
Network Working Group J. Strassner
Internet Draft Huawei Technologies
Intended status: Standard Track J. Halpern
Expires: July 4, 2016 Ericsson
 J. Coleman
 Cisco Systems
 January 4, 2016

Generic Policy Information Model for
Simplified Use of Policy Abstractions (SUPA)

draft-strassner-supa-generic-policy-info-model-03

Abstract

 This document defines an information model for representing
 policies using a common extensible framework that is independent
 of language, protocol, repository, and the level of abstraction of
 the content and meaning of a policy.

 * *
 * Editor's note: this draft is still being changed by the *
 * authors. However, it contains a significant rewrite and *
 * update to reflect the new SUPA charter; hence, please *
 * view this draft as an early pre-published version. An *
 * updated version will follow soon. *
 * *

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.
 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on October 26, 2015.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Strassner, et al. Expires July 4, 2016 [Page 1]

Internet-Draft SUPA Generic Policy Model January 2016

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided
 without warranty as described in the Simplified BSD License.

Table of Contents

1. Overview ... 9
1.1. Introduction .. 9
1.2. Changes Since Version -02 11

2. Conventions Used in This Document 12
3. Terminology ... 12

3.1. Acronyms .. 12
3.2. Definitions ... 12

3.2.1. Core Terminology 12
3.2.1.1. Information Model 12
3.2.1.2. Data Model 13
3.2.1.3. Abstract Class 13
3.2.1.4. Concrete Class 13
3.2.1.5. Container 13
3.2.1.6. PolicyContainer 13

3.2.2. Policy Terminology 14
3.2.2.1. SUPAPolicyObject 14
3.2.2.2. SUPAPolicy 14
3.2.2.3. SUPAPolicyClause 14
3.2.2.4. SUPAECAPolicyRule 14
3.2.2.5. SUPAMetadata 15
3.2.2.6. SUPAPolicyTarget 15
3.2.2.7. SUPAPolicySource 15

3.2.3. Modeling Terminology 16
3.2.3.1. Inheritance 16
3.2.3.2. Relationship 16
3.2.3.3. Association 16
3.2.3.4. Aggregation 16
3.2.3.5. Composition 17
3.2.3.6. Association Class 17
3.2.3.7. Multiplicity 17

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

3.2.3.8. Navigability 17

Strassner, et al. Expires July 4, 2016 [Page 2]

Internet-Draft SUPA Generic Policy Model January 2016

Table of Contents (continued)

3.3. Symbology .. 18
3.3.1. Inheritance ... 18
3.3.2. Association ... 18
3.3.3. Aggregation ... 19
3.3.4. Composition ... 19
3.3.5. Association Class 19
3.3.6. Abstract vs. Concrete Classes 20

4. Policy Abstraction Architecture 21
4.1. Motivation ... 22
4.2. SUPA Approach .. 23
4.3. SUPA Generic Policy Information Model Overview............ 23

4.3.1. SUPAPolicyObject 25
4.3.2. SUPAPolicyStructure 26
4.3.3. SUPAPolicyComponentStructure 26
4.3.4. SUPAPolicyClause 26
4.3.5. SUPAPolicyComponentDecorator 27

4.4. The Design of the GPIM 28
4.4.1. Structure of Policies 28
4.4.2. Representing an ECA Policy Rule 30
4.4.3. Creating SUPA Policy Clauses 33
4.4.4. Creating SUPAPolicyClauses 35
4.4.5. SUPAPolicySources 37
4.4.6. SUPAPolicyTargets 39
4.4.7. PolicyMetadata 39

4.4.7.1. Motivation 39
4.4.7.2. Design Approach 40
4.4.7.3. Structure of SUPAPolicyMetadata 43

4.5. Advanced Features .. 43
4.5.1. Policy Grouping 43
4.5.2. Policy Rule Nesting 43

5. GPIM Model .. 44
5.1. Overview ... 44
5.2. The Abstract Class "SUPAPolicy" 45

5.2.1. SUPAPolicy Attributes 46
5.2.1.1. The Attribute "supaObjectIDContent" 46
5.2.1.2. The Attribute "supaObjectIDFormat" 47
5.2.1.3. The Attribute "supaPolicyDescription" 47
5.2.1.4. The Attribute "supaPolicyName" 47

5.2.2. SUPAPolicy Relationships 48
5.2.2.1. The Relationship "SUPAHasPolicyMetadata" 48

 5.2.2.2. The Association Class
 "SUPAHasPolicyMetadataDetail" 48

5.3. The Abstract Class "SUPAPolicyStructure" 48
5.3.1. SUPAPolicyStructure Attributes 49

5.3.1.1. The Attribute "supaPolContinuumLevel" 49
5.3.1.2. The Attribute "supaPolDeployStatus" 49

Strassner, et al. Expires July 4, 2016 [Page 3]

Internet-Draft SUPA Generic Policy Model January 2016

Table of Contents (continued)

5.3.2. SUPAPolicyStructure Relationships 49
5.3.2.1. The Aggregation "SUPAHasPolicySource" 49

 5.3.2.2. The Association Class
 "SUPAHasPolicySourceDetail" 50

5.3.2.3. The Aggregation "SUPAIsTargetOf" 50
5.3.2.4. The Association Class "SUPAIsTargetOfDetail" .. 50

5.4. The Abstract Class "SUPAPolicyStructureAtomic" 50
5.4.1. SUPAPolicyStructureAtomic Attributes 51

5.4.1.1. The Attribute "supaPolExecStatus" 51
5.4.1.2. The Attribute "supaPolExecFailStrategy" 51
5.4.1.3. The Attribute "supaPolExecFailTakeActionName" .. 52
5.4.1.4. The Attribute "supaPolExecFailTakeActionRes" .. 52

5.4.2. SUPAPolicyStructureAtomic Relationships 52
5.4.2.1. The Aggregation "SUPAHasPolicyClause" 53

 5.4.2.2. The Association Class
 "SUPAHasPolicyClauseDetail" 53

5.5. The Concrete Class "SUPAPolicyStructureComposite" 53
5.5.1. SUPAPolicyStructureComposite Attributes 54
5.5.2. SUPAPolicyStructureComposite Relationships 54

5.5.2.1. The Aggregation "SUPAHasPolicy" 54
5.5.2.2. The Association Class "SUPAHasPolicyDetail" 54

5.6. The Abstract Class "SUPAPolicyComponentStructure" 54
5.6.1. SUPAPolicyComponentStructure Attributes 55

5.6.1.1. The Attribute "supaAllowsExternalAccess" 55
5.6.1.2. The Attribute "supaAllowsExternalUpdate" 55

5.6.2. SUPAPolicyComponentStructure Relationships 55
5.7. The Abstract Class "SUPAPolicyClause" 55

5.7.1. SUPAPolicyClause Attributes 56
5.7.1.1. The Attribute "supaPolStmtAdminStatus" 56
5.7.1.2. The Attribute "supaPolStmtExecStatus" 56

5.7.2. SUPAPolicyClause Relationships 57
5.8. The Concrete Class "SUPAEncodedClause" 57

5.8.1. SUPAEncodedClause Attributes 58
5.8.1.1. The Attribute "supaClauseContent" 58
5.8.1.2. The Attribute "supaClauseFormat" 58
5.8.1.3. The Attribute "supaClauseResponse" 58

5.8.2. SUPAEncodedClause Relationships 58
5.9. The Abstract Class "SUPAPolicyComponentDecorator" 59

5.9.1. The Decorator Pattern 59
5.9.2. SUPAPolicyComponentDecorator Attributes 61

5.9.2.1. The Attribute "supaPolCompConstraintEncoding" .. 61
5.9.2.2. The Attribute "supaAPolCompConstraint[0..n]" ... 61

5.9.3. SUPAPolicyComponentDecorator Relationships 61
 5.9.3.1. The Aggregation
 "SUPAHasDecoratedPolicyComponent" 62

Strassner, et al. Expires July 4, 2016 [Page 4]

Internet-Draft SUPA Generic Policy Model January 2016

Table of Contents (continued)

 5.9.3.2. The Association Class
 "SUPAHasDecoratedPolicyComponentDetail" 62
 5.9.3.2.1. The Attribute
 "supaDecoratedConstraintsEncoding" 62
 5.9.3.2.2. The Attribute
 "supaDecoratedConstraints[1..n]" 63
 5.9.4. Illustration of Constraints in the Decorator Pattern 63

5.10. The Abstract Class "SUPAPolicyTerm" 64
5.10.1. SUPAPolicyTerm Attributes 65

5.10.1.1. The Attribute "supaPolTermIsNegated" 65
5.10.2. SUPAPolicyTerm Relationships 65

5.11. The Concrete Class "SUPAPolicyVariable" 65
 5.11.1. Problems with the RFC3460 Version of PolicyVariable 66

5.11.1.1. Object Bloat 66
5.11.1.2. Object Explosion 67
5.11.1.3. Specification Ambiguities 67

5.11.2. SUPAPolicyVariable Attributes 68
5.11.2.1. The Attribute "supaPolVarContent" 68
5.11.2.2. The Attribute "supaPolVarType" 68

5.11.3. SUPAPolicyVariable Relationships 69
5.12. The Concrete Class "SUPAPolicyOperator" 69

5.12.1. Problems with the RFC3460 Version 69
5.12.2. SUPAPolicyOperator Attributes 70

5.12.2.1. The Attribute "supaPolOpType" 70
5.12.3. SUPAPolicyVariable Relationships 70

5.13. The Concrete Class "SUPAPolicyValue" 70
5.13.1. Problems with the RFC3460 Version of PolicyValue ... 71

5.13.1.1. Object Bloat 71
5.13.1.2. Object Explosion 71
5.13.1.3. Lack of Constraints 72
5.13.1.4. Tightly Bound to the CIM Schema 72
5.13.1.5. Specification Ambiguity 72
5.13.1.6. Lack of Symmetry 72

5.13.2. SUPAPolicyValue Attributes 72
5.13.2.1. The Attribute "supaPolValContent[0..n]" 72
5.13.2.2. The Attribute "supaPolValType" 73

5.13.3. SUPAPolicyVariable Relationships 73
5.14. The Concrete Class "SUPAVendorDecoratedComponent" 73

5.14.1. SUPAVendorDecoratedComponent Attributes 73
 5.14.1.1. The Attribute
 "supaVendorDecoratedCompContent[0..n]" 74

5.14.1.2. The Attribute "supaVendorDecoratedCompFormat" .. 74
5.14.2. SUPAVendorDecoratedComponent Relationships 74

5.15. The Concrete Class "SUPAPolicyCollection" 74
5.15.1. Motivation ... 75
5.15.2. Solution ... 75

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 5]

Internet-Draft SUPA Generic Policy Model January 2016

Table of Contents (continued)

5.15.3. SUPAPolicyCollection Attributes 75
5.15.3.1. The Attribute "supaPolCollectionContent[0..n]" 76
5.15.3.2. The Attribute "supaPolCollectionDataType" 76
5.15.3.3. The Attribute "supaPolCollectionFunction" 76
5.15.3.4. The Attribute "supaPolCollectionIsOrdered" 76
5.15.3.5. The Attribute "supaPolCollectionType" 76

5.15.4. SUPAPolicyCollection Relationships 77
5.16. The Concrete Class "SUPAPolicySource" 77

5.16.1. SUPAPolicySource Attributes 78
5.16.2. SUPAPolicySource Relationships 78

 5.16.2.1. The Association Class
 "SUPAHasPolicySourceDetail" 78
 5.16.2.1.1. The Attribute "SUPAPolSrcIsAuthenticated" 78

5.16.2.1.2. The Attribute "supaPolicySrcIsTrusted" ... 78
5.17. The Concrete Class "SUPAPolicyTarget" 79

5.17.1. SUPAPolicyTarget Attributes 79
5.17.2. SUPAPolicyTarget Relationships 79

5.17.2.1. The Aggregation "SUPAHasPolicyTarget" 79
 5.17.2.2. The Association Class
 "SUPAHasPolicyTargetDetail" 80
 5.17.2.2.1. The Attribute "SUPAPolTgtIsAuthenticated" 80

5.17.2.2.2. The Attribute "supaPolTgtIsEnabled" 80
5.18. The Abstract Class "SUPAPolicyMetadata" 80

5.18.1. SUPAPolicyMetadata Attributes 81
5.18.1.1. The Attribute "supaPolMetadataDescription" 81
5.18.1.2. The Attribute "supaPolMetadataIDContent" 81
5.18.1.3. The Attribute "supaPolMetadataIDFormat" 81
5.18.1.4. The Attribute "supaPolicyName" 82

5.18.2. SUPAPolicyMetadata Relationships 82
5.18.3. The Abstract Class "SUPAHasPolicyMetadataDetail" ... 82

5.18.3.1. The Attribute "supaPolMetadataIsApplicable" ... 82
 5.18.3.2. The Attribute
 "supaPolMetadataConstraintEncoding" 83
 5.18.3.3. The Attribute
 "supaPolMetadataPolicyConstraints[0..n]" 83
6. SUPA ECAPolicyRule Information Model 84

6.1. Overview ... 84
6.2. Constructing a SUPAECAPolicyRule 85
6.3. Working With SUPAECAPolicyRules 86
6.4. The Concrete Class "SUPAECAPolicyRule" 88

6.4.1. SUPAECAPolicyRule Attributes 89
6.4.1.1. The Attribute "supaECAPolicyIsMandatory" 90
6.4.1.2. The Attribute "supaECAPolicyPriority" 90
6.4.1.3. The Attribute "supaECAPolicyRuleStatus" 90

6.4.2. SUPAECAPolicyRule Relationships 90
6.5. The Concrete Class "SUPAECAPolicyRuleAtomic" 90

6.5.1. SUPAECAPolicyRuleAtomic Attributes 90
6.5.2. SUPAECAPolicyRuleAtomic Relationships 90

Strassner, et al. Expires July 4, 2016 [Page 6]

Internet-Draft SUPA Generic Policy Model January 2016

Table of Contents (continued)

6.6. The Concrete Class "SUPAECAPolicyRuleComposite" 91
6.6.1. SUPAECAPolicyRuleComposite Attributes 91

6.6.1.1. The Attribute "supaECAEvalStrategy" 91
6.6.2. SUPAECAPolicyRuleComposite Relationships 92

6.6.2.1. The Aggregation "SUPAHasECAPolicyRule" 92
6.6.3. The Association Class "SUPHasECAPolicyRuleDetail" ... 92

6.6.3.1. The Attribute "supaECAPolicyIsDefault" 92
6.7. The Abstract Class "SUPABooleanClause" 92

6.7.1. SUPABooleanClause Attributes 93
6.7.1.1. The Attribute "supaBoolIsCNF" 93
6.7.1.2. The Attribute "supaBoolIsNegated" 94

6.7.2. SUPABooleanClause Relationships 94
6.8. The Concrete Class "SUPABooleanClauseAtomic" 94

6.8.1. SUPABooleanClauseAtomic Attributes 94
6.8.2. SUPABooleanClauseAtomic Relationships 94

6.9. The Concrete Class "SUPABooleanClauseComposite" 94
6.9.1. SUPABooleanClauseComposite Attributes 94

6.9.1.1. The Attribute "supaPolStmtBindValue" 95
6.9.2. SUPABooleanClauseComposite Relationships 95

6.9.2.1. The Aggregation "SUPAHasBooleanClause" 95
6.9.3. The Concrete Class "SUPAHasBooleanClauseDetail" 95

6.9.3.1. SUPAHasBooleanClauseDetail Attributes 95
6.10. The Abstract Class "SUPAECAComponent" 96

6.10.1. SUPAECAComponent Attributes 96
6.10.2. SUPAECAComponent Relationships 96

6.11. The Concrete Class "SUPAPolicyEvent" 96
6.11.1. SUPAPolicyEvent Attributes 96

 6.11.1.1. The Attribute "supaPolicyEventIsPreProcessed" . 96
6.11.1.2. The Attribute "supaPolicyEventIsSynthetic" 96
6.11.1.3. The Attribute "supaPolicyEventTopic[0..n]" 96
6.11.1.4. The Attribute "supaPolicyEventDataType" 97
6.11.1.5. The Attribute "supaPolicyEventData[1..n]" 97

6.11.2. SUPAPolicyEvent Relationships 98
6.12. The Concrete Class "SUPAPolicyCondition" 98

6.12.1. SUPAPolicyCondition Attributes 98
6.12.1.1. The Attribute "supaPolicyConditionDataType" ... 98
6.12.1.2. The Attribute "supaPolicyConditionData" 98

6.12.2. SUPAPolicyEvent Relationships 98
6.13. The Concrete Class "SUPAPolicyAction" 99

6.13.1. SUPAPolicyAction Attributes 99
6.13.1.1. The Attribute "supaPolicyActionDataType" 99
6.13.1.2. The Attribute "supaPolicyActionData" 99
6.13.1.3. The Attribute "supaPolicyActionResponse" 100

6.13.2. SUPAPolicyAction Relationships 100

Strassner, et al. Expires July 4, 2016 [Page 7]

Internet-Draft SUPA Generic Policy Model January 2016

7. Examples ... 100
8. Security Considerations 100
9. IANA Considerations .. 100
10. Acknowledgments ... 100
11. References .. 100

11.1. Normative References 100
11.2. Informative References 101

 Authors' Addresses .. 102
Appendix A. Mathematical Logic Terminology and Symbology 102
Appendix B. SUPA Logic Statement Information Model 102
Appendix C. Brief Analyses of Previous Policy Work 102

Strassner, et al. Expires July 4, 2016 [Page 8]

Internet-Draft SUPA Generic Policy Model January 2016

1. Overview

 This document defines an information model for representing
 policies using a common extensible framework that is independent
 of language, protocol, repository, and the level of abstraction of
 the content and meaning of a policy. This enables a common set of
 concepts defined in this information model to be mapped into
 different representations of policy (e.g., procedural, imperative,
 and declarative). It also enables different data models that use
 different languages, protocols, and repositories to optimize
 their usage. The definition of common policy concepts also
 provides better interoperability by ensuring that each data
 model can share a set of common concepts, independent of its
 level of detail or the language, protocol, and/or repository
 that it is using. It is also independent of the target data
 model that will be generated.

 This version of the information model focuses on defining one
 type of policy rule: the event-condition-action (ECA) policy rule.
 Accordingly, this document defines two sets of model elements:

 1. A framework for defining the concept of policy,
 independent of how policy is represented or used; this is
 called the SUPA Generic Policy Information Model (GPIM)
 2. A framework for defining a policy model that uses the
 event-condition-action paradigm; this is called the SUPA
 Eca Policy Rule Information Model (EPRIM), and extends
 concepts from the GPIM.

 The combination of the GPIM and the EPRIM provides an extensible
 framework for defining policy that uses an event-condition-action
 representation that is independent of data repository, data
 definition language, query language, implementation language, and
 protocol.

 The Appendices describe how the structure of the GPIM defines a
 set of generic concepts that enables other types of policies, such
 as declarative (or "intent-based") policies, to be added later.

1.1. Introduction

 Simplified Use of Policy Abstractions (SUPA) defines an interface
 to a network management function that takes high-level, possibly
 network-wide policies as input and creates element configuration
 snippets as output. SUPA addresses the needs of operators and
 application developers to represent multiple types of policy
 rules, which vary in the level of abstraction, to suit the needs
 of different actors [1], [10].

Strassner, et al. Expires July 4, 2016 [Page 9]

Internet-Draft SUPA Generic Policy Model January 2016

 Different constituencies of users would like to use languages that
 use terminology and concepts that are familiar to each constituency.
 Rather than require multiple software systems to be used for each
 language, a common information model enables these different
 languages to be mapped to terms in the information model. This
 facilitiates the use of a single software system to generate data
 models for each language. In the example shown in Figure 1 (which
 is a simplified policy continuum [10]), each constituency needs
 different grammars using different concepts and terminologies to
 match their skill set. This is shown in Figure 1. A unified
 information model is one way to build a consensual lexicon that
 enables terms from one language to be mapped to terms of another
 language.

 +---------------------+
 +---------------+ \| High-level Policies | \+-------------+
 | Business User |----| Without Technical |----| Language #1 |
 +---------------+ /| Terminology | /+-------------+
 +---------------------+

 +---------------------+
 +---------------+ \| Policies That Use | \+-------------+
 | Developer |----| Classes, Attributes,|----| Language #2 |
 +---------------+ /| Relationships, ... | /+-------------+
 +---------------------+

 +---------------------+
 +---------------+ \| Low-level Policies | \+-------------+
 | Admin |----| with Technology- |----| Language #n |
 +---------------+ /| Specific Terms in a | /+-------------+
 | Specific Language |
 +---------------------+

 Figure 1. Different Constituencies Need Different Policies

 More importantly, an information model defines concepts in a
 uniform way, enabling formal mapping processes to be developed to
 translate the information model to a set of data models. This
 simplifies the process of constructing software to automate the
 policy management process. It also simplifies the language
 generation process, though that is beyond the scope of this
 document.

Strassner, et al. Expires July 4, 2016 [Page 10]

Internet-Draft SUPA Generic Policy Model January 2016

 This common framework takes the form of an information model that
 is divided into one high-level module and any number of lower-
 level modules, where each lower-level module extends the concepts
 of the single high-level module. Conceptually, a set of model
 elements (e.g., classes, attributes, and relationships) are used
 to define the Generic Policy Information Model (GPIM); this module
 defines a common set of policy management concepts that are
 independent of the type of policy (e.g., imperative, procedural,
 declarative, or otherwise). Then, any number of additional modules
 are derived from the GPIM; each additional module MUST extend the
 GPIM to define a new type of policy rule by adding to the GPIM.
 (Note: using extensions preserves the core interoperability, as
 compared with modification of the base GPIM, which would adversely
 compromise interoperability.

 The SUPA Eca Policy Rule Information Model (EPRIM) extends the
 GPIM to represent policy rules that use the Event-Condition-Action
 (ECA) paradigm. (The Appendices describe the SUPA Logic Statement
 Information Model (LSIM), which shows how to extend the GPIM to
 represent statements that are subsets of either Propositional
 Logic (PL) or First-Order Logic (FOL), respectively. Both of these
 logics are types of declarative logic. Note that the LSIM is
 currently out of scope. However, it is outlined as a set of
 Appendices in this document to get feedback on its utility.

1.2. Changes Since Version -02

 There are several main changes in this version of this document
 compared to the previous version (-02) of this document. They are:

 1) The GPIM has been redesigned to be more compact, making it
 easier to construct data models
 2) As part of 1), additional options for constructing data
 models have been added to the GPIM
 3) The LSIM has been moved into an Appendix, since the latest
 charter makes it currently out of scope. However, it is
 important to ensure that the GPIM can serve as a single
 foundation that different types of policies can all be
 derived from to ensure that SUPA can interact with other
 SDOs, as well as for future work in the IETF.
 4) Examples and figures have been added to clarify the model

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC2119]. In
 this document, these words will appear with that interpretation

https://datatracker.ietf.org/doc/html/rfc2119

 only when in ALL CAPS. Lower case uses of these words are not to
 be interpreted as carrying [RFC2119] significance.

Strassner, et al. Expires July 4, 2016 [Page 11]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft SUPA Generic Policy Model January 2016

3. Terminology

 This section defines acronyms, terms, and symbology used in the
 rest of this document.

3.1. Acronyms

 CLI Command Line Interface
 CRUD Create, Read, Update, Delete
 CNF Conjunctive Normal Form
 DNF Disjunctive Normal Form
 ECA Event-Condition-Action
 EPRIM (SUPA) ECA Policy Rule Information Model
 GPIM (SUPA) Generic Policy Information Model
 NETCONF Network Configuration protocol
 OAM&P Operations, Administration, Management, and Provisioning
 OID Object IDentifier
 PAP Policy Administration Point
 PDP Policy Decision Point
 PEP Policy Enforcement Point
 PIP Policy Information Point
 PR Policy Repository
 PXP Policy Execution Point
 SUPA Simplified Use of Policy Abstractions
 TMF TeleManagent Forum (TM Forum)
 UML Unified Modeling Language
 URI Uniform Resource Identifier
 YANG A data definition language for use with NETCONF
 ZOOM Zero-touch Orchestration, Operations, and Management
 (a TMF project that also works on information models)

3.2. Definitions

 This section defines the terminology that is used in this document.

3.2.1. Core Terminology

 The following subsections define the terms "information model" and
 "data model", as well as "container" and "policy container".

3.2.1.1. Information Model

 An information model is a representation of concepts of interest
 to an environment in a form that is independent of data repository,
 data definition language, query language, implementation language,
 and protocol.

 Note: this definition is more specific than that of [RFC3198], so
 as to focus on the properties of information models.

https://datatracker.ietf.org/doc/html/rfc3198

Strassner, et al. Expires July 4, 2016 [Page 12]

Internet-Draft SUPA Generic Policy Model January 2016

3.2.1.2. Data Model

 A data model is a representation of concepts of interest to an
 environment in a form that is dependent on data repository, data
 definition language, query language, implementation language, and
 protocol (typically, but not necessarily, all three).

 Note: this definition is more specific than that of [RFC3198], so
 as to focus on the properties of data models that are generated
 from information models.

3.2.1.3. Abstract Class

 An abstract class is a class that cannot be directly instantiated.
 It MAY have abstract or concrete subclasses. It is denoted with a
 capital A near the top-left side of the class.

3.2.1.4. Concrete Class

 A concrete class is a class that can be directly instantiated. Note
 that classes are either abstract or concrete. In addition, once a
 class has been defined as concrete in the hierarchy, all of its
 subclasses MUST also be concrete. It is denoted with a capital C
 near the top-left side of the class.

3.2.1.5. Container

 A container is an object whose instances may contain zero or more
 additional objects, including container objects. A container
 provides storage, query, and retrieval of its contained objects
 in a well-known, organized way.

3.2.1.6. PolicyContainer

 In this document, a PolicyContainer is a special type of container
 that provides at least the following three functions:

 1. It uses metadata to define how its content is interpreted
 2. It separates the content of the policy from the
 representation of the policy
 3. It provides a convenient control point for OAMP operations

 The combination of these three functions enables a PolicyContainer
 to define the behavior of how its constituent components will be
 accessed, queried, stored, retrieved, and how they operate.

https://datatracker.ietf.org/doc/html/rfc3198

Strassner, et al. Expires July 4, 2016 [Page 13]

Internet-Draft SUPA Generic Policy Model January 2016

3.2.2. Policy Terminology

 The following terms define different policy concepts used in the
 SUPA Generic Policy Information Model (GPIM). Note that the
 prefix "SUPA" is used for all classes and relationships defined
 in this model to ensure name uniqueness. Similarly, the prefix
 "supa" is defined for all SUPA class attributes.

3.2.2.1. SUPAPolicyObject

 A SupaPolicyObject is the root of the GPIM class hierarchy. It is
 an abstract class that all classes inherit from, except the
 SUPAPolicyMetadata class.

3.2.2.2. SUPAPolicy

 A SUPAPolicy is, in this version of this document, an ECA policy
 rule that is a type of PolicyContainer. The PolicyContainer MUST
 contain an ECA policy rule, SHOULD contain one or more
 SUPAPolicyMetadata objects, and MAY contain other elements that
 define the semantics of the policy rule. Policies are generically
 defined as a means to monitor and control the changing and/or
 maintaining of the state of one or more managed objects [1]. In
 this context, "manage" means that at least create, read, query,
 update, and delete functions are supported.

3.2.2.3. SUPAPolicyClause

 A SUPAPolicyClause is an abstract class. Its subclasses define
 different types of clauses that are used to create the content
 for different types of SUPAPolicies.

 For example, the SUPAPolicyBooleanClause subclass models the
 content of a SUPAPolicy as a Boolean clause, where each Boolean
 clause is made up of a set of reusable objects. In contrast, a
 SUPAPololicyEncodedClause encodes the entire clause as a set of
 attributes. All types of SUPAPolicies MUST use one or more
 SUPAPolicyClauses to construct a SUPAPolicy.

3.2.2.4. SUPAECAPolicyRule

 An Event-Condition-Action (ECA) Policy (SUPAECAPolicyRule) is an
 abstract class that is a type of PolicyContainer. It represents
 a policy rule as a three-tuple, consisting of an event, a
 condition, and an action clause. In an information model, this
 takes the form of three different aggregations, one for each
 clause. Each clause MUST be represented by at least one
 SUPAPolicyClause. Optionally, the SUPAECAPolicyRule MAY contain
 zero or more SUPAPolicySources, zero or more SUPAPolicyTargets,

 and zero or more SUPAPolicyMetadata objects.

Strassner, et al. Expires July 4, 2016 [Page 14]

Internet-Draft SUPA Generic Policy Model January 2016

3.2.2.5. SUPAMetadata

 Metadata is, literally, data about data. SUPAMetadata is an
 abstract class that contains prescriptive and/or descriptive
 information about the object(s) to which it is attached. While
 metadata can be attached to any information model element, this
 document only considers metadata attached to classes and
 relationships.

 When defined in an information model, each instance of the
 SUPAMetadata class MUST have its own aggregation relationship
 with the set of objects that it applies to. However, a data model
 MAY map these definitions to a more efficient form (e.g.,
 flattening the object instances into a single object instance).

3.2.2.6. SUPAPolicyTarget

 SUPAPolicyTarget is an abstract class that defines a set of
 managed objects that may be affected by the actions of a
 SUPAPolicyClause. A SUPAPolicyTarget may use one or more
 mechanisms to identify the set of managed objects that it
 affects; examples include OIDs and URIs.

 When defined in an information model, each instance of the
 SUPAPolicyTarget class MUST have its own aggregation
 relationship with each SUPAPolicy that uses it. However, a
 data model MAY map these definitions to a more efficient form
 (e.g., flattening the SUPAPolicyTarget, SUPAMetadata, and
 SUPAPolicy object instances into a single object instance).

3.2.2.7. SUPAPolicySource

 SUPAPolicySource is an abstract class that defines a set of
 managed objects that authored this SUPAPolicyClause. This is
 required for auditability. A SUPAPolicySource may use one or more
 mechanisms to identify the set of managed objects that authored it;
 examples include OIDs and URIs. Specifically, policy CRUD MUST be
 subject to authentication and authorization, and MUST be auditable.
 Note that the mechanisms for doing these three operations are
 currently not included, and are for further discussion.

 When defined in an information model, each instance of the
 SUPAPolicySource class MUST have its own aggregation relationship
 with each SUPAPolicy that uses it. However, a data model MAY map
 these definitions to a more efficient form (e.g., flattening the
 SUPAPolicySource, SUPAMetadata, and SUPAPolicy object instances
 into a single object instance).

Strassner, et al. Expires July 4, 2016 [Page 15]

Internet-Draft SUPA Generic Policy Model January 2016

3.2.3. Modeling Terminology

 The following terms define different types of relationships used
 in the information models of the SUPA Generic Policy Information
 Model (GPIM).

3.2.3.1. Inheritance

 Inheritance makes an entity at a lower level of abstraction (e.g.,
 the subclass) a type of an entity at a higher level of abstraction
 (e.g., the superclass). Any attributes and relationships that are
 defined for the superclass are also defined for the subclass.
 However, a subclass does NOT change the characteristics or behavior
 of the attributes or relationships of the superclass that it
 inherits from. Formally, this is called the Liskov Substitution
 Principle [7]. This principle is one of the key characteristics
 that is NOT followed in [4], [6], [RFC3060], and [RFC3460].

 A subclass MAY add new attributes and relationships that refine
 the characteristics and/or behavior of it compared to its
 superclass. A subclass MUST NOT change inherited attributes or
 relationships.

3.2.3.2. Relationship

 A relationship is a generic term that represents how a first set
 of entities interact with a second set of entities. A recursive
 relationship sets the first and second entity to the same entity.
 There are three basic types of relationships, as defined in the
 subsections below: associations, aggregations, and compositions.

 A subclass MUST NOT change the multiplicity (see section 3.2.3.7)
 of a relationship that it inherits. A subclass MUST NOT change any
 attributes of a relation that it inherits that is realized using
 an association class (see section 3.2.3.6).

3.2.3.3. Association

 An association represents a generic dependency between a first
 and a second set of entities. In an information model, an
 association MAY be represented as a class.

3.2.3.4. Aggregation

 An aggregation is a stronger type (i.e., more restricted
 semantically) of association, and represents a whole-part
 dependency between a first and a second set of entities. Three
 objects are defined by an aggregation: the first entity, the
 second entity, and a new third entity that represents the

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

 combination of the first and second entities.

Strassner, et al. Expires July 4, 2016 [Page 16]

Internet-Draft SUPA Generic Policy Model January 2016

 The entity owning the aggregation is referred to as the
 "aggregate", and the entity that is aggregated is referred to as
 the "part". In an information model, an aggregation MAY be
 represented as a class.

3.2.3.5. Composition

 A composition is a stronger type (i.e., more restricted
 semantically) of aggregation, and represents a whole-part
 dependency with two important behaviors. First, an instance of the
 part is included in at most one instance of the aggregate at a
 time. Second, any action performed on the composite entity (i.e.,
 the aggregate) is propagated to its constituent part objects.
 For example, if the composite entity is deleted, then all of its
 constituent part entities are also deleted. This is not true of
 aggregations or associations - in both, only the entity being
 deleted is actually removed, and the other entities are unaffected.
 In an information model, a composition MAY be represented as
 a class.

3.2.3.6. Association Class

 A relationship may be implemented as an association class. This is
 used to define the relationship as having its own set of features.
 More specifically, if the relationship is implemented as an
 association class, then the attributes of the association class, as
 well as other relationships that the association class participates
 in, may be used to define the semantics of the relationship. If the
 relationship is not implemented as an association class, then no
 additional semantics (beyond those defined by the type of the
 relationship) are expressed by the relationship.

3.2.3.7. Multiplicity

 A specification of the range of allowable cardinalities that a set
 of entities may assume. This is always a pair of ranges, such as
 1 - 1 or 0..n - 2..5.

3.2.3.8. Navigability

 A relationship may have a restriction on the ability of an object
 at one end of the relationship to access the object at the other
 end of the relationship. This document defines two choices:

 1. Each object is navigable by the other, which is indicated
 by NOT providing any additional symbology, or

Strassner, et al. Expires July 4, 2016 [Page 17]

Internet-Draft SUPA Generic Policy Model January 2016

 2. An object A can navigate to object B, but object B cannot
 navigate to object A. This is indicated by an open-headed
 arrow pointing to the object that cannot navigate to the
 other object. In this example, the arrow would be pointing
 at object B.

 Examples of navigability are:

 +---------+ 3..4 +---------+
 | | 1..2 \| | |
 | Class A |--------------| Class B |
 | | /| |
 +---------+ +---------+

 This is an association. Class A can navigate to Class B, but Class
 B cannot navigate to Class A. This is a mandatory association,
 since none of the multiplicities contain a '0'. This association
 reads as follows:

 Class A depends on 3 to 4 instances of Class B, and
 Class B depends on 1 to 2 instances of Class A.

3.3. Symbology

 The following symbology is used in this document:

3.3.1. Inheritance

 Inheritance: a subclass inherits the attributes and relationships
 of its superclass, as shown below:

 +------------+
 | Superclass |
 +------+-----+
 / \
 I
 I
 I
 +------+-----+
 | Subclass |
 +------------+

3.3.2. Association

 Association: Class B depends on Class A, as shown below:

Strassner, et al. Expires July 4, 2016 [Page 18]

Internet-Draft SUPA Generic Policy Model January 2016

 +---------+ +---------+
 +---------+ +---------+ | | \| |
 | Class A |------| Class B | | Class A |------| Class B |
 +---------+ +---------+ | | /| |
 +---------+ +---------+

 association with no association with
 navigability restrictions navigability restrictions

3.3.3. Aggregation

 Aggregation: Class B is the part, Class A is the aggregate,
 as shown below:

 +---------+ +---------+ +---------+
 | |/ \ +---------+ | |/ \ \| | | | |
 | Class A | A ---| Class B | | Class A | A ------| Class B |
 | |\ / +---------+ | |\ / /| |
 +---------+ +---------+ +---------+

 aggregation with no aggregation with
 navigability restrictions navigability restrictions

3.3.4. Composition

 Composition: Class B is the part, Class A is the composite,
 as shown below:

 +---------+ +---------+ +---------+
 | |/ \ +---------+ | |/ \ \| | | | |
 | Class A | C ---| Class B | | Class A | C ------| Class B |
 | |\ / +---------+ | |\ / /| |
 +---------+ +---------+ +---------+

 composition with no composition with
 navigability restrictions navigability restrictions

3.3.5. Association Class

 Association Class: Class C is the association class implementing
 the relationship D between classes A and B

Strassner, et al. Expires July 4, 2016 [Page 19]

Internet-Draft SUPA Generic Policy Model January 2016

 +---------+ +---------+
 | Class A |----+-----| Class B |
 +---------+ ^ +---------+
 |
 |
 +----------+----------+
 | Association Class C |
 +---------------------+

3.3.6. Abstract vs. Concrete Classes

 In UML, abstract classes are denoted with their name in italics.
 For this draft, a capital 'A' will be placed at either the top
 left or right corner of the class to signify that the class is
 abstract. Similarly, a captial 'C' will be placed in the same
 location to represent a concrete class. This is shown below.

 A C
 +---------+ +---------+
 | Class A | | Class B |
 +---------+ +---------+

 An Abstract Class A Concrete Class

Strassner, et al. Expires July 4, 2016 [Page 20]

Internet-Draft SUPA Generic Policy Model January 2016

4. Policy Abstraction Architecture

 This section describes the motivation for the policy abstractions
 that are used in SUPA. The following abstractions are provided:

 o The GPIM defines a technology-neutral information model that
 can express the concept of Policy.
 o All classes, except for SUPAPolicyMetadata, inherit from
 SUPAPolicyObject, or one of its subclasses
 o SUPAPolicyObject and SUPAPolicyMetadata are designed to
 inherit from classes in another model; the GPIM does not
 define an "all-encompassing" model.
 o This version of this document restricts the expression of
 Policy to a set of event-condition-action statements.
 o However, the purpose of the GPIM is to enable different
 policies that have fundamentally different representations
 to share common model elements. This abstraction of the
 content of a Policy from its representation is supported by:
 o All policy rules (of which SUPAECAPolicyRule is the
 first example of a concrete class) are derived from
 the SUPAPolicyStructure class.
 o All objects that are components of policy rules are
 derived from the SUPAPolicyComponentxxx`Structure class.
 o A SUPAPolicy MUST contain at least one SUPAPolicyClause.
 o A SUPAPolicy MAY specify one or more SUPAPolicyTarget,
 SUPAPolicySource, and SUPAPolicyMetadata objects to
 augment the semantics of the SUPAPolicy
 o A SUPAPolicyClause has two subclasses:
 o A SUPAPolicyBooleanClause, which is used to build
 SUPAECAPolicyRules from reusable objects.
 o A SUPAPolicyEncodedClause, which is used for using
 attributes instead of objects to construct a
 SUPAECAPolicyRule.
 o A SUPAECAPolicyRule defines the set of events and conditions
 that are responsible for executing its actions; it MUST have
 at least one event clause, at least one condition clause, and
 at least one action clause.
 o SUPAMetadata MAY be defined for any SUPAPolicyObject class.
 o SUPAMetadata MAY be prescriptive and/or descriptive in nature.

 Please see the Appendices for experimental definitions of
 declarative policies. Note that they also are derived from the
 GPIM, and extend (but do not change) the above abstractions.

Strassner, et al. Expires July 4, 2016 [Page 21]

Internet-Draft SUPA Generic Policy Model January 2016

4.1. Motivation

 The power of policy management is its applicability to many
 different types of systems. There are many different actors that
 can use a policy management system, including end-users, operators,
 application developers, and administrators. Each of these
 constituencies have different concepts and skills, and use
 different terminology. For example, an operator may want to express
 an operational rule that states that only Platinum and Gold users
 can use streaming multimedia applications. As a second example, a
 network administrator may want to define a more concrete policy
 rule that looks at the number of dropped packets and, if that
 number exceeds a programmable threshold, changes the queuing and
 dropping algorithms used.

 SUPA may be used to define other types of policies, such as for
 systems and operations management; an example is: "All routers and
 switches must have password login disabled". See section 3 of [8]
 for additional declarative and ECA policy examples.

 All of the above examples are commonly referred to as "policy
 rules", but they take very different forms, since they are at very
 different levels of abstraction and typically authored by
 different actors. The first was very abstract, and did not contain
 any technology-specific terms, while the second was more concrete,
 and likely used technical terms of a general (e.g., IP address
 range, port numbers) as well as a vendor-specific nature (e.g.,
 specific queuing, dropping, and/or scheduling algorithms
 implemented in a particular device). The third restricted the type
 of login that was permissible for certain types of devices in the
 environment.

 Note that the first two policy rules could directly affect each
 other. For example, Gold and Platinum users might need different
 device configurations to give the proper QoS markings to their
 streaming multimedia traffic. This is very difficult to do if a
 common policy model does not exist, especially if the two policies
 are authored by different actors that use different terminology
 and have different skill sets. More importantly, the users of
 these two policies likely have different job responsibilities.
 They may have no idea of the concepts used in each policy. Yet,
 their policies need to interact in order for the business to
 provide the desired service. This again underscores the need for
 a common policy framework.

 Certain types of policy rules (e.g., ECA) may express actions, or
 other types of operations, that contradict each other. SUPA
 provides a rich object model that can be used to support language

 definitions that can find and resolve such problems.

Strassner, et al. Expires July 4, 2016 [Page 22]

Internet-Draft SUPA Generic Policy Model January 2016

4.2. SUPA Approach

 The purpose of the SUPA Generic Policy Information Model (GPIM) is
 to define a common framework for expressing policies at different
 levels of abstraction. SUPA uses the GPIM as a common vocabulary
 for representing policy concepts that are independent of language,
 protocol, repository, and level of abstraction. This enables
 different actors to author and use policies at different levels of
 abstraction. This forms a policy continuum [1] [2], where more
 abstract policies can be translated into more concrete policies,
 and vice-versa.

 Most systems define the notion of a policy as a single entity.
 This assumes that all users of policy have the same terminology,
 and use policy at the same level of abstraction. This is rarely,
 if ever, true in modern systems. The policy continuum defines a
 set of views (much like RM-ODP's viewpoints [9]) that are each
 optimized for a user playing a specific role. SUPA defines the
 GPIM as a standard vocabulary and set of concepts that enable
 different actors to use different formulations of policy. This
 corresponds to the different levels in the policy continuum, and
 as such, can make use of previous experience in this area.

 It may be necessary to translate a Policy from a general to a more
 specific form (while keeping the abstraction level the same). For
 example, the declarative policy "Every network attached to a VM
 must be a private network owned by someone in the same group as
 the owner of the VM" may be translated to more formal form (e.g.,
 Datalog (as in OpenStack Congress). It may also be necessary to
 translate a Policy to a different level of abstraction. For
 example, the previous Policy may need to be translated to a form
 that network devices can process directly. This requires a common
 framework for expressing policies that is independent of the level
 of abstraction that a Policy uses.

4.3. SUPA Generic Policy Information Model Overview

 Figure 2 illustrates the approach for representing policy rules
 in SUPA. The top two layers are defined in this document; the
 bottom layer (Data Models) are defined in separate documents.
 Conceptually, the GPIM defines a set of objects that define the
 key elements of a Policy independent of how it is represented or
 its content. As will be shown, there is a significant difference
 between SUPAECAPolicyRules (see Section 6) and other types of
 policies (see Section 7). In principle, other types of SUPAPolicies
 could be defined, but the current charter is restricted to using
 only event-condition-action SUPAPolicies as exemplars.

Strassner, et al. Expires July 4, 2016 [Page 23]

Internet-Draft SUPA Generic Policy Model January 2016

 +--+
 | SUPA Generic Policy Information Model (GPIM) |
 +----------------------+-----------------------+
 / \
 |
 |
 +-----------------+--------------+
 | |
 | |
 +-----------+---------------+ +-------------+-------------+
 | SUPAECAPolicyRule | | Other Policy Models that |
 | Information Model (EPRIM) | | are Derived from the GPIM |
 +-----------+---------------+ +-------------+-------------+
 / \ / \
 | |
 | |
 +-----------+-----------+ +-----------+------------+
 | ECAPolicyRule | | Other Types of |
 | Data Model | | Data Models |
 +-----------------------+ +------------------------+

 Figure 2. Overview of SUPA Policy Rule Abstractions

 This draft defines the GPIM and EPRIM. Note that there is only
 ONE GPIM and ONE EPRIM. While both can be extended, it is
 important to limit the number of information models to one, in
 order to avoid defining conflicting concepts at this high a
 level of abstraction. Similarly, if the GPIM and EPRIM are part
 of another information model, then they should collectively
 still define a single information model. The GPIM defines the
 following concepts:

 o A class defining the top of the GPIM class hierarchy, called
 SUPAPolicyObject
 o Four subclasses of SUPAPolicyObject, representing:
 o the top of the PolicyRule hierarchy, called
 SUPAPolicyStructure
 o the top of the PolicyRule component hierarchy, called
 SUPAPolicyComponentStructure
 o PolicySource
 o PolicyTarget

 The SUPAPolicyStructure hierarchy has two main subclasses, an
 atomic (stand-alone) and composite (hierarchy of) PolicyRule.
 The SUPAPolicyComponentStructure hierarchy has two main
 subclasses:
 o A SUPAPolicyClause (the building block of all Policies)
 o A SUPAPolicyComponentDecorator, which uses the decorator
 pattern to define objects that make up the content of

 the SUPAPolicyClause

Strassner, et al. Expires July 4, 2016 [Page 24]

Internet-Draft SUPA Generic Policy Model January 2016

 This yields the following high-level structure:

 A
 +------------------+
 | SUPAPolicyObject |
 +--------+---------+
 I
 I
 +------------+------------------+
 I I
 A I A I
 +--------+------------+ +------------+-----------------+
 | SUPAPolicyStructure | | SUPAPolicyComponentStructure |
 +--------+------------+ +------------+-----------------+
 I I
 I I
 +-------+ +-------+-------+
 I I I I
 A I I A I I
 +-------------+----+ I +-----------+---------+ I
 | SUPAPolicyAtomic | I | SUPAPolicyClause | I
 +------------------+ I +---------------------+ I
 C I A I
 +-----------------+---+ +--------------------+---------+
 | SUPAPolicyComposite | | SUPAPolicyComponentDecorator |
 +---------------------+ +------------------------------+

 Figure 3. Functional View of the Top-Level GPIM

 Note that all classes except the SUPAPolicyComposite class are
 defined as abstract. This provides more freedom for the data
 modeler in implementing the data model. For example, if the data
 model uses an object-oriented language, such as Java, then the
 above structure enables all of the abstract classes to be
 collapsed to a single concrete class. If this is done, attributes
 as well as relationships are inherited.

4.3.1. SUPAPolicyObject

 A SUPAPolicyObject serves as a single root of the SUPA system
 (i.e., all other classes in the model are subclasses of the
 SUPAPolicyObject class). This simplifes code generation and
 reusability.

Strassner, et al. Expires July 4, 2016 [Page 25]

Internet-Draft SUPA Generic Policy Model January 2016

4.3.2. SUPAPolicyStructure

 SUPAPolicyStructure is an abstract superclass that serves as the
 base class for defining all types of policies (though in this
 version of this document, this is limited to ECA policies). It
 serves as a convenient aggregation point to define atomic and
 composite SUPAPolicies; it also enables PolicySources and/or
 PolicyTargets to be associated with a given set of Policies.

 SUPA Policies are defined as either a stand-alone PolicyContainer
 (i.e., a subclass of SUPAPolicyAtomic), or a hierarchy of
 PolicyContainers (i.e., as an instance of or subclass of
 SUPAPolicyComposite). A PolicyContainer specifies the
 structure, content, and optionally, source, target, and metadata
 information for the Policy.

 This document defines a SUPAPolicy as an ECA Policy Rule, though
 the GPIM enables other types of policies to be defined and used
 with an ECA policy rule. The GPIM model is used in [2] and [5],
 along with extensions that allow [2] and [5] to define multiple
 types of policies that are derived from the GPIM. They also allow
 different combinations of different types of policy rules to be
 used with each other. However, the ability to define different
 types of policy rules, let alone combine different types of
 policies, is NOT true of [RFC3060], [RFC3460], [4] and [6];
 [RFC3060], [RFC3460], and [4] are limited to only defining
 condition-action rules, and [6] is limited to only defining ECA
 policy rules.

4.3.3. SUPAPolicyComponentStructure

 SUPAPolicyComponentStructure is an abstract superclass that serves
 as the base class for defining the set of policy components that
 are used to make up a given Policy. From an information model
 point-of-view, this isolates the various subclasses of
 SUPAPolicyComponentStructure, and controls how they are used by
 other different elements of the SUPAPolicy hierarchy.

4.3.4. SUPAPolicyClause

 All policies derived from the GPIM are made up of one or more
 SUPAPolicyClauses, which define the content of the Policy.
 This enables a Policy of one type (e.g., ECA) to invoke Policies
 of the same or different types. This is an abstract class, and
 serves as a convenient aggregation point for assembling other
 objects that make up a SUPAPolicyClause.

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 26]

Internet-Draft SUPA Generic Policy Model January 2016

 The GPIM defines a single concrete subclass of SUPAPolicyClause.
 called SUPAEncodedClause. This is a generic clause, and can be
 used by any type of Policy in a stand-alone fashion or to
 construct more complex clauses that form a policy statement. Note
 that there is no need to create the SimplePolicyCondition and
 ComplexPolicyCondition objects defined in [RFC3460].

 Other models define additional subclasses of SUPAPolicyStatment
 (e.g., the EPRIM defines a SUPABooleanClause, which is specific to
 an ECA Policy Rule, and the LSIM (see Appendix) defines a
 SUPALogicClause, which is specific to declarative policies). This
 structure enables different types of Policies, which have
 different forms of content and structure, to all be represented
 as subclasses of SUPAPolicyClause. This enables the designer
 to use multiple types of Policies.

 A SUPAPolicyClause is defined as an object. Therefore, clauses and
 sets of clauses are objects, which promotes reusability.

4.3.5. SUPAPolicyComponentDecorator

 One of the problems in building a policy model is the tendency to
 have a multitude of classes, and hence object instances, to
 represent different combinations of policy events, conditions, and
 actions. This can lead to class and or relationship explosion, as
 if the case in [RFC3460], [4], and [6].

 SUPAPolicyClauses are constructed using the Decorator Pattern
 [11]. This is a design pattern that enables behavior to be
 selectively added to an individual object, either statically or
 dynamically, without affecting the behavior of other objects from
 the same class. The decorator pattern uses composition, instead of
 inheritance, to avoid class and relationship explosion. The
 decorator pattern also enable new objects to be composed from
 parts or all of existing objects without affecting the existing
 objects.

 This enables the resulting SUPAPolicyClause to be constructed
 completely from objects in the SUPA information model. This
 facilitates the construction of policies at runtime by a machine.
 This is also true of [2] and [5]; however, this is NOT true of
 [RFC3060], [RFC3460], [4] and [6], since they lack both the
 abstraction of a common SUPAPolicyClause and do not use the
 decorator (or similar) design pattern.

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 27]

Internet-Draft SUPA Generic Policy Model January 2016

 SUPAPolicyComponentDecorator defines four types of objects that
 can be used to form a SUPAPolicyClause. Each object may be used
 with all other objects, if desired. The first three are defined
 in the GPIM, with the last defined in the EPRIM. The objects are:

 o SUPAPolicyTerm, which enables a clause to be defined in a
 canonical {variable, operator, value} form
 o SUPAVendorDecoratedComponent, which enabled a custom object
 to be defined and then used in a SUPAPolicyClause
 o SUPAPolicyCollection, which enables a collection of objects
 to be gathered together and associated with all or a portion
 of a SUPAPolicyClause
 o SUPAECAComponet, which defines Events, Conditions, and Actions
 as reusable objects

 This approach facilitates the machine-driven construction of
 policies. Note that this is completely optional; policies do not
 have to use these constructs.

4.4. The Design of the GPIM

 This section describes the overall design of the GPIM.

4.4.1. Structure of Policies

 The GPIM defines a policy as a type of PolicyContainer. For this
 version, only ECA Policy Rules will be described. However, it
 should be noted that the mechanism described is applicable to
 other types of policies (e.g., declarative) as well.

 Recall that a PolicyContainer was defined as a special type of
 container that provides at least the following three functions:

 1. It uses metadata to define how its content is interpreted
 2. It separates the content of the policy from the
 representation of the policy
 3. It provides a convenient control point for OAMP operations.

 The first requirement is provided by the ability for any subclass
 of Policy (the root of the information model) to aggregate one or
 more concrete instances of a PolicyMetadata class. This is
 explained in detail in section 5.2.2.

 The second requirement is met by representing an ECA Policy as
 having two parts: (1) a rule part and (2) components that make up
 the rule. Since functional and declarative policies are not,
 strictly speaking, "rules", the former is named PolicyStructure,
 while the latter is named PolicyComponentStructure.

Strassner, et al. Expires July 4, 2016 [Page 28]

Internet-Draft SUPA Generic Policy Model January 2016

 The third requirement is met by the concrete subclasses of
 PolicyStructure. Since they are PolicyContainers, they are made
 up of the SUPAECAPolicyRule, its commponents, and any metadata
 that applies to the PolicyContainer, the SUPAECAPolicyRule, and.or
 any components of the SUPAECAPolicyRule. This provides optional
 low-level control over any part of the SUPAECAPolicyRule.

 The above requirements result in the design shown in Figure 4.

 A SUPAHasPolicyMetadata A
 +------------------+/ \ \+--------------------+
 | SUPAPolicyObject | A -----------------------| SUPAPolicyMetadata |
 +---------+--------+\ / /+--------------------+
 I 0..n 0..n
 I
 I
 +------+------------------------------------+
 I I
 A I A I
 +--------+------------+ +------------------+-----------+
 | SUPAPolicyStructure | | SUPAPolicyComponentStructure |
 +--------+------------+ +-------------+----------------+
 / \ / \
 I I
 (subclasses representing (subclasses representing
 different types of policies) different policy components)

 Figure 4. Structure of a Policy

 Note that aggregation in Figure 4 (named SUPAHasPolicyMetadata)
 is realized as an association class, in order to manage which set
 of Metadata can be aggregated by which SUPAPolicyObject. The
 combination of these three functions enables a PolicyContainer
 to define the behavior of how its constituent components will be
 accessed, queried, stored, retrieved, and how they operate.

 It is often necessary to construct groups of policies. The GPIM
 follows [2] and [5], and uses the composite pattern [11] to
 implement this functionality, as shown in Figure 5 below. There
 are a number of advantages to using the composite pattern over a
 simple relationship, as detailed in [11].

 Figure 5 shows that SUPAPolicyStructure has two subclasses:
 SUPAPolicyStructureComposite and SUPAPolicyStructureAtomic. The
 former is used to represent groups of SUPAPolicyStructure objects
 (i.e., groups of SUPAPolicyStructureAtomic and/or
 SUPAPolicyStructureComposite objects), and the latter is used to

 represent stand-alone Policy Rules.

Strassner, et al. Expires July 4, 2016 [Page 29]

Internet-Draft SUPA Generic Policy Model January 2016

 A
 1..n +---------------------+
 \| |
 +--------------------------| SUPAPolicyStructure |
 | SUPAHasPolicyStructure /| |
 | +--------+------------+
 | / \
 | I
 | I
 | +---------------+--------------+
 | I I
 | C I A I
 | 0..1 +------------+---------------+ +-----------+-------------+
 | / \| | | |
 +--- A |SUPAPolicyStructureComposite| |SUPAPolicyStructureAtomic|
 \ /| | | |
 +----------------------------+ +-------------------------+

 Figure 5. The Composite Pattern Applied to SUPAPolicyStructure

 The SUPAHasPolicyStructure aggregation says that if it is
 instantiated, one or more SUPAPolicyStructure objects can be
 contained in a SUPAPolicyStructureComposite. This works due to
 inheritance. Since the SUPAPolicyStructure class is a superclass
 of both SUPAPolicyStructureAtomic and SUPAPolicyStructureComposite,
 a SUPAPolicyStructureComposite can contain either class. The
 SUPAHasPolicyStructure aggregation is realized as an association
 class, in order to manage which set of SUPAPolicyStructure objects
 can be aggregated by which SUPAPolicyStructureComposite object.
 (If a stand-alone policy rule is desired, then a concrete instance
 of a SUPAPolicyStructureAtomic class is created; there is no need
 to instantiate the SUPAHasPolicyStructure aggregation.)

 SUPAPolicyStructureComposite is defined as a concrete class, so
 that it can be directly instantiated and used without having to
 subclass it. In contrast, the other five classes described in
 Figures 3 and 4 are all defined as abstract. This helps simplify
 the construction of the data model, because abstract classes cannot
 be instantiated (rather, they are used to define characteristics
 and behavior of the concepts they represent).

4.4.2. Representing an ECA Policy Rule

 An ECA policy rule is a statement that consists of an event clause,
 a condition clause, and an action clause. Any or all of these
 clauses can be made into more complex Boolean statements. For
 example, the SUPAPolicyClause: "(A AND B) OR NOT (C AND D))

 consists of two clauses, "(A AND B)" and "(C OR D)", that are
 combined together using the operators OR and NOT.

Strassner, et al. Expires July 4, 2016 [Page 30]

Internet-Draft SUPA Generic Policy Model January 2016

 A SUPAECAPolicyRule is defined (in the EPRIM) as an abstract
 subclass of SUPAPolicyStructureAtomic, so that the composite
 pattern can be applied to it.

 A A
 +---------------------------+ +------------------+
 | SUPAPolicyStructureAtomic | | SUPAPolicyClause |
 +---------+---------+-------+ +--------+----+----+
 / \ / \ 0..1 1..n / \ I
 I A | I
 I \ / | I
 I | | I
 I | SUPAHasPolicyClause | I
 I +------------------------+ I
 A I A I
 +------+------------+ +----------+-------+
 | SUPAECAPolicyRule | | SUPAPolicyClause |
 +-------------------+ +------------------+

 Figure 6. SUPAECAPolicyRule Aggregating SUPAPolicyClauses

 Note that the aggregation SUPAHasPolicyClause in Figure 6 is
 realized as an association class, in order to manage which set
 of SUPAPolicyClauses can be aggregated by which set of
 SUPAECAPolicyRules. This aggregation is defined at the
 SUPAPolicyStructureAtomic level, and not at SUPAECAPolicyRule,
 so that non-ECA policies can use this aggregation.

 Since a SUPAECAPolicyRule consists of three SUPAPolicyClauses,
 at least three separate instances of the SUPAHasPolicyClause
 aggregation are instantiated in order to make a complete
 SUPAECAPolicyRule, as shown in Figure 7.

 A A
 +-------------------+ +--------------------+
 | SUPAECAPolicyRule | | SUPAPolicyClause |
 +--+----+----+------+ +-------+----+----+--+
 / \ / \ / \ 1..n 0..n / \ / \ / \
 A A A | | |
 \ / \ / \ / | | |
 | | | | | |
 | | | SUPAHasPolicyClause #1 | | |
 | | +------------------------------+ | |
 | | | |
 | | SUPAHasPolicyClause #2 | |
 | +--+ |
 | |
 | SUPAHasPolicyClause #3 |
 +--+

 Figure 7. Instantiating a SUPAECAPolicyRule, part 1

Strassner, et al. Expires July 4, 2016 [Page 31]

Internet-Draft SUPA Generic Policy Model January 2016

 In figure 7, SUPAECAPolicyRule is shown as "owning" these three
 aggregations, since it inherits them from its superclass
 (SUPAPolicyStructureAtomic). The three aggregations represent the
 event, condition, and action clauses of a policy rule. Note that
 each of these clauses MAY consist of one or more
 SUPAPolicyClauses. Similarly, each SUPAPolicyClause MAY
 consist of one or more clauses. In this way, simple and complex
 (e.g., Boolean combinations of clauses) are supported, without
 having to define additonal objects (as is done in [RFC3460] and
 [4], with the SimplePolicyCondition, CompoundPolicyCondition,
 SimplePolicyAction, and CompoundPolicyAction classes).

 The multiplicity of the SUPAHasPolicyClause aggregation is
 1..n on the aggregate side and 0..n on the part side. This means
 that a particular SUPAECAPolicyRule MUST have at least one
 SUPAPolicyClause. This cardinality is refined to 3..n for
 SUPAECAPolicyRules, but is defined to be 1..n because other
 types of Policies have different needs. The 0..n cardinality
 means that a SUPAPolicyClause may be aggregated by zero or
 more SUPAECAPolicyRules. The zero is provided so that
 SUPAPolicyClauses can be stored in a repository before the
 SUPAECAPolicyRule is created; the "or more" recognizes the fact
 that multiple SUPAECAPolicyRules could aggregate the same
 SUPAPolicyClause.

 In Figure 7, suppose that SUPAHasPolicyClause#1, #2, and #3
 represent the aggregations for the event, condition, and action
 clauses, respectively. This means that each of these
 SUPAHasPolicyClause aggregations must explicitly identify the
 type of clause that it represents.

 In looking at Figure 7, there is no difference between any of the
 three aggregations, except for the type of clause that the
 aggregation represents (i.e., event, condition, or action clause).

 Therefore, three different aggregations, each with their own
 association class, is not needed. Instead, the GPIM defines a
 single aggregation (SUPAHasPolicyClause) with a single abstract
 association class (SUPAHasPolicyClauseDetail); this association
 class is then subclassed into three concrete subclasses, one each
 to represent the semantics for an event, condition, and action
 clause. This is shown in Figure 8.

https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 32]

Internet-Draft SUPA Generic Policy Model January 2016

 A A
 +-------------------+ +------------------+
 | SUPAECAPolicyRule | | SUPAPolicyClause |
 +---------+---------+ +----------+-------+
 / \ 1..n 0..n / \
 A |
 \ / |
 | |
 | SUPAHasPolicyClause |
 +--------------+-----------------+
 ^
 |
 A |
 +--------------+------------+
 | SUPAHasPolicyClauseDetail |
 +--------------+------------+
 / \
 I
 I
 +----------------+-----------------------+
 I I I
 C I C I C I
 +--------+-----+ +-------+----------+ +---------+-----+
 |Event subclass| |Condition subclass| |Action subclass|
 +--------------+ +------------------+ +---------------+

 Figure 8. Instantiating a SUPAECAPolicyRule, part 2

 The policy management system may use any number of different
 software mechanisms, such as introspection or reflection, to
 determine the nature of the aggregation, and select the
 appropriate subclass of SUPAHasPolicyClauseDetail. The three
 subclasses of SUPAHasPolicyClauseDetail are named
 SUPAHasPolicyEventDetail, SUPAHasPolicyConditionDetail, and
 SUPAHasPolicyActionDetail, respectively.

4.4.3. Creating SUPA Policy Clauses

 There are two different types of Policy Components. They are a
 SUPAPolicyClause and a SUPAPolicyComponentDecorator. The former
 is used to construct SUPAECAPolicyRules. However, since each
 SUPAECAPolicyRule can be made up of a variable number of
 SUPAPolicyComponents, the decorator pattern is used to "wrap"
 any concrete subclass of SUPAPolicyClause with zero or more
 concrete subclasses of the PolicyComponentDecorator object.
 This avoids problems of earlier models that resulted in a
 proliferation of classes and relationships, and is shown in

 Figure 9.

Strassner, et al. Expires July 4, 2016 [Page 33]

Internet-Draft SUPA Generic Policy Model January 2016

 A 1..n
 +------------------------------+/
 | SUPAPolicyComponentStructure |----------------------+
 +------------------------------+\ |
 / \ |
 I SUPAHasPolicyComponentDecorators |
 I |
 +--------------+-----------+ |
 I I |
 A I A I |
 +---------+--------+ +--------------+---------------+ 0..1 |
 | | | |/ \ |
 | SUPAPolicyClause | | SUPAPolicyComponentDecorator | A -----+
 | | | |\ /
 +------------------+ +------------------------------+

 Figure 9. Subclasses of SUPAPolicyComponentStructure

 While the above looks like a composite pattern, it is actually
 the decorator pattern [11]. As stated in 4.3, this pattern
 enables behavior to be selectively added to an individual
 object, either statically or dynamically, without affecting the
 behavior of other objects from the same class. Zero or more
 concrete subclasses of the SUPAPolicyComponentDecorator class
 can be used to decorate, or "wrap", any of the concrete
 subclasses of SUPAPolicyClause. Instead of using inheritance to
 statically create new classes to represent new types of object,
 the decorator pattern uses composition to dynamically combine
 smaller objects into more robust ones. This is done by defining an
 interface in SUPAPolicyComponent that all of the subclasses of
 SUPAPolicyComponent conform to. Since the subclasses are of the
 same type as SUPAPolicyComponent, they all have the same interface.
 This allows each concrete SUPAPolicyComponentDecorator subclass to
 add its attributes and/or behavior to the concrete subclass of
 SUPAPolicyClause that it is decorating (or "wrapping").

 More importantly, this represents an important design optimization
 for data models. Note that a single SUPAECAPolicyRule can consist
 of any number of SUPAPolicyClauses, each of very different
 types. If inheritance was used, then a subclass AND an aggregation
 would be required for each separate statement that makes up the
 policy rule. Clearly, continuing to subclass is not practical.
 Worse, suppose composite objects are desired (e.g., a new object
 Foo is made up of existing objects Bar and Baz). If all that was
 needed was one attribute of Bar and two of Baz, the developer
 would still have to use the entire Bar and Baz classes. This is
 wasteful and inefficient.

Strassner, et al. Expires July 4, 2016 [Page 34]

Internet-Draft SUPA Generic Policy Model January 2016

 In contrast, the decorator pattern enables all, or just some, of
 the attributes and/or behavior of a class to "wrap" another class.
 This is used heavily in many production systems (e.g., the
 java.io package) because the result is only the behavior that is
 required, and no other objects are affected.

 This class hierarchy is used to define objects that may be used
 to construct a SUPAPolicyClause. The decorator object can add
 behavior before, and/or after, it delegates to the object that it
 is decorating. The subclasses of SUPAPolicyComponentDecorator
 provide a very flexible and completely dynamic mechanism to:

 1) add or remove behavior to/from an object
 2) ensure that objects are constructed using the minimum amount
 of features and functionality required

 SUPAPolicyComponentDecorator defines four subclasses, as shown in
 Figure 10.

 A
 +----------------------------+
 |SUPAPolicyComponentDecorator|
 +-------------+--------------+
 / \
 I
 I
 +------------+------------+-----------------+
 I I I I
 A I I C I I
 +--------+-------+ I +--------+-------------+ I
 | SUPAPolicyTerm | I | SUPAPolicyCollection | I
 +----------------+ I +----------------------+ I
 I I
 C I A I
 +---------------+--------------+ +---------+--------+
 | SUPAVendorDecoratedComponent | | SUPAECAComponent |
 +------------------------------+ +------------------+

 Figure 10. Subclasses of SUPAPolicyComponentDecorator

 If a SUPAPolicyEncodedClause is being used, then there is no need
 to use any of the SUPAPolicyComponentDecorator subclasses, since
 the SUPAPolicyEncodedClause already completely defines the
 SUPAPolicyClause.

 However, if a SUPAPolicyEncodedClause is NOT being used, then a
 SUPA Policy Clause will be constructed using one or more types of
 objects that are each subclasses of SUPAPolicyComponentDecorator.

Strassner, et al. Expires July 4, 2016 [Page 35]

Internet-Draft SUPA Generic Policy Model January 2016

 These four subclasses provide four different ways to construct a
 SUPAPolicyClause:

 1) as a {variable, operator, value} clause
 2) as an encoded object (e.g., to pass YANG or CLI code)
 3) as a collection of objects that requires further processing
 in order to be made into a SUPAPolicyClause
 4) as an Event, Condition, or Action object

 The power of the decorator pattern is that these four different
 types of objects can be intermixed. For example, the first and
 last types can be combined as follows:

 Variable == Event (A)
 Condition BETWEEN VALUE1 and VALUE2 (B)
 (Event.severity == 'Critical' AND
 (SLA.violation == TRUE OR User.class == 'Gold')) (C)

 In the above rules, example (B) defines two different instances of
 a Value class, denoted as Value1 and Value2; (C) uses the
 nomenclature foo.bar, where foo is the name of a class, and bar is
 the name of an attribute of that class.

4.4.4. Creating SUPAPolicyClauses

 The GPIM defines a single subclass of SUPAPolicyClause, called
 SUPAPolicyEncodedClause. This clause is generic in nature, and
 MAY be used with any type of policy (ECA or otherwise). The EPRIM
 defines an ECA-specific subclass of the GPIM, called a
 SUPAPolicyBooleanClause, which is intended to be used with just
 ECA policy rules; however, other uses are also possible.

 Together, the GPIM and EPRIM provide several alternatives to
 implement a SUPAPolicyClause, enabling the developer to
 optimize the solution for different constraints:

 1) The policy statement can be encoded using one or more
 SUPAPolicyEncodedClauses; this has the option of encoding
 the entire statement or any of its three individual clauses
 (event, condition, action).
 2) The policy statement can be defined using one or more
 SUPAPolicyBooleanClauses; each of the three clauses can be
 defined as either a single SUPAPolicyBooleanClause, or a
 combination of SUPAPolicyBooleanClauses that are logically
 ANDed, ORed, and/or NOTed.
 3) The above two mechanisms can be combined (e.g., the first
 used to define the event clause, and the second used to
 define the condition and action clauses).

Strassner, et al. Expires July 4, 2016 [Page 36]

Internet-Draft SUPA Generic Policy Model January 2016

 Figure 11 shows the subclasses of SUPAPolicyClause.

 A
 +------------------+
 | SUPAPolicyClause |
 +--------+---------+
 / \
 I
 I
 I
 +------------+------------+
 I I
 A I C I
 +------------+----------+ +-----------+-----------+
 |SUPAPolicyBooleanClause| |SUPAPolicyEncodedClause|
 +-----------------------+ +-----------------------+

 Figure 11. Subclasses of SUPAPolicyClause

 SUPAPolicyBooleanClause is defined in the EPRIM, and is used to
 construct Boolean clauses that collectively make up a
 SUPAPolicyClause. It is abstract so that the composite pattern
 can be applied to it, which enables hierarchies of Boolean
 clauses to be created.

4.4.5. SUPAPolicySources

 A SUPAPolicySource is a set of managed entities that authored,
 or are otherwise responsible for, this SUPAPolicy. Note that a
 SUPAPolicySource does NOT evaluate or execute SUPAPolicies. Its
 primary use is for auditability, authorization policies, and
 other applications of deontic and/or alethic logic.

 SUPAPolicyStructure defines two aggregations, SUPAHasPolicySource
 and SUPAHasPolicyTarget. Since SUPAECAPolicyRule is a subclass of
 SUPAPolicyStructureAtomic, which is in turn a subclass of
 SUPAPolicyStructure, it (and its subclasses) inherit both of
 these aggregations. This enables SUPAPolicySources and/or
 SUPAPolicyTargets to be attached to SUPAECAPolicyRules.

 Figure 12 shows how SUPAPolicySources and SUPAPolicyTargets are
 attached to a SUPAPolicy. Note that both of these aggregations
 are defined as optional, since their multiplicity is 0..n - 0..n.
 In addition, both of these aggregations are realized as
 association classes, in order to be able to control which
 SUPAPolicySources and SUPAPolicyTargets are attached to a given
 SUPAECAPolicyRule.

Strassner, et al. Expires July 4, 2016 [Page 37]

Internet-Draft SUPA Generic Policy Model January 2016

 A
 +------------------+
 | SUPAPolicyObject |
 +--------+---------+
 / \
 I
 I
 I
 +---------------+----+--------------------+
 I I I
 I I I
 A I C I C I
 +----------+--------+ +--------+-------+ +--------+-------+
 |SUPAPolicyStructure| |SUPAPolicySource| |SUPAPolicyTarget|
 +----------+--------+ +--------+-------+ +--------+-------+
 / \ 0..n / \ 0..n / \
 I | |
 I | |
 I +--------+ |
 I | SUPAHasPolicySource |
 I | |
 I / \ |
 I A |
 A I 0..n \ / |
 +------------+--------------+ 0..n |
 | |/ \ |
 | SUPAPolicyStructureAtomic | A -----------------------+
 | |\ / SUPAHasPolicyTarget
 +------------+--------------+
 / \
 I
 I
 A I
 +---------+---------+
 | SUPAECAPolicyRule |
 +-------------------+

 Figure 12. ECAPolicyRules, SUPAPolicySources, and PolicyTargets

 A SUPAPolicySource MAY be mapped to a role (e.g., using the
 role-object pattern [11]); this indirection makes the system less
 fragile, as entities can be transparently added or removed from
 the role definition without adversely affecting the definition of
 the SUPAPolicy. Note that SUPAPolicyRole is a subclass of
 SUPAPolicyMetadata.

Strassner, et al. Expires July 4, 2016 [Page 38]

Internet-Draft SUPA Generic Policy Model January 2016

4.4.6. SUPAPolicyTargets

 A SUPAPolicyTarget defines the set of managed entities that a
 SUPAPolicy is applied to. This is useful for debugging, as well as
 when the nature of the application requires the set of managed
 entities affected by a Policy to be explicitly identified. This is
 determined by two conditions:

 1) The set of managed entities that are to be affected by the
 SUPAPolicy must all agree to play the role of a
 SUPAPolicyTarget. For example, a managed entity may or may
 not be in a state that enables SUPAPolicies to be applied to
 it to change its state.

 2) A SUPAPolicyTarget must be able to:
 a) process (either directly or with the aid of a proxy)
 SUPAPolicies, and/or
 b) receive the results of a processed SUPAPolicy and
 apply those results to itself.

 Figure 12 showed how SUPAPolicyTargets are attached to
 SUPAECAPolicyRules.

 A SUPAPolicyTarget MAY be mapped to a role (e.g., using the
 role-object pattern [11]); this indirection makes the system less
 fragile, as entities can be transparently added or removed from
 the role definition without adversely affecting the definition of
 the SUPAPolicy. Note that SUPAPolicyRole is a subclass of
 SUPAPolicyMetadata.

4.4.7. Policy Metadata

 Metadata is, literally, data about data. As such, it can be
 descriptive or prescriptive in nature.

4.4.7.1. Motivation

 There is a tendency in class design to make certain attributes,
 such as description, status, validFor, and so forth, bound to a
 specific class (e.g., [6]). This is bad practice in an information
 model. For example, different classes in different parts of the
 class hierarchy could require the use of any of these attributes;
 if one class is not a subclass of the other, then they must each
 define the same attribute as part of their class structure. This
 makes it difficult to find all instances of the attribute and
 ensure that they are synchronized. Furthermore, context can
 dynamically change the status of an object, so an easy way to
 update the status of one object instance without affecting other

 instances of the same object is required.

Strassner, et al. Expires July 4, 2016 [Page 39]

Internet-Draft SUPA Generic Policy Model January 2016

 Many models, such as [4] and [6], take a simplistic approach of
 defining a common attribute high in the hierarchy, and making it
 optional. This violates classification theory, and defeats the
 purpose of an information model, which is to specify the
 differences in characteristics and behavior between classes (as
 well as define how different classes are related to each other).
 Note that this also violates a number of well-known software
 architecture principles, including:

 o the Liskov Substitution Principle [13]
 (if A is a subclass of B, then objects instantiated from
 class B may be replaced with objects instantiated from
 class A WITHOUT ALTERING ANY OF THE PROGRAM SEMANTICS)
 o the Single Responsibility Principle [14]
 (every class should have responsibility over one, and only
 one, part of the functionality provided by the program)

 Most models use inheritance, not composition. The former is
 simpler, but has some well-known problems. One is called "weak
 encapsulaton", meaning that a subclass can use attributes and
 methods of a superclass, but if the superclass changes, the
 subclass may break. Another is that each time a new object is
 required, a new subclass must be created. These problems are
 indicative of the models in [RFC3460], [4], and [6].

 Composition is an alternative that provides code that is easier to
 use. This means that composition can provide data models that are
 more resistant to change and easier to use. By using composition,
 we can select just the metadata objects that are needed, instead
 of having to rely on statically defined objects. We can even
 create new objects from a set of existing objects through
 composition. Finally, we can use the decorator pattern to select
 just the attributes and behaviors that are required for a given
 instance.

 In [2] and [5], a separate metadata class hierarchy is defined to
 address this problem. This document follows this approach.

4.4.7.2. Design Approach

 The goal of the GPIM is to enable metadata to be attached to any
 subclass of SUPAPolicyObject that requires it. Since this is a
 system intended for policy-based management, it therefore makes
 sense to be able to control which metadata is attached to which
 policies dynamically (i.e., at runtime).

 One solution is to use the Policy Pattern [1], [2], [6], [12].
 This pattern was built to work with management systems whose

https://datatracker.ietf.org/doc/html/rfc3460

 actions were dependent upon context. The Policy Pattern works as
 follows:

Strassner, et al. Expires July 4, 2016 [Page 40]

Internet-Draft SUPA Generic Policy Model January 2016

 o Context is derived from all applicable system inputs (e.g.,
 OAMP data from network elements, business goals, time of
 day, geo-location, etc.).
 o Context is then used to select a working set of Policies.
 o Policies are then used to define behavior at various
 control points in the system.
 o One simple type of control point is an association class.
 Since the association class represents the semantics of how
 two classes are related to each other, then
 o ECAPolicyRule actions can be used to change the attribute
 values, methods, and relationships of the association
 class
 o This has the affect of changing how the two classes are
 related to each other
 o Finally, as context changes, the working set of policies
 change, enabling the behavior to be adjusted to follow
 changes in context (according to appropriate business goals
 and other factors, of course) in a closed loop manner.

 Conceptually, this is accomplished as shown in Figure 13 below.

 Defines
 +----------+ Behavior +------------+
 | Policies +----------------+ | SUPAPolicy |
 +----+-----+ 1..n | +------+-----+
 0..n /|\ | / \ 0..n
 | 1..n \|/ A
 | +-----------+--------------+ \ /
 | | SUPAPolicyMetadataDetail | |
 | +-----------+--------------+ |
 | Selects | |
 | Policies | |
 | +-------------------->+
 / \ Applies |
 A Behavior |
 0..n \ / \ / 0..n
 +----+-----+ +--------+---------+
 | Context | |SUPAPolicyMetadata|
 +----------+ +------------------+

 Figure 13. Context-Aware Policy Rules

 Assume that the set of deployed Policies are SUPAECAPolicyRules.
 Then, the actions of these SUPAECAPolicyRules will, for example,
 change attribute values in the SUPAPolicyMetadataDetail
 association class. This class represents the behavior of the
 SUPAHasPolicyMetadata aggregation, which is used to define

 which SUPAPolicyMetadata can be attached to which SUPAPolicy objet
 in this particular context.

Strassner, et al. Expires July 4, 2016 [Page 41]

Internet-Draft SUPA Generic Policy Model January 2016

 By using the decorator pattern on PolicyMetadata, any number of
 PolicyMetadata objects (or their attributes, etc.) can be wrapped
 around a concrete subclass of PolicyMetadata. This is shown in
 Figure 14 below.

 A
 +------------------+
 | SUPAPolicyObject |
 +--------+---------+
 / \ 0..n
 A
 \ /
 | A
 | 0..n +----------------+
 | SUPAHasPolicyMetadata \| |
 +-------------+-------------------| PolicyMetadata |
 ^ /| |
 | +--+----+--------+
 A | / \ / \ 1..n
 +-------------+---------------+ I |
 | SUPAHasPolicyMetadataDetail | I |
 +-----------------------------+ I |
 I |
 C I |
 +----------------------------+ I |
 | | I |
 | SUPAPolicyConcreteMetadata +IIIIII+ |
 | | I |
 +----------------------------+ I |
 I |
 A I |
 +-----------------------------+ I |
 | | I |
 | SUPAPolicyMetadataDecorator +IIIIIII+ |
 | | |
 +----------------+------------+ |
 / \ 0..1 |
 A |
 \ / |
 | |
 | PolicyObjectHasMetadata |
 +-------------------------+

 Figure 14. SUPAPolicyMetadata Subclasses and Relationships

 Policy, PolicyMetadata, and PolicyMetadataDecorator are abstract;
 PolicyConcreteMetadata is concrete, and is the object that

 instances of the PolicyMetadataDecorator subclasses are wrapped
 around.

Strassner, et al. Expires July 4, 2016 [Page 42]

Internet-Draft SUPA Generic Policy Model January 2016

4.4.7.3. Structure of SUPAPolicyMetadata

 This section will be completed in the next revision of this
 document.

4.5. Advanced Features

 This section will be completed in the next revision of this
 document.

4.5.1. Policy Grouping

 This section will be completed in the next revision of this
 document.

4.5.2. Policy Rule Nesting

 This section will be completed in the next revision of this
 document.

Strassner, et al. Expires July 4, 2016 [Page 43]

Internet-Draft SUPA Generic Policy Model January 2016

5. GPIM Model
 This section defines the classes, attributes, and relationships of
 the GPIM.

5.1. Overview
 The overall class hierarchy is shown in Figure 15.

 (Class of another model that SUPA is integrating into)
 |
 +---SUPAPolicyObject (5.2)
 | |
 | +---SUPAPolicyStructure (5.3)
 | | |
 | | +---SUPAPolicyStructureAtomic (5.4)
 | | |
 | | +---SUPAPolicyStructureComposite (5.5)
 | |
 | +---SUPAPolicyComponentStructure (5.6)
 | | |
 | | +---SUPAPolicyClause (5.7)
 | | | |
 | | | +---SUPAEncodedClause (5.8)
 | | |
 | | +---SUPAPolicyComponentDecorator (5.9)
 | | |
 | | +---SUPAPolicyTerm (5.10)
 | | | |
 | | | +---SUPAPolicyVariable (5.11)
 | | | |
 | | | +---SUPAPolicyOperator (5.12)
 | | | |
 | | | +---SUPAPolicyValue (5.13)
 | | |
 | | +---SUPAVendorDecoratedComponent (5.14)
 | | |
 | | +---SUPAPolicyCollection (5.15)
 | |
 | +---SUPAPolicySource (5.16)
 | |
 | +---SUPAPolicyTarget (see Section 5.17)
 |
 +---SUPAPolicyMetadata (see Section 5.18)
 |
 +---SUPAPolicyConcreteMetadata (see Section 5.19)
 |
 +---SUPAPolicyMetadataDecorator (see Section 5.20)

 Figure 15: Main Classes of the GPIM

Strassner, et al. Expires July 4, 2016 [Page 44]

Internet-Draft SUPA Generic Policy Model January 2016

 SUPAPolicy is the root of the SUPA class hierarchy. For
 implementations, it is assumed that SUPAPolicy is subclassed from
 a class from another model. In Figure 15, indentation represents
 subclassing. Numbers after a class refer to the section that
 defines the class.

 Classes, attributes, and relationships that are marked as
 "mandatory" MUST be part of a conformant implementation. Classes,
 attributes, and relationships that are marked as "optional"
 SHOULD be part of a conformant implementation.

 Unless otherwise stated, all classes (and attributes) defined in
 this section were abstracted from DEN-ng [2], and a version of
 them are in the process of being added to [5].

5.2. The Abstract Class "SUPAPolicyObject"

 This is a mandatory abstract class. Figure 16 shows the
 SUPAPolicyObject class, and its four subclasses.

 0..n 0..n
 +----------------+/ \ \+------------------+
 |SUPAPolicyObject| A ------------------------|SUPAPolicyMetadata|
 +--------+-------+\ / SUPAHasPolicyMetadata /+------------------+
 / \
 I
 I
 +-----------------+----------------+-----------+
 I I I I
 I I I I
 +--------+------------+ I I I
 | SUPAPolicyStructure | I I I
 +---------------------+ I I I
 I I I
 +-----------------+------------+ I I
 | SUPAPolicyComponentStructure | I I
 +------------------------------+ I I
 I I
 +---------+--------+ I
 | SUPAPolicyTarget | I
 +------------------+ I
 I
 +----------+-------+
 | SUPAPolicySource |
 +------------------+

 Figure 16. SUPAPolicyObject and Its Subclasses

Strassner, et al. Expires July 4, 2016 [Page 45]

Internet-Draft SUPA Generic Policy Model January 2016

 This class is the root of the SUPA class hierarchy. It defines the
 common attributes and relationships that all SUPA subclasses
 inherit.

 A SUPAPolicyObject MAY be qualified by a set of zero or more
 SUPAPolicyMetadata objects. This is provided by the
 SUPAHasPolicyMetadata aggregation (see Section 5.2.2). This
 enables the semantics of the SUPAPolicyObject to be more
 completely specified.

5.2.1. SUPAPolicyObject Attributes

 This section defines the attributes of the SUPAPolicyObject class.
 These attributes are inherited by all subclasses of the GPIM
 except for the SUPAPolicyMetadata class, which is a sibling class.

5.2.1.1. Object Identifiers

 This document defines two class attributes in SUPAPolicyObject,
 called supaPolObjIDContent and supaPolObjIDFormat, that together
 define a unique object ID. This enables all class instances to be
 uniquely identified.

 One of the goals of SUPA is to be able to generate different data
 models that support different types of protocols and repositories.
 This means that the notion of an object ID must be generic. It is
 inappropriate to use data modeling concepts, such as keys, GUIDs,
 UUIDs, FQDNs, URIs, and other similar mechanisms, to define the
 structure of an information model. Therefore, a synthetic object
 ID is defined using these two attributes. This can be used to
 facilitate mapping to different data model object schemes, such
 as those depending on URIs, FQDNs, UUIDs, primary key-foreign key
 relationships, UUIDs, and others can all be accommodated.

 The two attributes work collectively, with one defining the
 content of the object ID and the other defining how to interpret
 the content. These two attributes form a tuple, and together
 enable a machine to understand the syntax and value of an object
 identifier for the object instance of this class. This is based on
 the DEN-ng class design [2].

 Similarly, all SUPA classes are attributes are both uniquely
 named as well as prepended with the prefixes "SUPA" and "supa",
 respectively, to facilitate model integration.

Strassner, et al. Expires July 4, 2016 [Page 46]

Internet-Draft SUPA Generic Policy Model January 2016

5.2.1.2. The Attribute "supaPolObjIDContent"

 This is a mandatory string attribute that represents part of the
 object identifier of an instance of this class. It defines the
 content of the object identifier. It works with another class
 attribute, called supaPolObjIDFormat, which defines how to
 interpret this attribute. These two attributes form a tuple,
 and together enable a machine to understand the syntax and value
 of an object identifier for the object instance of this class.
 This is based on the DEN-ng class design [2].

5.2.1.3. The Attribute "supaPolObjIDFormat"

 This is a mandatory non-zero enumerated integer attribute that
 represents part of the object identifier of an instance of this
 class. It defines the format of the object identifier. It works
 with another class attribute, called supaPolObjIDContent, which
 defines the content of the object ID. These two attributes form
 a tuple, and together enable a machine to understand the syntax
 and value of an object identifier for the object instance of
 this class. The supaPolObjIDFormat attribute is mapped to the
 following values:

 0: undefined
 1: GUID
 2: UUID
 3: primary key
 4: foreign key
 5: URI
 6: FQDN

 The value 0 may be used to initialize the system, or to signal
 that there is a problem with thius particular SUPAPolicyObject.

5.2.1.4. The Attribute "supaPolicyDescription"

 This is an optional string attribute that defines a free-form
 textual description of this object.

5.2.1.5. The Attribute "supaPolicyName"

 This is an optional string attribute that defines the name of this
 Policy. This enables any existing generic naming attribute to be
 used for generic naming, while allowing this attribute to be used
 to name Policy entities in a common manner. Note that this is NOT
 the same as the commonName attribute of the Policy class defined
 in RFC3060 [RFC3060], as that attribute is intended to be used
 with just X.500 cn attributes.

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3060

Strassner, et al. Expires July 4, 2016 [Page 47]

Internet-Draft SUPA Generic Policy Model January 2016

5.2.2. SUPAPolicy Relationships

 This section defines the relationships of the SUPAPolicy class.

5.2.2.1. The Aggregation "SUPAHasPolicyMetadata"

 This is a mandatory aggregation that defines the set of
 SUPAPolicyMetadata that are aggregated by this particular
 SUPAPolicyObject.

 This aggregation is defined in section 5.18.2

5.2.2.2. The Association Class "SUPAHasPolicyMetadataDetail"

 This is a mandatory concrete association class that defines the
 semantics of the SUPAPolicyMetadata aggregation. This enables the
 attributes and relationships of the SUPAPolicyMetadataDetail class
 to be used to constrain which SUPAPolicyMetadata objects can be
 aggregated by this particular SUPAPolicyObject instance.

 This association class is defined in Section 5.18.3.

5.3. The Abstract Class "SUPAPolicyStructure"

 This is a mandatory abstract class that is used to represent the
 structure of a SUPAPolicy. This class (and all of its subclasses)
 is a type of PolicyContainer. SUPAPolicyStructure was abstracted
 from DEN-ng [2], and a version of this class is in the process of
 being added to [5]. For this release, the only official type of
 rule that is supported is the event-condition-action (ECA) type
 of policy rule. However, the structure of the SUPA hierarchy is
 defined to facilitate adding new types of rules.

 A SUPAPolicy may take the form of an individual policy or a set
 of policies. This requirement is supported by applying the
 composite pattern to the SUPAPolicyStructure class, as shown in
 Figure 5. Two subclasses of SUPAPolicyStructure are defined:
 SUPAPolicyAtomic (for defining stand-alone policies) and
 SUPAPolicyComposite (for defining hierarchies of policies). Each
 SSUPAPolicyComposite can have zero or more instances of a concrete
 subclass of a SUPAPolicyAtomic class and/or a SUPAPolicyComposite
 class, or subclasses of either.

Strassner, et al. Expires July 4, 2016 [Page 48]

Internet-Draft SUPA Generic Policy Model January 2016

5.3.1. SUPAPolicyStructure Attributes

 This section defines the attributes of the SUPAPolicyStructure
 class. Care must be taken in adding attributes to this class,
 because the behavior of future subclasses of this class (e.g.,
 declarative and functional policies) is very different than the
 behavior of SUPAECAPolicyRules.

5.3.1.1. The Attribute "supaPolContinuumLevel"

 This is an optional non-negative integer attribute. It defines
 the level of abstraction, or policy continuum level [10], of this
 particular SUPAPolicy. The value assignment of this class is
 dependent on the application; however, it is recommended that
 for consistency with other SUPA attributes, the value of 0 is
 reserved for initialization and/or error conditions.

 By convention, lower values represent more abstract levels of the
 policy continuum. For example, a value of 1 could represent
 business policy, a value of 2 could represent application-specific
 policies, and a value of 3 could represent low=level policies for
 network administrators.

5.3.1.2. The Attribute "supaPolDeployStatus"

 This is an optional attribute, which is an enumerated,
 non-negative integer. It defines the current deployment status of
 this SUPAPolicy. This means that both individual and groups of
 policies may be deployed. Both operational and test mode values
 are included in its definition. Values include:

 0: undefined
 1: deployed and enabled
 2: deployed and in test
 3: deployed but not enabled
 4: ready to be deployed
 5: not deployed

5.3.2. SUPAPolicyStructure Relationships

 The SUPAPolicyStructure class owns two relationships, which are
 defined in the following two subsections.

5.3.2.1. The Aggregation "SUPAHasPolicySource"

 This is an optional aggregation, and defines the set of
 SUPAPolicySource objects that are attached to this particular
 SUPAPolicyStructure object. The semantics of this aggregation
 are defined by the SUPAHasPolicySourceDetail association class.
 PolicySource objects are used for authorization policies, as well

 as to enforce deontic and alethic logic.

Strassner, et al. Expires July 4, 2016 [Page 49]

Internet-Draft SUPA Generic Policy Model January 2016

5.3.2.2. The Association Class "SUPAHasPolicySourceDetail"

 This is an optional association class, and defines the semantics
 of the SUPAHasPolicySource aggregation. The attributes and
 relationships of this class can be used to define which
 SUPAPolicySource objects can be attached to which particular set
 of SUPAPolicyStructure objects.

 Attributes will be added to this class at a later time.

5.3.2.3. The Aggregation "SUPAIsTargetOf"

 This is an optional aggregation, and defines the set of
 SUPAPolicyTargets that are attached to this particular
 SUPAPolicyStructure. The semantics of this aggregation is
 defined by the SUPAIsTargetOfDetail association class. The
 purpose of this class is to explicitly identify managed objects
 that will be affected by the execution of one or more SUPAPolicies.

5.3.2.4. The Association Class "SUPAIsTargetOfDetail"

 This is an optional association class, and defines the semantics
 of the SUPAPolicyTargetOf aggregation. The attributes and
 relationships of this class can be used to define which
 SUPAPolicyTargets can be attached to which particular set of
 SUPAPolicyStructure objects.

 Attributes will be added to this class at a later time.

5.4. The Abstract Class "SUPAPolicyStructureAtomic"

 SUPAPolicyStructureAtomic is the superclass of all of the different
 types of policies supported by the GPIM. For this release of this
 document, this is limited to ECA policy rules.

 The purpose of the SUPAPolicyStructureAtomic class is to provide a
 control point for aggregating SUPAPolicyClauses. Since it is the
 superclass of each type of policy, this means that all policies
 will use this same, critical, abstraction.

 A SUPAPolicyStructureAtomic represents a complete policy. More
 specifically, a SUPAPolicyStructureAtomic class represents a
 SUPAPolicy that can operate as a single, stand-alone, manageable
 object. Put another way, a SUPAPolicyStructureAtomic object can NOT
 be modeled as a set of hierarchical SUPAPolicy objects; if this
 functionality is required, then at least one
 SUPAPolicyStructureComposite object MUST be used.

Strassner, et al. Expires July 4, 2016 [Page 50]

Internet-Draft SUPA Generic Policy Model January 2016

 Each SUPAPolicyStructureAtomic object (or a subclass of it) MUST
 have at least one SUPAPolicyClause that is used to define the
 content of the policy.

 A SUPAPolicyStructureAtomic SHOULD have one or more instances of
 SUPAPolicyMetadata attached to it, so that the SUPAPolicyMetadata
 may provide additional descriptive and prescriptive information
 about the SUPAPolicyStructureAtomic object. It MAY also have one
 or more SUPAPolicySources and/or SUPAPolicyTargets attached to it.

 SUPAPolicyStructureAtomic objects inherit the attributes defined
 for its parent class (SUPAPolicyStructure). For example, they can
 be deployed, and have an associated policy continuum level.

5.4.1. SUPAPolicyStructureAtomic Attributes

 This section defines the attributes of the
 SUPAPolicyStructureAtomic class. This class defines the behavior
 of all types of atomic (i.e., stand-alone) policies, not just
 ECA policy rules. Therefore, care must be taken in adding
 attributes to this class, because the behavior of future
 subclasses of this class (e.g., declarative and functional
 policies) is very different than the behavior of
 SUPAECAPolicyRules.

5.4.1.1. The Attribute "supaPolExecStatus"

 This is an optional attribute, which is an enumerated,
 non-negative integer. It defines the current execution status
 of this SUPAPolicy. Both operational and test mode values are
 included in its definition. Values include:

 0: undefined
 1: executed and SUCEEDED (operational mode)
 2: executed and FAILED (operational mode)
 3: currently executing (operational mode)
 4: ready to execute (operational mode)
 5: executed and SUCEEDED (test mode)
 6: executed and FAILED (test mode)
 7: currently executing (test mode)
 8: ready to execute (test mode)

5.4.1.2. The Attribute "supaPolExecFailStrategy"

 This is an optional non-negative, enumerated integer that defines
 what actions, if any, should be taken by this
 SUPAPolicyStructureAtomic object if it fails to execute correctly.
 Values include:

Strassner, et al. Expires July 4, 2016 [Page 51]

Internet-Draft SUPA Generic Policy Model January 2016

 0: undefined
 1: attempt rollback of all actions taken and stop execution
 2: attempt rollback of only the action that failed and stop
 execution
 3: stop execution but do not rollback any policies
 4: ignore failure and continue execution

 A value of 0 can be used as an error condition. A value of 1 means
 that ALL execution is stopped, rollback of all actions (whether
 successful or not) is attempted, and that SUPAPolicies that
 otherwise would have been executed are ignored. A value of 2 means
 that execution is stopped, and a rollback of that SUPAPolicy (and
 ONLY that SUPAPolicy) is attempted. A value of 3 means that
 execution is stopped, but any SUPAPolicies that have been
 previously executed are left in their current state. A value of 4
 means that any failure will be ignored, and execution continues.

5.4.1.3. The Attribute "supaPolExecFailTakeActionName"

 This is an optional string attribute that identifies the name of
 the remediation to take if this PolicyStructure object failed to
 execute properly. The interpreation of this string attribute is
 defined by the supaPolExecFailTakeActionRes class attribute.

5.4.1.4. The Attribute "supaPolExecFailTakeActionRes"

 This is an optional enumerated, non-negative integer attribute that
 defines how to interpet the value of the
 supaPolExecFailTakeActionName class attribute. Values include:

 0: undefined
 1: by regex (regular expression)
 2: by URI

 * *
 * Editor's note: the above two attributes will be moved to *
 * an association class, and an association will be defined *
 * to make this more portable and powerful. *
 * *

5.4.2. SUPAPolicyStructureAtomic Relationships

 The SUPAPolicyStructureAtomic class defines a single relationship
 (SUPAHasPolicyClause), which is described in the following
 subsection.

Strassner, et al. Expires July 4, 2016 [Page 52]

Internet-Draft SUPA Generic Policy Model January 2016

5.4.2.1. The Aggregation "SUPAHasPolicyClause"

 This is a mandatory aggregation that defines the set of
 SUPAPolicyClauses that are aggregated by this particular
 SUPAPolicyStructureAtomic instance. The semantics of this
 aggregation are defined by the SUPAHasPolicyClauseDetail
 association class.

 Every SUPAPolicyStructureAtomic object instance MUST aggregate at
 least one SUPAPolicyClause object instance. However, the
 converse is NOT true. For example, a SUPAPolicyClause could be
 instantiated and then stored for later use in a policy repository.
 Furthermore, the same SUPAPolicyClause could be used by zero or
 more SUPAPolicyStructureAtomic object instances.

 Thus, the multiplicity of this aggregation is defined as 0..1 on
 the aggregate (i.e., the SUPAPolicyStructureAtomic side) and 1..n
 on the part (i.e., the SUPAPolicyClause side). This means that
 at least one SUPAPolicyClause MUST be aggregated by this
 SUPAPolicyStructureAtomic object. Similarly, a SUPAPolicyClause
 may be aggregated by this particular SUPAPolicyStructureAtomic
 object.

5.4.2.2. The Association Class "SUPAHasPolicyClauseDetail"

 This is a mandatory association class, and defines the semantics
 of the SUPAHasPolicyClause aggregation. The attributes and/or
 relationships of this association class can be used to determine
 which SUPAPolicyClauses are aggregated by which
 SUPAPolicyStructureAtomic objects.

 Attributes will be added to this class at a later time.

5.5. The Concrete Class "SUPAPolicyStructureComposite"

 This is a mandatory concrete class. This class is a type of
 PolicyContainer.

 A SUPAPolicyStructureComposite class represents a SUPAPolicy as a
 hierarchy of Policy objects, where the hierarchy contains
 instances of SUPAPolicyStructureAtomic and/or
 SUPAPolicyStructureComposite objects. Each of the SUPAPolicy
 objects, including the outermost SUPAPolicyStructureComposite
 object, are separately manageable. More importantly, the
 SUPAPolicyStructureComposite object can aggregate any
 SUPAPolicyStructure subclass.

Strassner, et al. Expires July 4, 2016 [Page 53]

Internet-Draft SUPA Generic Policy Model January 2016

 A SUPAPolicyStructureComposite SHOULD have one or more instances of
 SUPAPolicyMetadata attached to it, so that the SUPAPolicyMetadata
 may provide additional descriptive and prescriptive information
 about the SUPAPolicyStructureComposite object. It MAY also have one
 or more SUPAPolicySources and/or SUPAPolicyTargets attached to it.

5.5.1. SUPAPolicyStructureComposite Attributes

 No attributes are currently defined for this class, as it
 functions as a pure PolicyContainer.

 Note that there is no need for a "match strategy attribute" that
 some models [RFC3460], [4], [6] have; this is because this class
 is just used for containment. Hence, the containers themselves
 serve as the scoping component for nested policies.

5.5.2. SUPAPolicyStructureComposite Relationships

 One relationship is currently defined for this class, and is
 described in the following subsection.

5.5.2.1. The Aggregation "SUPAHasPolicy"

 This is a mandatory aggregation that defines the set of
 SUPAPolicyStructure objects that are aggregated by this
 SUPAPolicyStructureComposite instance. The semantics of this
 aggregation are defined by the SUPAHasPolicyDetail
 association class.

5.5.2.2. The Association Class "SUPAHasPolicyDetail"

 This is a mandatory association class, and defines the semantics
 of the SUPAHasPolicy aggregation. The attributes and/or
 relationships of this association class can be used to determine
 which SUPAPolicyStructure objects are aggregated by which
 SUPAPolicyStructureComposite objects.

 Attributes will be added to this class at a later time.

5.6. The Abstract Class "SUPAPolicyComponentStructure"

 This is a mandatory abstract class that is the superclass of all
 objects that represent different types of components of a
 SUPAPolicy. Different types of policies have different types of
 structural components. However, all of these are used in at least
 one type of policy. This class represents a convenient control
 point for defining characteristics and behavior that are common
 to objects that serve as components of a policy.

https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 54]

Internet-Draft SUPA Generic Policy Model January 2016

5.6.1. SUPAPolicyComponentStructure Attributes

 The SUPAPolicyComponentStructure currently defines two attributes;
 these are defined in the following subsections.

5.6.1.1. The Attribute "supaAllowsExternalAccess"

 This is a Boolean attribute. If its value is TRUE, then external
 Applications can access and update the values of this
 SUPAPolicyComponentStructure object. This enables Applications to
 have controlled updating of policy components.

5.6.1.2. The Attribute "supaAllowsExternalUpdate"

 This is a Boolean attribute. If its value is TRUE, then external
 Applications can access (but not update) the values of this
 SUPAPolicyComponentStructure object. This enables Applications to
 have controlled access to policy components.

5.6.2. SUPAPolicyComponentStructure Relationships

 No relationships are currently defined for this class.

5.7. The Abstract Class "SUPAPolicyClause"

 This is a mandatory abstract class that separates the
 representation of a SUPAPolicy from its implementation. This
 abstraction is missing in [RFC3060], [RFC3460], [4], and [6].

 A SUPAPolicyClause contains an individual or group of related
 functions that are used to define the content of a policy. More
 specifically, since the number and type of functions that make up
 a SUPAPolicyClause can vary, the decorator pattern is used, so
 that the contents of a SUPAPolicyClause can be adjusted
 dynamically at runtime without affecting other objects.

 This document defines two different types of policies: ECA policy
 rules and encoded policies. Both use SUPAPolicyClauses.

 SUPAPolicyClauses are objects in their own right, which
 facilitates their reuse. SUPAPolicyClauses can aggregate a set
 of any of the subclasses of SUPAPolicyComponentDecorator, which
 was shown in Figure 10. These four subclasses provide four
 different ways to construct a SUPAPolicyClause:

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 55]

Internet-Draft SUPA Generic Policy Model January 2016

 1) as a {variable, operator, value} clause
 2) as an encoded object (e.g., to pass YANG or CLI code)
 3) as a collection of objects that requires further processing
 in order to be made into a SUPAPolicyClause
 4) as an Event, Condition, or Action object

 SUPAPolicyClauses are aggregated by a SUPAPolicyStructureAtomic
 object, which enables all types of SUPAPolicies to uniformly be
 made up of one or more SUPAPolicyClauses.

5.7.1. SUPAPolicyClause Attributes

 This section defines the attributes of the SUPAPolicyClause
 class. These attributes are inherited by all subclasses of the
 SUPAPolicyClause class.

5.7.1.1. The Attribute "supaPolStmtAdminStatus"

 This is an optional attribute, which is an enumerated non-negative
 integer. It defines the current administrative status of this
 SUPAPolicyClause.

 This attribute can be used to place this particular
 SUPAPolicyClause into a specific administrative state, such as
 enabled, disabled, or in test.

 Note that since a SUPAPolicy is made up of SUPAPolicyClauses,
 this enables all or part of a SUPAPolicy to be administratively
 controlled. Values include:

 0: Unknown (an error state)
 1: Enabled
 2: Disabled
 3: In Test (i.e., no operational traffic can be passed)

 Value 0 denotes an error that prevents this SUPAPolicyClause
 from being used. Values 1 and 2 mean that this SUPAPolicyClause
 is administratively enabled or disabled, respectively. A value of
 3 means that this SUPAPolicyClause is in a special test mode and
 SHOULD NOT be used as part of an OAM&P policy.

5.7.1.2. The Attribute "supaPolStmtExecStatus"

 This is an optional attribute, which is an enumerated non-negative
 integer. It defines whether this SUPAPolicyClause is currently
 in use and, if so, what its execution status is.

Strassner, et al. Expires July 4, 2016 [Page 56]

Internet-Draft SUPA Generic Policy Model January 2016

 This attribute can be used to place this particular
 SUPAPolicyClause into a specific execution state, such as
 enabled, disabled, or in test. Values include:

 0: Unknown (an error state)
 1: Completed (i.e., successfully executed, but now idle)
 2: Working (i.e., in use and no errors reported)
 3: Not Working (i.e., in use, but errors have been reported)
 4: In Test (i.e., cannot be used as part of an OAM&P policy)
 5: Available (i.e., could be used, but currently isn't)
 6: Not Available (i.e., not available for use)

 Value 0 denotes an error that prevents this SUPAPolicyClause
 from being used. Value 1 means that this SUPAPolicyClause has
 successfully finished execution, and is now idle. Value 2 means
 that this SUPAPolicyClause is in use; in addition, this
 SUPAPolicyClause is working correctly. Value 3 is the same as
 value 2, except that this SUPAPolicyClause is not working
 correctly. Value 4 means that this SUPAPolicyClause is in a
 special test state. A test state signifies that it SHOULD NOT be
 used to evaluate OAM&P policies. Value 5 means that this
 SUPAPolicyClause is available, but not currently in use. A
 value of 6 means that it is unavailable for use.

5.7.2. SUPAPolicyClause Relationships

 This class does not currently define any relationships, since the
 decorator pattern is used to "wrap" this object with instances of
 the subclasses of the SUPAPolicyComponentDecorator object.

5.8. The Concrete Class "SUPAEncodedClause"

 This is a mandatory concrete class that refines the behavior of a
 SUPAPolicyClause.

 This class defines a generalized extension mechanism for
 representing SUPAPolicyClauses that have not been modeled
 with other SUPAPolicy objects. Rather, the contents of the policy
 statement are directly encoded into the attributes of the
 SUPAEncodedClause. Note that other subclasses of
 SUPAPolicyClause use SUPAPolicy objects to define their
 content. This class provides the developer a tradeoff of
 efficiency vs. reusability.

Strassner, et al. Expires July 4, 2016 [Page 57]

Internet-Draft SUPA Generic Policy Model January 2016

 This class uses two of its attributes (supaPolicyClauseContent and
 supaPolicyClauseFormat) for defining the content and format of a
 vendor-specific policy statement. This allows direct encoding of
 the policy statement, without having the "overhead" of using other
 objects. However, note that while this method is efficient, it
 does not reuse other SUPAPolicy objects. Rather, it can be thought
 of as a direct encoding of the policy statement.

5.8.1. SUPAEncodedClause Attributes

 This section defines the attributes of the SUPAEncodedClause class.

5.8.1.1. The Attribute "supaClauseContent"

 This is a mandatory string attribute, and defines the content of
 this encoded clause of this clause. It works with another attribute
 of the SUPAEncodedClause class, called supaClauseFormat, which
 defines how to interpret this attribute. These two attributes form
 a tuple, and together enable a machine to understand the syntax and
 value of the encoded clause for the object instance of this class.

5.8.1.2. The Attribute "supaClauseFormat"

 This is a mandatory string attribute, and defines the format of
 this encoded clause. It works with another attribute of the
 SUPAEncodedClause class, called supaClauseContent, which
 defines the content (i.e., the value) of the encoded clause. These
 two attributes form a tuple, and together enable a machine to
 understand the syntax and value of the encoded clause for the
 object instance of this class.

5.8.1.3. The Attribute "supaClauseResponse"

 This is an optional Boolean attribute that emulates a Boolean
 response of this clause, so that it may be combined with other
 subclasses of the SUPAPolicyClause that provide a status as to
 their correctness and/or evaluation state. This enables this
 object to be used in more complex Boolean policy clauses.

5.8.2. SUPAEncodedClause Relationships

 This class currently does not define any relationships.

Strassner, et al. Expires July 4, 2016 [Page 58]

Internet-Draft SUPA Generic Policy Model January 2016

5.9. The Abstract Class "SUPAPolicyComponentDecorator"

 This is a mandatory aggregation, and is used to implement the
 decorator pattern. The decorator pattern enables all or part of one
 or more objects to "wrap" another concrete object. In SUPA, this
 means that any concrete subclass of SUPAPolicyClause is wrapped
 by any concrete subclass of SUPAPolicyComponentDecorator, as shown
 in Figure 17 below.

 A
 +------------------------------+ 1..n
 | |/
 | SUPAPolicyComponentStructure |--------+
 | |\ | used to wrap
 +------------------------------+ | concrete
 / \ | subclasses
 I | of
 I | PolicyStmt
 I |
 +---------------+---------------+ / \
 I I A

A I A I \ / 0..1
 +----------+---------+ +--------------+-------+-------+
 | SUPAPolicyClause | | SUPAPolicyComponentDecorator |
 +----------+---------+ +--------------+---------------+
 I I
 I I
 I I
 Concrete Subclasses, Concrete Subclasses
 (e.g., SUPAEncodedClause) (e.g., SUPAPolicyCollection)
 (object being wrapped) (wrapping object(s))

 Figure 17. The PolicyComponent Decorator Pattern

5.9.1. The Decorator Pattern

 Each SUPAPolicyComponentDecorator object HAS_A (i.e., wraps) a
 concrete instance of the SUPAPolicyClause object. This means that
 the SUPAPolicyComponentDecorator object has an instance variable
 that holds a reference to a SUPAPolicyClause object. Since the
 SUPAPolicyComponentDecorator object has the same interface as the
 SUPAPolicyClause object, the SUPAPolicyComponentDecorator object
 (and all of its subclasses) are transparent to clients of the
 SUPAPolicyClause object (and its subclasses).

 Even better, this means that SUPAPolicyComponentDecorator object
 instances can add attributes and/or methods to those of the concrete

 instance of the chosen subclass of SUPAPolicyClause.

Strassner, et al. Expires July 4, 2016 [Page 59]

Internet-Draft SUPA Generic Policy Model January 2016

 Figure 18 shows how this is done for methods. 18a shows the initial
 object to be wrapped; 18b shows SUPAPolicyCollection wrapping
 SUPAEncodedClause; 18c shows SUPAVendorDecoratedComponent wrapping
 SUPAPolicyCollection. When eval() is called in the outermost object
 (SUPAVendorDecoratedComponent), it delegates to the eval() method
 of SUPAPolicyCollection, which in turn delegates to the eval()
 method of SUPAEncodedClause. This method executes and returns the
 results to SUPAPolicyCollection, which executes and returns the
 results to SUPAVendorDecoratedComponent, which executes and returns
 the final result.

 +-------------------+
 | SUPAEncodedClause |
 | eval() |
 +-------------------+

 (a) Initial Object

 ===>
 +------------------------+
 | SUPAPolicyCollection |
 | eval() |
 | +-------------------+ |
 | | SUPAEncodedClause | |
 | | eval() | |
 | +-------------------+ |
 +------------------------+

 (b) SUPAPolicyCollection "wraps" SUPAEncodedClause

 ===>

 +------------------------------+
 | SUPAVendorDecoratedComponent |
 | eval() |
 | +-----------------------+ |
 | | SUPAPolicyCollection | | | |
 | | eval() | |
 | | +-------------------+ | |
 | | | SUPAEncodedClause | | |
 | | | eval() | | |
 | | +-------------------+ | |
 | +-----------------------+ |
 +------------------------------+

 (c) SUPAVendorDecoratedComponent "wraps" SUPAPolicyCollection

 Figure 18. Conceptual Depiction of eval() Decorated Method

Strassner, et al. Expires July 4, 2016 [Page 60]

Internet-Draft SUPA Generic Policy Model January 2016

5.9.2. SUPAPolicyComponentDecorator Attributes

 Currently, there are two attributes defined for this class, which
 are described in the following subsections. Both attributes are
 used by subclasses to constrain the behavior of that subclass;
 they do **not** affect the relationship between the concrete
 subclass of SUPAPolicyComponentDecorator that is wrapping the
 concrete subclass of SUPAPolicyClause. This is different
 than the use of similar attributes defined in the
 SUPAHasDecoratedPolicyComponentDetail association class (which
 are used to constrain the relationship between the concrete
 subclass of SUPAPolicyClause and the concrete subclass of the
 SUPAHasDecoratedPolicyComponent object that is wrapping it).

5.9.2.1. The Attribute "supaPolCompConstraintEncoding"

 This is an optional non-negative enumerated integer that defines
 how to interpret each string in the supaPolCompConstraint class
 attribute. Values include:

 0: undefined
 1: OCL 2.4
 2: OCL 2.x
 3: OCL 1.x
 4: QVT 1.2 - Relations Language
 5: QVT 1.2 - Operational language
 6: Alloy

 The latest version of OCL is 2.4, but since this is considered by
 most the default language for specifying constraints, enumerations
 1-3 are dedicated to OCL. QVT defines a set of languages; the two
 most powerful and useful are defined by enumerations 4 and 5.
 Alloy is a language for describing constraints, and uses a SAT
 solver to guarantee correctness.

5.9.2.2. The Attribute "supaAPolCompConstraint[0..n]"

 This is an optional array of string attributes. Each attribute
 specifies a constraint to be applied using OCL 2.0. This provides
 a more rigorous and flexible treatment of constraints than is
 possible in [RFC3460]. Each string attribute is interpreted
 according to the value of the supaPolCompConstraintEncoding
 class attribute.

5.9.3. SUPAPolicyComponentDecorator Relationships

 One relationship is currently defined for this class, which is
 described in the following subsection.

https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 61]

Internet-Draft SUPA Generic Policy Model January 2016

5.9.3.1. The Aggregation "SUPAHasDecoratedPolicyComponent"

 This is a mandatory aggregation, and is part of a decorator
 pattern. It is used to enable a concrete instance of a
 SUPAPolicyComponentDecorator to dynamically add behavior to a
 specific type of SUPAPolicyClause object. The semantics of this
 aggregation are defined by the
 SUPAHasDecoratedPolicyComponentDetail association class.

5.9.3.2. The Association Class
 "SUPAHasDecoratedPolicyComponentDetail"

 This is a mandatory concrete association class, and defines the
 semantics of the SUPAHasDecoratedPolicyComponent aggregation. The
 purpose of this class is to use the Decorator pattern to determine
 which SUPAPolicyComponentDecorator object instances, if any, are
 required to augment the functionality of the concrete subclass of
 SUPAPolicyClause that is being used.

 Currently, there are two attributes defined for this class, which
 are described in the following subsections. Both attributes are
 used in this association class (and its associated aggregation)
 to constrain the **relationship** between the concrete subclass
 of SUPAPolicyComponentDecorator that is wrapping the concrete
 subclass of SUPAPolicyClause; in contrast, class attributes of
 SUPAPolicyComponentDecorator (see section 5.9.2) only affect that
 specific subclass.

5.9.3.2.1. The Attribute "supaDecoratedConstraintsEncoding"

 This is a non-negative enumerated integer that defines how to
 interpret each string in the supaDecoratedConstraints class
 attribute. Values include:

 0: undefined
 1: OCL 2.4
 2: OCL 2.x
 3: OCL 1.x
 4: QVT 1.2 - Relations Language
 5: QVT 1.2 - Operational language
 6: Alloy

 The latest version of OCL is 2.4, but since this is considered by
 most the default language for specifying constraints, enumerations
 1-3 are dedicated to OCL. QVT defines a set of languages; the two
 most powerful and useful are defined by enumerations 4 and 5.
 Alloy is a language for describing constraints, and uses a SAT
 solver to guarantee correctness.

Strassner, et al. Expires July 4, 2016 [Page 62]

Internet-Draft SUPA Generic Policy Model January 2016

5.9.3.2.2. The Attribute "supaDecoratedConstraints[0..n]"

 This is an optional array of string attributes. Its purpose is to
 collect a set of constraints to be applied to a decorated object.
 The interpretation of each constraint in the array is defined in
 the supaDecoratedConstraintsEncoding class attribute.

5.9.4. Illustration of Constraints in the Decorator Pattern

 The following example will illustrate how the different constraints
 defined in sections 5.9.2 (class attribute constraints) and section

5.9.3 (relationship constraints) can be used.

 Figure 19 builds a simple SUPAPolicyClause that has both types
 of relationships.

 A A
 +---------+--------+ 0..1 1..n +--------------+-------------+
	/ \ \|	
vSUPAPolicyClausev	A ------+-----	SUPAPolicyComponentDecorator
	\ / ^ /	
 +---------+--------+ | +--------------+-------------+
 I | I
 C I | C I
 +--------+--------+ | +---------+----------+
 |SUPAEncodedClause| | |SUPAPolicyCollection|
 +-----------------+ | +--------------------+
 |
 C |
 +------------------+------------------+
 |SUPAHasDecoratedPolicyComponentDetail|
 +-------------------------------------+

 Figure 19. Constraints in the Decorator Pattern

 Figure 19 says that a SUPAPolicyClause, realized as a
 SUPAEncodedClause, is wrapped by a SUPAPolicyCollection object.
 The attributes in the SUPAPolicyComponentDecorator object are used
 to constrain the attributes in the SUPAPolicyCollection object,
 while the attributes in the SUPAHasDecoratedPolicyComponentDetail
 object are used to contrain the behavior of the aggregation
 (SUPAHasDecoratedPolicyComponent). For example, the attributes in
 the SUPAPolicyComponentDecorator object could restrict the data
 type and range of the components in the SUPAPolicyCollection, while
 the attributes in the SUPAHasDecoratedPolicyComponentDetail object
 could restrict which SUPAPolicyCollection objects are allowed to be
 used with which SUPAEncodedClauses.

Strassner, et al. Expires July 4, 2016 [Page 63]

Internet-Draft SUPA Generic Policy Model January 2016

5.10. The Abstract Class "SUPAPolicyTerm"

 This is a mandatory abstract class that is the parent of
 SUPAPolicy objects that can be used to define a standard way to
 test or set the value of a variable. It does this by defining a
 3-tuple, in the form {variable, operator, value}, where each
 element of the 3-tuple is defined by a concrete subclass of the
 appropriate type (i.e., SUPAPolicyVariable, SUPAPolicyOperator,
 and SUPAPolicyValue classes, respectively). For example, a
 generic test or set of the value of a variable is expressed as:

 {variable, operator, value}.

 A class diagram is shown in Figure 20.

 A
 +----------------+
 | SUPAPolicyTerm |
 +--------+-------+
 / \
 I
 I
 I
 +-----------------+---+--------------------+
 I I I
 I I I
 C I C I C I
 +--------+---------+ +--------+---------+ +-------+-------+
 |SUPAPolicyVariable| |SUPAPolicyOperator| |SUPAPolicyValue|
 +------------------+ +------------------+ +---------------+

 Figure 20. SUPAPolicyTerm Class Hierarchy

 Note that generic test and set expressions do not have to only use
 objects that are subclasses of SUPAPolicyTerm. For example, the
 polVendorDecoratedContent attribute of the
 SUPAVendorDecoratedComponent could be used as the variable (or the
 value) term of a get or set expression.

 Hence, the utility of the subclasses of SUPAPolicyTerm is in the
 ability of its subclasses to define a generic framework for
 implementing get and set statements. This is in stark contrast to
 previous designs (e.g., [RFC3460] and [6]), which both depended on
 defining a broad set of subclasses of PolicyVariable and
 PolicyValue. (Note that [4] does not have this generic capability).

https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 64]

Internet-Draft SUPA Generic Policy Model January 2016

5.10.1. SUPAPolicyTerm Attributes

 Currently, SUPAPolicyTerm defines a single attribute, as described
 in the following subsection. Constraints on the subclasses of
 SUPAPolicyTerm can be applied in two different ways:

 1. use SUPAPolicyComponentDecorator attributes to constrain
 just that individual subclass, and/or
 2. use SUPAHasDecoratedPolicyComponentDetail association class
 attributes to constrain the relationship between the concrete
 subclass of SUPAPolicyClause and the concrete subclass of
 the SUPAPolicyTerm class

5.10.1.1. The Attribute "supaPolTermIsNegated"

 This is a mandatory Boolean attribute. If the value of this
 attribute is true, then this particular SUPAPolicyTerm subclass
 (which represents a term) is negated; otherwise, it is not.

5.10.2. SUPAPolicyTerm Relationships

 Currently, no dedicated relationships are defined for the
 SUPAPolicyTerm class (as there is in [RFC3460] and [6]) that
 aggregate policy terms into any object. This is:

 1) to enable the subclasses of SUPAPolicyTerm to be used by
 other SUPAPolicyComponentDecorator objects, and
 2) because the decorator pattern replaces how such relationships
 were used in [RFC3460] and [6].

5.11. The Concrete Class "SUPAPolicyVariable"

 This is a mandatory concrete class that defines information that
 forms a part of a SUPAPolicyClause. It specifies a concept or
 attribute that represents a variable, which should be compared to
 a value, as specifed in this SUPAPolicyClause. If it is used in
 a SUPAECAPolicyRule, then its value MAY be able to be changed at
 any time, including run-time, via use of the decorator pattern.
 Note that this is not possible in previous designs ([RFC3460, [4],
 and [6]).

 The value of a SUPAPolicyVariable is typically compared to the
 value of a SUPAPolicyValue using the type of operator defined in
 a SUPAPolicyOperator. However, other objects may be used instead
 of a SUPAPolicyValue object.

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 65]

Internet-Draft SUPA Generic Policy Model January 2016

 SUPAPolicyVariables are used to abstract the representation of a
 SUPAPolicyRule from its implementation. Some SUPAPolicyVariables
 are restricted in the values and/or the data type that they may
 be assigned. For example, port numbers cannot be negative, and
 they cannot be floating-point numbers. These and other constraints
 are defined in two different ways:

 1. use SUPAPolicyComponentDecorator attributes to constrain
 just that individual subclass, and/or
 2. use SUPAHasDecoratedPolicyComponentDetail association class
 attributes to constrain the relationship between the concrete
 subclass of SUPAPolicyClause and the concrete subclass of
 the SUPAPolicyVariable class

 Please refer to the examples in section 7, which show how to
 restrict the value, data type, range, and other semantics of the
 SUPAPolicyVariable when used in a SUPAPolicyClause.

5.11.1. Problems with the RFC3460 Version of PolicyVariable

 The following subsections define a brief, and incomplete, set of
 problems with the implementation of [RFC3460] (note that [RFC3060
 did not define variables, operators, and/or values).

5.11.1.1. Object Bloat

 [RFC3460] used two different and complex mechanisms for providing
 generic get and set expressions. PolicyVariables were subclassed
 into two subclasses, even though they performed the same semantic
 function. This causes additional problems:

 o PolicyExplicitVariables are for CIM compatibility; note that
 the CIM does not contain either PolicyVariables or
 PolicyValues ([4])
 o PolicyImplicitVariable subclasses do not define attributes;
 rather, they are bound to an appropriate subclass of
 PolicyValue using an association

 Hence, defining a variable is relatively expensive in [RFC3460],
 as in general, two objects and an association must be used. The
 objects themselves do not define content; rather, their names are
 used as a mechanism to identify an object to match. This means
 that an entire object must be used (instead of, for example, an
 attribute), which is wasteful. It also make it difficult to
 adjust constraints at runtime, since the constraint is defined in
 a class that is statically defined (and hence, requires
 recompilation and possibly redeployment if it is changed).

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 66]

Internet-Draft SUPA Generic Policy Model January 2016

5.11.1.2. Object Explosion

 The above three problems lead to class explosion (recall that in
 [RFC3060], [RFC3460], and [4], associations are implemented as
 classes).

 In stark contrast to this approach, the approach in this document
 keeps the idea of the class hierarchy for backwards compatibility,
 but streamlines the implementation. First, the decorator pattern
 is an established and very used software pattern (it dates back
 to at least 1997). Second, the use of a single association class
 (i.e., SUPAHasDecoratedPolicyComponentDetail) performs many more
 constraints than is possible in the approaches of [RFC3460] and
 [4] in a much more flexible manner, due to its role as a
 decorator of other objects. Third, note that there is no way to
 enforce the constraint matching in [RFC3460] and [6]; the burden
 is on the developer to check and see if the constraints specified
 in one class are honored in the other class. Fourth, if these
 constraints are not honored, then there is no mechanism specified
 to define the statement as incorrectly formed.

5.11.1.3. Specification Ambiguities

 There are a number of ambiguities in [RFC2460].

 First, [RFC3460] says: "Variables are used for building individual
 conditions". While this is true, variables can also be used for
 building individual actions. This is reflected in the definition
 for SUPAPolicyVariable.

 Second, [RFC3460] says: "The variable specifies the property of a
 flow or an event that should be matched when evaluating the
 condition." While this is true, variables can be used to test many
 other things than "just" a flow or an event. This is reflected in
 the SUPAPolicyVariable definition.

 Third, the [RFC3460] definition requires the use of associations
 in order to properly constrain the variable (e.g., define its
 data type, the range of its allowed values, etc.). This is both
 costly and inefficient.

 Fourth, [RFC3460] is tightly bound to the DMTF CIM schema [4].
 The CIM is a data model (despite its name), because:

 o It uses keys and weak relationships, which are both concepts
 from relational algebra and thus, not technology-independent
 o It has its own proprietary modeling language
 o It contains a number of concepts that are not defined in UML
 (including overriding keys for subclasses)

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 67]

Internet-Draft SUPA Generic Policy Model January 2016

 Fifth, the class hierarchy has two needless classes, called
 SUPAImplicitVariable and SUPAExplicitVariable. These classes do
 not define any attributes or relationships, and hence, do not
 add any semantics to the model.

 Finally, in [RFC3460], defining constraints for a variable is
 limited to associating the variable with a PolicyValue. This is
 both cumbersome (because associations are costly; for example,
 they equate to a join in a relational database management system),
 and not scalable, because it is prone to proliferating PolicyValue
 classes for every constraint (or range of constraints) that is
 possible. Therefore, in SUPA, this mechanism is replaced with
 using an association to an association class that defines
 constraints in a much more general and powerful manner (i.e.,
 the SUPAHasDecoratedPolicyComponentDetail class).

5.11.2. SUPAPolicyVariable Attributes

 Currently, SUPAPolicyVariable defines three generic attributes,
 as described below.

5.11.2.1. The Attribute "supaPolVarContent"

 This is a mandatory string attribute that contains the value of
 the SUPAPolicyVariable object instance. Its data type is defined
 by the supaPolVarType class attribute.

5.11.2.2. The Attribute "supaPolVarType"

 This is a mandatory non-negative enumerated integer attribute
 that defines the data type of the supaPolVarContent attribute in
 this SUPAPolicyVariable object instance. Values include:

 0: Undefined
 1: String
 2: Integer
 3: Boolean
 4: Floating Point
 5: DateTime
 6: GUID
 7: UUID
 8: URI
 9: FQDN

 A string is a sequence of zero or more characters. An Integer is
 a whole number (e.g., it has no fractional part). A Boolean
 represents the values TRUE and FALSE. A floating point number may
 contain fractional values, as well as an exponent. A DateTime
 represents a value that has a date and/or a time component (as in

https://datatracker.ietf.org/doc/html/rfc3460

 the Java or Python libraries).

Strassner, et al. Expires July 4, 2016 [Page 68]

Internet-Draft SUPA Generic Policy Model January 2016

 In general, specific semantics of the above data types are NOT
 defined in this document, as there are differences in most when
 converted to a data type of a specific data model. However,
 constraints can be used to restrict the values that a String,
 Integer, Floating Point, or DateTime data type may have; this can
 simplify converting to a data model.

5.11.3. SUPAPolicyVariable Relationships

 Currently, no relationships are defiend for the SUPAPolicyVariable
 class (note that the decorator pattern obviates the need for
 relationships such as those in [RFC3460] and [6]).

5.12. The Concrete Class "SUPAPolicyOperator"

 This is a mandatory concrete class for modeling different types of
 operators that are used in a SUPAPolicyClause.

 A SUPAPolicyOperator is a mandatory concrete class that defines
 the type of operator to be applied to a SUPAPolicyClause. The
 restriction of the type of operator used in a SUPAPolicyClause
 restricts the semantics that can be expressed in that
 SUPAPolicyClause (e.g., a "shallow" vs. a "deep" equality
 comparison; the former compares just the attributes in the
 specified objects, while the latter compares the entire tree of
 objects (using the specified objects as the base of both trees).

5.12.1. Problems with the RFC3460 Version

 Note that this class is NOT present in either RFC[3060] or
 [RFC3460]; instead, both hardwire the operator to a "MATCH"
 function. Quoting from [RFC3460]:

 "A simple condition models an elementary Boolean expression of
 the form 'variable MATCHes value". However, the formal
 notation of the SimplePolicyCondition, together with its
 associations, models only a pair, (<variable>, <value>). The
 'MATCH' operator is not directly modeled -- it is implied.
 Furthermore, this implied 'MATCH' operator carries overloaded
 semantics [sic]."

 In stark contrast to this, SUPA defines a SUPAPolicyOperator as a
 formal subclass of SUPAPolicyTerm. A single attribute, called
 supaPolOpType, carries the operator to be applied to the
 SUPAECAPolicyRule. This has the important advantage of enabling
 ECA policy rules of varying functionality to be created by a
 human or a machine. It also removes the ambiguity created by
 [RFC3460].

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 69]

Internet-Draft SUPA Generic Policy Model January 2016

5.12.2. SUPAPolicyOperator Attributes

 Currently, SUPAPolicyOperator defines a single generic attribute,
 as described below.

5.12.2.1. The Attribute "supaPolOpType"

 This is a mandatory non-negative enumerated integer that specifies
 the various types of operators that are allowed to be used in this
 particular SUPAPolicyClause. Values include:

 0: Unknown
 1: Greater than (shallow)
 2: Greater than or equal to (shallow)
 3: Less than (shallow)
 4: Less than or equal to (shallow)
 5: Equal to (shallow)
 6: Not equal to (shallow)
 7: IN
 8: NOT IN
 9: SET
 10: CLEAR
 11: Greater than (deep)
 12: Greater than or equal to (deep)
 13: Less than (deep)
 14: Less than or equal to (deep)
 15: Equal to (deep)
 16: Not equal to (deep)
 17: BETWEEN

 Note that 0 is an unacceptable value. Its purpose is to support
 dynamically building a SUPAPolicyClause by enabling the
 application to set the value of this attribute to a standard
 default value if the real value is not yet known.

5.12.3. SUPAPolicyOperator Relationships

 Currently, no relationships are defiend for the SUPAPolicyOperator
 class (note that the decorator pattern obviates the need for
 relationships such as those in [6]).

5.13. The Concrete Class "SUPAPolicyValue"

 The SUPAPolicyValue class is a mandatory concrete class for
 modeling different types of values and constants that occur in a
 SUPAPolicyClause.

Strassner, et al. Expires July 4, 2016 [Page 70]

Internet-Draft SUPA Generic Policy Model January 2016

 SUPAPolicyValues are used to abstract the representation of a
 SUPAPolicyRule from its implementation. Therefore, the design of
 SUPAPolicyValues depends on two important factors. First, just as
 with SUPAPolicyVariables (see Section 5.11), some types of
 SUPAPolicyValues are restricted in the values and/or the data
 type that they may be assigned. Second, there is a high likelihood
 that specific applications will need to use their own variables
 that have specific meaning to a particular application.

 In general, there are two ways to apply constraints to an object
 instance of a SUPAPolicyValue:

 1. use SUPAPolicyComponentDecorator attributes to constrain
 just that individual subclass, and/or
 2. use SUPAHasDecoratedPolicyComponentDetail association class
 attributes to constrain the relationship between the concrete
 subclass of SUPAPolicyClause and the concrete subclass of
 the SUPAPolicyValue class

5.13.1. Problems with the RFC3460 Version of PolicyValue

 The following subsections define a brief, and incomplete, set of
 problems with the implementation of [RFC3460] (note that [RFC3060
 did not define variables, operators, and/or values).

5.13.1.1. Object Bloat

 [RFC3460] defined a set of 7 subclasses; three were specific to
 networking (i.e., IPv4 Address, IPv6 Address, MAC Address) and 4
 (PolicyStringValue, PolicyBitStringValue, PolicyIntegerValue, and
 PolicyBooleanValue) were generic in nature. However, each of these
 objects defined a single class attribute. This has the same two
 problems as with PolicyVariables (see section 5.11.1.1):

 1. Using an entire object to define a single attribute is very
 wasteful and expensive
 2. It also make it difficult to adjust constraints at runtime,
 since the constraint is defined in a class that is statically
 defined (and hence, requires recompilation and possibly
 redeployment if it is changed).

5.13.1.2. Object Explosion

 [RFC3460] definition requires the use of associations
 in order to properly constrain the variable (e.g., define its
 data type, the range of its allowed values, etc.). This is both
 costly and inefficient (recall that in [RFC3060], [RFC3460], and
 [4], associations are implemented as classes).

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 71]

Internet-Draft SUPA Generic Policy Model January 2016

5.13.1.3. Lack of Constraints

 There is no generic facility for defining constraints for a
 PolicyValue. Therefore, there is no facility for being able to
 change such constraints dynamically at runtime.

5.13.1.4. Tightly Bound to the CIM Schema

 [RFC3460] is tightly bound to the DMTF CIM schema [4]. The CIM is
 a data model (despite its name), because:

 o It uses keys and weak relationships, which are both concepts
 from relational algebra and thus, not technology-independent
 o It has its own proprietary modeling language
 o It contains a number of concepts that are not defined in UML
 (including overriding keys for subclasses)

5.13.1.5. Specification Ambiguity

 [RFC3460] says: It is used for defining values and constants used
 in policy conditions". While this is true, variables can also be
 used for building individual actions. This is reflected in the
 SUPAPolicyVariable definition.

5.13.1.6. Lack of Symmetry

 Most good information models show symmetry between like components.
 [RFC3460] has no symmetry in how it defines variables and values.
 In contrast, this document recognizes that variables and values
 are just terms in a statement; hence, the only difference in the
 definition of the SUPAPolicyVariable and SUPAPolicyValue classes
 is that the content attribute in the former is a single string,
 whereas the content attribute in the latter is a string array.
 In particular, the semantics of both variables and values are
 defined using the decorator pattern, along with the attributes of
 the SUPAPolicyComponentDecorator and the
 SUPAHasDecoratedPolicyComponentDetail classes.

5.13.2. SUPAPolicyValue Attributes

 Currently, SUPAPolicyValue defines two generic attributes, as
 described below.

5.13.2.1. The Attribute "supaPolValContent[0..n]"

 This is a mandatory attribute that defines an array of strings.
 The array contains the value(s) of this SUPAPolicyValue object
 instance. Its data type is defined by the supaPolValType class
 attribute.

https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 72]

Internet-Draft SUPA Generic Policy Model January 2016

5.13.2.2. The Attribute "supaPolValType"

 This is a mandatory string attribute that contains the data type
 of the SUPAPolicyValue object instance. Its value is defined by
 the supaPolValContent class attribute. Values include:

 0: Undefined
 1: String
 2: Integer
 3: Boolean
 4: Floating Point
 5: DateTime
 6: GUID
 7: UUID
 8: URI
 9: FQDN
 10: NULL

 A string is a sequence of zero or more characters. An Integer is
 a whole number (e.g., it has no fractional part). A Boolean
 represents the values TRUE and FALSE. A floating point number may
 contain fractional values, as well as an exponent. A DateTime
 represents a value that has a date and/or a time component (as in
 the Java or Python libraries). A NULL explicitly models the lack
 of a value.

5.13.3. SUPAPolicyValue Relationships

 Currently, no relationships are defiend for the SUPAPolicyValue
 class (note that the decorator pattern obviates the need for
 relationships such as those in [6]).

5.14. The Concrete Class "SUPAVendorDecoratedComponent"

 A SUPAVendorDecoratedComponent enables a custom, vendor-specific
 object to be defined and used in a SUPAPolicyClause. This
 should not be confused with the SUPAEncodedClause class. The
 SUPAVendorDecoratedComponent class represents a single, atomic,
 that is vendor-specific object that defines a **portion** of a
 SUPAPolicyClause, whereas a SUPAEncodedClause, which may or
 may not be vendor-specific, represents an **entire**
 SUPAPolicyClause. Note that this object is not present in
 [RFC3060], [RFC3460], [4], [5], or [6].

5.14.1. SUPAVendorDecoratedComponent Attributes

 Currently, SUPAVendorDecoratedComponent defines two generic
 attributes, as described below.

https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 73]

Internet-Draft SUPA Generic Policy Model January 2016

5.14.1.1. The Attribute "supaVendorDecoratedCompContent[0..n]"

 This is a mandatory attribute that defines an array of strings.
 This array contains the value(s) of the
 SUPAVendorDecoratedComponent object instance. Its data type is
 defined by the supaVendorDecoratedFormat class attribute.

5.14.1.2. The Attribute "supaVendorDecoratedCompFormat"

 This is a mandatory string attribute that defines the format of
 the supaVendorDecoratedContent class attribute. Values include:

 0: undefined
 1: String
 2: Integer
 3: Boolean
 4: Floating Point
 5: DateTime
 6: GUID
 7: UUID
 8: URI
 9: FQDN
 10: NULL

 A string is a sequence of zero or more characters. An Integer is
 a whole number (e.g., it has no fractional part). A Boolean
 represents the values TRUE and FALSE. A floating point number may
 contain fractional values, as well as an exponent. A DateTime
 represents a value that has a date and/or a time component (as in
 the Java or Python libraries). A NULL explicitly models the lack
 of a value.

5.14.2. SUPAVendorDecoratedComponent Relationships

 Currently, no relationships are defiend for the
 SUPAVendorDecoratedComponent class (note that the decorator
 pattern obviates the need for relationships such as those in [6]).

5.15. The Concrete Class "SUPAPolicyCollection"

 A SUPAPolicyCollection enables a collection (e.g., set, bag, or
 other, more complex, collections of elements) to be defined and
 used as part of a SUPAPolicyClause.

Strassner, et al. Expires July 4, 2016 [Page 74]

Internet-Draft SUPA Generic Policy Model January 2016

5.15.1. Motivation

 One of the problems with ECA policy rules is when a set of events
 or conditions needs to be tested. For example, if a set of events
 is received, the policy system may need to wait for patterns of
 events to emerge (e.g., any number of EventA followed by either
 one of event B or two of Event C).

 Similarly, a set of conditions, testing the value of an attribute,
 may need to be performed. Both of these represent behavior
 similar to a set of if-then-else or switch statement.

 It is typically not desirable for the policy system to represent
 each choice in such conditions as its own policy clause (i.e., a
 3-tuple), as this creates object explosion and poor performance.
 Furthermore, in these cases, it is often required to have a set of
 complex logic to be executed, where the logic varies according to
 the particular event or condition that was selected. It is much
 too complex to represent this using separate objects, especially
 when the logic is application- and/or vendor-specific.

 However, recall that one of the goals of this document was to
 facilitate the machine-driven construction of policies. Therefore,
 a solution to this problem is needed.

5.15.2. Solution

 Therefore, this document defines the concept of a collection of
 entities, called a SUPAPolicyCollection. Conceptually, the items
 to be collected (e.g., events or conditions) are aggregated in
 one or more SUPAPolicyCollection objects of the appropriate type.
 Another optional SUPAPolicyCollection object could be used to
 aggregate logic blocks (including SUPAPolicies) to execute.
 Once finished, all appropriate SUPAPolicyCollection objects are
 sent to an external system for evaluation.

 The computation(s) represented by the SUPAPolicyCollection may be
 part of a larger SUPAPolicyClause; this is supported, since
 SUPAPolicyCollection is a subclass of SUPAPolicyComponentDecorator,
 and can be used to decorate a SUPAPolicyClause. Therefore, the
 external system is responsible for providing a Boolean TRUE or
 FALSE return value, so that the policy system can use that value
 to represent the computation of the function(s) performed in the
 SUPAPolicyCollection in a Boolean clause.

5.15.3. SUPAPolicyCollection Attributes

 Currently, SUPAVendorDecoratedComponent defines two generic
 attributes, as described below.

Strassner, et al. Expires July 4, 2016 [Page 75]

Internet-Draft SUPA Generic Policy Model January 2016

5.15.3.1. The Attribute "supaPolCollectionContent[0..n]"

 This is a mandatory attribute that defines an array of strings.
 This array defines the content of this SUPAPolicyCollection
 instance.

5.15.3.2. The Attribute "supaPolCollectionDataType"

 This is a mandatory non-negative enumerated integer that defines
 the data type of the content of this collection instance. Values
 include:

 0: undefined
 1: String
 2: Integer
 3: Boolean
 4: Floating Point
 5: DateTime
 6: GUID
 7: UUID
 8: URI
 9: FQDN

5.15.3.3. The Attribute "supaPolCollectionFunction"

 This is a mandatory non-negative enumerated integer that defines
 the function of this collection instance. Values include:

 0: undefined
 1: event collection
 2: condition collection
 3: action collection
 4: logic collection

5.15.3.4. The Attribute "supaPolCollectionIsOrdered"

 This is an optional Boolean attribute. If the value of this
 attribute is TRUE, then all elements in this instance of this
 SUPAPolicyCollection are ordered.

5.15.3.5. The Attribute "supaPolCollectionType"

 This is a mandatory non-negative enumerated integer that defines
 the type of collection that this instance is. Values include:

 0: undefined
 1: set
 2: bag (e.g., multi-set)
 3: dictionary (e.g., associative array)

Strassner, et al. Expires July 4, 2016 [Page 76]

Internet-Draft SUPA Generic Policy Model January 2016

 A bag is an unordered collection of elements; it MAY also have
 duplicates. A set is an unordered collection of elements that
 MUST NOT have duplicates. A dictonary is a table that associates
 a key with a value.

 Sets have a number of important functions:

 o membership: returns TRUE if the element being tested is
 in the set, and FALSE otherwise
 o subset: returns TRUE if all elements in the first set
 are also in the second set
 o union: returns all elements from both sets with no
 duplicates
 o intersection: returns all elements that are in both sets
 with no duplicates
 o difference: returns all elements in the first set that
 are not in the second set

 Bags have a number of important functions in addition to the
 functions defined for sets (note that while the above set of
 functions for a set and a bag are the same, a bag is a different
 data type than a set):

 o multiplicity: returns the number of occurrences of an
 element in the bag
 o count: returns the number of all items, including
 duplicates
 o countDistinct: returns the number of items, where all
 duplicates are ignored

 A dictionary is an unordered set of key:value pairs, where each
 key is unique witin a given dictionary.

5.15.4. SUPAPolicyCollection Relationships

 Currently, no relationships are defiend for the
 SUPAVendorDecoratedComponent class (note that the decorator
 pattern obviates the need for relationships such as those in [6]).

5.16. The Concrete Class "SUPAPolicySource"

 This is an optional class that defines the set of managed entities
 that authored, or are otherwise responsible for, this
 SUPAPolicyClause. Note that a SUPAPolicySource does NOT
 evaluate or execute SUPAPolicies. Its primary use is for
 auditability and the implementation of deontic and/or alethic logic.
 A class diagram is shown in Figure 12.

Strassner, et al. Expires July 4, 2016 [Page 77]

Internet-Draft SUPA Generic Policy Model January 2016

 A SUPAPolicySource SHOULD be mapped to a role or set of roles
 (e.g., using the role-object pattern [11]). This enables
 role-based access control to be used to restrict which entities
 can author a given policy. Note that Role is a type of
 SUPAPolicyMetadata.

5.16.1. SUPAPolicySource Attributes

 Currently, no attributes are defined for the SUPAPolicySource
 class.

5.16.2. SUPAPolicySource Relationships

 This section defines the relationships of the SUPAPolicySource
 class.

5.16.2.1. The Aggregation "SUPAHasPolicySource"

 This is an optional association that defines the set of
 SUPAPolicySource objects that are associated with this particular
 SUPAPolicyStructure object. The multiplicity of this relationship
 is defined as 0..n on the aggregate (i.e., SUPAPolicyStructure)
 side, and 0..n on the part (i.e., SUPAPolicySource) side. This
 means that this relationship is optional. The semantics of this
 aggregation are implemented using the SUPAHasPolicySourceDetail
 association class.

5.16.2.2. The Association Class "SUPAHasPolicySourceDetail"

 This is an optional association class that defines the semantics
 of the SUPAHasPolicySource aggregation. It is typically used to
 constrain the types of SUPAPolicyStructure objects that can
 aggregate a particular set of SUPAPolicySource objects.

5.16.2.2.1. The Attribute "SUPAPolSrcIsAuthenticated"

 This is an optional Boolean attribute. If the value of this
 attribute is true, then this SUPAPolicySource object has been
 authenticated by this specific SUPAPolicyStructure object.

5.16.2.2.2. The Attribute "supaPolicySrcIsTrusted"

 This is a Boolean attribute. If the value of this attribute is
 TRUE, then this particular SUPAPolicySource object has been
 verified to be trusted by this specific SUPAPolicyStructure object.

Strassner, et al. Expires July 4, 2016 [Page 78]

Internet-Draft SUPA Generic Policy Model January 2016

5.17. The Concrete Class "SUPAPolicyTarget"

 A SUPAPolicyTarget is a set of managed entities that a SUPAPolicy
 is applied to. This is determined by two conditions.

 First, the set of managed entities that are to be affected by the
 SUPAPolicy must all agree to play the role of a SUPAPolicyTarget.
 In general, a managed entity may or may not be in a state that
 enables SUPAPolicies to be applied to it to change its state;
 hence, a negotiation process may need to occur to enable the
 SUPAPolicyTarget to signal when it is willing to have
 SUPAPolicies applied to it.

 Second, a SUPAPolicyTarget must be able to either process
 (directly or with the aid of a proxy) SUPAPolicies or receive the
 results of a processed SUPAPolicy and apply those results to
 itself.

 If a proposed SUPAPolicyTarget meets both of these conditions, it
 SHOULD set its supaPolicyTargetEnabled Boolean attribute to a
 value of TRUE.

 Figure 12 shows a class diagram of the SUPAPolicyTarget.

 A SUPAPolicyTarget SHOULD be mapped to a role (e.g., using the
 role-object pattern). This enables role-based access control to
 be used to restrict which entities can author a given policy.
 Note that Role is a type of SUPAPolicyMetadata.

5.17.1. SUPAPolicyTarget Attributes

 Currently, no attributes are defined for the SUPAPolicyTarget
 class.

5.17.2. SUPAPolicyTarget Relationships

 This section defines the relationships of the SUPAPolicyTarget
 class.

5.17.2.1. The Aggregation "SUPAHasPolicyTarget"

 This is an optional aggregation that defines the set of
 SUPAPolicyTarget objects that can be attached to this particular
 SUPAPolicyStructure object. This defines the set of entities that
 will be operated on by this particular SUPAPolicyStructure object.
 The multiplicity of this relationship is defined as 0..1 on the
 aggregate (i.e., SUPAPolicyStructure) side, and 0..n on the part
 (i.e., SUPAPolicyTarget) side. The semantics of this aggregation
 are implemented using the SUPAIsTargetOfDetail association class.

Strassner, et al. Expires July 4, 2016 [Page 79]

Internet-Draft SUPA Generic Policy Model January 2016

5.17.2.2. The Association Class "SUPAHasPolicyTargetDetail"

 This is an optional concrete association class that defines the
 semantics of the SUPAHasPolicyTarget aggregation. This enables
 the attributes and relationships of the SUPAHasPolicyTargetDetail
 association class to be used to constrain which SUPAPolicyTarget
 objects can be operated on by which SUPAPolicyStructure objects.

5.17.2.2.1. The Attribute "SUPAPolTgtIsAuthenticated"

 This is an optional Boolean attribute. If the value of this
 attribute is true, then this SUPAPolicyTarget object has been
 authenticated by this specific SUPAPolicyStructure object.

5.17.2.2.2. The Attribute "supaPolTgtIsEnabled"

 This is an optional Boolean attribute. If its value is TRUE, then
 this SUPAPolicyTarget is able to be used as a SUPAPolicyTarget.
 This means that it meets two specific criteria:

 1. it has agreed to play the role of a SUPAPolicyTarget (i.e.,
 it is willing to have SUPAPolicies applied to it, and
 2. it is able to either process (directly or with the aid of
 a proxy) SUPAPolicies or receive the results of a processed
 SUPAPolicy and apply those results to itself.

5.18. The Abstract Class "SUPAPolicyMetadata"

 Metadata is information that describes and/or prescribes
 characteristics and behavior of another object that is **not**
 an inherent, distinguishing characteristic or behavior of that
 object (otherwise, it would be an integral part of that object).

 For example, a socialSecurityNumber attribute should not be part
 of a generic Person class. First, most countries in the world do
 not know what a social security number is, much less use them.
 Second, a person is not created with a social security number;
 rather, a social security number is used to track people for
 administering social benefits, though it is also used as a form
 of identification.

 Continuing the example, a better way to add this capability to a
 model would be to have a generic Identification class, then
 define a SocialSecurityNumber subclass, populate it as necessary,
 and then define a composition between a Person and it (this is a
 composition because social security numbers are not reused).

Strassner, et al. Expires July 4, 2016 [Page 80]

Internet-Draft SUPA Generic Policy Model January 2016

 Since social security numbers are given to US citizens, permanent
 residents, and temporary working residents, and because it is
 also used to administer benefits, the composition is realized
 as an association class to define how it is being used.

 An example of descriptive metadata for network elements would be
 documentation about best current usage practices (this could also
 be in the form of a reference). An example of prescriptive
 metadata for network elements would be the definition of a time
 period during which specific types of operations are allowable.

 This class defines a hierarchy of model elements that are used to
 define different types of metadata that can be applied to policy
 objects that are subclasses of the SUPAPolicyObject class. This
 enables common metadata to be defined as objects and then reused
 when the metadata are applicable. One way to control whether
 SUPAPolicyMetadata objects are reused is by using the attributes
 of the SUPAHasPolicyMetadataDetail association class. This is an
 abstract class, and is meant to be subclassed to include more
 detailed metadata attributes and relationships, as appropriate to
 the needs of the policy management application.

5.18.1. SUPAPolicyMetadata Attributes

 This section defines the attributes of the SUPAPolicyMetadata
 class. This class is the base class of the metadata hierarchy for
 policy objects.

5.18.1.1. The Attribute "supaPolMetadataDescription"

 This is an optional string attribute that defines a free-form
 textual description of this metadata object.

5.18.1.2. The Attribute "supaPolMetadataIDContent"

 This is a mandatory string attribute that represents part of the
 object identifier of an instance of this class. It defines the
 content of the object identifier. It works with another class
 attribute, called supaPolMetadataIDFormat, which defines how to
 interpret this attribute. These two attributes form a tuple,
 and together enable a machine to understand the syntax and value
 of an object identifier for the object instance of this class.

5.18.1.3. The Attribute "supaPolMetadataIDFormat"

 This is a mandatory non-zero enumerated integer attribute that
 represents part of the object identifier of an instance of this
 class. It defines the format of the object identifier. It works
 with another class attribute, called supaPolMetadataIDContent,

 which defines the content of the object ID.

Strassner, et al. Expires July 4, 2016 [Page 81]

Internet-Draft SUPA Generic Policy Model January 2016

 These two attributes form a tuple, and together enable a machine
 to understand the syntax and value of an object identifier for
 the object instance of this class. The supaPolMetadataIDFormat
 attribute is mapped to the following values:

 0: undefined
 1: GUID
 2: UUID
 3: primary key
 4: foreign key
 5: URI
 6: FQDN

 The value 0 may be used to initialize the system, or to signal
 that there is a problem with thius particular SUPAPolicyObject.

5.18.1.4. The Attribute "supaPolicyName"

 This is an optional string attribute that defines the name of this
 SUPAPolicyMetadata object.

5.18.2. SUPAPolicyMetadata Relationships

 This is a mandatory aggregation that defines the set of
 SUPAPolicyMetadata that are aggregated by this particular
 SUPAPolicyObject. The multiplicity of this relationship is defined
 as 0..n on the aggregate (SUPAPolicyObject) side, and 0..n on the
 part (SUPAPolicyMetadata) side. This means that this relationship
 is optional. The semantics of this aggregation are
 implemented using the SUPAHasPolicyMetadataDetail
 association class.

5.18.3. The Abstract Class "SUPAHasPolicyMetadataDetail"

 This is a mandatory abstract association class, and defines the
 semantics of the SUPAHasPolicyMetadata aggregation. Its purpose is
 to determine which SUPAPolicyMetadata object instances should be
 attached to which particular object instances of the
 SUPAPolicyObject class. This is done by using the attributes and
 relationships of the SUPAPolicyMetadataDetail class to constrain
 which SUPAPolicyMetadata objects can be aggregated by which
 particular SUPAPolicyObject instances.

5.18.3.1. The Attribute "supaPolMetadataIsApplicable"

 This is an optional Boolean attribute. If the value of this
 attribute is TRUE, then the SUPAPolicyMetadata object(s) of this
 particular SUPAHasPolicyMetadata aggregation SHOULD be aggregated

 by this particular SUPAPolicyObject.

Strassner, et al. Expires July 4, 2016 [Page 82]

Internet-Draft SUPA Generic Policy Model January 2016

5.18.3.2. The Attribute "supaPolMetadataConstraintEncoding"

 This is an optional non-negative enumerated integer that defines
 how to interpret each string in the supaPolMetadataConstraint
 class attribute. Values include:

 0: undefined
 1: OCL 2.4
 2: OCL 2.x
 3: OCL 1.x
 4: QVT 1.2 - Relations Language
 5: QVT 1.2 - Operational language
 6: Alloy

 The latest version of OCL is 2.4, but since this is considered by
 most the default language for specifying constraints, enumerations
 1-3 are dedicated to OCL. QVT defines a set of languages; the two
 most powerful and useful are defined by enumerations 4 and 5.
 Alloy is a language for describing constraints, and uses a SAT
 solver to guarantee correctness.

5.18.3.3. The Attribute "supaPolMetadataPolicyConstraints[0..n]"

 This is an optional array of string attributes. Each attribute
 specifies a constraint to be applied using the format identified
 by the value of the supaPolMetadataPolicyConstraintEncoding class
 attribute. This provides a more rigorous and flexible treatment of
 constraints than is possible in [RFC3460].

5.19. The Concrete Class "SUPAPolicyConcreteMetadata"

 This class will be defined in the next release of this document.

5.20. The Abstract Class "SUPAPolicyMetadataDecorator"

 This class will be defined in the next release of this document.

https://datatracker.ietf.org/doc/html/rfc3460

Strassner, et al. Expires July 4, 2016 [Page 83]

Internet-Draft SUPA Generic Policy Model January 2016

6. SUPA ECAPolicyRule Information Model

 This section defines the classes, attributes, and relationships
 of the SUPA ECAPolicyRule Information Model (EPRIM). Unless
 otherwise stated, all classes (and attributes) defined in this
 section were abstracted from DEN-ng [2], and a version of them are
 in the process of being added to [5].

6.1. Overview

 Conceptually, the EPRIM is a set of subclasses that specialize the
 concepts defined in the GPIM for representing the components of a
 Policy that uses ECA semantics. This is shown in Figure 21 (only
 new EPRIM subclasses and their GPIM superclasses are shown).

 (Class of another model that SUPA is integrating into)
 |
 +---SUPAPolicyObject (5.2)
 |
 +---SUPAPolicyStructure (5.3)
 | |
 | +---SUPAPolicyStructureAtomic (5.4)
 | |
 | +---SUPAECAPolicyRule (6.4)
 | |
 | +---SUPAECAPolicyRuleAtomic (6.5)
 | |
 | +---SUPAECAPolicyRuleComposite (6.6)
 |
 +---SUPAPolicyComponentStructure (5.6)
 |
 +---SUPAPolicyClause (5.7)
 | |
 | +---SUPABooleanClause (6.7)
 | |
 | +---SUPAECAPolicyRuleAtomic (6.8)
 | |
 | +---SUPAECAPolicyRuleComposite (6.9)
 |
 +---SUPAPolicyComponentDecorator (5.9)
 |
 +---SUPAECAComponent(6.10)
 | |
 | +---SUPAPolicyEvent (6.11)
 | |
 | +---SUPAPolicyCondition (6.12)
 | |
 | +---SUPAPolicyAction (6.13)

 Figure 21. The EPRIM Class Hierarchy

Strassner, et al. Expires July 4, 2016 [Page 84]

Internet-Draft SUPA Generic Policy Model January 2016

 Specifically, the EPRIM specializes the SUPAPolicyStructureAtomic
 class to create a SUPAECAPolicyRule (see sections 6.4 - 6.6); it
 also specializes two subclasses of the SUPAPolicyComponentStructure
 class to create two new sets of policy components. Specifically, a
 new subclass of SUPAPolicyClause, called SUPABooleanClause (see
 sections 6.7 - 6.9), is defined for constructing Boolean clauses
 that are specific to the needs of ECA Policy Rules. In addition, a
 new subclass of SUPAPolicyComponentDecorator, called
 SUPAECAComponent (see sections 6.10 - 6.13), is defined for
 constructing reusable objects that represent Events, Conditions,
 and Actions.

 Note that the EPRIM only defines new (sub)classes that are a
 subclass of SUPAPolicyStructure or SUPAPolicyComponentStructure.
 This ensures that the semantics of the GPIM are not changed
 while providing new functionality for ECA Policy Rules.

 The overall strategy for refining the GPIM is as follows:

 o SUPAECAPolicyRule is defined as a subclass of the GPIM
 SUPAPolicyStructureAtomic class
 o A SUPAECAPolicyRule has event, condition, and action clauses
 o Conceptually, this can be viewed as three aggregations
 between the SUPAECAPolicyRule and each clause
 o Each aggregation uses an instance of a concrete subclass of
 SUPAPolicyClause; this can be a SUPABooleanClause
 (making it ECA-specific) or a SUPAEncodedClause (making it
 generic in nature)
 o Either of the above object instances may be decorated with
 zero or more concrete subclasses of the
 SUPAPolicyComponentDecorator class
 o An optional set of GPIM SUPAPolicySource objects can be
 defined to represent the authoring of a SUPAECAPolicyRule
 o An optional set of GPIM SUPAPolicyTarget objects can be
 defined to represent the set of managed entities that will be
 affected by this SUPAECAPolicyRule
 o An optional set of SUPAPolicyMetadata can be defined for any
 of the objects that make up a SUPAECAPolicyRule, including
 any of its components

6.2. Constructing a SUPAECAPolicyRule

 There are several different ways to construct a SUPAECAPolicyRule;
 they differ in which set of components are used to define the
 content of the SUPAECAPolicyRule, and whether each component is
 decorated or not. The following are some examples of creating a

 SUPAECAPolicyRule:

Strassner, et al. Expires July 4, 2016 [Page 85]

Internet-Draft SUPA Generic Policy Model January 2016

 o Define three types of SUPABooleanClauses, one each for the
 event, condition, and action clauses that make up a
 SUPAECAPolicyRule
 o For one or more of the above clauses, associate an
 appropriate set of SUPAPolicyEvent, SUPAPolicyCondition, or
 SUPAPolicyAction
 objects, and complete the clause using an appropriate
 SUPAPolicyOperator and a corresponding SUPAPolicyValue or
 SUPAPolicyVariable
 o Note that compound Boolean clauses may be formed using
 one or more SUPABooleanComposite objects with one or more
 SUPABooleanAtomic objects
 o Define a SUPAPolicyCollectionComponent, which is used to
 aggregate a set of SUPAECAComponents, and complete the clause
 using an appropriate SUPAPolicyOperator and a corresponding
 SUPAPolicyValue or SUPAPolicyVariable
 o Create a new concrete subclass of SUPAPolicyComponentStructure
 (i.e., a sibling class of SUPAPolicyComponentDecorator and
 SUPAPolicyClause), and use this new subclass in a concrete
 subclass of SUPABooleanClause; note that this approach enables
 the new concrete subclass of SUPAPolicyComponentStructure to
 optionally be decorated as well
 use it as part of a SUPAPolicyClause
 o Create a new subclass of SUPAPolicyComponentDecorator that
 provides ECA-specific functionality, and use that to decorate
 a SUPAPolicyClause
 o Create a new concrete subclass of subclass of
 SUPAECAPolicyRule that provides ECA-specific functionality,
 and define all or part of its content by aggregating a set of
 SUPAPolicyClauses

6.3. Working With SUPAECAPolicyRules

 A SUPAECAPolicyRule is a type of SUPAPolicy. It is a tuple that
 MUST have three clauses, defined as follows:

 o The event clause defines a Boolean expression that, if
 TRUE, triggers the evaluation of its condition clause (if the
 event clause is not TRUE, then no further action for this
 policy rule takes place).
 o The condition clause defines a Boolean expression that, if
 TRUE, enables the actions in the action clause to be executed
 (if the condition clause is not TRUE, then no further action
 for this policy rule takes place).
 o The action clause contains a set of actions

 Each of the above clauses can be a simple Boolean expression (of
 the form {variable operator value}, or a compound Boolean

 expression consisting of Boolean combinations of clauses.

Strassner, et al. Expires July 4, 2016 [Page 86]

Internet-Draft SUPA Generic Policy Model January 2016

 Note that each of the above three clauses MAY have a set of
 SUPAPolicyMetadata objects that can constrain, or otherwise
 affect, how that clause is treated. For example, a set of
 SUPAPolicyMetadata MAY affect whether none, some, or all actions
 are executed, and what happens if an action fails.

 Each of the three clauses can be constructed from either a
 SUPAEncodedClause or a SUPABooleanClause. The advantage of using
 SUPAEncodedClauses is simplicity, as the content of the clause is
 encoded directly into the attributes of the SUPAEncodedClause. The
 advantage of using SUPABooleanClauses is reusability, since each
 term in each clause is potentially a reusable object.

 Since a SUPABooleanClause is a subclass of a SUPAPolicyClause
 (see Section 6.7), it can be decorated by one or more concrete
 subclasses of SUPAPolicyComponentDecorator. Therefore, a
 SUPAECAPolicyRule can be built entirely from objects defined in
 the GPIM and EPRIM, which facilitates the construction of
 SUPAPolicies by a machine.

 The construction of a SUPAECAPolicyRule is shown in Figure 22, and
 is explained in further detail in Section 6.4.

 SUPAHasPolicyClause
 +------------------+---------------+
 | ^ |
 | | |
 / \ | |
 A | |
 A \ / 0..1 | A 1..n \ /
 +-------------+-------------+ | +----------+-------+
 | SUPAPolicyStructureAtomic | | | SUPAPolicyClause |
 +----------+----------------+ | +------------------+
 / \ |
 I A |
 I +-----------+---------------+
 I | SUPAHasPolicyClauseDetail |
 I +---------------------------+
 C I
 +----------+----------+
 | SUPAECAPolicyRule |
 +---------------------+

 Figure 22. SUPAECAPolicyRule Clauses

 The SUPAHasPolicyClause aggregation is implemented using the
 SUPAHasPolicyClauseDetail association class. These were

 described in sections 5.4.2.1 and 5.4.2.2, respectively.

Strassner, et al. Expires July 4, 2016 [Page 87]

Internet-Draft SUPA Generic Policy Model January 2016

6.4. The Abstract Class "SUPAECAPolicyRule"

 This is a mandatory abstract class, which is a PolicyContainer
 that aggregates PolicyEvents, PolicyConditions, PolicyActions into
 a type of policy rule known as an Event-Condition-Action (ECA)
 policy rule. As previously explained, this has the following
 semantics:

 IF the event clause evaluates to TRUE
 IF the condition clause evaluates to TRUE
 THEN execute actions in the action clause
 ENDIF
 ENDIF

 The event clause, condition clause, and action clause collectively
 form a three-tuple. Each clause MUST be defined by at least one
 SUPAPolicyClause (which MAY be decorated with other elements,
 as described in section 5.9.

 Each of the three types of clauses is of the form

 variable operator value

 Each of the three clauses MAY be combined with additional clauses
 using any combination of logical AND, OR, and NOT operators; this
 forms a "compound" Boolean clause. For example, a valid event
 clause could be:

 "3 A-events AND ((NOT B-event) OR 2 C-events)"

 In either case, the output of all three clauses is either TRUE
 or FALSE; this facilitates combining and chaining ECAPolicyRules.

 An ECAPolicyRule MAY be optionally augmented with PolicySources
 and/or PolicyTargets (see sections 5.16 and 5.17, respectively).
 In addition, all objects that make up the SUPAECAPolicyRule MAY
 have PolicyMetadata attached to them to further describe and/or
 specify behavior.

 When defined in an information model, each of the event, condition,
 and action clauses MUST be represented as an aggregation between a
 SUPAECAPolicyRule (the aggregate) and a set of event, condition, or
 action objects (the components). However, a data model MAY map
 these definitions to a more efficient form (e.g., by flattening
 these three types of object instances, along with their respective
 aggregations, into a single object instance).

Strassner, et al. Expires July 4, 2016 [Page 88]

Internet-Draft SUPA Generic Policy Model January 2016

 The composite pattern [3] is applied to the SUPAECAPolicyRule
 class, enabling its (concrete) subclasses to be used as either a
 stand-alone policy rule or as a hierarchy of policy rules. This is
 shown in Figure 23.

 1..n +-------------------+
 \| |
 +--------------- + SUPAECAPolicyRule |
 | /| |
 | +--------+----------+
 | / \
 | SUPAHasECAPolicyRule I
 | I
 | I
 | I
 | +----------------+---------+
 | I I
 / \ I I
 A I I
 0..1 \ / I I
 +-------+--------+---------+ +-----------+-----------+
 |SUPAECAPolicyRuleComposite| |SUPAECAPolicyRuleAtomic|
 +--------------------------+ +-----------------------+

 Figure 23. The Composite Pattern Applied to a SUPAECAPolicyRule

 SUPAECAPolicyRuleComposite and SUPAECAPolicyRuleAtomic both
 inherit from SUPAECAPolicyRule. This means that they are both
 a type of SUPAECAPolicyRule. Hence, the HasSUPAECAPolicyRule
 aggregation enables a particular SUPAECAPolicyRuleComposite
 object to aggregate both SUPAECAPolicyRuleComposite as well as
 SUPAECAPolicyRuleAtomic objects. In contrast, a
 SUPAECAPolicyRuleAtomic can NOT aggregate either a
 SUPAECAPolicyRuleComposite or a SUPAECAPolicyRuleAtomic.
 SUPAECAPolicyRuleAtomic and SUPAECAPolicyRuleComposite are
 defined in sections 6.5 and 6.6, respectively.

 Note that the HasSUPAECAPolicyRule aggregation is defined by the
 HasSUPAECAPolicyRuleDetail association class; both are defined
 in sections 6.6.2 and 6.6.3, respectively.

6.4.1. SUPAECAPolicyRule Attributes

 Currently, the SUPAECAPolicyRule defines two attributes, as
 described in the following subsections.

Strassner, et al. Expires July 4, 2016 [Page 89]

Internet-Draft SUPA Generic Policy Model January 2016

6.4.1.1. The Attribute "supaECAPolicyIsMandatory"

 This is an optional Boolean attribute. If the value of this
 attribute is true, then this SUPAECAPolicyRule MUST be executed
 (i.e., its Event and Condition clauses are irrelevant, and the
 Action(s) specified in the Action clause MUST be executed). A
 default value of FALSE MAY be assigned.

6.4.1.2. The Attribute "supaECAPolicyPriority"

 This is a mandatory non-negative integer attribute that defines
 the priority of this particular SUPAECAPolicyRule. A larger value
 indicates a higher priority. A default value of 0 MAY be assigned.

6.4.1.3. The Attribute "supaECAPolicyRuleStatus"

 This is an optionaL non-negative enumerated integer whose value
 defines the current status of this policy rule. Values include:

 0: In development, not ready to be deployed
 1: Ready to be deployed
 2: Deployed but not enabled
 3: Deployed and enabled, but not executed
 4: Executed without errors
 5: Executed with errors
 6: Aborted during execution

6.4.2. SUPAECAPolicyRule Relationships

 Currently, the SUPAECAPolicyRule does not define any relationships.

6.5. The Concrete Class "SUPAECAPolicyRuleAtomic"

 This is a mandatory concrete class. This class is a type of
 PolicyContainer, and represents a SUPAECAPolicyRule that can
 operate as a single, stand-alone, manageable object. Put another
 way, a SUPAECAPolicyRuleAtomic object can NOT be modeled as a set
 of hierarchical SUPAECAPolicyRule objects; if this is required,
 then a SUPAECAPolicyRuleComposite object should be used instead.

6.5.1. SUPAECAPolicyRuleAtomic Attributes

 Currently, the SUPAECAPolicyRuleAtomic class does not define any
 attributes.

6.5.2. SUPAECAPolicyRuleAtomic Relationships

 Currently, the SUPAECAPolicyRuleAtomic class does not define any
 relationships.

Strassner, et al. Expires July 4, 2016 [Page 90]

Internet-Draft SUPA Generic Policy Model January 2016

6.6. The Concrete Class "SUPAECAPolicyRuleComposite"

 This is a mandatory concrete class. This class is a type of
 PolicyContainer, and represents a SUPAECAPolicyRule as a hierarchy
 of SUPAPolicy objects, where the hierarchy contains instances of a
 SUPAECAPolicyRuleAtomic and/or SUPAECAPolicyRuleComposite objects.
 Each of the SUPAPolicy objects, including the outermost
 SUPAECAPolicyRuleComposite object, are separately manageable. More
 importantly, each SUPAECAPolicyRuleComposite object represents an
 aggregated object that is itself manageable.

6.6.1. SUPAECAPolicyRuleComposite Attributes

 Currently, the SUPAECAPolicyRuleComposite defines one attribute,
 as described in the following subsection.

6.6.1.1. The Attribute "supaECAEvalStrategy"

 This is a mandatory, non-zero, integer attribute that enumerates
 a set of allowable alternatives that define how the actions in a
 SUPAECAPolicyRuleComposite object are evaluated. Values include:

 0: undefined
 1: execute the first action and then terminate
 2: execute only the highest priority action(s)
 3: execute all actions regardless of their execution status
 4: execute all actions until one or more actions fail

 Assume that the actions in a given SUPAECAPolicyRuleComposite
 are defined as follows

 Action A, priority 0
 Action B, priority 10
 Action C, priority 5
 Action D, priority 5
 Action E, priority 2

 Then, if the supaECAEvalStrategy attribute value equals:

 0: an error is issued
 1: only Action A is executed
 2: only Actions C and D are executed
 3: all actions are executed, regardless of any failures
 4: all actions are executed until a failure is detected, and
 then execution terminates

Strassner, et al. Expires July 4, 2016 [Page 91]

Internet-Draft SUPA Generic Policy Model January 2016

6.6.2. SUPAECAPolicyRuleComposite Relationships

 Currently, the SUPAECAPolicyRuleComposite defines a single
 aggregation between it and SUPAECAPolicyRule, as described below.

6.6.2.1. The Aggregation "SUPAHasECAPolicyRule"

 This is an optional aggregation that implements the composite
 pattern. The multiplicity of this aggregation is 0..1 on the
 aggregate (SUPAECAPolicyRuleComposite) side and 1..n on the part
 (SUPAECAPolicyRule) side. This means that if this aggregation
 is defined, then at least one SUPAECAPolicyRule object (which may
 be either an instance of a SUPAECAPolicyRuleAtomic or a
 SUPAECAPolicyRuleComposite class) must also be instantiated and
 aggregated by this particular SUPAECAPolicyRuleComposite object.
 The semantics of this aggregation are defined by the
 SUPHasECAPolicyRuleDetail association class.

6.6.3. The Association Class "SUPHasECAPolicyRuleDetail"

 This is an optional association class, and defines the semantics
 of the SUPHasECAPolicyRule aggregation. This enables the
 attributes and relationships of the SUPHasECAPolicyRuleDetail
 class to be used to constrain which SUPHasECAPolicyRule objects
 can be aggregated by this particular SUPAECAPolicyRuleComposite
 object instance.

6.6.3.1. The Attribute "supaECAPolicyIsDefault"

 This is an optional Boolean attribute. If the value of this
 attribute is true, then this SUPAECAPolicyRule is a default
 policy, and will be executed if no other SUPAECAPolicyRule
 in the SUPAECAPolicyRuleComposite container has been executed.
 This is a convenient way for error handling, though care should
 be taken to ensure that only one default policy rule is defined
 per SUPAECAPolicyRuleComposite container.

6.7. The Abstract Class "SUPABooleanClause"

 A SUPABooleanClause specializes a SUPAPolicyClause, and defines
 a Boolean statement consisting of a standard structure in the form
 of a PolicyVariable, a PolicyOperator, and a PolicyValue. For
 example, this enables the following Boolean clause to be defined:

 Foo >= Bar AND Baz

 where 'Foo' is a PolicyVariable, '>=' is a PolicyOperator, and
 'Baz' is a PolicyValue.

Strassner, et al. Expires July 4, 2016 [Page 92]

Internet-Draft SUPA Generic Policy Model January 2016

 Note that in this approach, the PolicyVariable and PolicyValue
 terms are defined as an appropriate subclass of the
 SUPAPolicyComponentDecorator class; it is assumed that the
 PolicyOperator is an instance of the SUPAPolicyOperator class.
 This enables the EPRIM, in conjunction with the GPIM, to be used
 as a reusable class library. This encourages interoperability,
 since each element of the clause is itself an object defined by
 the SUPA object hierarchy.

 The addition of a negation in the above statement is provided by
 the supaBoolIsNegated class attribute of the SUPABooleanClause
 class. Individual terms of a Boolean clause can be negated by
 using the supaTermIsNegated Boolean attribute in the
 SUPAPolicyTerm class (see section 5.10).

 A PolicyStatement is in Conjunctive Normal Form (CNF) if it is a
 conjunction (i.e., a sequence of ANDed terms), where each term is
 a disjunction (i.e., a sequence of ORed terms). Every statement
 that consists of a combination of AND, OR, and NOT operators can
 be written in CNF.

 A PolicyStatement is in Disjunctive Normal Form (DNF) if it is a
 disjunction (i.e., a sequence of ORed terms), where each term is
 a conjunction (i.e., a sequence of ANDed terms). Every statement
 that consists of a combination of AND, OR, and NOT operators can
 be written in DNF.

 The construction of more complex clauses, which consist of a set
 of simple clauses in conjunctive or disjunctive normal form (as
 shown in the above example), is provided by using the composite
 pattern [3] to construct two concrete subclasses of the abstract)
 SUPABooleanClause class. These are called SUPABooleanClauseAtomic
 and SUPABooleanClauseComposite, and are defined in sections 6.8
 and 6.9, respectively. This enables instances of either a
 SUPABooleanClauseAtomic and/or a SUPABooleanClauseComposite to be
 aggregated into a SUPABooleanClauseComposite object.

6.7.1. SUPABooleanClause Attributes

 The SUPABooleanClause class currently defines two attributes,
 which are defined in the following subsections.

6.7.1.1. The Attribute "supaBoolIsCNF"

 This is a mandatory Boolean attribute. If the value of this
 attribute is TRUE, then this SUPABooleanClause is in CNF form.
 Otherwise, it is in DNF form.

Strassner, et al. Expires July 4, 2016 [Page 93]

Internet-Draft SUPA Generic Policy Model January 2016

6.7.1.2. The Attribute "supaBoolIsNegated"

 This is a mandatory Boolean attribute. If the value of this
 attribute is TRUE, then this (entire) SUPABooleanClause is
 negated. Note that the supaPolTermIsNegated class attribute of
 the SUPAPolicyTerm class is used to negate a single term.

6.7.2. SUPABooleanClause Relationships

 Currently, no relationships are defined for the SUPABooleanClause
 class.

6.8. The Concrete Class "SUPABooleanClauseAtomic"

 This is a mandatory concrete class that represents a
 SUPABooleanClause that can operate as a single, stand-alone,
 manageable object. Put another way, a SUPABooleanClauseAtomic
 object can NOT be modeled as a set of hierarchical clauses; if
 this functionality is required, then a SUPABooleanClauseComposite
 object must be used.

6.8.1. SUPABooleanClauseAtomic Attributes

 No attributes are currently defined for the
 SUPABooleanClauseAtomic class.

6.8.2. SUPABooleanClauseAtomic Relationships

 Currently, no relationships are defined for the
 SUPABooleanClauseAtomic class.

6.9. The Concrete Class "SUPABooleanClauseComposite"

 This is a mandatory concrete class that represents a
 SUPABooleanClause that can operate as a hierarchy of PolicyClause
 objects, where the hierarchy contains instances of
 SUPABooleanClauseAtomic and/or SUPABooleanClauseComposite
 objects. Each of the SUPABooleanClauseAtomic and
 SUPABooleanClauseComposite objects, including the outermost
 SUPABooleanClauseComposite object, are separately manageable.
 More importantly, each SUPAECAPolicyRuleComposite object
 represents an aggregated object that is itself manageable.

6.9.1. SUPABooleanClauseComposite Attributes

 A single attribute is currently defined for the
 SUPABooleanClauseComposite class, and is described in the

 following subsection.

Strassner, et al. Expires July 4, 2016 [Page 94]

Internet-Draft SUPA Generic Policy Model January 2016

6.9.1.1. The Attribute "supaPolStmtBindValue"

 This is an optional non-zero integer attribute, and defines the
 order in which terms bind to a clause. For example, the Boolean
 statement "((A AND B) OR (C AND NOT (D or E))) has the following
 binding order: terms A and B have a bind value of 1; term C has a
 binding value of 2, and terms D and E have a binding value of 3.

6.9.2. SUPABooleanClauseComposite Relationships

 Currently, the SUPABooleanClauseComposite class defined a single
 aggregation, which is described in the subsections below.

6.9.2.1. The Aggregation "SUPAHasBooleanClause"

 This is a mandatory aggregation that defines the set of
 SUPABooleanClause objects that are aggregated by this
 SUPABooleanClauseComposite object.

 The multiplicity of this relationship is 0..1 on the aggregate
 (SUPABooleanClauseComposite) side, and 1..n on the part
 (SUPABooleanClause) side. This means that one or more
 SUPABooleanClauses are aggregated and used to define this
 SUPABooleanClauseComposite object. The 0..1 cardinality on the
 SUPABooleanClauseComposite side is necessary to enable
 SUPABooleanClauses to exist (e.g., in a PolicyRepository) before
 they are used by a SUPABooleanClauseComposite. The semantics of
 this aggregation is defined by the SUPAHasBooleanClauseDetail
 association class.

6.9.3. The Concrete Class "SUPAHasBooleanClauseDetail"

 This is a mandatory association class that defines the semantics
 of the SUPAHasBooleanClause aggregation. This enables the
 attributes and relationships of the SUPAHasBooleanClauseDetail
 class to be used to constrain which SUPABooleanClause objects
 can be aggregated by this particular SUPABooleanClauseComposite
 object instance

6.9.3.1. SUPAHasBooleanClauseDetail Attributes

 The SUPAHasBooleanClauseDetail class currently does not define
 any attributes at this time.

Strassner, et al. Expires July 4, 2016 [Page 95]

Internet-Draft SUPA Generic Policy Model January 2016

6.10. The Abstract Class "SUPAECAComponent"

 This is a mandatory abstract class that defines three concrete
 subclasses, one each to represent the concepts of reusable events,
 conditions, and actions. They are called SUPAPolicyEvent,
 SUPAPolicyCondition, and SUPAPolicyAction, respectively.

6.10.1. SUPAECAComponent Attributes

 No attributes are currently defined for this class.

6.10.2. SUPAECAComponent Relationships

 No relationships are currently defined for this class.

6.11. The Concrete Class "SUPAPolicyEvent"

 This is a mandatory concrete class that represents the concept of
 an Event that is applicable to a policy management system. Such
 an Event is defined as any important occurrence in time of a
 change in the system being managed, and/or in the environment of
 the system being managed.

6.11.1. SUPAPolicyEvent Attributes

 Currently, five attributes are defined for the SUPAPolicyEvent
 class, which are described in the following subsections.

6.11.1.1. The Attribute "supaPolicyEventIsPreProcessed"

 This is an optional Boolean attribute. If the value of this
 attribute is TRUE, then this SUPAPolicyEvent has been pre-
 processed by an external entity, such as an Event Service Bus,
 before it was received by the Policy Management System.

6.11.1.2. The Attribute "supaPolicyEventIsSynthetic"

 This is an optional Boolean attribute. If the value of this
 attribute is TRUE, then this SUPAPolicyEvent has been produced by
 the Policy Management System. If the value of this attribute is
 FALSE, then this SUPAPolicyEvent has been produced by an entity
 in the system being managed.

6.11.1.3. The Attribute "supaPolicyEventTopic[0..n]"

 This is a mandatory array of string attributes, and contains the
 subject that this PolicyEvent describes.

Strassner, et al. Expires July 4, 2016 [Page 96]

Internet-Draft SUPA Generic Policy Model January 2016

6.11.1.4. The Attribute "supaPolicyEventDataType"

 This is a mandatory non-zero enumerated integer attribute, and
 defines the data type of the supaPolicyEventData attribute. These
 two attributes form a tuple, and together enable a machine to
 understand the syntax and value of the content of this
 SUPAPolicyEvent object. Values include:

 0: undefined
 1: GUID
 2: UUID
 3: URI
 4: FQDN
 5: DateTime
 6: String
 7: OCL 2.x
 8: OCL 1.x
 9: QVT 1.2 - Relations Language
 10: QVT 1.2 - Operational language
 11: Alloy

 Enumerations 1-4 are used to provide a reference to an event
 object. Enumeration 5 defines the Event as a temporal value.
 Enumerations 6-11 are used to express the Event as a string.

6.11.1.5. The Attribute "supaPolicyEventData[1..n]"

 This is a mandatory array of string attributes that contain the
 content of this SUPAPolicyEvent object (or set of objects).

 This version of this document enables either the text describing
 the set of events that should be contained in the event clause of
 a SUPAPolicyRule or a set of event objects. The former is useful
 for describing common conditions, such as "if the time is before
 6pm" or "if three events of type A are received and then a single
 event of type B or type C is received". The latter is useful for
 treating the event as an object, and filtering on the attributes
 of the event.

 In the former case, the text may be entered as one or more strings.
 In the latter case, each string in the array is a reference to an
 event object.

 This attribute works with another class attribute, called
 supaPolicyEventDataType, which defines how to interpret this
 attribute. These two attributes form a tuple, and together enable
 a machine to understand the syntax and value of the data carried
 by the object instance of this class.

Strassner, et al. Expires July 4, 2016 [Page 97]

Internet-Draft SUPA Generic Policy Model January 2016

6.11.2. SUPAPolicyEvent Relationships

 No relationships are currently defined for this class.

6.12. The Concrete Class "SUPAPolicyCondition"

 This is a mandatory concrete class that represents the concept of
 an Condition that will determine whether or not the set of Actions
 in the SUPAECAPolicyRule to which it belongs are executed or not.

6.12.1. SUPAPolicyCondition Attributes

 Currently, two attributes are defined for the SUPAPolicyCondition
 class, which are described in the following subsections.

6.12.1.1. The Attribute "supaPolicyConditionDataType"

 This is a mandatory non-zero enumerated integer attribute, and
 defines the data type of the supaPolicyConditionData attribute.
 These two attributes form a tuple, and together enable a machine
 to understand the syntax and value of the content of this
 SUPAPolicyCondition object. Values include:

 0: undefined
 1: String
 2: OCL 2.x
 3: OCL 1.x
 4: QVT 1.2 - Relations Language
 5: QVT 1.2 - Operational language
 6: Alloy

6.12.1.2. The Attribute "supaPolicyConditionData"

 This is a mandatory string attribute that contains the content of
 this SUPAPolicyCondition object.

 This attribute works with another class attribute, called
 supaPolicyConditionDataType, which defines how to interpret this
 attribute. These two attributes form a tuple, and together enable
 a machine to understand the syntax and value of the data carried
 by the object instance of this class.

6.12.2. SUPAPolicyEvent Relationships

 No relationships are currently defined for this class.

Strassner, et al. Expires July 4, 2016 [Page 98]

Internet-Draft SUPA Generic Policy Model January 2016

6.13. The Concrete Class "SUPAPolicyAction"

 This is a mandatory concrete class that represents the concept of
 an Action, which is a part of a SUPAECAPolicyRule, which may be
 executed when both the event and the condition clauses of its
 owning SUPAECAPolicyRule evaluate to true. The execution of this
 action is determined by the SUPAECAPolicyRule container, and any
 applicable SUPAPolicyMetadata objects.

6.13.1. SUPAPolicyAction Attributes

 Currently, three attributes are defined for the SUPAPolicyCondition
 class, which are described in the following subsections.

6.13.1.1. The Attribute "supaPolicyActionDataType"

 This is a mandatory non-zero enumerated integer attribute, and
 defines the data type of the supaPolicyActionData attribute.
 These two attributes form a tuple, and together enable a machine
 to understand the syntax and value of the content of this
 SUPAPolicyAction object. Values include:

 0: undefined
 1: GUID
 2: UUID
 3: URI
 4: FQDN
 5: String
 6: OCL 2.x
 7: OCL 1.x
 8: QVT 1.2 - Relations Language
 9: QVT 1.2 - Operational language
 10: Alloy

 Enumerations 1-4 are used to provide a reference to an action
 object. Enumerations 5-10 are used to express the action to
 perform as a string.

6.13.1.2. The Attribute "supaPolicyActionData[1..n]"

 This is a mandatory string attribute that contains the content of
 this SUPAPolicyAction object.

 This attribute works with another class attribute, called
 supaPolicyConditionDataType, which defines how to interpret this
 attribute. These two attributes form a tuple, and together enable
 a machine to understand the syntax and value of the data carried
 by the object instance of this class.

Strassner, et al. Expires July 4, 2016 [Page 99]

Internet-Draft SUPA Generic Policy Model January 2016

6.13.1.3. The Attribute "supaPolicyActionResponse"

 This is a mandatory non-negative enumerated integer attribute that
 defines the execution status of this particular SUPAPolicyAction.
 Values include:

 0: undefined
 1: executed with no errors
 2: executed with at least one error
 3: failed to execute

6.13.2. SUPAPolicyAction Relationships

 No relationships are currently defined for this class.

7. Examples

8. Security Considerations

 This will be defined in the next version of this document.

9. IANA Considerations

 This document has no actions for IANA.

10. Acknowledgments

 This document has benefited from reviews, suggestions, comments
 and proposed text provided by the following members, listed in
 alphabetical order: Andy Bierman, Bob Natale, Fred Feisullin,
 Liu (Will) Shucheng, Marie-Jose Montpetit.

11. References

 This section defines normative and informative references for this
 document.

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3060] Moore, B., Ellesson, E., Strassner, J., Westerinen,
 A., "Policy Core Information Model -- Version 1
 Specification", RFC 3060, February 2001

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3060

Strassner, et al. Expires July 4, 2016 [Page 100]

Internet-Draft SUPA Generic Policy Model January 2016

 [RFC3460] Moore, B., ed., "Policy Core Information Model (PCIM)
 Extensions, RFC 3460, January 2003

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)",

RFC 6020, October 2010.

 [RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991,
 July 2013.

11.2. Informative References

 [RFC3198] Westerinen, A., Schnizlein, J., Strassner, J.,
 Scherling, M., Quinn, B., Herzog, S., Huynh, A.,
 Carlson, M., Perry, J., Waldbusser, S., "Terminology
 for Policy-Based Management", RFC 3198, November, 2001

 [1] Strassner, J., "Policy-Based Network Management",
 Morgan Kaufman, ISBN 978-1558608597, Sep 2003

 [2] Strassner, J., ed., "The DEN-ng Information Model",
 add stable URI

 [3] Riehle, D., "Composite Design Patterns", Proceedings
 of the 1997 Conference on Object-Oriented Programming
 Systems, Languages and Applications (OOPSLA '97).
 ACM Press, 1997, Page 218-228

 [4] DMTF, CIM Schema, v2.44,
http://dmtf.org/standards/cim/cim_schema_v2440

 [5] Strassner, J., ed., "ZOOM Policy Architecture and
 Information Model Snapshot", TR235, part of the
 TM Forum ZOOM project, October 26, 2014

 [6] TM Forum, "Information Framework (SID), GB922 and
 associated Addenda, v14.5,

https://www.tmforum.org/information-framework-sid/

 [7] Liskov, B.H., Wing, J.M., "A Behavioral Notion of
 subtyping", ACM Transactions on Programming languages
 and Systems 16 (6): 1811 - 1841, 1994

 [8] Klyus, M., Strassner, J., editors, "SUPA Proposition",
 IETF Internet draft, draft-klyus-supa-proposition-01,
 July 4015

 [9] ISO/IEC 10746-3 (also ITU-T Rec X.903), "Reference
 Model Open Distributed Processing Architecture",

https://datatracker.ietf.org/doc/html/rfc3460
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc3198
http://dmtf.org/standards/cim/cim_schema_v2440
https://www.tmforum.org/information-framework-sid/
https://datatracker.ietf.org/doc/html/draft-klyus-supa-proposition-01

 April 20, 2010

Strassner, et al. Expires July 4, 2016 [Page 101]

Internet-Draft SUPA Generic Policy Model January 2016

 [10] Davy, S., Jennings, B., Strassner, J., "The Policy
 Continuum - A Formal Model", Proc. of the 2nd Intl.
 IEEE Workshop on Modeling Autonomic Communication
 Environments (MACE), Multicon Lecture Notes, No. 6,
 Multicon, Berlin, 2007, pages 65-78

 [11] Gamma, E., Helm, R., Johnson, R., Vlissides, J.,
 "Design Patterns - Elements of Reusable Object-Oriented
 Software", Addison-Wesley, 1994, ISBN 0-201-63361-2

 [12] Strassner, J., de Souza, J.N., Raymer, D., Samudrala,
 S., Davy, S., Barrett, K., "The Design of a Novel
 Context-Aware Policy Model to Support Machine-Based
 Learning and Reasoning", Journal of Cluster Computing,
 Vol 12, Issue 1, pages 17-43, March, 2009

 [13] Liskov, B.H., Wing, J.M., "A Behavioral Notion of
 subtyping", ACM Transactions on Programming languages
 and Systems, 16 (6): 1811 - 1841, 1994

 [14] Martin, R.C., "Agile Software Development, Principles,
 Patterns, and Practices", Prentice-Hall, 2002,
 ISBN: 0-13-597444-5

Authors' Addresses

 John Strassner
 Huawei Technologies
 2330 Central Expressway
 Santa Clara, CA 95138 USA
 Email: john.sc.strassner@huawei.com

 Joel Halpern
 Ericsson
 P. O. Box 6049
 Leesburg, VA 20178
 Email: joel.halpern@ericsson.com

 Jason Coleman
 Cisco Systems
 124 Copper Lake Lane
 Georgetown Tx 78628
 Email: routerjockey@me.com

Appendix A. Mathematical Logic Terminology and Symbology

Appendix B. SUPA Logic Statement Information Model

Appendix C. Brief Analyses of Previous Policy Work

Strassner, et al. Expires July 4, 2016 [Page 102]

