | |
 | Class A | A ---| Class B | | Class A | A ------| Class B |
 | |\ / +---------+ | |\ / /| |
 +---------+ +---------+ +---------+

 aggregation with no aggregation with
 navigability restrictions navigability restrictions

Strassner, et al. Expires November 09, 2015 [Page 18]

Internet-Draft SUPA Generic Policy Model May 2015

3.3.4. Composition

 Composition: Class B is the part, Class A is the composite,
 as shown below:

 +---------+ +---------+ +---------+
 | |/ \ +---------+ | |/ \ \| | | | |
 | Class A | C ---| Class B | | Class A | C ------| Class B |
 | |\ / +---------+ | |\ / /| |
 +---------+ +---------+ +---------+

 composition with no composition with
 navigability restrictions navigability restrictions

3.3.5. Association Class

 Association Class: Class C is the association class implementing
 the relationship D between classes A and B

 +---------+ +---------+
 | Class A |----+-----| Class B |
 +---------+ ^ +---------+
 |
 |
 +----------+----------+
 | Association Class C |
 +---------------------+

3.3.6. Logical Connectives

 The following defines a mapping between the typical mathematical
 symbols used for logical connectives (most of which are in
 extended ASCII) and the symbols that will be used in this document.

 Connective ASCII CODE UNICODE Code Meaning
 Negation 172 U+00AC "NOT"
 Conjunction 8743 U+2227 "AND"
 Disjunction 8744 U+2228 "OR"
 Implication 8658 U+21D2 "IMPLIES"
 Bi-implication 8660 U+21D4 "IF AND ONLY IF"

3.3.7. Quantifiers

 The following defines a mapping between the typical mathematical
 symbols used for quantifiers and the symbols that will be used in
 this document.

 Quantifier ASCII Code Unicode Code Symbol Used
 Universal 8704 U+2200 "FOR ALL"
 Existential 8707 U+2203 "THERE EXISTS"

Strassner, et al. Expires November 09, 2015 [Page 19]

Internet-Draft SUPA Generic Policy Model May 2015

4. Policy Abstraction Architecture

 This section describes the motivation for the policy abstractions
 that are used in SUPA. In summary, the following abstractions are
 provided:

 o The SGPIM defines a technology-neutral information model that
 can express the concept of Policy.
 o This version of this document restricts the expression of
 Policy to either an event-condition-action tuple, a FOL
 predicate, or a combination of these statements.
 o Since these two representations are very different in syntax
 and content, the content of a Policy is abstracted from its
 representation:
 o Both SUPAECAPolicyRules and SUPALogicStatements are types
 of SUPAPolicies
 o Both SUPAECAPolicyRules and SUPALogicStatements are
 constructed from SUPAPolicyStatements
 o The syntax of a SUPAECAPolicyRule, and hence its
 representation, is different from that of a
 SUPALogicStatement
 o A SUPAPolicy MAY use SUPAECAPolicyRules and/or
 SUPALogicStatements
 o A SUPAPolicy consists of one or more SUPAPolicyStatements,
 and optionally may specify one or more SUPAPolicyTarget,
 SUPAPolicySubject, and SUPAPolicyMetadata objects
 o A SUPAPolicy MUST contain at least one SUPAPolicyStatement;
 it MAY contain more than one.
 o A SUPAECAPolicyRule defines the set of events and conditions
 that are responsible for executing its actions; it MUST have
 an event clause, a condition clause, and an action clause.
 o A SUPALogicStatement expresses facts that it believes to be
 true without defining how those facts are computed, and
 provides an efficient query mechanism for retrieving facts.
 Each SUPAPolicyStatement MUST be expressed as a function-free
 Horn clause; there are a number of additional restrictions
 that are covered in Section 7.
 o SUPAMetadata MAY be defined for any type of
 SUPAPolicyStatement (as well as for individual objects that
 make up a SUPAPolicyStatement).
 o SUPAMetadata MAY be prescriptive and/or descriptive in nature.
 o A SUPAPolicyTarget is a set of managed objects that the
 actions of the SUPAPolicy are applied to.
 o A SUPAPolicySubject is a set of managed objects that authored
 the SUPAPolicy.

Strassner, et al. Expires November 09, 2015 [Page 20]

Internet-Draft SUPA Generic Policy Model May 2015

4.1. Motivation

 The power of policy management is its applicability to many
 different types of systems. There are many different actors that
 can use a policy management system, including end-users, operators,
 application developers, and administrators. Each of these
 constituencies have different concepts and skills, and use
 different terminology. For example, an operator may want to express
 an operational rule that states that only Platinum and Gold users
 can use streaming multimedia applications. As a second example, a
 network administrator may want to define a more concrete policy
 rule that looks at the number of dropped packets and, if that
 number exceeds a programmable threshold, changes the queuing and
 dropping algorithms used.

 Both of these examples are commonly referred to as "policy rules",
 but they take very different forms, since they are at very
 different levels of abstraction and likely authored by different
 actors. The first was very abstract, and did not contain any
 technology-specific terms, while the second was more concrete, and
 likely used technical terms of a general (e.g., IP address range,
 port numbers) as well as a vendor-specific nature (e.g., specific
 algorithms implemented in a particular device).

 Note that these two policy rules could affect each other. For
 example, Gold and Platinum users might need different device
 configurations to give the proper QoS markings to their streaming
 multimedia traffic. This is very difficult to do if a common
 policy model does not exist.

 More importantly, the users of these two policies likely have
 different job responsibilities. They may have no idea of the
 concepts used in each policy. Yet, their policies need to interact
 in order for the business to provide the desired service. Hence,
 the need for a common policy framework.

4.2. SUPA Approach

 The purpose of the SUPA Generic Policy Information Model (SGPIM)
 is to define a common framework for expressing policies at
 different levels of abstraction. SUPA uses the SGPIM as a common
 vocabulary for representing concepts that are common to expressing
 policy, but which are independent of language, protocol,
 repository, and level of abstraction. This enables different
 policies at different levels of abstraction to form a continuum,
 where more abstract policies can be translated into more concrete
 policies, and vice-versa.

Strassner, et al. Expires November 09, 2015 [Page 21]

Internet-Draft SUPA Generic Policy Model May 2015

 It may be necessary to translate the form of a PolicyRule from a
 general to a more specific form (while keeping the abstraction
 level the same). For example, the declarative policy "Every
 network attached to a VM must be a private network owned by
 someone in the same group as the owner of the VM" may be
 translated to more formal form (e.g., Datalog, or the Congress
 version of Datalog). It may also be necessary to translate a
 Policy to a different level of abstraction. For example, the
 previous Policy may need to be translated to a form that network
 devices understand. A common framework for expressing policies
 that is independent of the level of abstraction is required in
 order to form such a continuum.

4.3. SUPA Generic Policy Information Model Overview

 Figure 1 illustrates the approach for representing policy rules
 in SUPA. The top two layers are defined in this document; the
 bottom layer (Data Models) are defined in separate documents.

 +---+
 | SUPA Generic Policy Information Model (SGPIM) |
 +---+
 / \
 |
 |
 +-------------+------------+
 | |
 | |
 +---------------+-----------+ +-----------+---------------+
 | SUPAECAPolicyRule | | SUPA Logic Statement |
 | Information Model (EPRIM) | | Information Model (SLSIM) |
 +---------------------------+ +---------------------------+
 / \ / \
 | |
 | |
 +-----------+-----------+ +-----------+------------+
 | ECAPolicyRule | | Logic Statement |
 | Data Model | | Data Model |
 +-----------------------+ +------------------------+

 Figure 1: Overview of SUPA Policy Rule Abstractions

 Conceptually, the SGPIM defines a set of objects that define the
 key elements of a Policy independent of how it is represented or
 its content. As will be shown, there is a significant difference
 between SUPAECAPolicyRules (see Section 6) and SUPALogicStatements
 (see Section 7). In principle, other types of SUPAPolicies could
 be defined, but the current charter is restricted to using these

 two types of SUPAPolicies as exemplars.

Strassner, et al. Expires November 09, 2015 [Page 22]

Internet-Draft SUPA Generic Policy Model May 2015

 The SGPIM defines the following concepts:

 o SUPAPolicy: the root of the SPGIM model
 o SUPAPolicyAtomic: a Policy that can be used in a stand-alone
 manner
 o SUPAPolicyComposite: used to build hierarchies of Policies
 o SUPAPolicyStatement: used to define the content of a SUPAPolicy
 o SUPAPolicyTerm: used to define variables, operators, and
 values in a SUPAPolicyStatement
 o SUPAPolicySubject: the author of a SUPAPolicy
 o SUPAPolicyTarget: the managed object that a SUPAPolicy
 monitors and/or controls the state of
 o SUPAPolicyMetadata: specifies descriptive and/or prescriptive
 information about a SUPAPolicy object

 A SUPAPolicy object serves as a single root of the SUPA system
 (i.e., all other classes in the model are subclasses of the
 SUPAPolicy class). This simplifes code generation and reusability.
 Note that this is NOT true of either [4] or [6].

 SUPA Policies are defined as either a stand-alone or a hierarchy
 of PolicyContainers. A PolicyContainer specifies the structure,
 content, and optionally, subject, target, and metadata information
 for the Policy.

 A SUPAPolicy takes one of two forms: (1) an ECA Policy, and/or
 (2) a declarative set of statements. Note that unlike other
 approaches (except [2] and [5], these two different types of
 Policies may be combined.

 Both a SUPAECAPolicyRule and a SUPALogicalStatement are made up of
 one or more SUPAPolicyStatements, which define the content of the
 Policy. Three types of SUPAPolicyStatements are available; one is
 generic, and can be used by any type of Policy, while the other
 two are specific to an ECA or a declarative Policy, respectively.

 A SUPAPolicyStatement may be made up of SUPAPolicyTerms. In
 addition, specific objects for constructing ECA Policies and
 declarative Policies are also provided.

 This set of classes enables each different types of Policies to be
 defined by an information model that refines the generic concepts
 of the SGPIM as described above. For example, a SUPAECAPolicyRule,
 as well as a SUPALogicStatement, are both subclasses of the
 SUPAPolicyAtomic class. Therefore, both can be used as part of a
 hierarchy of Policies or in a stand-alone manner. As another
 examples, a SUPALogicClause and a SUPABooleanClause are both
 subclasses of SUPAPolicyStatement, and are used to create

 SUPALogicStatements and SUPAECAPolicyRules, respectively.

Strassner, et al. Expires November 09, 2015 [Page 23]

Internet-Draft SUPA Generic Policy Model May 2015

4.4. Structure of SUPA Policies

 This section describes the overall design of the SGPIM.

4.4.1. ECA Policy Rule Structure

 A SUPAECAPolicyRule is a statement that consists of an event
 clause, a condition clause, and an action clause. This type of
 Policy explicitly defines the current and desired states of the
 system being managed. It may be represented as follows:

 +------------------+ +---------------------+
 | SUPAPolicyAtomic | | SUPAPolicyStatement |
 +------------------+ +---------------------+
 / \ / \
 I I
 I I
 I I
 I +----------------+------------------+
 +------------+------------+ | SUPABooleanClause or |
 | SUPAECAPolicyRule | | SUPAEncodedClause |
 +-------------------------+ +-----------------------------------+
 0..1/ \ 0..1/ \ 0..1/ \ / \ / \ / \
 A A A I I I
 \ / \ / \ / I I I
 | | | +----+---+ I I
 | | | | Event | I I
 | | | | Clause | +-----+-----+ I
 | | | +--------+ | Condition | I
 | | | 1..n/ \ | Clause | +---+----+
 | | | | +-----------+ | Action |
 | | | | 1..n/ \ | Clause |
 | | | | | +--------+
 | | | | | 1..n/ \
 | | +--------------+ | |
 | | HasSUPAEvents | |
 | | | |
 | +----------------------------------+ |
 | HasSUPAConditions |
 | |
 +--+
 HasSUPAActions

 Figure 2: Overview of SUPA Policy Rule Abstractions

Strassner, et al. Expires November 09, 2015 [Page 24]

Internet-Draft SUPA Generic Policy Model May 2015

4.4.2. Logical Statement Structure

 A SUPALogicStatement is either a set of PL or FOL statements.

 A SUPAPLStatement is a set of propositions that form a (single)
 conclusion. A proposition is either TRUE or FALSE. A proposition
 be created from simpler propositions combined using Propositional
 Logic Connectives (see Section Propositions (see Section

3.2.4.2.1.). It may be conceptualized as follows:

 +---------------------+
 | SUPAPLogicStatement |
 +---------------------+
 / \
 I
 I
 I
 +-----------------+
 | SUPAPLStatement |
 +-----------------+
 / \
 I
 I
 +------------------+--+--------------------+
 I I I
 I I I
 I I I
 +-------+-------+ +---------+--------+ +--------+-------+
 | SUPAPLPremise | | SUPAPLConclusion | | SUPAPLArgument |
 +---------------+ +------------------+ +----------------+
 1..n / \ 1 / \ 0..1/ \ 0..1/ \
 | | A A
 | | | |
 | | | |
 | +----------------+ |
 | HasSUPAPLConclusion |
 | |
 +--+
 HasSUPAPLPremises

 Figure 3: Overview of SUPA Propositional Logic Abstractions

 As shown in Figure 3, a SUPAPLArgument consists of a set of one
 or more SUPAPLPremises and a single SUPAPLConclusion. The
 multiplicity of the two aggregations is 0..1 on the aggregate
 side to enable SUPAPLPremises and SUPAPLConclusions to be created
 and stored indepedent of being used in a SUPAPLArgument.

Strassner, et al. Expires November 09, 2015 [Page 25]

Internet-Draft SUPA Generic Policy Model May 2015

 In PL, each possible atomic fact requires a separate propositional
 symbol. This can lead to a large amount of premises required to
 form a conclusion.

 FOL provides a richer knowledge representation by using:

 o objects (i.e., terms), which define individual entities
 o properties (i.e., unary predicates on terms), which
 distinguishes objects from each other
 o relations (i.e., n-ary predicates on terms), which define
 facts among a set of objects, and
 o functions (i.e., the mapping from one set of terms to another
 set of terms).

 FOL may be conceptualized as follows:

 +---------------------+
 | SUPAPLogicStatement |
 +---------------------+
 / \
 I
 I
 I
 +------------------+
 | SUPAFOLStatement |
 +------------------+
 / \
 I
 I
 +--------------+------------+
 I I
 I I
 I I
 +-------+------+ +-------+------+
 | SUPAGoalBody | | SUPAGoalHead |
 +--------------+ +--------------+
 1..n / \ 0..1/ \
 | A
 | |
 | |
 +-------------------------+
 HasSUPAGoalBody

 Figure 4: Overview of SUPA First Order Logic Abstractions

Strassner, et al. Expires November 09, 2015 [Page 26]

Internet-Draft SUPA Generic Policy Model May 2015

 FOL Syntax may be described using the following grammar:

 Sentence
 : AtomicSentence
 | Sentence Connective Sentence
 | (Quantifier Variable)+ Sentence
 | 'NOT' Sentence
 | function '(' Sentence ')'
 ;

4.5. SGPIM Assumptions

 Most policy models (e.g., [2], [4], and [6]) are built as part of
 an overarching model. SUPA DOES NOT assume that it is the "root
 class of everything". Rather, the SUPA information model is built
 as a single inheritance model fragment to accommodate inserting the
 SUPA model into another model (e.g., the root of the SUPA model
 becomes a subclass of the other model). This is shown in Figure 5.

 +--+
 | Root Class of an Existing Model |
 +--+
 / \
 I
 I
 +-----------------+--------------+
 I I
 I I
 +-----------+-----------+ +-----------+------------+
 | A Subclass of the | | A Subclass of the |
 | Existing Model | | Existing Model |
 +-----------------------+ +------------------------+
 / \
 I
 I
 ...
 I
 I
 +-----------+------------+
 | SUPA Class Hierarchy |
 | (SGPIM plus EPRIM |
 | and/or SLSIM) |
 +------------------------+

 Figure 5: Integrating SUPA into an Existing Model

Strassner, et al. Expires November 09, 2015 [Page 27]

Internet-Draft SUPA Generic Policy Model May 2015

4.6. Scope of Previous Work

 Insert intro paragraph and reference SUPA Gap Analysis [6]. Some
 salient points on previous policy models:

 o [RFC3060] and [RFC3460] only define a policy rule that
 consists of a condition clause and an action clause; it does
 not define an ECA policy rule, nor does it define a
 LogicStatement
 o [4] is more elaborate than [RFC3060] and [RFC3460], but
 suffers from the same limitations
 o [5] defines four types of policies (i.e., ECA, Goal,
 UtilityFunction, and Promise), but does not have the detail
 defined in this document

 Rest to be finished. Sections will include:

 o Description of, and problems with, [RFC3060]
 o Description of, and problems with, [RFC3460]
 o Should this section also talk about CIM or SID? I personally
 think that this should be in the gap analysis...

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires November 09, 2015 [Page 28]

Internet-Draft SUPA Generic Policy Model May 2015

5. SGPIM Model
 This section defines the classes and relationships of the SGPIM.

5.1. Overview
 The overall class definition is shown in Figure 6. SUPAPolicy is
 the root of the SUPA class hierarchy. For implementations, it is
 assumed that SUPAPolicy is subclassed from a class from another
 model. In Figure 6, indentation represents subclassing.

 (Class of another model that SUPA is integrating into)
 |
 +---SUPAPolicy (see Section 5.2)
 |
 +---SUPAPolicyAtomic (see Section 5.3)
 |
 +---SUPAPolicyComposite (see Section 5.4)
 |
 +---SUPAPolicyStatement (see Section 5.5)
 |
 +---SUPAPolicySubject (see Section 5.6)
 |
 +---SUPAPolicyTarget (see Section 5.7)
 |
 +---SUPAPolicyTerm (see Section 5.8)
 |
 +---SUPAPolicyMetadata (see Section 5.9)

 Figure 6: Main Classes of the SPGIM

 The following subsections define the classes of the SGPIM. If a
 class has attributes, those attributes are also defined.
 Relationships are defined according to the class that is the
 "owner", or primary actor, participating in the relationship.

 Classes, attributes, and relationships that are marked as
 "mandatory" MUST be part of a conformant implementation. Classes,
 attributes, and relationships that are marked as "optional"
 SHOULD be part of a conformant implementation.

5.2. The Abstract Class "SUPAPolicy"

 This is a mandatory abstract class. This class is the root of the
 SUPA class hierarchy. It defines the common attributes and
 relationships that all SUPA subclasses inherit. All SUPA classes
 inherit from this class.

Strassner, et al. Expires November 09, 2015 [Page 29]

Internet-Draft SUPA Generic Policy Model May 2015

 Figure 7 shows the SUPAPolicy class, and two of its subclasses
 (SUPAPolicyAtomic and SUPAPolicyComposite). This is an
 implementation of the composite pattern [3], which enables a
 SUPAPolicy to be made up of a stand-alone object (an instance of a
 SUPAPolicyAtomic class) or a hierarchy of objects (i.e., instances
 of one or more SUPAPolicyAtomic and SUPAPolicyComposite classes).
 The use of this software pattern enables SUPA Policies to be
 designed as individual objects and/or hierarchies of objects.

 +-------------------------------+
 | Parent Class of another Model |
 +-------------------------------+
 / \
 +---------------------+ I
 | HasSUPAPolicyDetail | I
 +-----+---------------+ I
 ^ I
 | 1..n +---------------+----------------+
 | \| |
 +----+--------| SUPAPolicy |
 | /| |
 | +--------------------------------+
 | / \
 | HasSUPAPolicies I
 | I
 | I
 | I
 | +-----------+----------+
 | | |
 | | |
 | 0..1 +----------+----------+ +---------+--------+
 | / \| | | |
 +--- A | SUPAPolicyComposite | | SUPAPolicyAtomic |
 \ /| | | |
 +---------------------+ +------------------+

 Figure 7: The SUPAPolicy Class Hierarchy

 Note that a SUPAPolicy is a PolicyContainer object. A
 SUPAPolicyAtomic as well as a SUPAPolicyComposite are also
 PolicyContainer objects. SUPAPolicy was abstracted from DEN-ng [2],
 and a version of this class is in the process of being added to the
 policy framework defined in the TM Forum ZOOM model [5].

Strassner, et al. Expires November 09, 2015 [Page 30]

Internet-Draft SUPA Generic Policy Model May 2015

 In figure 7:

 o Both SUPAPolicyComposite and SUPAPolicyAtomic inherit from
 SUPAPolicy
 o The diamond with an enclosed "A" represents an aggregation
 (see Section 3.2.3.4)
 o The HasSUPAPolicies aggregation is implemented as an
 association class (see Section 3.2.3.6)
 o The multiplicity of the HasSUPAPolicies aggregation is
 0..1 - 1..n (zero or one SUPAPolicyComposite object instances
 can aggregate one or more SUPAPolicy object instances, see

Section 3.2.3.7)
 o The arrow pointing at SUPAPolicy restricts the navigability
 of this aggregation (see Section 3.2.3.8)

5.2.1. SUPAPolicy Attributes

 This section defines the attributes of the SUPAPolicy class. These
 attributes are inherited by all subclasses of the SUPAPolicy class.

5.2.1.1. The Attribute "supaObjectIDContent"

 This is a mandatory attribute that represents part of the object
 identifier of an instance of this class. It is a string attribute,
 and defines the content of the object identifier. It works with
 another class attribute, called supaObjectIDFormat, which defines
 how to interpret this attribute. These two attributes form a tuple,
 and together enable a machine to understand the syntax and value of
 an object identifier for the object instance of this class. This is
 based on the DEN-ng class design [2].

 One of the goals of SUPA is to be able to generate different data
 models that support different types of protocols and repositories.
 This means that the notion of an object ID must be generic. In this
 way, different naming schemes, such as those depending on URIs,
 FQDNs, primary key - foreign key relationships, and UUIDs can all
 be accommodated.

5.2.1.2. The Attribute "supaObjectIDFormat"

 This is a mandatory attribute that represents part of the object
 identifier of an instance of this class. It is a string attribute,
 and defines the format of the object identifier. It works with
 another class attribute, called supaObjectIDContent, which defines
 the content of the object ID. These two attributes form a tuple,
 and together enable a machine to understand the syntax and value
 of an object identifier for the object instance of this class.
 This is based on the DEN-ng class design [2].

Strassner, et al. Expires November 09, 2015 [Page 31]

Internet-Draft SUPA Generic Policy Model May 2015

5.2.1.3. The Attribute "supaPolicyName"

 This is an optional string attribute that defines the name of this
 Policy. This enables any existing generic naming attribute to be
 used for generic naming, while allowing this attribute to be used
 to name Policy entities in a common manner. Note that this is NOT
 the same as the commonName attribute of the Policy class defined
 in RFC3060 [RFC3060], as that attribute is intended to be used
 with just X.500 cn attributes.

5.2.2. SUPAPolicy Relationships

 This section defines the relationships of the SUPAPolicy class.

5.2.2.1. The Relationship "HasSUPAPolicies"

 This is a mandatory aggregation that defines the set of
 SUPAPolicies that are contained in the instance of this
 particular SUPAPolicyComposite object. The multiplicity of this
 relationship is defined as 0..1 on the aggregate
 (SUPAPolicyComposite) side, and 1..n on the part (SUPAPolicy) side.
 This means that this relationship is optional, but if it is
 instantiated, then one or more SUPAPolicy objects are contained in
 this particular SUPAPolicyComposite object. The semantics of this
 aggregation are implemented using the HasSUPAPolicyDetail
 association class.

5.2.2.2. The Association Class "HasSUPAPolicyDetail"

 This is a mandatory concrete association class that defines the
 semantics of the HasSUPAPolicies aggregation. This enables the
 attributes and relationships of the HasSUPAPolicyDetail class to
 be used to constrain which SUPAPolicy objects can be aggregated
 by this particular SUPAPolicyComposite object instance.
 Attributes will be added to this class at a later time.

5.3. The Abstract Class "SUPAPolicyAtomic"

 This is a mandatory abstract class. This class is a type of
 PolicyContainer.

 A SUPAPolicyAtomic class represents a SUPA Policy that can operate
 as a single, stand-alone, manageable object. Put another way, a
 SUPAPolicyAtomic object can NOT be modeled as a set of hierarchical
 SUPAPolicy objects; if this functionality is required, then a
 SUPAPolicyComposite object must be used.

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3060

Strassner, et al. Expires November 09, 2015 [Page 32]

Internet-Draft SUPA Generic Policy Model May 2015

 No attributes are currently defined for the SUPAPolicyAtomic class.
 It serves as a superclass for the different types of SUPA Policies
 that are defined. In this release, both a SUPAECAPolicyRule (see

Section 6) as well as a SUPALogicStatement (see Section 7) are
 defined as subclasses of the SUPAPolicyAtomic class.

 SUPAPolicy was abstracted from DEN-ng [2], and a version of this
 class is in the process of being added to the policy framework
 defined in the TM Forum ZOOM model [5].

5.4. The Concrete Class "SUPAPolicyComposite"

 This is a mandatory concrete class. This class is a type of
 PolicyContainer.

 A SUPAPolicyComposite class represents a SUPA Policy as a
 hierarchy of Policy objects, where the hierarchy contains
 instances of a SUPAPolicyAtomic and/or SUPAPolicyComposite
 object. Each of the SUPA Policy objects, including the outermost
 SUPAPolicyComposite object, are separately manageable. More
 importantly, the SUPAPolicyComposite object can aggregate any
 SUPAPolicy subclass. Hence, it can be used to form hierarchies of
 SUPAPolicies as well as associate SUPAPolicySubjects and/or
 SUPAPolicyTargets to a given SUPAPolicy.

 SUPAPolicy was abstracted from DEN-ng [2], and a version of this
 class is in the process of being added to the policy framework
 defined in the TM Forum ZOOM model [5].

5.4.1. SUPAPolicyComposite Attributes

 This section defines the attributes of the SUPAPolicyComposite
 class. The combination of these two attributes provides a more
 flexible and powerful solution compared to [RFC3060] and [RFC3460].

5.4.1.1. The Attribute "supaPCIsMatchAll"

 This is an optional Boolean attribute. If its value is TRUE, then
 ALL SUPAPolicies that are contained in this SUPAPolicyComposite
 object will be evaluated, regardless of whether a SUPAPolicy fails
 to execute correctly or not. If its value is FALSE, then only the
 FIRST SUPAPolicy contianed in this SUPAPolicyComposite object will
 be evaluated. The default value is TRUE.

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires November 09, 2015 [Page 33]

Internet-Draft SUPA Generic Policy Model May 2015

5.4.1.2. The Attribute "supaPCFailureStrategy"

 This is an optional non-negative enumerated integer attribute,
 whose values are used to define what action(s) should be taken if
 a failure occurs when executing a SUPAPolicy object that is
 contained in this SUPAPolicyComposite object. Values include:

 0: undefined
 1: stop execution
 2: attempt rollback on failed policy
 3: attempt rollback on all policies
 4: ignore failure and continue

 A value of 0 can be used as an error condition. A value of 1 means
 that ALL execution is stopped, and that other SUPAPolicies that
 otherwise would have been executed are ignored. A value of 2 means
 that execution is stopped, and a rollback of that SUPAPolicy (and
 ONLY that SUPAPolicy) is attempted. A value of 3 means that
 execution is stopped, and all SUPAPolicies that have been previously
 executed (including the one that just failed) are rolled back. A
 value of 4 means that any failure will be ignored, and all
 SUPAPolicies contained in this SUPAPolicyComposite object will be
 executed.

5.4.2. SUPAPolicyComposite Relationships

 This section defines the relationships of SUPAPolicyComposite.

5.4.2.1. The Aggregation "HasSUPAECAPolicyRules"

 This is a mandatory aggregation that defines the set of
 SUPAECAPolicyRules that are contained in the instance of this
 particular SUPAECAPolicyRuleComposite object. The multiplicity
 of this relationship is defined as 0..1 on the aggregate
 (SUPAECAPolicyRuleComposite) side, and 1..n on the part
 (SUPAECAPolicyRule) side. This means that one or more
 SUPAECAPolicyRules can be contained in a SUPAECAPolicyRuleComposite
 object instance. However, a SUPAECAPolicyRule does not have to be
 associated with a SUPAECAPolicyRuleComposite; this is necessary to
 enable SUPAECAPolicyRuleAtomic object instances to be used in a
 stand-alone manner. The semantics of this aggregation are
 implemented using the HasSUPAECAPolicyRulesDetail association class.

Strassner, et al. Expires November 09, 2015 [Page 34]

Internet-Draft SUPA Generic Policy Model May 2015

5.4.2.2. The Association Class "HasSUPAECAPolicyRulesDetail"

 This is a mandatory concrete association class that defines the
 semantics of the HasSUPAECAPolicyRules aggregation. This enables
 the attributes and relationships of this association class to be
 used to constrain which SUPAECAPolicyRule objects can be aggregated
 by this particular SUPAECAPolicyRuleComposite object instance.
 Attributes will be added to this class at a later time.

5.5. The Abstract Class "SUPAPolicyStatement"

 This is a mandatory abstract class that separates the
 representation of a SUPAPolicy from its implementation. This
 abstraction is missing in [RFC3060], [RFC3460], and [4]. There are
 three principal subclasses of SUPAPolicyStatement:

 o SUPAEncodedClause, which is a mechanism to directly encode the
 content of the SUPAPolicyStatement into a set of attributes;
 this is described in more detai lin Section 5.5.2.
 o SUPABooleanClause, which defines a SUPAPolicyStatement as a
 set of one or more clauses; multiple clauses may be combined
 with Boolean AND and OR operators. This defines a SUPAPolicy
 as a completely reusable set of SUPAPolicy objects that are
 structured in an ECA form, and is described in more detail in

Section 6.10.
 o SUPALogicClause, which defines a SUPAPolicyStatement as either
 a fact or a clause; both are expressed in first-order logic.
 This defines a SUPAPolicy as a completely reusable set of
 SUPAPolicy objects that are structured in FOL, and is described
 in more detail in Section 7.5.

 A SUPAPolicy MAY be constructed using any combination of the above
 three subclasses.

 Both SUPAECAPolicyRules (see Section 6) and SUPALogicStatements
 (see section 7) MUST use SUPAPolicyStatements to define their
 content. This enables the content of these different types of
 Policy to be represented in a common manner.

 Both SUPAECAPolicyRules and SUPALogicStatements MAY use a
 SUPAEncodedClause to define their content.

 SUPAECAPolicyRules SHOULD also use a SUPABooleanClause to define
 its content, while SUPALogicStatements SHOULD also use a
 SUPALogicClause to define its content.

 SUPAPolicyStatement was abstracted from DEN-ng [2], and a version
 of this class is in the process of being added to the policy

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

 framework defined in the TM Forum ZOOM model [5].

Strassner, et al. Expires November 09, 2015 [Page 35]

Internet-Draft SUPA Generic Policy Model May 2015

 A class diagram showing SUPAPolicyStatement is shown in Figure 8.
 Note that in Figure 8:

 o SUPAPolicyStatement, SUPAPolicyAtomic, and
 SUPAPolicyComposite are subclasses of SUPAPolicy
 o A SUPAEncodedClause is a subclass of SUPAPolicyStatement,
 and may be used by either a SUPAECAPolicyRule or a
 SUPALogicStatement
 o Both the HasSUPAPolicyStatements and the HasSUPAPolicies
 aggregations are implemented as association classes

 +-------------------------+ +---------------------+
 | HasSUPAPolicyStmtDetail | | HasSUPAPolicyDetail |
 +-----+-------------------+ +----------+----------+
 ^ ^
 | |
 | 1 +-----------------+ |
 | / \| |/ |
 +-------+-------- A | SUPAPolicy |--------+------------+
 | \ /| |\ |
 | +-----------------+ 1..n |
 | / \ |
 | HasSUPAPolicyStatements I HasSUPAPolicies |
 | I |
 | I |
 | I |
 | +------+------+---------+ |
 | I I I |
 | I I I |
 | I I I |
 | 1..n +----------+----------+ I I |
 | \| | I I |
 +---------| SUPAPolicyStatement | I I |
 /| | I I |
 +---------------------+ I I |
 / \ I I |
 I +-----------+------+ I |
 I | SUPAPolicyAtomic | I |
 +---------------+ +------------------+ I |
 I I I |
 I I I |
 I I I |
 +---+---+ +--------+----------+ +--------------+------+ |
 | Other | | SUPAEncodedClause | | |/ \ |
 |Classes| +-------------------+ | SUPAPolicyComposite | A ----+
 +-------+ | |\ /
 +---------------------+ 0..1

 Figure 8: SUPAPolicyStatements and SUPAPolicy Classe

Strassner, et al. Expires November 09, 2015 [Page 36]

Internet-Draft SUPA Generic Policy Model May 2015

5.5.1. SUPAPolicyStatement Attributes

 This section defines the attributes of the SUPAPolicyStatement
 class. These attributes are inherited by all subclasses of the
 SUPAPolicyStatement class.

5.5.1.1. The Attribute "supaPolicyStmtAdminStatus"

 This is an optional attribute, which is an enumerated non-negative
 integer. It defines the current administrative status of this
 SUPAPolicyStatement.

 This attribute can be used to place this particular
 SUPAPolicyStatement into a specific administrative state, such as
 enabled, disabled, or in test. Note that since a SUPAPolicy (e.g.,
 a SUPAECAPolicyRule or a SUPALogicStatement) is made up of
 SUPAPolicyStatements, this enables all or part of a SUPAPolicy to
 be administratively controlled. Values include:

 0: Unknown (an error state)
 1: Enabled
 2: Disabled
 3: In Test (i.e., no operational traffic can be passed)

 Value 0 denotes an error that prevents this SUPAPolicyStatement
 from being used. Values 1 and 2 mean that this SUPAPolicyStatement
 is administratively enabled or disabled, respectively. A value of
 4 means that this SUPAPolicyStatement is in a special test mode.

5.5.1.2. The Attribute "supaPolicyStmtExecStatus"

 This is an optional attribute, which is an enumerated non-negative
 integer. It defines whether this SUPAPolicyStatement is currently
 in use and, if so, what its status is.

 This attribute can be used to place this particular
 SUPAPolicyStatement into a specific execution state, such as
 enabled, disabled, or in test. Note that since a SUPAPolicy (e.g.,
 a SUPAECAPolicyRule or a SUPALogicStatement) is made up of
 SUPAPolicyStatements, this enables all or part of a SUPAPolicy to
 be administratively controlled.

Values include:

 0: Unknown (an error state)
 1: Working (i.e., in use and no errors reported)
 2: Not Working (i.e., in use, but errors have been reported)
 3: In Test (i.e., no operational traffic can be passed)
 4: Available (i.e., could be used, but currently isn't)
 5: Not Available (i.e., not available for use)

Strassner, et al. Expires November 09, 2015 [Page 37]

Internet-Draft SUPA Generic Policy Model May 2015

 Value 0 denotes an error that prevents this SUPAPolicyStatement
 from being used. Values 1-3 mean that this SUPAPolicyStatement is
 in use; in addition, this SUPAPolicyStatement is working
 correctly, not working correctly, or in a special test state,
 respectively. Values 4-5 mean that this SUPAPolicyStatement is
 not currently in use; a value of 4 means that it is available and
 could be used, while a value of 5 means that it is unavailable.

5.5.2. SUPAPolicyStatement Subclasses

 As stated before, the primary purpose of SUPAPolicyStatement is to
 define a common type of Policy statement that can be used to
 represent policy content regardless of the type of SUPAPolicy that
 is being used (e.g., it is independent of the requirements of a
 SUPAECAPolicyRule or a SUPALogicStatement). The SGPIM currently
 defines one subclass of SUPAPolicyStatement, called a
 SUPAEncodedClause, which can be used by both SUPAECAPolicyRules as
 well as SUPALogicStatements. Note that clauses dedicated to the
 specific use of a SUPAECAPolicyRule and a SUPALogicStatement are
 defined in Sections 6 and 7, respectively.

5.5.2.1. The Concrete Class "SUPAEncodedClause"

 This is a mandatory concrete class that specializes (i.e., is a
 subclass of) a SUPAPolicyStatement. It defines a generalized
 extension mechanism for representing SUPAPolicyStatements that
 have not been modeled with other SUPAPolicy objects. Rather, the
 Policy Clause is directly encoded into the attributes of the
 SUPAEncodedClause. Note that other subclasses of
 SUPAPolicyStatement use SUPAPolicy objects to define their content.

 This class uses two of its attributes (supaPolicyClauseContent and
 supaPolicyClauseFormat) for defining the content and format of a
 vendor-specific policy statement. This allows direct encoding of the
 policy statement, without having the "overhead" of using other
 objects. However, note that while this method is efficient, it does
 not reuse other SUPAPolicy objects. Rather, it can be thought of as
 a direct encoding of the policy statement. SUPAEncodedClause was
 abstracted from DEN-ng [2].

5.5.2.1.1. The Attribute "supaClauseContent"

 This is a mandatory string attribute, and defines the content of
 this encoded clause of this clause. It works with another attribute
 of the SUPAEncodedClause class, called supaClauseFormat, which
 defines how to interpret this attribute. These two attributes form
 a tuple, and together enable a machine to understand the syntax and
 value of the encoded clause for the object instance of this class.
 This is based on the DEN-ng class design [2].

Strassner, et al. Expires November 09, 2015 [Page 38]

Internet-Draft SUPA Generic Policy Model May 2015

5.5.2.1.2. The Attribute "supaClauseFormat"

 This is a mandatory string attribute, and defines the format of
 this encoded clause. It works with another attribute of the
 SUPAEncodedClause class, called supaClauseContent, which
 defines the content (i.e., the value) of the encoded clause. These
 two attributes form a tuple, and together enable a machine to
 understand the syntax and value of the encoded clause for the
 object instance of this class. This is based on the DEN-ng class
 design [2].

5.5.2.1.3. The Attribute "supaClauseResponse"

 This is an optional Boolean attribute that emulates a Boolean
 response of this clause, so that it may be combined with other
 subclasses of the SUPAPolicyStatement that provide a status as to
 their correctness and/or evaluation state.

5.5.3. SUPAPolicyStatement Relationships

 This section defines the relationships of SUPAPolicyStatement.

5.5.3.1. The Aggregation "HasSUPAPolicyStatements"

 This is a mandatory aggregation that defines the set of
 SUPAPolicyStatements that are contained in the instance of this
 particular SUPAPolicy object. This defines a SUPAPolicy object as
 being made up of at least one SUPAPolicyStatement. The multiplicity
 of this relationship is defined as 1 on the aggregate (SUPAPolicy)
 side, and 1..n on the part (SUPAPolicyStatement) side. This means
 that this relationship is mandatory, and each SUPAPolicy object is
 made up of at least one SUPAPolicyStatement object. The semantics
 of this aggregation are implemented using the
 HasSUPAPolicyStmtDetail association class.

5.5.3.2. The Association Class "HasSUPAPolicyStmtDetail"

 This is a mandatory concrete association class that defines the
 semantics of the HasSUPAPolicyStatements aggregation. This enables
 the attributes and relationships of the HasSUPAPolicyStmtDetail
 class to be used to constrain which SUPAPolicyStatement objects
 can be aggregated by this particular SUPAPolicy object instance.
 Attributes will be added to this class at a later time.

Strassner, et al. Expires November 09, 2015 [Page 39]

Internet-Draft SUPA Generic Policy Model May 2015

5.6. The Abstract Class "SUPAPolicySubject"

 This is an optional class that defines the set of managed entities
 that authored, or are otherwise responsible for, this
 SUPAPolicyStatement. Note that a SUPAPolicySubject does NOT
 evaluate or execute SUPAPolicies. Its primary use is for
 auditability. A SUPAPolicySubject SHOULD be mapped to a role
 (e.g., using the role-object pattern, as DEN-ng does). A class
 diagram is shown in Figure 9.

 +------------------------+
 | HasSUPAPolicyTgtDetail |
 +-----------+------------+
 ^
 |
 | 0..1 +------------+
 | / \| |
 +------------+-------------- A | |
 | HasSUPAPolicyTargets \ /| | |
 | | SUPAPolicy |
 | 0..1 | |
 | HasSUPAPolicySubjects / \| |
 | +------------+------------ A | |
 | | ^ \ /| |
 | | | +------------+
 | | | / \
 | | +----------+--------------+ I
 | | | HasSUPAPolicySubjDetail | I
 | | +-------------------------+ I
 | | I
 | | +--------------------+----+--------------+
 | | I I I
 | | I I I
 | | I I I
 | | 0..n +-------+---------+ 0..n +--------+-------+ (other
 | | \| | \| | SUPAPolicy
 | +------|SUPAPolicySubject| +---|SUPAPolicyTarget| subclasses)
 | /| | | /| |
 | +-----------------+ | +----------------+
 | |
 +-----------------------------+

 Figure 9. SUPAPolicySubject and SUPAPolicyTarget

 SUPAPolicySubject was abstracted from DEN-ng [2], and a version of
 this class is in the process of being added to the policy framework
 defined in the TM Forum ZOOM model [5].

Strassner, et al. Expires November 09, 2015 [Page 40]

Internet-Draft SUPA Generic Policy Model May 2015

 In Figure 9:

 o SUPAPolicySubject and SUPAPolicyTarget are both subclasses
 of SUPAPolicy
 o Both the HasSUPAPolicyTargets amd the HasSUPAPolicySubjects
 aggregations are implemented as association classes
 o The multiplicity of both of the above aggregations are 0..1
 on the aggregate (SUPAPolicy) side and 0..n on the target
 (i.e., SUPAPolicySubject and SUPAPolicyTarget, respectively)
 side. This means that both aggregations are optional. If
 either is instantiated, then a SUPAPolicy MAY contain zero
 or more SUPAPolicySubject object instances and MAY contain
 zero or more SUPAPolicyTarget object instances.

5.6.1. SUPAPolicySubject Attributes

 Attributes will be added to this class at a later time.

5.6.2. SUPAPolicySubject Relationships

 This section defines the relationships of the SUPAPolicySubject
 class.

5.6.2.1. The Relationship "HasSUPAPolicySubjects"

 This is an optional aggregation that defines the set of
 SUPAPolicySubjects that are contained in the instance of this
 particular SUPAPolicy object. This defines the set of entities
 that authored this particular SUPAPolicy object. The multiplicity
 of this relationship is defined as 0..1 on the aggregate
 (SUPAPolicy) side, and 0..n on the part (SUPAPolicySubject) side.
 This means that this relationship is optional, but if it is
 implemented, then this particular SUPAPolicy object was authored
 by this set of SUPAPolicySubjects. The semantics of this aggregation
 are implemented using the HasSUPAPolicySubjDetail association class.

5.6.2.2. The Association Class "HasSUPAPolicySubjDetail"

 This is an optional concrete association class that defines the
 semantics of the HasSUPAPolicySubjects aggregation. This enables
 the attributes and relationships of the HasSUPAPolicySubjDetail
 class to be used to constrain which SUPAPolicySubject objects can
 be used to author this particular SUPAPolicy object instance.

 Attributes will be added to this class at a later time.

Strassner, et al. Expires November 09, 2015 [Page 41]

Internet-Draft SUPA Generic Policy Model May 2015

5.7. The Abstract Class "SUPAPolicyTarget"

 A PolicyTarget is a set of managed entities that a SUPAPolicy is
 applied to. This is determined by two conditions. First, the set
 of managed entities that are to be affected by the SUPAPolicy
 must all agree to play the role of a SUPAPolicyTarget. In general,
 a managed entity may or may not be in a state that enables
 SUPAPolicies to be applied to it to change its state; hence, a
 negotiation process may need to occur between the
 SUPAPolicySubject and the SUPAPolicyTarget, wherein the
 SUPAPolicyTarget consents to have SUPAPolicies applied to it.

 Second, a SUPAPolicyTarget must be able to either process (either
 directly or with the aid of a proxy) SUPAPolicies or receive the
 results of a processed SUPAPolicy and apply those results to
 itself. If a proposed SUPAPolicyTarget meets both of these
 conditions, it SHOULD set its supaPolicyTargetEnabled Boolean
 attribute to a value of TRUE.

 A SUPAPolicySubject SHOULD be mapped to a role (e.g., using the
 role-object pattern). Figure 9 shows a class diagram of the
 SUPAPolicyTarget.

 SUPAPolicyTarget was abstracted from DEN-ng [2], and a version of
 this class is in the process of being added to the policy framework
 defined in the TM Forum ZOOM model [5].

5.7.1. SUPAPolicyTarget Attributes

 The following subsections define the attributes of a
 SUPAPolicyTarget.

5.7.1.1. The Attribute "supaPolicyTargetEnabled"

 This is an optional Boolean attribute. If its value is TRUE, then
 this indicates that this SUPAPolicyTarget is currently able to
 have SUPAPolicies applied to it. Otherwise, this SUPAPolicyTarget
 is not able to have SUPAPolicies applied to it.

5.7.2. SUPAPolicyTarget Relationships

 This section defines the relationships of the SUPAPolicyTarget
 class.

Strassner, et al. Expires November 09, 2015 [Page 42]

Internet-Draft SUPA Generic Policy Model May 2015

5.7.2.1. The Relationship "HasSUPAPolicyTargets"

 This is an optional aggregation that defines the set of
 SUPAPolicyTargets that are contained in the instance of this
 particular SUPAPolicy object. This defines the set of entities that
 will be operated on by this particular SUPAPolicy object. The
 multiplicity of this relationship is defined as 0..1 on the
 aggregate (SUPAPolicy) side, and 0..n on the part
 (SUPAPolicyTarget) side. This means that this relationship is
 optional, but if it is implemented, then this particular SUPAPolicy
 object will operate on this set of SUPAPolicyTargets. The semantics
 of this aggregation are implemented using the
 HasSUPAPolicyTgtDetail association class.

5.7.2.2. The Association Class "HasSUPAPolicyTgtDetail"

 This is an optional concrete association class that defines the
 semantics of the HasSUPAPolicyTargets aggregation. This enables
 the attributes and relationships of the HasSUPAPolicyTgtDetail
 class to be used to constrain which SUPAPolicyTarget objects can
 be operated on by this particular SUPAPolicy object instance.

 Attributes will be added to this class at a later time.

5.8. The Abstract Class "SUPAPolicyTerm"

 This is a mandatory abstract class that is the parent of SUPAPolicy
 objects that are general purpose in nature, and which are not
 subclasses of SUPAPolicyAtomic, SUPAPolicyComposite,
 SUPAPolicyStatement, SUPAPolicySubject, or SUPAPolicyTarget.

 The principal subclasses of SUPAPolicyTerm that are defined in this
 version of this document are SUPAPolicyVariable, SUPAPolicyOperator,
 and SUPAPolicyValue. These terms enable generic statements to be
 created from a set of reusable terms.

 SUPAPolicyTerm is defined as an abstract class for two reasons:

 1. This enables a single aggregation (SUPAPolicyTermsInStmt; see
section 5.8.2.1) to be used to specify which object instances

 of which SUPAPolicyTerm subclasses are contained by a
 particular SUPAPolicyStatement object instance. Otherwise, a
 set of three aggregations would be required.
 2. This enables a single class (SUPAPolicyTermsInStmtDetail; see

section 5.8.2.2) to be used as a superclass to define which
 one of its subclasses participates in this relationship. The
 advantage of this design is that as more SUPAPolicyTerm
 subclasses are added in the future, the SUPAPolicyStatement
 object is not affected.

Strassner, et al. Expires November 09, 2015 [Page 43]

Internet-Draft SUPA Generic Policy Model May 2015

 Note that this design emphasizes flexibility and genericity of the
 model. Specifically, this means that the concept of creating a
 SUPAPolicyStatement can take a generic form, consisting of the
 tuple {PolicyVariable, PolicyOperator, PolicyValue}. Note that this
 is one option for constructing SUPAPolicyStatements, and is not
 mandatory; hence, the multiplicity of the SUPAPolicyTermsInStmt
 aggregation (see Section 5.8.2.) is 0..n - 0..n.

 This design is in marked contrast to most existing designs. For
 example, [RFC3060], [RFC3460], and [4] do not define an ECA Policy
 Rule; rather, they are limited to a Policy Rule that only has a
 condition clause and an action clause. Note that there is no
 mechanism for the system to trigger when a Policy Rule should be
 evaluated (because there is no event clause). In addition,
 [RFC3060], [RFC3460], and [4] do not define any type of logic
 statement (or, for that matter, any other type of Policy Rule).

 SUPAPolicyTerm was abstracted from DEN-ng [2].

5.8.1. SUPAPolicyTerm Attributes

 Currently, SUPAPolicyTerm defines two attributes, as described in
 the following subsections.

5.8.1.1 The Attribute "supaPolTermExprContent"

 This is an optional string attribute that defines the content of
 an expression whose value defines the set of objects that are
 part of this SUPAPolicyTerm. It works with another class attribute,
 called supaPolicyTermExprFormat, which defines how to interpret
 this attribute. These two attributes form a tuple, and together
 enable a machine to understand the syntax and value of different
 expressions used to define the set of objects that are part of this
 SUPAPolicyTerm. This is based on the DEN-ng class design [2].

5.8.1.2. The Attribute "supaPolTermExprFormat"

 This is a mandatory attribute that represents part of the object
 identifier of an instance of this class. It is a string attribute,
 and defines the format of the object identifier. It works with
 another class attribute, called supaObjectIDContent, which defines
 the content of the object ID. These two attributes form a tuple,
 and together enable a machine to understand the syntax and value
 of an object identifier for the object instance of this class.
 This is based on the DEN-ng class design [2].

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires November 09, 2015 [Page 44]

Internet-Draft SUPA Generic Policy Model May 2015

5.8.2. SUPAPolicyTerm Relationships

 Currently, SUPAPolicyTerm participates in a single relationship,
 as described in the following subsection.

5.8.2.1. The Aggregation "SUPAPolicyTermsInStmt"

 This is a mandatory aggregation that defines the set of
 SUPAPolicyTerms that are contained in this SUPAPolicyStatement.
 A SUPAPolicyStatement can, in this version of this document, take
 two different forms that have different content requirements; these
 are SUPAECAPolicyRules and SUPALogicStatements. Therefore, the
 multiplicity of this relationship is defined as 0..n on the
 aggregate (SUPAPolicyStatement) side, and 0..n on the part
 (SUPAPolicyTerm) side. This means that a SUPAPolicyStatement does
 not have to contain a SUPAPolicyTerm; this is typically true for
 SUPALogicStatement. However, if a SUPAPolicyStatement
 does require one or more SUPAPolicyTerms, then those may be
 defined using this aggregation. The semantics of this aggregation
 are implemented using the SUPAPolicyTermsInStmtDetail association
 class.

5.8.2.2. The Association Class "SUPAPolicyTermsInStmtDetail"

 This is a mandatory abstract association class that defines the
 semantics of the SUPAPolicyTermsInStmt aggregation. This enables
 the attributes and relationships of the SUPAPolicyTermsInStmtDetail
 class to be used to constrain which SUPAPolicyTerm objects can be
 aggregated by this particular SUPAPolicyStatement object instance.

 The preferred design is to keep this association class abstract,
 and create three subclasses from it that constrain the set of
 SUPAPolicyVariables, SUPAPolicyOperators, and SUPAPolicyValues
 that are used with this particular SUPAPolicyStatement. This
 provides a direct and simple mapping to optimized data models.
 Alternatively, appropriate attributes could be added to this
 association class to define the constraint, but such attributes
 would also have to take into account the type of PolicyTerm
 subclass that is being constrained.

 Attributes will be added to this class at a later time.

5.8.3. SUPAPolicyTerm Subclasses

 The following three subsections define three subclasses of the
 SUPAPolicyTerm class.

Strassner, et al. Expires November 09, 2015 [Page 45]

Internet-Draft SUPA Generic Policy Model May 2015

5.8.3.1. The Concrete Class "SUPAPolicyVariable"

 This is a mandatory abstract class that defines information that
 forms a part of a SUPAPOlicyStatement. It specifies a concept or
 attribute that should be compared to a value, as specifed in this
 SUPAPolicyStatement. If it is used in a SUPAECAPolicyRule, then
 its value MAY be able to be changed at any time. However, if it is
 used in a SUPALogicStatement, then it is typically bound to an
 expression, and keeps a single value during its entire lifetime.
 SUPAPolicyVariable was abstracted from DEN-ng [2].

 The value of a SUPAPolicyVariable is typically compared to the
 value of a SUPAPolicyValue using the type of operator defined in a
 SUPAPolicyOperator.

 SUPAPolicyVariables are used to abstract the representation of a
 SUPAPolicyRule from its implementation. Therefore, the design of
 SUPAPolicyVariables depends on two important factors. First, some
 SUPAPolicyVariables are restricted in the values and/or the data
 type that they may be assigned. For example, port numbers cannot
 be negative, and they cannot be floating-point numbers. Thus, any
 SUPAPolicyVariable can have a set of constraints associated with it
 that restrict the value, data type, and other semantics of the
 SUPAPolicyVariable when used in a particular SUPAPolicyStatement.
 Second, there is a high likelihood that specific applications will
 need to use their own variables that have specific meaning to a
 particular application.

 SUPAPolicyVariable constraints are implemented using an AGGREGATION
 THAT WILL BE DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

 SUPAPolicyVariable extensibility is accommodated by providing two
 subclasses of SUPAPolicyVariable: model-based variables and
 application-defined variables. THESE WILL BE DEFINED IN THE NEXT
 VERSION OF THIS DOCUMENT.

5.8.3.2. The Concrete Class "SUPAPolicyOperator"

 This is a mandatory concrete class for modeling different types of
 operators that are used in a SUPAPolicyStatement. The restriction
 of the type of operator used in a SUPAPolicyStatement restricts the
 semantics that can be expressed in that SUPAPolicyStatement.
 SUPAPolicyOperator was abstracted from DEN-ng [2].

5.8.3.2.1. The Attribute "supaPolOpType"

 This is a mandatory non-negative enumerated integer that specifies
 the various types of operators that are allowed to be used in this
 particular SUPAPolicyStatement. Values include:

Strassner, et al. Expires November 09, 2015 [Page 46]

Internet-Draft SUPA Generic Policy Model May 2015

 0: Unknown
 1: Match
 2: Greater than
 3: Greater than or equal to
 4: Less than
 5: Less than or equal to
 6: Equal to
 7: Not equal to
 8: IN
 9: NOT IN
 10: SET
 11: CLEAR

 Note that 0 is an unacceptable value. Its purpose is to support
 dynamically building a SUPAPolicyStatement by enabling the
 application to set the value of this attribute to a standard
 default value if the real value is not yet known.

5.8.3.3. The Concrete Class "SUPAPolicyValue"

 The SUPAPolicyValue class is a mandatory abstract class for
 modeling different types of values and constants that occur in a
 PolicyStatement. SUPAPolicyValue was abstracted from DEN-ng [2].

 The value of a SUPAPolicyVariable is typically compared to the
 value of a SUPAPolicyValue using the type of operator defined in a
 SUPAPolicyOperator.

 SUPAPolicyValues are used to abstract the representation of a
 SUPAPolicyRule from its implementation. Therefore, the design of
 SUPAPolicyValues depends on two important factors. First, just as
 with SUPAPolicyVariables (see Section 5.8.3.1), some types of
 SUPAPolicyValues are restricted in the values and/or the data
 type that they may be assigned. Second, there is a high likelihood
 that specific applications will need to use their own variables
 that have specific meaning to a particular application.

 SUPAPolicyVariable constraints are implemented using an AGGREGATION
 THAT WILL BE DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

 SUPAPolicyValue extensibility is accommodated by providing two
 subclasses of SUPAPolicyValue: model-based values and
 application-defined values. THESE WILL BE DEFINED IN THE NEXT
 VERSION OF THIS DOCUMENT.

Strassner, et al. Expires November 09, 2015 [Page 47]

Internet-Draft SUPA Generic Policy Model May 2015

5.9. The Abstract Class "SUPAPolicyMetadata"

 THIS WILL BE DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

 SUPAPolicyMetadata was abstracted from DEN-ng [2]. A more complete
 representation of metadata, as defined in [2], is in the process
 of being added to the policy framework defined in the TM Forum
 ZOOM model [5].

5.9.1. SUPAPolicyMetadata Attributes

 THIS WILL BE DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

5.9.2. SUPAPolicyMetadata Relationships

 THIS WILL BE DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

Strassner, et al. Expires November 09, 2015 [Page 48]

Internet-Draft SUPA Generic Policy Model May 2015

6. SUPA ECAPolicyRule Information Model

 This section defines the classes, attributes, and relationships
 of the SUPA ECAPolicyRule Information Model (EPRIM).

6.1. Overview

 Conceptually, the EPRIM is a set of subclasses that specialize the
 concepts defined in the SGPIM for representing the components of a
 Policy that uses ECA semantics. This is shown in Figure 10.

 (Class of another model that SUPA is integrating into)
 |
 +---SUPAPolicy (see Section 5.2)
 | |
 | +---SUPAPolicyAtomic (see Section 5.3)
 | | |
 | | +---SUPAECAPolicyRule (see Section 6.4)
 | | |
 | | +---SUPAECAComponent (see Section 6.6)
 | | |
 | | +---SUPAEvent (see Section 6.7)
 | | |
 | | +---SUPACondition (see Section 6.8)
 | | |
 | | +---SUPAAction (see Section 6.9)
 | |
 | +---SUPAPolicyComposite (see Section 5.4)
 | |
 | +---SUPAPolicyStatement (see Sections 5.5 and 6.5)
 | | |
 | | +---SUPAEncodedClause (see Section 5.5.2.1)
 | | |
 | | +---SUPABooleanClause (see Section 6.5.2) | |
 | +---SUPAPolicySubject (see Section 5.6)
 | |
 | +---SUPAPolicyTarget (see Section 5.7)
 | |
 | +---SUPAPolicyTerm (see Section 5.8)
 | |
 | +---SUPAPolicyMetadata (see Section 5.9)
 ...

 Figure 10: The EPRIM Refining the SGPIM

Strassner, et al. Expires November 09, 2015 [Page 49]

Internet-Draft SUPA Generic Policy Model May 2015

 Specifically, the EPRIM specializes the SUPAPolicyAtomic class to
 create a SUPAECAPolicyRule; it also specializes the SUPAPolicy
 class to create a SUPAECAComponent, and the SUPAPolicyStatement to
 create a SUPABooleanClause. The SUPAECAPolicyRule uses the rest of
 the SGPIM infrastructure to define a complete Policy model
 according to ECA semantics.

 The overall strategy for refining the SGPIM is as follows:

 o SUPAECAPolicyRule is defined as a subclass of the SGPIM
 SUPAPolicyAtomic class
 o A SUPAECAPolicyRule has event, condition, and action clauses;
 each of these are created by either a SUPABooleanClause or a
 SUPAEncodedClause
 o A SUPAECAComponent defines SUPAEvent, SUPACondition, and
 SUPAAction objects that are used to create the event,
 condition, and action clauses of a SUPAECAPolicyRule
 o Both a SUPABooleanClause and a SUPAEncodedClause inherit the
 HasSUPAECAComponents aggregation, so both of these types of
 clauses can use SUPAECAComponents in their construction
 o Both a SUPABooleanClause and a SUPAEncodedClause inherit the
 SUPAPolicyTermsInStmt aggregation, so both of these types of
 clauses can use SUPAPolicyTerms in their construction
 o An optional set of SGPIM SUPAPolicySubjects can be defined to
 represent the authoring of a SUPAECAPolicyRule
 o An optional set of SGPIM SUPAPolicyTargets can be defined to
 represent the set of managed entities that will be affected
 by this SUPAECAPolicyRule
 o An optional set of SUPAPolicyMetadata can be defined for any
 of the objects that make up a SUPAECAPolicyRule and/or a
 SUPAECAComponent

6.2. Constructing a SUPAECAPolicyRule

 There are several different ways to construct a SUPAECAPolicyRule.
 The simplest approach is as follows:

 o Define three types of SUPABooleanClauses (see Section 6.7),
 one each for the event, condition, and action clauses that
 make up a SUPAECAPolicyRule (see Section 6.4)
 o Define a set of SUPAEvent, SUPACondition, and SUPAAction
 objects (see Section 6.5.1, 6.5.2, and 6.5.3, respectively),
 and associate each with the SUPABooleanClause that represents
 the event, condition, and action clauses, respectively, of the
 SUPAECAPolicyRule
 o Define a SUPAECAPolicyRule, which is a subclass of the SGPIM
 SUPAPolicyAtomic class (see Section 5.3)

Strassner, et al. Expires November 09, 2015 [Page 50]

Internet-Draft SUPA Generic Policy Model May 2015

 o Aggregate the three SUPABooleanClauses into the
 SUPAECAPolicyRule
 o Optionally, define a set of SUPAPolicySubjects and
 SUPAPolicyTargets, and aggregate them into the
 SUPAECAPolicyRule
 o Optionally, define SUPAPolicyMetadata for any of the above
 objects, and aggregate them to the SUPAPolicy objects that
 the SUPAPolicyMetadata applies to

6.3. Working With SUPAECAPolicyRules

 A SUPAECAPolicyRule is a type of SUPAPolicy. It is a tuple that
 MUST have three clauses, defined as follows:

 o The event clause defines a Boolean expression that, if
 TRUE, triggers the evaluation of its condition clause (if the
 event clause is not TRUE, then no further action for this
 policy rule takes place).
 o The condition clause defines a Boolean expression that, if
 TRUE, enables the actions in the action clause to be executed
 (if the condition clause is not TRUE, then no further action
 for this policy rule takes place).
 o The action clause is a set of actions, whose
 execution MAY be controlled by the SUPAMmetadata of the
 policy rule.

 Each of the three clauses can be constructed from either a
 SUPAEncodedClause or a SUPABooleanClause. The advantage of using
 SUPAEncodedClauses is simplicity, as the content of the clause is
 encoded directly into the attributes of the SUPAEncodedClause. The
 advantage of using SUPABooleanClauses is reusability, since each
 term in each clause is potentially a reusable object.

 Since a SUPABooleanClause is a subclass of a SUPAPolicyStatement
 (see Section 5.5), it can aggregate SUPAPolicyTerm objects as well
 as SUPAECAComponent objects. Therefore, a SUPAECAPolicyRule can be
 built entirely from objects defined in the SGPIM. As will be shown
 in Section 7.3, this is also true for SUPALogicStatements.

 The construction of a SUPAECAPolicyRule is shown in Figure 11, and
 is explained in Section 6.4.

Strassner, et al. Expires November 09, 2015 [Page 51]

Internet-Draft SUPA Generic Policy Model May 2015

 +----------------------+ +---------------------+
 | SUPAPolicyAtomic | | SUPAPolicy |
 +----------------------+ +---------------------+
 / \ / \
 I I
 I I
 I I
 I I
 +------------+------------+ +------------+------------+
 | SUPAECAPolicyRule | | SUPAECAComponent |
 +-------------------------+ +-------------------------+
 0..1/ \ 1..n/ \
 A |
 \ / |
 | |
 | +-------------------------+ |
 | |HasSUPAECAComponentDetail| |
 | +-------------+-----------+ |
 | ^ |
 | | |
 | | |
 +-----------------+-----------------+
 HasSUPAECAComponents

 Figure 11. SUPAECAPolicyRule Clauses

 NOTE: This is a simplified design, inspired from [2]. The
 HasSUPAECAComponents aggregation is implemented using the
 HasSUPAECAComponentDetail association class. This is an abstract
 class further described in Section 6.4.2. It has three concrete
 subclasses, one each that correspond to the three subclasses of
 SUPAECAComponent (i.e., SUPAEvent, SUPACondition, and SUPAAction),
 which are all concrete. This enables one aggregation to define a
 set of constraints between a SUPAPolicyStatement and the set of
 Events, Conditions, and/or Actions that it can contain.

6.4. The Concrete Class "SUPAECAPolicyRule"

 This is a concrete mandatory class. In keeping with the original
 DEN-ng model [1], this class is a PolicyContainer that contains
 PolicyEvents, PolicyConditions, PolicyActions, and optionally,
 PolicyMetadata. As such, it doesn't have an inherent relationship
 with PolicySubject or PolicyTarget; these all represent the
 specific semantics for a particular SUPAPolicy. Hence, such
 semantics are defined in an instance of the SUPAPolicyComposite
 class that contains a SUPAECAPolicyRule, if they are required.

Strassner, et al. Expires November 09, 2015 [Page 52]

Internet-Draft SUPA Generic Policy Model May 2015

 The semantics of a SUPAECAPolicyRule may be conceptualized as
 follows:
 ON RECEIPT OF <policy-event-clause>
 IF <policy-condition-clause> EVALUATES TO TRUE
 THEN EXECUTE <policy-action-clause>
 END
 END

 In the above, a policy-event-clause, policy-condition-clause, and
 a policy-action-clause are each instances of either a
 SUPAEncodedClause or a SUPABooleanClause.

 This class was based on the ECAPolicyRule class of [2].

6.4.1. SUPAECAPolicyRule Attributes

 Currently, the SUPAECAPolicyRule defines two attributes, as
 described in the following subsections.

6.4.1.1. The Attribute "supaECAPRDeployStatus"

 This is an optional attribute, which is an enumerated,
 non-negative integer. It defines the current deployment status of
 this SUPAECAPolicyRule. Both operational and test mode values are
 included in its definition. Values include:

 0: undefined
 1: deployed and enabled
 2: deployed and in test
 3: deployed but not enabled
 4: ready to be deployed
 5: not deployed

6.4.1.2. The Attribute "supaECAPRExecStatus"

 This is an optional attribute, which is an enumerated,
 non-negative integer that defines the current execution status of
 this SUPAECAPolicyRule. Both operational and test mode values are
 included in its definition. Values include:

 0: undefined
 1: executed and SUCEEDED (operational mode)
 2: executed and FAILED (operational mode)
 3: currently executing (operational mode)
 4: executed and SUCEEDED (test mode)
 5: executed and FAILED (test mode)
 6: currently executing (test mode)

Strassner, et al. Expires November 09, 2015 [Page 53]

Internet-Draft SUPA Generic Policy Model May 2015

6.4.2. SUPAECAPolicyRule Relationships

 Currently, the SUPAECAPolicyRule does not define any relationships;
 rather, it uses those of the SPGIM and ERPIM to construct its
 ECA Policy Rules.

6.4.2. SUPAECAPolicyRule Subclasses

 The composite pattern is applied to the SUPAECAPolicyRule class,
 enabling it to be used as either a stand-alone policy rule or as
 a hierarchy of policy rules.

6.4.2.1. The Concrete Class "SUPAECAPolicyRuleAtomic"

 This is a mandatory concrete class. This class is a type of
 PolicyContainer. SUPAECAPolicyRuleAtomic was abstracted from
 DEN-ng [2].

 A SUPAECAPolicyRuleAtomic class represents a SUPA ECA Policy Rule
 that can operate as a single, stand-alone, manageable object. Put
 another way, a SUPAECAPolicyRuleAtomic object can NOT be modeled as
 a set of hierarchical SUPAECAPolicyRule objects; if this is
 required, then a SUPAECAPolicyRuleComposite object must be used.

 Attributes afor the SUPAECAPolicyRuleAtomic class WILL BE DEFINED
 IN THE NEXT VERSION OF THIS DOCUMENT.

6.4.2.2. The Concrete Class "SUPAECAPolicyRuleComposite"

 This is a mandatory concrete class. This class is a type of
 PolicyContainer. SUPAECAPolicyRuleComposite was abstracted from
 DEN-ng [2]

 A SUPAECAPolicyRuleComposite class represents a SUPA ECA Policy
 Rule as a hierarchy of Policy objects, where the hierarchy contains
 instances of a SUPAECAPolicyRuleAtomic and/or
 SUPAECAPolicyRuleComposite object. Each of the SUPA Policy objects,
 including the outermost SUPAECAPolicyRuleComposite object, are
 separately manageable. More importantly, the
 SUPAECAPolicyRuleComposite object can aggregate any
 SUPAECAPolicyRule subclass. Hence, it can be used to form
 hierarchies of SUPAECAPolicyRules as well as associate
 SUPAPolicySubjects and/or SUPAPolicyTargets to a given
 SUPAECAPolicyRule.

 Attributes afor the SUPAECAPolicyRuleComposite class WILL BE
 DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

Strassner, et al. Expires November 09, 2015 [Page 54]

Internet-Draft SUPA Generic Policy Model May 2015

6.5. SUPAPolicyStatement Subclasses

Section 5.5.2 defines a common subclass of SUPAPolicyStatement,
 called SUPAEncodedClause, which any SUPAPolicy (rule or predicate)
 can use. This section describes another specialization of the
 SGPIM SUPAPolicyStatement class for use in constructing (only)
 SUPAECAPolicyRule objects.

 The SUPAPolicyStatement class, and its subclasses, are based on
 similar classes in [2].

6.5.1. Designing SUPAPolicyStatements Using SUPABooleanClauses

 A SUPABooleanClause specializes a SUPAPolicyClause, and defines a
 Boolean statement consisting of a standard structure in the form
 of a PolicyVariable, a PolicyOperator, and a PolicyValue. This
 design is based on the DEN-ng model [2]. For example, this enables
 the following Boolean clause to be defined:

 Foo >= Bar AND Baz

 where Foo is a PolicyVariable, >= is a PolicyOperator, and Bar is
 a PolicyValue. Note that in this approach, each of these three
 terms (i.e., the PolicyVariable, PolicyOperator, and PolicyValue)
 are subclasses of the SUPAPolicyTerm class, which is defined in

Section 5.8). This enables the EPRIM, in conjunction with the
 SGPIM, to be used as a reusable class library. This encourages
 interoperability, since each element of the clause is itself an
 object defined by SUPA.

 The addition of a negation in the above statement is provided by
 the supaTermIsNegated Boolean attribute in the SUPAPolicyTerm
 class. An entire clause is indicated as negated using the
 supaBoolIsNegated Boolean attribute in the SUPABooleanClause class.

 A PolicyStatement is in Conjunctive Normal Form (CNF) if it is a
 conjunction (i.e., a sequence of ANDed terms), where each term is a
 disjunction (i.e., a sequence of ORed terms). Every statement that
 consists of a combination of AND, OR, and NOT operators can be
 written in CNF.

 A PolicyStatement is in Disjunctive Normal Form (DNF) if it is a
 disjunction (i.e., a sequence of ORed terms), where each term is a
 conjunction (i.e., a sequence of ANDed terms). Every statement that
 consists of a combination of AND, OR, and NOT operators can be
 written in DNF.

 The supaBoolISCNF Boolean attribute of the SUPABooleanClause class
 is TRUE if this SUPABooleanClause is in CNF, and FALSE otherwise.

Strassner, et al. Expires November 09, 2015 [Page 55]

Internet-Draft SUPA Generic Policy Model May 2015

 The construction of more complex clauses, which consist of a set
 of simple clauses in conjunctive or disjunctive normal form (as
 shown in the above example), is provided by using the composite
 pattern [3] to construct two subclasses of SUPABooleanClause.
 These are called SUPABooleanClauseAtomic and
 SUPABooleanClauseComposite, and are defined in Sections 6.5.2.1 and
 6.5.2.2, respectively. This enables instances of either a
 SUPABooleanClauseAtomic and/or a SUPABooleanClauseComposite to be
 aggregated into a SUPABooleanClauseComposite object.

6.5.2. The Abstract Class"SUPABooleanClause"

 This is a mandatory abstract class that defines a clause as the
 following three-tuple:

 {PolicyVariable, PolicyOperator, PolicyValue}

 The composite pattern [3] is used in order to construct complex
 Boolean clauses from a set of SUPABooleanClause objects. This is
 why SUPABooleanClause is defined to be abstract - only instances
 of the SUPABooleanAtomic and/or SUPABooleanComposite classes can
 be used to construct a SUPABooleanClause.

 Figure 12 below shows the composite pattern applied to the
 SUPABooleanClause class.

 1..n +-------------------+
 \| |
 +--------------- | SUPABooleanClause |
 | /| |
 | +-------------------+
 | / \
 | HasSUPABooleanClauses I
 | I
 | I
 | +----------------+---------+
 / \ I I
 A I I
 0..1 \ / I I
 +----------------+---------+ +-----------+-----------+
 |SUPABooleanClauseComposite| |SUPABooleanClauseAtomic|
 +--------------------------+ +-----------------------+

 Figure 12. The Composite Pattern Applied to a SUPABooleanClause

Strassner, et al. Expires November 09, 2015 [Page 56]

Internet-Draft SUPA Generic Policy Model May 2015

 The advantage of a SUPABooleanClause is that it is formed entirely
 from SUPAPolicy objects. This enhances both reusability as well as
 interoperability. Since this involves compositing a number of
 objects, data model implementations MAY optimize a
 SUPABooleanClause according to their application-specific needs
 (e.g., by flattening the set of classes that make up a
 SUPABooleanClause object into a single object).

6.5.2.1. SUPABooleanClause Attributes

 The following sections define attributes of a SUPABooleanClause.

6.5.2.1.1. The Attribute "supaBoolIsNegated"

 This is a mandatory Boolean attribute. If the value of this
 attribute is TRUE, then this SUPABooleanClause is negated.

6.5.2.2. SUPABooleanClause Relationships

 The following subsections define the relationships of a
 SUPABooleanClause.

6.5.2.2.1. The Relationship "HasSUPABooleanClauses"

 This is a mandatory aggregation that defines the set of
 SUPABooleanClauses that are aggregated by this
 SUPABooleanClauseComposite. This will either form a complete
 SUPABooleanClause from multiple clauses (which can be made up of
 SUPABooleanClauseAtomic and/or SUPABooleanClauseComposite object
 instances) or define another level in the SUPABooleanClause object
 hierarchy. The multiplicity of this relationship is 0..1 on the
 aggregate (SUPABooleanClauseComposite) side, and 1..n on the part
 (SUPABooleanClause) side. This means that one or more
 SUPABooleanClauses are aggregated and used to define this
 SUPABooleanClauseComposite object. The 0..1 cardinality on the
 SUPABooleanClauseComposite side is necessary to enable
 SUPABooleanClauses to exist (e.g., in a PolicyRepository) before
 they are used by a SUPABooleanClauseComposite.

6.5.3. SUPABooleanClause Subclasses

 SUPABooleanClause defines two subclasses, as shown in Figure 12.
 They are both described in the following subsections.

Strassner, et al. Expires November 09, 2015 [Page 57]

Internet-Draft SUPA Generic Policy Model May 2015

6.5.3.1. The Abstract Class "SUPABooleanClauseAtomic"

 This is a mandatory abstract class that represents a
 SUPABooleanClause that can operate as a single, stand-alone,
 manageable object. Put another way, a SUPABooleanClauseAtomic
 object can NOT be modeled as a set of hierarchical clauses; if
 this functionality is required, then a SUPABooleanClauseComposite
 object must be used.

 No attributes are currently defined for the SUPABooleanClauseAtomic
 class. Its primary purpose is to aggregate SUPAPolicyVariable,
 SUPAPolicyOperator, and SUPAPolicyValue objects to form a complete
 SUPABoolean clause. As such, this class is defined as abstract to
 simplify data model optimization and mapping.

 The three primary subclasses of the SUPABooleanClauseAtomic class
 are shown in Figure 13.

 +-------------------------+
 | SUPABooleanClauseAtomic |
 +-------------------------+
 / \
 I
 I
 +-------------+--+-----------+
 I I I
 I I I
 +----------+---------+ I I
 | SUPAPolicyVariable | I I
 +--------------------+ I I
 I I
 +----------+---------+ I
 | SUPAPolicyOperator | I
 +------------------- + I
 I
 +--------+--------+
 | SUPAPolicyValue |
 +---------------- +

 Figure 13. SUPABooleanClauseAtomic Subclasses

6.5.3.1.1. The Abstract Class "SUPAPolicyVariable"

 This is a mandatory abstract class. It is similar to the
 PolicyVariable class of [RFC3460], but there are some important
 differences in the SUPA version of this class that make the SUPA
 version more generic than the version defined in [RFC3460]. The
 problems in the definition of the [RFC3460] version of this class
 are discussed in Section 6.5.3.1.1.1, and the SUPAPolicyVariable

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

 class definition is defined in Section 6.5.3.1.1.2.

Strassner, et al. Expires November 09, 2015 [Page 58]

Internet-Draft SUPA Generic Policy Model May 2015

6.5.3.1.1.1. Problems with the RFC3460 Version of PolicyVariable

 First, [RFC3460] says: "Variables are used for building
 individual conditions". While this is true, variables can also be
 used for building individual actions. This is reflected in the
 SUPAPolicyVariable definition.

 Second, [RFC3460] says: "The variable specifies the property of a
 flow or an event that should be matched when evaluating the
 condition." While this is true, variables can be used to test many
 broader things than "just" a flow or an event. This is reflected
 in the SUPAPolicyVariable definition.

 Third, in [RFC3460], defining constraints for a variable is
 limited to associating the variable with a PolicyValue. This is
 both cumbersome (because associations are costly), and not
 scalable, because it is prone to proliferating PolicyValue
 classes for every constraint (or range of constraints) that is
 possible. Therefore, in SUPA, this mechanism is replaced with
 using an association to a generic SUPAConstraint object.

 Fourth, [RFC3460] is tightly bound to the DMTF CIM schema [4].
 The CIM is a data model (despite its name), because:
 o It uses keys and weak relationships, which are both concepts
 from relational algebra and thus, not technology-independent
 o It has its own proprietary modeling language
 o It contains a number of concepts that are not defined in UML
 (including overriding keys for subclasses)

6.5.3.1.1.2. The Abstract Class "SUPAPolicyVariable"

 This class is based on a similar class defined in [2].

 To be finished in the next version of this document.

 The big question to be answered is whether to keep the
 PolicyImplicitVariable and PolicyExplicitVariable subclasses of
 [RFC3460] or not.

6.5.3.1.2. The Concrete Class "SUPAPolicyOperator"

 This is a mandatory abstract class. Note that there is no
 equivalent to this class in [RFC3460], which causes a number of
 problems in the overloading of the semantics of an operator for
 defining clauses in an ECA policy rule. This class is based on a
 similar class defined in [2].

 This will be defined in the next version of this document.

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires November 09, 2015 [Page 59]

Internet-Draft SUPA Generic Policy Model May 2015

6.5.3.1.3. The Abstract Class "SUPAPolicyValue"

 This is a mandatory abstract class. It is similar to the
 PolicyValue class of [RFC3460], but there are some important
 differences in the SUPA version of this class that make the SUPA
 version more generic than the version defined in [RFC3460]. The
 problems in the definition of the [RFC3460] version of this class
 are discussed in Section 6.5.3.1.3.1, and the SUPAPolicyVariable
 class definition is defined in Section 6.5.3.1.3.2.

6.5.3.1.3.1. Problems with the RFC3460 Version of PolicyValue

 This will be defined in the next version of this document.

6.5.3.1.3.2. The Abstract Class "SUPAPolicyValue"

 This class is based on a similar class defined in [2].

 This will be defined in the next version of this document.

6.5.4. The Abstract Class "SUPABooleanClauseComposite"

 This will be defined in the next version of this document.

6.5.4.1. SUPABooleanClauseComposite Attributes

 This will be defined in the next version of this document.

6.5.4.2. SUPABooleanClauseComposite Relationships

 This will be defined in the next version of this document.

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires November 09, 2015 [Page 60]

Internet-Draft SUPA Generic Policy Model May 2015

6.6. The Abstract Class "SUPAECAComponent"

 The principal subclasses of SUPAPolicyTerm that are defined in this
 version of this document are SUPAPolicyEvent, SUPAPolicyCondition,
 and SUPAPolicyAction.

 SUPAPolicyTerm is defined as an abstract class for two reasons:

 1. This enables a single aggregation (SUPAPolicyTermsInStmt; see
section 5.8.2.1) to be used to specify which object instances

 of which SUPAPolicyTerm subclasses are contained by a
 particular SUPAPolicyStatement object instance. Otherwise, a
 set of three aggregations would be required.
 2. This enables a single class (SUPAPolicyTermsInStmtDetail; see

section 5.8.2.2) to be used as a superclass to define which
 one of its subclasses participates in this relationship. The
 advantage of this design is that as more SUPAPolicyTerm
 subclasses are added in the future, the SUPAPolicyStatement
 object is not affected.

6.7. The Abstract Class"SUPAEvent"

 THIS WILL BE DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

6.8. The Abstract Class"SUPACondition"

 THIS WILL BE DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

6.9. The Abstract Class"SUPAAction"

 THIS WILL BE DEFINED IN THE NEXT VERSION OF THIS DOCUMENT.

Strassner, et al. Expires November 09, 2015 [Page 61]

Internet-Draft SUPA Generic Policy Model May 2015

7. SUPA Logic Statement Information Model

 This section defines the classes, attributes, and relationships of
 the SUPA Logic Statement Information Model (SLSIM).

7.1. Overview

 A Goal policy rule (also called a declarative policy rule, or an
 intent-based policy rule) is a declarative statement that defines
 what the policy should do, but not how to implement the policy. In
 this draft, such rules are called SUPA Logic Statements.

 This Section, and the following Sections, will be finished in the
 next version of this document.

7.2. Constructing a SUPAPLStatement

7.3. Working With SUPAPLStatements

7.4. The Abstract Class "SUPALogicClause"

7.5. The Abstract Class "SUPAPLStatement"

7.5.1. SUPAPLStatement Attributes

7.5.2. SUPAPLStatement Relationships

7.5.3. SUPAPLStatement Subclasses

7.5.3.1. The Concrete Class "SUPAArgument"

7.5.3.2. The Concrete Class "SUPAPLPremise"

7.5.3.3. The Concrete Class "SUPAPLConclusion"

Strassner, et al. Expires November 09, 2015 [Page 62]

Internet-Draft SUPA Generic Policy Model May 2015

7.6. Constructing a SUPAFOLStatement

7.7. Working With SUPAFOLStatements

7.7.1. SUPAFOLStatement Attributes

7.7.2. SUPAFOLStatement Relationships

7.7.3. SUPAFOLStatement Subclasses

7.7.3.1. The Concrete Class "SUPAGoalHead"

7.7.3.2. The Concrete Class "SUPAGoalBody"

7.8. Combining Different Types of SUPAFOLStatements

8. Examples

8.1. SUPAECAPolicyRule Examples

8.2. SUPALogicStatement Examples

8.3. Mixing SUPAECAPolicyRules and SUPALogicStatements

9. Security Considerations

 This will be defined in the next version of this document.

10. IANA Considerations

 This document has no actions for IANA.

Strassner, et al. Expires November 09, 2015 [Page 63]

Internet-Draft SUPA Generic Policy Model May 2015

11. Acknowledgments

 This document has benefited from reviews, suggestions, comments
 and proposed text provided by the following members, listed in
 alphabetical order: Bob Natale, Liu (Will) Shucheng, Marie-Jose
 Montpetit.

12. References

This section defines normative and informative references for this document.

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3060] Moore, B., Ellesson, E., Strassner, J., Westerinen,
 A., "Policy Core Information Model -- Version 1
 Specification", RFC 3060, February 2001

 [RFC3198] Westerinen, A., Schnizlein, J., Strassner, J.,
 Scherling, M., Quinn, B., Herzog, S., Huynh, A.,
 Carlson, M., Perry, J., Waldbusser, S., "Terminology
 for Policy-Based Management", RFC 3198, November, 2001

 [RFC3460] Moore, B., ed., "Policy Core Information Model (PCIM)
 Extensions, RFC 3460, January 2003

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)",

RFC 6020, October 2010.

 [RFC6021] Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
 October 2010.

12.2. Informative References

 [1] Strassner, J., "Policy-Based Network Management",
 Morgan Kaufman, ISBN 978-1558608597, Sep 2003

 [2] Strassner, J., ed., "The DEN-ng Information Model",
 add stable URI

 [3] Riehle, D., "Composite Design Patterns", Proceedings
 of the 1997 Conference on Object-Oriented Programming
 Systems, Languages and Applications (OOPSLA '97).
 ACM Press, 1997. Page 218-228

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3198
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6021

Strassner, et al. Expires November 09, 2015 [Page 64]

Internet-Draft SUPA Generic Policy Model May 2015

 [4] DMTF, CIM Schema, v2.43,
http://dmtf.org/standards/cim/cim_schema_v2440

 [5] Strassner, J., ed., "ZOOM Policy Architecture and
 Information Model Snapshot", TR245, part of the
 TM Forum ZOOM project, October 26, 2014

 [6] TM Forum, "Information Framework (SID), GB922 and
 associated Addenda, v14.5,

https://www.tmforum.org/information-framework-sid/

Authors' Addresses

 John Strassner
 Huawei Technologies
 2330 Central Expressway
 Santa Clara, CA 95138 USA
 Email: john.sc.strassner@huawei.com

http://dmtf.org/standards/cim/cim_schema_v2440
https://www.tmforum.org/information-framework-sid/

Strassner, et al. Expires November 09, 2015 [Page 65]

