
INTERNET-DRAFT H. Sugano
Expires: December, 2000 A. Iwakawa
 K. Otani
 T. Ohno
 S. Fujimoto
 Fujitsu
 June 2000

Privacy-enhanced Presence Protocol (PePP)
<draft-sugano-impp-proposal-pepp-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes a protocol designed for scalable and secure
 Instant Messaging and Presence Services. The protocol, Privacy
 enhanced Presence Protocol (PePP), has been developed for an
 experimental Presence Service and recently extended to satisfy a
 variety of requirements for the Internet-wide, interoperable
 standards. This is a protocol proposal for the IMPP Working Group.

Sugano et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-sugano-impp-proposal-pepp-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET DRAFT PePP Specification April 2000

Table of Contents

1. Introduction ... 4
2. Terminology .. 4
3. Protocol Overview 6
3.1. Architecture ... 6
3.2. Model for Presence Service 7
3.2.1. Privacy Requirements 7
3.2.2. Presence Sections 7
3.2.3. Section based Access Control 8
3.2.4. Lease Model of Presence Information 9
3.2.5. Two Modes of Subscription 10
3.3. PePP Connections 10
3.3.1. Client Connections 11
3.3.2. Server Connections 13
3.3.3. Direct Connections 15
3.4. Subscription Model 16
3.4.1. Behavior of Clients 17
3.4.2. Behavior of Home Servers 17
3.4.3. Behavior of Target Servers 18
3.5. Instant Messaging Service 18
3.5.1. Basic Architecture 18
3.5.2. IM Conversation 19
3.5.3. Multiparty Conversation 19
3.6. Character and Content Encoding 20
4. Considerations Regarding IMPP Requirements 20
4.1. Scalability .. 21
4.2. Security ... 21
4.3. Wireless ... 23
4.4. Separability of Services 23
5. PePP Messages .. 24
5.1. Message Overview 24
5.2. PePP Addresses 25
5.3. Message Syntax 25
6. PePP Headers ... 27
6.1. From ... 27
6.2. Connection-Mode 27
6.3. Max-Content-Length 27
6.4. Subscription-Mode 28
6.5. Subscription-ID 28
6.6. Regarding .. 28
6.7. Change-Mode .. 29
6.8. Cancel-Type .. 29
6.9. Duration ... 30
6.10. Last-Modified 30
6.11. Section-ID .. 31
6.12. Section-Name .. 31
6.13. Location .. 31

Sugano et al. [Page 2]

INTERNET DRAFT PePP Specification April 2000

6.14. Content-Type .. 32
6.15. Content-Length 32
6.16. Auth-State .. 32
6.17. SASL-Mechanism 32
6.18. Message-ID .. 32
6.19. Conversation-ID 33
7. PePP Methods ... 33
7.1. LOGIN .. 33
7.2. LOGOUT ... 34
7.3. SUBSCRIBE .. 35
7.4. UNSUBSCRIBE .. 36
7.5. REQUESTNOTIFY .. 37
7.6. CHANGE ... 38
7.7. CANCEL ... 39
7.8. FETCH .. 40
7.9. NOTIFY ... 41
7.10. PULL .. 42
7.11. SEND .. 42
7.12. RECEIVE ... 43
7.13. CALLBACK .. 44
7.14. REDIRECT .. 45
7.15. SETACL .. 45
7.16. GETACL .. 46
7.17. CREATESECTION 46
7.18. DELETESECTION 47
7.19. PING .. 47
7.20. STARTTLS .. 48
7.21. CONNECT ... 49
8. Status Codes ... 49
8.1. 1xx .. 50
8.2. 2xx .. 50
8.3. 3xx .. 50
8.4. 4xx .. 51
8.5. 5xx .. 52
9. Presence Information Data Format 53
9.1. Overview ... 53
9.2. Tag Descriptions 54
10. Subscribers Information 57
11. Access Control List 58
11.1. Overview .. 58
11.2. ACL Functions 58
11.3. Syntax of ACL 59
12. Sample Transcripts 61
13. Security Considerations 65
14. Acknowledgments 65
15. References .. 65
16. Authors' Addresses 66

Sugano et al. [Page 3]

INTERNET DRAFT PePP Specification April 2000

1. Introduction

 Instant Messaging (IM) and Presence Information (PI) Services have
 received broad attention as an emerging technology for real-time
 communication on the Internet. While there are a couple of services
 already deployed and widely used, each of those is based on its
 proprietary protocol and users cannot make use of IM Services like
 e-mails. This is a serious problem to overcome from both the
 technical and industrial standpoints. To solve the problem, the
 Instant Messaging and Presence Protocol (IMPP) WG has been formed at
 IETF, and been working to create an open, interoperable standards for
 IM/Presence technologies.

 We at Fujitsu have long been interested in the development of the
 Internet-wide standards for IM and Presence services. To this end,
 we have collaborated with other players and contributed to the design
 of the standards. At the same time, we have been working on an
 Instant Messaging/Presence protocol called PePP for experimental
 client and server development. PePP is still a work in progress, and
 the current implementation is mainly concerned with the single domain
 utilization. Thus, we have been working to improve PePP to make it
 satisfy the IMPP requirements [Reqts] based on our interest for the
 interoperable standard.

 Our main concerns in the development of PePP are security/privacy and
 scalability. In particular, as the Presence Service is considered to
 be fairly privacy sensitive, PePP is designed to have a means for
 fine privacy control on publishing a variety of Presence Information.
 For scalability, PePP has some features to avoid the server and
 connection bottlenecks.

 This document describes the present version of the extended PePP
 specification. The authors submits this document as a proposal for
 the IMPP standardization. Further, we wish to share our ideas in the
 PePP design with the community to spur further discussion of the
 development of the standard. We would welcome any comments,
 suggestions and evaluations on PePP.

2. Terminology

 This document makes use of the vocabulary defined in the IMPP Model
 and Requirements documents [Model,Reqts]. The capitalized terms such
 as PRESENTITY, WATCHER, PRESENCE SERVICE are used in the same meaning
 as defined in [Model,Reqts] unless otherwise stated. Some newly
 introduced terms are also defined here.

Sugano et al. [Page 4]

INTERNET DRAFT PePP Specification April 2000

 A "PePP Server", or just a server is a logical entity which provides
 the PePP IM/Presence services. A "PePP Client", or just a client is
 a logical entity which exchanges IMs and/or Presence Information
 interacting with the servers. Note that, although the IMPP Model
 document defines several types of ideal clients such as PRESENTITY,
 WATCHER, SENDER, and INBOX, the PePP client is an entity which may
 integrate these functions.

 A "Domain" in the context of PePP is an administrative entity of the
 IM/Presence services. A user of the IM/Presence services in PePP has
 an account in a domain, and the user can get the services using one
 or more clients to connect to the servers in the domain. We call the
 domain in which a user has an account the "Home Domain" of the user.

 For a user or the user's client, the "Home Server" is a server in the
 user's home domain which maintains and publishes Presence Information
 of the user. As stated in Section 3, the client only has a direct
 connection with the Home Server, and the user controls her/his
 Presence Information using the client.

 A "Resource" in the context of PePP is a data unit in the PePP
 server, at which Presence Information of a particular PRESENTITY is
 published so that WATCHERS could access it. Thus, a resource is a
 unit for controlling and publishing Presence Information. Each
 resource is managed by the user controlling the PRESENTITY whose
 Presence Information is published at the resource. The user is
 called the "Owner" of the resource.

 A "PePP Address" is an identifier to locate the PePP resource, which
 is represented by a URI. This is defined in Section 5.

 If a client tries to access the Presence Information of another user,
 the user's Home Server is sometimes called the "Target Server" from
 the viewpoint of the client.

 A "PePP message" or just a "Message" is the unit of PePP
 communication, consisting of a structured sequence of octets matching
 the syntax defined in Section 5. As defined there, a message is a
 "Request" message or a "Response" message. A "Message Body" is a
 part of a "Message" as defined in the same definition. Note that a
 "PePP message" has a different meaning from that of messages when we
 talk about "Instant Messages".

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] .

https://datatracker.ietf.org/doc/html/rfc2119

Sugano et al. [Page 5]

INTERNET DRAFT PePP Specification April 2000

3. Protocol Overview

3.1. Architecture

 PePP is designed for scalable and secure Instant Messaging and
 Presence (IM/P) Services. Because IM/P Services is usually provided
 as an integrated service, we have designed PePP as a single protocol
 for both services.

 The PePP architecture involves two kinds of components; clients and
 servers. Clients may serve as user agents to the IM/P services, but
 may also be other software entity to utilize the services. Servers
 may or may not be different for IM and Presence services, but we
 assume in this document that a single "Home Server" provides both
 service for a user.

 PePP adopts a Client-Server-Server-Client architecture. This means
 that a client only communicates with its home servers, and only
 servers can communicate with other servers which are possibly located
 in different domains. All messages exchanged between a client and a
 server and between a server and another server are transferred
 through TCP connections called "PePP connections". A PePP connection
 has two basic modes; the Client mode and Server mode. The Client
 mode is for a PePP connection between a client and a server, and the
 Server mode is for between servers. For descriptive simplicity, we
 use the terms "PePP Client Connections" and "PePP Server Connections"
 for PePP connections in the Client and Server mode, respectively.
 Fig.1 roughly depicts this architecture.

 PePP Server PePP Server
 +--------+ +--------+
 | HS1 |------------------->| HS2 |
 | |<-------------------| |
 +--------+ PePP Server +--------+
 ^ ^ ^ CONNECTIONS ^ ^ ^
 | | | | | |
 PePP Client | | | | | | PePP Client
 CONNECTIONS | | | | | | CONNECTIONS
 | | | | | |
 v v v v v v
 +-----+ +----+ +-----+ +----+
 | C1 | | C2 | | C3 | | C4 |
 +-----+ +----+ +-----+ +----+
 PePP Clients PePP Clients

 Fig.1: PePP Architecture

Sugano et al. [Page 6]

INTERNET DRAFT PePP Specification April 2000

 We assume that all the server/server relations could be fully trusted
 once they are authenticated each other based on appropriate
 authentication schemes. Thus, when a user in a different domain
 tries to access your Presence Information, you assume the user is
 already autheticated by her home domain and trust her identity.
 Furthermore, as we assume all the notification messages from other
 servers come through already established PePP Client Connections, the
 client can trust the authenticity of the notifications without extra
 authentication.

3.2. Model for Presence Service

 PePP provides a means of fine privacy control of Presence Information
 publication.

3.2.1. Privacy Requirements

 The IMPP Requirements document [Reqts] stipulates a variety of
 privacy requirements which IM/Presence services must meet. In
 addition to "confidentiality" as the most basic requirement, it
 states that a means for controlling privacy is necessary based on the
 observation that users are inclined to hide their activities from the
 public, and further they sometimes want to block a particular user
 from subscribing to their activity without letting the subscriber
 know their intention. This is a requirement for so-called "Polite
 Blocking" (5.1.15 [Reqts]).

 Another requirement for the Presence Service is that users want to
 show themselves differently to different watchers (5.2.3 [Reqts]),
 which is considered as a variation on "Polite Blocking". We call
 this a requirement for "Personae".

 These requirements lead our design practice to have multiple pieces
 of presence information that can be selectively shown to different
 subscribers.

3.2.2. Presence Sections

 The PePP model considers Presence Information contained in a PePP
 resource as a collection of several pieces, each of which is called a
 "presence section". A presence section may contain a status
 information of a communication means, that of the user, or any other.
 A presence section can be considered as an embodiment of the notion
 of a PRESENCE TUPLE, which is defined by the Model document [Model].

Sugano et al. [Page 7]

INTERNET DRAFT PePP Specification April 2000

 The notion of presence sections is intended to be a unit for
 individual control of publication and filtering. For publication
 control, PePP allows the user controlling a PRESENTITY to set an
 access control list per section. For filtering control, PePP allows
 a WATCHER trying to subscribe to a PePP resource is capable of
 selecting presence sections to be notified their presence change.

 Considering the privacy requirements such as "Polite Blocking" and
 "Personae", there may be a case such that the user controlling a
 PRESENTITY wants to hide completely which presence sections are shown
 to the WATCHERS. To realize this in PePP, each presence section has a
 "section name" as an identifier for the WATCHERS in addition to its
 unique identifier "section ID". The section ID is used to manipulate
 the content or control information of the presence section and it is
 not shown to WATCHERS. Instead, a section name is shown to WATCHERS.

 An example of a structure of Presence Information (PI) in a PePP
 resource is shown in Fig.2. Here, an entire PI consists of several
 sections and each section contains a section ID, a section name,
 status, note, and an optional communication address. The syntax
 given here is temporary and the actual syntax of PI is defined in

Section 9.

 +---- section(ID:xxx1, name:user-status)
 | +--- status(busy)
 | +--- note("Don't Call until 18:00pm.")
 |
 +---- section(ID:xxx2, name:user-status)
 | +--- status(available)
 | +--- note()
 |
 PI--+---- section(ID:xxx3, name:IM)
 | +--- status(idle)
 | +--- address(pepp://pepp.fujitsu.com/suga/iibox)
 | . +--- note:("Meeting.")
 | .
 | .
 |
 +---- section(ID:xxxZ, name:email)
 +--- status(available)
 +--- address(mailto:suga@sub.fujitsu.com)
 +--- note:()

 Fig.2: Presence Information as a set of Presence Sections

3.2.3. Section based Access Control

Sugano et al. [Page 8]

INTERNET DRAFT PePP Specification April 2000

 Access control in the Presence Service typically controls how to
 treat requests from WATCHERS. As stated above, PePP assumes the
 Presence Information consists of multiple presence sections, and each
 presence section can have different access control list (ACL).

 When a request for subscription to a resource is received, the
 presence server evaluates the ACL of the resource to determine which
 sections should be shown to the WATCHER. Because several sections
 MAY have the same section name, this mechanism can be used for
 implementing a feature of "Personae".

 In the example of Fig.2, the sections "xxx1" and "xxx2" have the same
 section name "user-status". Consider these sections have ACLs such
 that the section "xxx1" accepts user A but denies user B, and the
 section "xxx2" accepts user B but denies user A. When a user A and
 user B try to subscribe to this resource, user A receives the section
 "xxx1" as "user-status" and user B receives the section "xxx2" with
 the same name.

 A WATCHER may receive several sections with the same name according
 to the ACCESS RULE, and we do not eliminate this situation in the
 protocol level. Individual implementation MAY select one of those
 sections with the same name.

 Note that ACLs for the requests other than that for subscription is
 not set for a section, but for a resource.

3.2.4. Lease Model of Presence Information

 PePP adopts the lease model for changing presence information. That
 is, a PRESENTITY MAY have two pieces of presence information, a lease
 value and a permanent value, for each section of the presence
 information. The lease value is associated with its duration value
 and the client renews the lease value within the duration to keep the
 lease. Otherwise, the value of the presence section turns back to
 the permanent value.

 This feature is preferable because it provides a general solution to
 handle presence status or availability of various kind of
 communication means. While availability of some communication means
 such as IM is subject to unexpected failure or constantly changing
 communication environment, that of other communication means might
 always be acquirable from a particular entity. The latter does not
 have to use the lease value and just change the permanent value of
 the presence section. The lease model gives flexibility to the
 control of presence information.

Sugano et al. [Page 9]

INTERNET DRAFT PePP Specification April 2000

3.2.5. Two Modes of Subscription

 In the case a WATCHER subscribes to a resource publishing Presence
 Information of a PRESENTITY, the WATCHER usually requires a change
 notification when the Presence Information is modified. However, a
 WATCHER sometimes prefers to fetch the Presence Information rather
 than being notified every time. As PePP has a section based feature
 of controlling Presence Information, it also provides WATCHERS with a
 means to choose whether or not to receive notifications for each
 section.

 In PePP, a subscriber can receive permitted presence sections within
 a single subscription to a resource. Moreover, within the
 subscription, the subscriber can restrict the sections to be notified
 change notifications. The selected sections are said to be in the
 Notify mode and the other ones are in the Pull mode. If all the
 sections are in the Notify mode, the subscription is the one in a
 usual sense and is called a Notify mode subscription. In a Pull
 mode, the client fetches the interested presence section when it
 wants. It is desirable when the subscriber wants to reduce the
 frequency of notification, for instance, in the case the user has a
 PePP client on a cellular phone device which charges per packet. This
 feature of PePP also realizes so called Selective Subscription.

 The subscriber in the Pull mode subscription can be considered as a
 notion of FETCHER defined by the IMPP Model document [Model].
 Therefore, the notion of subscribers in PePP coincides that of
 WATCHERS of the Model document, and the Subscribers Information (see

Section 10) corresponds to the WATCHER INFORMATION in it. This is so
 designed because we believe that a WATCHER should be required to
 declare the interest on the PRESENTITY whether she/he wants to get
 notifications or not.

 The Pull mode subscription may possibly cause a heavy load on the
 server. So, the server SHOULD be able to disallow it based on its
 policy.

3.3. PePP Connections

 All PePP connections are TCP connections. We adopted TCP because it
 is widely used as a reliable transport on the Internet and we believe
 all the messages in PePP, not only IMs but also changes and
 notifications of Presence Information, must be safely transported.
 It is also favorable in the existence of firewalls because UDP
 datagrams are not usually permitted to come into through firewalls.

 As stated above, PePP mandates two kinds of connections; PePP client

Sugano et al. [Page 10]

INTERNET DRAFT PePP Specification April 2000

 connections and PePP server connections. Moreover, as an OPTIONAL
 specification, we propose a mechanism to establish a virtually direct
 connection between clients for the sake of the end-to-end security.

3.3.1. Client Connections

 A PePP client connection is a TCP connection between a client and its
 Home Server (HS). It is established only by the requests from
 clients. Clients can create more than one PePP connections if
 necessary. However, the first connection between the client and
 server plays a designated role as a "main" connection, and it is
 expected to be persistent during the service. Other connections are
 called "backup" connections.

 (a) Establishing a Connection

 On establishing a PePP client connection, a client opens a TCP
 connection to its HS and issues a LOGIN request message to the HS to
 start an authentication process. In the LOGIN request, the client
 MUST specify information about the authentication process (AUTH-STATE
 header), a connection mode (CONNECTION-MODE header), and MAY specify
 the maximum size of a message body it wishes to receive (MAX-
 CONTENT-LENGTH header). The client MUST specify "client" as the
 value of the Connection-Mode header field.

 PePP connections use SASL [SASL] as an authentication framework. The
 client and server negotiate the SASL Mechanism to be used by the
 SASL-Mechanism header field. SASL Mechanisms supported in the PePP
 LOGIN process are CRAM-MD5 [CRAM-MD5], EXTERNAL [SASL], and PLAIN
 [SASL-PLAIN].

 1) CRAM-MD5 - It can always be specified.
 2) EXTERNAL - It uses TLS client authentication, and can be specified
 only if TLS client authentication is supported [TLS].
 3) PLAIN - It can be specified only if TLS encryption is enabled.

 The authentication process MAY be completed in a sequence of LOGIN
 requests and their responses. If the process terminated successfully,
 the last response MUST contain the fields specifying the connection
 ID (CONNECTION-ID header) and the MAX-CONTENT-LENGTH header field.
 The server MAY overwrite the value of the MAX-CONTENT-LENGTH
 specified by the client.

 If a client wishes a secure transport, it MAY issue a STARTTLS
 request prior to the LOGIN request in order to upgrade the
 established TCP connection to a TLS enabled secure one. The TLS
 layer simply encrypts the whole PePP messages on the top of a TCP

Sugano et al. [Page 11]

INTERNET DRAFT PePP Specification April 2000

 connection, and provides secure communication channels between
 connection peers.

 (b) PePP Messages

 Once the PePP connection is established, it is used to send PePP
 request and response messages, which have similar syntax to HTTP
 messages, for the Presence and IM services. Like HTTP, a PePP
 request message generates a corresponding single response message.
 However, unlike HTTP, the PePP client connection can be used by both
 of the client and server to send the PePP request messages in both
 directions.

 Because the "main" client connection is supposed to be persistent,
 either ends of the connection MUST send PING requests periodically in
 order to confirm the other is alive.

 A PePP connection allows request pipelining, i.e. a client can send
 another request to the same connection before receiving the response
 to the previous request. Moreover, PePP allows the responses can be
 received in the different order from that of requests in order to
 avoid the server bottleneck caused by the processing overhead. To
 this end, every PePP messages MUST contain a Request-ID which is a
 unique identifier of each request message. The response message MUST
 contain the same Request-ID as that of the corresnponding request
 message to make correspondence between requests and responses.

 In order to distinguish a PePP message from the subsequent ones, a
 PePP message MAY contain a Content-Length header field. If a PePP
 message has a Content-Length header, its value MUST match the exact
 data size of the message body.

 In the client connections, all the PePP requests defined in this
 document can be issued.

 (c) Closing a Connection

 In order to close a PePP connection, a LOGOUT request MAY be sent by
 either ends of the connection. When a client or server receives a
 LOGOUT request, it MUST send 200 OK response if it is not to send
 another request to the connection peer. A client or server which has
 issued a LOGOUT request SHOULD wait an OK response before closing the
 connection.

 A client or server MAY close the connection without issuing a LOGOUT
 request in the case it encounters an abnormal status. For instance,

Sugano et al. [Page 12]

INTERNET DRAFT PePP Specification April 2000

 the connection MAY be closed without any notice in the following
 cases.

 1) The message border in the connection is broken because
 of a wrong Content-Length specified.
 2) The size of the data currently receiving has exceeded the
 Max-Content-Length of the connection.
 3) Time-out.

 (d) Backup Connections

 A client MAY request to establish more than one connections as
 "backups" if necessary. A backup connection is established by the
 same procedure as the main connection. It is typically considered
 necessary when the client is to send or receive data larger than the
 Max-Content-Length value of the main connection. The purpose of
 backup connections is to avoid latency caused by sending huge data
 through relatively slow connections.

 A client MUST request to establish a backup connection when it is to
 send a larger message body than the Max-Content-Length values of
 existing connections. If the data size is less than one of the Max-
 Content-Length values of the existing connections, the client SHOULD
 NOT request a new connection. A LOGIN request for a backup connection
 MUST have a Backup-For header field specifying the connection ID of
 the main connection.

 Although a server cannot request to open a new client connection, the
 server can issue a CALLBACK request through the main connection to
 ask the client to open a new connection. The CALLBACK request MAY
 contain information of the new address to be connected. If the
 server sends a message with a content larger than the Max-Content-
 Length values of existing connections, it MUST send a CALLBACK
 request to the main connection and wait for a new connection. The
 client MAY refuse the CALLBACK request.

 Backup connections MAY be closed by either end of the connection if
 it is considered no more necessary. Backup connection SHOULD be
 closed by LOGOUT requests.

3.3.2. Server Connections

 A PePP connection in the "server" mode, or a PePP server connection,
 is a TCP connection between servers. We use a term "Target Server"
 in contrast with "Home Server" to designate the remote server which
 the client cannot connect directly.

Sugano et al. [Page 13]

INTERNET DRAFT PePP Specification April 2000

 If the Home Server of a client receives requests destined for another
 Target Server, it MUST establish a PePP server connection with the
 Target Server and forward the request to it. Unlike PePP client
 connections, only the initiator of the connection can issue requests
 in general and it MAY close the connection if it is judged not to be
 necessary any more.

 (a) Establishing a Connection

 When a server is to establish a PePP server connection, it MUST try
 to look up a DNS SRV record for the "impp" service on the "tcp"
 protocol prior to looking for an A record to locate another server.

 After locating the other server, the initiating server opens a TCP
 connection to the other and sends a LOGIN request to start
 authentication process. In the LOGIN request, the initiating server
 specifies information about the authentication process, a connection
 mode, and the maximum content size it wishes to receive. For the
 server connection, the value "server" MUST be specified as a value of
 Connection-Mode header field.

 The allowed SASL Mechanisms for PePP server connections are CRAM-MD5
 [CRAM-MD5] and EXTERNAL [SASL]. PLAIN is disallowed because it seems
 unnecessary if the servers could authenticate each other by the TLS
 mutual authentication, and this is very likely.

 1) EXTERNAL - It uses TLS client authentication, and can be specified
 only if TLS client authentication is supported.
 2) CRAM-MD5 - It MAY be accepted depending on the server policy.

 CRAM-MD5 is only for an experimental use because sharing the secret
 passwords between different domains seems to be undesirable. It is
 STRONGLY RECOMMENDED to upgrading to a secure transport by issuing a
 STARTTLS request prior to the LOGIN request.

 (b) PePP Messages

 A PePP server connection is mainly used to exchange request and
 response messages between different domains. Unlike PePP client
 connections, server connections are one-way connections, i.e. only
 the initiating server of the connection can issue request messages
 except for a LOGOUT request.

 Like client connections, every PePP messages MUST contain a Request-
 ID which is a unique identifier of each request message, and every
 PePP messages MUST have a Content-Length header field whose value is
 the exact data size of its message-body.

Sugano et al. [Page 14]

INTERNET DRAFT PePP Specification April 2000

 In the server connection, request messages for administration use is
 not allowed. Only the following request messages can be issued:
 LOGIN, LOGOUT, SUBSCRIBE, UNSUBSCRIBE, REQUESTNOTIFY, NOTIFY, PULL,
 SEND, PING, STARTTLS, CONNECT.

 (c) Closing a Connection

 Like PePP client connections, the either side of the connection MAY
 issue a LOGOUT request MAY to close it. When one of the connection
 peers receives a LOGOUT request, it MUST send '200 OK' response if it
 is not to send another request to the connection. The connection
 peer which has issued a LOGOUT request SHOULD wait an OK response
 before closing the connection.

 Same as the case of client connections, each connection peer MAY
 close the connection without issuing a LOGOUT request in some
 abnormal status.

 (d) Backup Connections

 A server MAY request to establish more than one connection to the
 same server at any time if necessary. So, a server MAY have one or
 more connections with the same Max-Content-Length value.

 As we may assume a PePP server can accept a LOGIN request from other
 servers, we do not distinguish "backup" connection from the "main"
 one. They are independent connections.

3.3.3. Direct Connections

 PePP has a mechanism to establish a virtually direct connection
 between clients. This is an OPTIONAL feature in PePP.

 A "Direct Connection" is a PePP Connection in the "direct" mode. The
 Direct Connection is the virtual connection between the clients and
 implemented using the Client Connection and the Server Connection.

 The Direct Connection is designed for providing the end-to-end
 security to PePP, especially a private conversation channel for IMs
 between clients in order not to be tampered by even the
 administrators of the servers.

 (a) Establishing a Connection

Sugano et al. [Page 15]

INTERNET DRAFT PePP Specification April 2000

 When the client is going to establish to Direct Connection, first of
 all, the initiator client opens a new Client connection to its home
 server, and issues a LOGIN request to identify itself. Then, the
 initiator issues a CONNECT request, which asks the Home Server to
 provide a "raw" TCP socket over the current connection.

 The home server holds this TCP connection and opens another TCP
 connection to the Target Server. The way for discovering the Target
 Server is same as Server Connection described above.

 After LOGIN, the Home Server issues CONNECT request to ask "raw" TCP
 connection to the Target Server. Then, the Target Server issues a
 CALLBACK request to one of the 'receiver' clients which has asked IM
 delivery by the RECEIVE request (See Section 3.5).

 Having established a brand-new TCP connection with the client as a
 result of the CALLBACK request, the Target Server responds to the
 Home Server '200 OK' response, and the Home Server also responds '200
 OK' response to the initiator client.

 Finally, the initiator client issues STARTTLS command, which is
 directly sent to the target client, and they can send and receive
 messages securely over this virtual connection.

 (b) PePP messages

 The Direct Connection behaves like as a Client Connection does, but
 only SEND, PING and LOGOUT requests are allowed.

 (c) Closing a Connection

 Both of the clients can issue a LOGOUT request to terminate the
 Direct Connection. The client which has issued a LOGOUT request
 SHOULD wait to receive the response.

 (d) Backup Connections

 Because the separate Direct Connections MAY be established between
 the same two clients, backup connections for the direct connection
 will not be necessary.

3.4. Subscription Model

 As stated in the previous sections, a PePP client MUST subscribe to

Sugano et al. [Page 16]

INTERNET DRAFT PePP Specification April 2000

 Presence Information in the Target Server via its Home Server. The
 Home Server and Target Server are generally distinct servers while
 they might happen to coincide (Fig. 3). If a client has a
 subscription to a resource at a Target Server, the subscription
 information is stored at the client, its Home Server, and the Target
 Server.

 This subsection describes the behavior of these components in
 relation with Presence Information subscription.

 Client -------- Home Server (HS) -------- Target Server (TS)
 No Expiration Expiration

 Fig.3: Subscription Model

3.4.1. Behavior of Clients

 The PePP client connection is expected to be persistent until the
 client sends LOGOUT to the HS or some failure occurs. If the
 connection is in an abnormal status, for instance the response of
 PING request cannot be received, the client SHOULD disconnect the
 connection and try to reconnect in a certain amount of time and
 reissue all the SUBSCRIBE requests.

3.4.2. Behavior of Home Servers

 Because a PePP server connection is not necessarily persistent, the
 servers on the connection peers cannot detect another one's failure
 by watching the connection. As a solution to this problem, PePP
 utilizes the expiration model for subscription. Thus, a subscription
 will expire unless it is renewed by another subscription request
 within a certain amount of the associated duration time.

 A Home Server MUST store and manage all the subscription information
 of its clients possibly to the other servers. More precisely, a HS
 MUST watch all the requests from the clients to subscribe or
 unsubscribe resources and all the cancel notification from the TSs,
 and store the up-to-date information about each subscription, which
 consists of the target resource, subscription ID, duration, and the
 client connection ID. Moreover, in order to save the traffic on the
 client connections, the HS MUST renew all its clients' subscriptions
 regularly on behalf of the clients.

 If the HS detects a client connection has been lost, it MUST send
 requests to Target Servers to unsubscribe all the current
 subscriptions from the relevant client.

Sugano et al. [Page 17]

INTERNET DRAFT PePP Specification April 2000

 The duration for subscription should be considerably long in order to
 reduce the traffic of renew messages.

3.4.3. Behavior of Target Servers

 The Target Servers MUST keep and manage the current subscription
 information in order to issue change notifications about the target
 resources. Because subscriptions are subject to expiration as
 stated above, a server SHOULD remove the subscription information
 unless it is renewed within a certain amount of duration time.

 When the TS detects an error of the notification requests it has
 issued, the subscription information which caused the failed
 notification MUST be removed. When the server removes some
 subscription information, it MUST send a notification to the relevant
 subscriber asking her/him to retry subscription.

3.5. Instant Messaging Service

3.5.1. Basic Architecture

 As PePP was originally developed for the Presence Service which
 requires minute control of presence publication, its basic Instant
 Messaging (IM) feature is designed similar to PePP's subscription and
 notification mechanism.

 A user's INSTANT INBOX in PePP is a PePP resource to be addressed
 when an IM is sent to the user. The receiver's client issues a
 RECEIVE request to the INBOX resource to register itself as a
 destination to forward the IMs it receives. Then the client
 connection is registered as a 'receiver' connection. An IM is
 delivered by SEND requests. When the INSTANT INBOX receives an IM,
 the server issues a new SEND request to forward the IM to the
 'receiver' connection (see Fig.4).

 In PePP, the INBOX address of a receiver is not uniquely determined
 by her/his PePP address. Actually, the INBOX address may be same as
 the receiver's PePP address and may be different. Thus, the INBOX
 address MUST be contained in the user's presence information. The
 PePP client SHOULD send IMs for this address in order to be received
 by the intended recipient unless other address has been specified in
 an out-of-band manner.

Sugano et al. [Page 18]

INTERNET DRAFT PePP Specification April 2000

 PePP Server PePP Server
 +---------+ +-------+
 |SENDER HS|------------------>| INBOX |
 +---------+ SEND +-------+
 ^ ^ |
 | | |
 |SEND RECEIVE| |SEND
 | | |
 | | v
 +---------+ +--------+
 |SENDER UA| |INBOX UA|
 +---------+ +--------+
 Sender Receiver

 Fig.4: Basic Architecture of PePP IM Service

3.5.2. IM Conversation

 Although an IM can be used as a single one-way message, the typical
 usage in the IM Service is a conversational one, i.e. two or more
 users exchange IMs in a 'chat' style. When a user wants to talk with
 a buddy, she directs an IM application to open a window for
 conversation, and uses the window for a talk with the buddy. She may
 open several conversation windows to talk with some of her buddies at
 the same time.

 To realize this, each SEND message MUST have a Conversation-ID header
 field to identify the conversation it belongs. The Conversation-ID
 field MUST have a globally unique value like a Message-ID, which is
 also a globally unique identifier of the SEND message given by the
 client. The initial client to start the conversation thread with
 others MUST assign a value of Conversation-ID. It MAY reuse its
 Message-ID as the Conversation-ID.

3.5.3. Multiparty Conversation

 While PePP's basic IM mechanism is for one-to-one conversation, it
 can be extended to a simple multiparty IM conversation. If a
 participant of an already established IM conversation wants somebody
 to join, he send a SEND request message to the user with the current
 Conversation ID and the Reply-To header whose value is a list of
 recipients. Then the invited user joins the conversation by sending
 his message with the specified Conversation ID to all the recipients
 described in the Reply-To field.

 Obviously, this method of multiparty conversation has two problems.

Sugano et al. [Page 19]

INTERNET DRAFT PePP Specification April 2000

 One is a scalability problem if the number of participants increases,
 and the other is it does not provide a means to delete the recipient
 when one participant quits the conversation. But, we think usual IM
 conversation is shared by very small number of users, and it will be
 closed in a short time. It is expected that it would not cause so
 much practical problems.

3.6. Character and Content Encoding

 For character encodings, PePP clients MUST accept the UTF-8 encoding
 of the ISO/IEC 10646 (UCS-4) character set, and MUST NOT cause errors
 by handling them. The user agent MUST display the content of
 presence information, instant messages, and other messages for at
 least US-ASCII part of UTF-8 encoding.

 Content or character encoding method is declared in 'charset'
 attribute in Content-Type header as in the example below.

 Content-Type: text/plain; charset=UTF-8

 For the content type which has 'charset' as its attribute, specifying
 encoding method in 'charset' is STRONGLY RECOMMENDED. If the content
 type is text/xml, character encoding MAY be specified in the XML
 declaration as in the following example. In this case, the XML
 declaration is used.

 <?xml encoding='ISO-2022-JP' ?>

 PePP servers and proxies MUST NOT cause an error for arbitrary
 content of presence information and instant messages in any content
 encodings. PePP servers and proxies MUST deliver the content of
 presence information and instant messages to the targets.

4. Considerations Regarding IMPP Requirements

 The IMPP Requirements document [Reqts] describes that an
 interoperable and widely-deployable standard protocol for IM/Presence
 must be scalable, secure, and appropriate for use with wireless
 devices. This section contains the considerations about PePP's
 strength and weakness for these criteria. Additionally, we give a
 note on the requirement for the separability of IM and Presence
 services.

Sugano et al. [Page 20]

INTERNET DRAFT PePP Specification April 2000

4.1. Scalability

 There are many aspects to scalability issues. We have considered the
 following features in the design of PePP;
 (1) the option to distribute server load over multiple servers,
 (2) the avoidance of processing bottlenecks where a delay in
 processing one message blocks other messages.
 (3) the avoidance of connection bottlenecks where a single
 huge message blocks many smaller messages.

 As a means to reduce the load of the servers, PePP allows any command
 to be redirected to an alternate server. This enables various
 strategies for dynamically allocating server resources and load
 balancing.

 To avoid the processing bottlenecks, PePP allows the responses to be
 received in the different order from that of requests by utilizing
 the Request ID in the messages so that the response can be matched
 with the corresponding request.

 There are two typical solutions to avoid the connection bottlenecks,
 data chunking/interleaving on a single connection, or the creation of
 multiple parallel connections. PePP has adopted the latter because
 it seems reasonable to open a new connection to send a huge data
 during an IM conversation. Another reason is that command-level
 chunking/interleaving is difficult in PePP as its command syntax is
 based on HTTP.

4.2. Security

 We have adopted the following security model for the IM/Presence
 services in PePP.

4.2.1. Trust model

 We assume the network is not trustworthy at all.

 Once authenticated each other, client-server and server-server
 relations are considered to be fully trustworthy. That is, the
 servers are trustworthy in the sense that;
 * the servers disclose presence information and/or IMs to
 authorized parties only.
 * the servers distribute presence information and/or IMs
 uncorrupted.
 * the IM servers relay IMs only from authorized senders.

 However, even though a user could trust the home server and servers

Sugano et al. [Page 21]

INTERNET DRAFT PePP Specification April 2000

 are mutually trustworthy, other servers may be less trustworthy for
 the user. For instance, the other domain might not support any
 transport security for the Client connections. The current
 specification of PePP does not have a mechanism of knowing the
 security level of other domains.

4.2.2. Transport Security

 As we cannot assume the network is trustworthy, IM/Presence services
 require transport security to prevent tapping and tampering of
 messages. PePP adopts TLS for this purpose. The Server Connections
 are STRONGLY RECOMMENDED to be encrypted using TLS.

4.2.3. Confidentiality of Presence Information

 Presence information may be shared with an indefinitely large set of
 WATCHERS. Thus, end-to-end content encryption for each subscriber is
 too costly and impractical. If transport security is assumed, it is
 reasonable to provide no further content encryption. We believe
 access control preferences for presence information to provide an
 acceptable level of privacy control in PePP.

4.2.4. Integrity of Presence Information

 Under the trust model stated above, we trust all servers to not
 corrupt or alter presence information. Thus, PePP does not provide
 any additional mechanism to protect the integrity of presence
 information beyond the TLS transport security.

 Obviously, this is a weakness of PePP. We cannot say there is no
 more threat of the "Man-in-the-Middle" atack. To avoid this, we have
 to provide a means to put a digital signature on presence
 information. Because presence information in PePP is a set of
 individual sections, a digital signature is needed to each sections
 individually but this might be costly. So, it might be desirable to
 merge some sections together and sign on the merged sections.

 Even if digital signature is available, there is another threat of
 the replay attack. But, if a timestamp could be included at the time
 of digital signature, it would be helpful to avoid the apparent
 attacks while this is not a perfect solution.

4.2.5. Confidentiality of IM

Sugano et al. [Page 22]

INTERNET DRAFT PePP Specification April 2000

 As PePP provides a basic functionality for transport security using
 TLS, IMs can be securely transported on the wire. However, only this
 does not provide the end-to-end security. For instance, a malicious
 server administrator can read the content of IM conversation.

 To provide the end-to-end security, PePP has an optional feature to
 establish a virtually direct connection between the clients which can
 be encrypted by TLS entirely. This assumes that the both clients
 have their digital certificates for their identities. Once such a
 direct connection is established, the clients can talk completely
 securely without so much overhead.

 We once considered the adoption of the message-level encryption
 standards such as S/MIME or OpenPGP. However, these standards impose
 the clients too much overhead, and seems to be impractical especially
 for the mobile devices. Moreover, if we assume transport security,
 this also implies the inefficiency of double-encryption.

4.2.6. Access Control

 PePP's section mechanism provides fine-grained access control over
 published presence information. A publisher can specify exactly which
 sections any particular party will see. For example, some WATCHERs
 can be shown IM presence but not shown cell phone presence.

 Moreover, by using the same section name for different sections,
 WATCHERs can be show different values for the same fields. We call
 this feature "personae", and think it is very useful for privacy-
 sensitive applications.

4.3. Wireless

 Wireless devices usually have limited computing and communication
 resources. As a result, more concise protocols are better and binary
 formats can be most efficient. However, PePP has adopted text-based
 formats for readability, extensibility, and ease of debugging.

 PePP's section-based presence format offers opportunities to reduce
 the size of tranferred content. For example, PePP allows selective
 subscription, which allows SUBSCRIBERs to receive only an interesting
 subset of all presence information sections. We think this
 selectivity is especially desirable for a wireless environment.

4.4. Separability of Services

Sugano et al. [Page 23]

INTERNET DRAFT PePP Specification April 2000

 PePP is designed as an integrated protocol for both IM and Presence
 Services. However, the requirements document seems to require that
 the protocol MUST allow separation of these services;

 2.1.1. The protocols MUST allow a PRESENCE SERVICE to be available
 independent of whether an INSTANT MESSAGE SERVICE is available,
 and vice-versa.

 Although PePP is a single protocol for IM and Presence Services, we
 think it allows the two services to be provided separately. As PePP
 is originally designed for Presence Service, PePP is applicable as a
 protocol for the Presence Service without IM. A presence section is
 generic for various communication means other than IMs, and a section
 for IM contains a URI as an IM address. This feature allows IM
 Service to be a distinct one from the Presence Service.

 If we could disable the functions in PePP for Presence Service, it
 seems to be able to provide IM Service only. More concretely,
 functionality for establishing the PePP connections (LOGIN, STARTTLS,
 CALLBACK, CONNECT, and LOGOUT) and that for IM exchange (SEND and
 RECEIVE) seem to be sufficient to provide the IM Service in PePP. We
 assume that the IM addresses are available in an out-of-band manner.

5. PePP Messages

5.1. Message Overview

 The message format for the PePP protocol basically follows the
 formats for HTTP/1.1 [HTTP1.1]. Thus, a message consists of a start
 line, zero or more header fields, and possibly a message-body. A
 start line is either a request line or response line. A request line
 contains a PePP command, a PePP Resource as a target resource, a
 Request ID of the request itself, and a PePP Version identifier.

 PePP command details are described in Section 7.

 Headers are defined in Section 6. Headers defined here MAY appear at
 most once in a PePP message unless otherwise stated. Headers in PePP
 messages which are not defined in this specification MUST be ignored
 except for the case of SEND messages.

 A message-body conveys a content of presence information and instant
 messages. We use XML as a syntactic framework for the data format of
 presence information. MIME format is used when multiple presence
 sections are packed into a single message. MIME is also used for
 IMs.

Sugano et al. [Page 24]

INTERNET DRAFT PePP Specification April 2000

 The PePP Version identifier used for PePP messages in this spec is
 "PePP/0.5" at present.

5.2. PePP Addresses

 A PePP Resource is represented as a form similar to the HTTP URL
 defined in HTTP/1.1 [HTTP1.1]. That URI is called the PePP Address
 of the resource. The same namespace is used for both Presence
 Service and IM Service in PePP. Because PePP is designed for PePP
 services, we use "pepp" for the protocol scheme name in the URL
 namespace. The syntax of PePP Addresses is defined as follows.

 PePP-Address = "pepp:" "//" host [":"port]] abs_path

 host = <FQDN or IP address (in dotted-decimal form),
 as defined by Section 2.1 of RFC 1123>

 port = 1*DIGIT

 abs_path = <defined in [URI]>

 In the PePP addresses, the local namespace can be extended utilizing
 paths like HTTP URL by the domain administrator or the owner of the
 resources for Presence Information or the INBOX address for IMs.

 PePP utilizes the PePP Address of the user's top resource as an
 identifier of the user, which is used in the From header of a PePP
 request.

5.3. Message Syntax

 The format of PePP messages is defined as follows, which is described
 in an augmented Backus-Naur Form (BNF) used in [HTTP1.1].

 PePP-Message = PePP-Request | PePP-Response
 PePP-Request = PePP-Command SP Request-ID SP PePP-Version CRLF
 *((PePP-Header) CRLF)
 CRLF
 [message-body]

 PePP-Response = PePP-Status-Line
 *((PePP-Header) CRLF)
 CRLF
 [message-body]

https://datatracker.ietf.org/doc/html/rfc1123#section-2.1

Sugano et al. [Page 25]

INTERNET DRAFT PePP Specification April 2000

 PePP-Status-Line = PePP-Version SP Request-ID SP Status-Code SP
 Reason-Phrase CRLF

 PePP-Version = "PePP" "/" 1*DIGIT "." 1*DIGIT

 Request-ID = token

 PePP-Command = LOGIN ; section 7.1
 | LOGOUT ; section 7.2
 | SUBSCRIBE ; section 7.3
 | UNSUBSCRIBE ; section 7.4
 | REQUESTNOTIFY ; section 7.5
 | CHANGE ; section 7.6
 | CANCEL ; section 7.7
 | FETCH ; section 7.8
 | NOTIFY ; section 7.9
 | PULL ; section 7.10
 | SEND ; section 7.11
 | RECEIVE ; section 7.12
 | CALLBACK ; section 7.13
 | REDIRECT ; section 7.14
 | SETACL ; section 7.15
 | GETACL ; section 7.16
 | CREATESECTION ; section 7.17
 | DELETESECTION ; section 7.18
 | PING ; section 7.19
 | STARTTLS ; section 7.20
 | CONNECT ; section 7.21

 PePP-Header = From ; section 6.1
 | Connection-Mode ; section 6.2
 | Max-Content-Length ; section 6.3
 | Subscription-Mode ; section 6.4
 | Subscription-ID ; section 6.5
 | Regarding ; section 6.6
 | Change-Mode ; section 6.7
 | Cancel-Type ; section 6.8
 | Duration ; section 6.9
 | Last-Modified ; section 6.10
 | Section-ID ; section 6.11
 | Section-Name ; section 6.12
 | Location ; section 6.13
 | Content-Type ; section 6.14
 | Content-Length ; section 6.15
 | Auth-State ; section 6.16
 | SASL-Mechanism ; section 6.17

Sugano et al. [Page 26]

INTERNET DRAFT PePP Specification April 2000

 | Message-ID ; section 6.18
 | Conversation-ID ; section 6.19

 Status-Code and Reason-Phrase are described in Section 8.

6. PePP Headers

6.1. From

 The From header field contains the PePP address of the requesting
 entity. The From header MUST be included in all requests transported
 through the PePP server connections. If a server receives a request
 without the From header through one of a server connection, the
 server MUST return 400 Bad Request error. Requests only used in PePP
 client connections MAY not have this header.

 From = "From" ":" PePP-Address

6.2. Connection-Mode

 The Connection-Mode header field is included in LOGIN requests to
 indicate the mode of the connection. The value can take one of the
 two string tokens.

 Connection-Mode = "Connection-Mode" ":" ("server" | "client" |
 "direct")

 o server
 This value indicates the connection is requested in the "server"
 mode.

 o client
 This value indicates the connection is requested in the "client"
 mode.

6.3. Max-Content-Length

 The Max-Content-Length header field is included in LOGIN
 requests/responses and CALLBACK requests and indicates the size of an
 acceptable message body by the connection in decimal number of
 octets. The syntax is defined the same as in HTTP/1.1 [HTTP1.1].

 Max-Content-Length = "Max-Content-Length" ":" 1*DIGIT

Sugano et al. [Page 27]

INTERNET DRAFT PePP Specification April 2000

6.4. Subscription-Mode

 The Subscription-Mode header field which appears in the SUBSCRIBE
 request specifies the mode of the requesting subscription. The value
 can take one of the three; notify, pull, renew.

 Subscription-Mode = "Subscription-Mode" ":" ("notify" | "pull" |
 "renew")

 o notify
 If the client requests to be notified when a change occurs in the
 target resource, this mode is specified. This is default.

 o pull
 The client tells the server that it would not like any changes to
 be notified. When the client wants to get the content of the
 resource in the Pull mode, it sends a PULL request to the server
 explicitly.

 o renew
 This mode is used in order to renew the subscription specified by
 the Subscription-ID. The response caused by the subscription
 request with this mode MUST NOT have a message body.

6.5. Subscription-ID

 The Subscription-ID header is used to specify the identifier of the
 subscription of concern in the request or the response. The server
 MUST specify this header field and value in the response to the
 SUBSCRIBE request. The client uses this value in the subsequent
 request to specify the subscription.

 Subscription-ID = "Subscription-ID" ":" token

 The value of Subscription-ID MUST be uniquely assigned at least
 modulo PePP resource.

6.6. Regarding

 The Regarding header is used in the SUBSCRIBE, FETCH or NOTIFY
 requests. The value can take one of two string tokens.

 Regarding = "Regarding" ":" ("value" | "control")

 If the Regarding header field appears in SUBSCRIBE or NOTIFY
 requests, it designates the kind of the subscription or notification.
 The "value" and "control" in this field specifies the subscription or

Sugano et al. [Page 28]

INTERNET DRAFT PePP Specification April 2000

 notification is regarding the Presence Information and Subscribers
 Information respectively. If the Regarding header appears in a FETCH
 request, it means the kind of information the request tries to fetch.
 The meaning of the two values are same as in SUBSCRIBE and NOTIFY
 requests. The default value is "value".

6.7. Change-Mode

 The Change-Mode header is used in the CHANGE request to specify the
 behavior of the request. The value can take one of four string
 tokens.

 Change-Mode = "Change-Mode" ":" ("lease" | "permanent" | "renew" |
 "revert")

 o lease
 This mode is used to set or change the lease value of the presence
 section. It resets the lease timer of the section, and causes to
 send change notifications to the subscribers.

 o permenent
 This mode is used to set or change the permanent value of the
 presence section. If there is no lease value, it causes to send
 change notifications to the subscribers.

 o renew
 This mode is used to renew the lease value of the presence
 section. It resets the lease timer of the section, but does not
 cause any notifications.

 o revert
 This mode is used to remove the lease value of the presence
 section and revert to its permanent value. It causes to send
 change notifications to the subscribers.

6.8. Cancel-Type

 The Cancel-Type header is used in CANCEL requests and the NOTIFY
 requests caused by the CANCEL requests.

 Cancel-Type = "Cancel-Type" ":" ("cancel" | "retry")

 When a subscription is CANCELed, a NOTIFY request is issued to the
 WATCHERS in order to specify the expected action of the receiver
 client. If the server wants to direct the WATCHER client to retry
 subscription, the "retry" value MUST be set in the Cancel-Type header

Sugano et al. [Page 29]

INTERNET DRAFT PePP Specification April 2000

 field. If the server wants to state the client not to retry to
 subscribe, the "cancel" value MUST be set in this field. The client
 SHOULD NOT subscribe to the same resource if the subscription was
 canceled with the value "cancel" in the Cancel-Type header.

 The Cancel-Type header is used in the CANCEL requests to specify the
 Cancel-Type header in the NOTIFY request caused by it. If this
 header is omitted in the CANCEL request, the value of "cancel" is
 used.

6.9. Duration

 The Duration header field specifies a lifetime of the lease value of
 the presence section in an integer second count if it is used in a
 CHANGE request or its response. The response for the CHANGE request
 with the Change-Mode 'lease' and 'renew' MUST contain the Duration
 header field. Such a CHANGE request MAY contain the Duration header
 as the client's request, but the server MAY ignore the value based on
 its policy. The client MUST use the specified value in the response
 as the duration for the presence section.

 The Duration header is also used in SUBSCRIBE request issued by the
 Home Server to specify a lifetime of the subscription. The response
 for the SUBSCRIBE request MUST contain the Duration header that
 specifies the duration of the subscription. The Home Server MUST use
 the specified duration value in the response even if it specified a
 different value in the SUBSCRIBE request.

 Duration = "Duration" ":" 1*DIGIT

6.10. Last-Modified

 The Last-Modified header field specifies the date/time of the latest
 change of the transported content. It is specified by the server.

 For Presence Information, each presence section has a last-modified
 value, and the value is changed in the following four cases; a) a
 CHANGE request changes the lease value, b) the lease value expires
 and the value changes to the permanent value, c) the permanent value
 is changed when the lease value is not set, d) the lease value is
 removed. The generated NOTIFY request message MUST have the Last-
 Modified header field containing this value.

 The response of a SUBSCRIBE or FETCH request MAY have MIME Multipart
 content with the multiple presence sections. In this case, the

Sugano et al. [Page 30]

INTERNET DRAFT PePP Specification April 2000

 Last-Modified header MUST appear as one of the MIME-part-headers of
 each body part of the multipart entity.

 The date/time format is specified as follows. It is one of the
 format specified in ISO 8601 [ISO8601].

 Last-Modified = "Last-Modified" ":" date "T" time "Z"

 date = 4DIGIT "-" 2DIGIT "-" 2DIGIT
 ; year-month-day
 time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; hour:minute:second (00:00:00 - 23:59:59)

 Example: 1999-12-08T18:05:23Z

6.11. Section-ID

 The Section-ID header field specifies the unique identifier of the
 presence section. When a presence section is to be created, the
 CREATESECTION request is issued by the client and the request MUST
 include this header. Its value is created by the client, and the
 uniqueness of the value is checked by the server. The CHANGE and
 DELETESECTION requests MUST contain this header as well. This header
 MAY also appear in the FETCH and CANCEL requests and responses to the
 FETCH requests. Section IDs are not to be shown to WATCHERS.

 Section-ID = "Section-ID" ":" token

6.12. Section-Name

 The Section-Name header field specifies the section name of the
 presence section. Section names are used by WATCHERS to specify the
 presence sections. When a presence section is to be created, the
 CREATESECTION request MUST include this header and the value.

 Section-Name = "Section-Name" ":" token

6.13. Location

 The Location header field specifies the PePP resource to be
 redirected. The REDIRECT request and the NOTIFY request caused by it
 MUST include the Location header.

 Location = "Location" ":" PePP-Address

Sugano et al. [Page 31]

INTERNET DRAFT PePP Specification April 2000

6.14. Content-Type

 The Content-Type header field indicates the media type of the message
 body sent to the recipient. The syntax of the media type is defined
 the same as in HTTP/1.1[HTTP1.1].

 As stated in section 3.6., if the media type has 'charset' attribute,
 specifying encoding method in 'charset' attribute is STRONGLY
 RECOMMENDED.

 Content-Type = "Content-Type" ":" type "/" subtype *(";" parameter)

6.15. Content-Length

 The Content-Length header field indicates the size of the message
 body, in decimal number of octets. The syntax is defined the same as
 in HTTP/1.1 [HTTP1.1].

 Content-Length = "Content-Length" ":" 1*DIGIT

6.16. Auth-State

 The Auth-State header specifies the status of authentication process
 in the LOGIN request.

 Auth-State = "Auth-State" ":" ("init" | "continue" | "abort")

6.17. SASL-Mechanism

 The SASL-Mechanism header specifies the SASL mechanism in the LOGIN
 request or the response to the LOGIN request. When used in the
 request, one SASL mechanism the client wants to use MUST be
 specified. When used in the response, one or more mechanisms which
 the server supports MAY be specified.

 SASL-Mechanism = "SASL-Mechanism" ":" mechanism *(LWS mechanism)

6.18. Message-ID

 The Message-ID header specifies the identifier of each IM, which
 distinguishes the message from others. The client MUST generate the
 Message ID unique to the PePP address for each IM. This header MUST
 appear in a SEND request.

Sugano et al. [Page 32]

INTERNET DRAFT PePP Specification April 2000

 Message-ID = "Message-ID" ":" token

6.19. Conversation-ID

 The Conversation-ID header is used in the SEND request to identify
 the conversation channel shared by the participants of IM exchange.
 Here, a 'conversation channel' means a virtual channel which consists
 of a thread of the IM conversation. When a client replies to an IM
 in its same conversation channel, the SEND request for the reply MUST
 have the Conversation-ID header with the same value.

 Conversation-ID = "Conversation-ID" ":" token

7. PePP Methods

 This section describes the methods used in the PePP messages. We use
 the following notation to specify the allowable modes of connections
 and the directions of requests for each method.

 s->s : Server Connections.
 c->s : Client Connections, Client-to-Server direction.
 s->c : Client Connections, Server-to-Client direction.
 c->c : Direct Connections.

7.1. LOGIN

7.1.1. Command

 "LOGIN"

7.1.2. Direction

 s->s
 c->s
 c->c

7.1.3. Headers

 From
 Auth-State
 SASL-Mechanism
 Connection-Mode
 Max-Content-Length

Sugano et al. [Page 33]

INTERNET DRAFT PePP Specification April 2000

7.1.4. Description

 In order to establish the PePP connection, the initiator client or
 server MUST issue a LOGIN request to the other peer server to start
 authentication process. The Connection-Mode header indicates the
 mode of the required connection. When a client logins its Home
 Server, it MUST LOGIN the server in the "client" mode. When a server
 tries to open a connection with servers in the different domains, it
 MUST LOGIN the target server in the "server" mode.

 If the authentication process is successfully fulfilled, a PePP
 connection is established between the initiator and the target.
 Otherwise, the initiator MUST not send any commands. If it try to
 send other command in that case, the target server MUST return 401
 Unauthorized error.

 The authentication process is not necessarily completed in a single
 request/response pair, but it can be fulfilled in a sequence of the
 request/response pairs. The Auth-State header MUST be used to
 indicate the state of the authentication process. The "init" Auth-
 State value indicates the initial request in the process, the
 "continue" value indicates it is subsequent requests. The SASL-
 Mechanism header is used to exchange the SASL mechanism supported by
 the initiator and the target server.

 Once a PePP connection is established, the initiator MUST NOT send
 another LOGIN request to the same connection. The initiator MUST NOT
 issue another LOGIN request with "init" Auth-State value in the midst
 of the authentication process. In either case, 406 Authentication
 Failed response is returned by the server.

 The LOGIN request MAY be preceded by the STARTTLS request when the
 implementations support TLS for a secure PePP connection.

7.2. LOGOUT

7.2.1. Command

 "LOGOUT"

7.2.2. Direction

 s->s
 c->s
 s->c
 c->c

Sugano et al. [Page 34]

INTERNET DRAFT PePP Specification April 2000

7.2.3. Headers

7.2.4. Description

 In order to terminate the currently established PePP connection, the
 either side of the connection SHOULD issue a LOGOUT request in a
 normal situation. The issuer of the LOGOUT request SHOULD wait its
 response to confirm the other peer is to send nothing.

7.3. SUBSCRIBE

7.3.1. Command

 "SUBSCRIBE" SP PePP-Address

7.3.2. Direction

 s->s
 c->s

7.3.3. Headers

 From
 [Subscription-Mode]
 [Subscription-ID]
 [Regarding]
 [Duration]

7.3.4. Discription

 The SUBSCRIBE method is used to declare a subscriber's interest at a
 PePP resource. The success of SUBSCRIBE request to a resource causes
 a change in the Subscribers Information at the resource.

 A SUBSCRIBE request MAY include 'Subscription-Mode' header, whose
 possible value is "notify", "pull", and "renew". If the "notify"
 value is specified, any changes in the subscribed sections will cause
 a notification message from the server. If the "pull" value is
 specified, the server MUST NOT send notification messages for this
 subscription unless the subsequent REQUESTNOTIFY message requests
 otherwise. The "renew" value is only specified by the Home Server of
 the subscribers in the case of renewing the subscription specified by
 the 'Subscription-ID' header field.

 There are two kinds of subscriptions regarding the information to be

Sugano et al. [Page 35]

INTERNET DRAFT PePP Specification April 2000

 subscribed; value and control. A SUBSCRIBE request MAY have
 'Regarding' header to designate the kind of subscription. Possible
 values for this header are 'value' and 'control' respectively. The
 default is 'value', which means a usual subscription to the presence
 information.

 If 'Regarding: control' is specified, the client subscribes to the
 Subscribers Information at the resource (see Section 11).

 For a SUBSCRIBE request with 'Regarding: value' header field, the
 target server determines the permitted presence sections to be shown
 based on the ACCESS RULES of the target resource. The response for
 the SUBSCRIBE request MUST contain the presence information of the
 allowed presence sections unless it is a "renew" request. Even if
 the ACCESS RULE changes after the subscription, the currently shown
 set of presence sections will not change until the client issues
 another SUBSCRIBE request.

 The response to a successful SUBSCRIBE request other than "renew"
 MUST contain 'Subscription-ID' header specifying the unique
 identifier of the subscription, and the 'Duration' header field
 specifying the amount of the duration time in seconds. The Home
 Server MUST maintain the subscription ID and the duration value in
 relation with the subscriber's connection ID, and MUST renew the
 subscription on behalf of the subscriber's client. The target server
 MUST NOT discard a subscription information before it expires in a
 normal situation. The Home Server MUST relay the response containing
 the subscription ID, but the client does not have to refer or specify
 any duration value.

 The maximum number of subscription at a particular resource can be
 set. In this case, if the server receives SUBSCRIBE requests
 exceeding the maximum, it MAY return a '505 Too Many Subscription'
 error.

 PePP does not offer any particular method to get the list of presence
 sections. So, one who wants a list of presence sections should issue
 a SUBSCRIBE request. While PePP does not offer any method to specify
 whether or not the pull mode subscription is allowed, an
 implementation MAY provide a method to disallow it in an out-of-band
 fashion.

7.4. UNSUBSCRIBE

7.4.1. Command

 "UNSUBSCRIBE" SP PePP-Address

Sugano et al. [Page 36]

INTERNET DRAFT PePP Specification April 2000

7.4.2. Direction

 s->s
 c->s

7.4.3. Headers

 From
 Subscription-ID

7.4.4. Description

 The UNSUBSCRIBE method is used to terminate a previously established
 subscription. It MUST include a 'Subscription-ID' identifying the
 subscription to be unsubscribed. The absence of this header causes
 an error response. This method can be used only by the relevant
 subscribers.

7.5. REQUESTNOTIFY

7.5.1. Command

 "REQUESTNOTIFY" SP PePP-Address

7.5.2. Direction

 s->s
 c->s

7.5.3. Headers

 From
 Subscription-ID
 *(Section-Name)

7.5.4. Description

 The REQUESTNOTIFY method is used to require change notifications on
 the presence sections specified by the Section-Name header fields
 through the already established subscription. The subscription is
 identified by the specified Subscription-ID, and, if the subscription
 does not exist, it will cause a '404 Subscription Not Found' error.

 More than one Section-Name header fields MAY be specified at once.
 The REQUESTNOTIFY request always overwrite the subscription mode of
 each presence section. I.e. the presence sections specified in the

Sugano et al. [Page 37]

INTERNET DRAFT PePP Specification April 2000

 Section-Name headers change to the Notify mode and other sections
 change to the Pull mode. If no Section-Name header is specified, all
 sections become to be subscribed in the Pull mode.

7.6. CHANGE

7.6.1. Command

 "CHANGE" SP PePP-Address

7.6.2. Direction

 c->s

7.6.3. Headers

 From
 Section-ID
 Change-Mode
 Content-Length
 [Duration]
 [Content-Type]

7.6.4. Description

 The CHANGE method is used to alter the content stored at a given
 resource. A CHANGE request MUST be targeted to a single presence
 section by specifying the Section-ID header. Section-ID header is
 mandatory and its absence causes a '400 Bad Request' error. A
 successful CHANGE request may cause notifications to subscribers who
 subscribe to the relevant presence section.

 A CHANGE request MUST have a Change-Mode header field. The possible
 value is one of the four: "lease", "permanent", "renew", and
 "revert". A CHANGE request with the Change-Mode "lease" or "renew"
 MAY contain the Duration header field which specifies the client's
 request of the duration of the lease value.

 If "lease" is specified, the content of the message body is set as
 the lease value of the presence section. The duration MAY be
 specified by the Duration header, but the client MUST use the value
 specified by Duration header of the response even if it is different.
 The successful CHANGE request resets the lease timer of the section
 and causes notification messages to subscribers. If the lease value
 is not renewed within the amount of the specified duration value, it
 expires and the section reverts to its permanent value.

Sugano et al. [Page 38]

INTERNET DRAFT PePP Specification April 2000

 If "permanent" is specified, the content of the message body is set
 as the permanent value of the presence section. If no lease value is
 set, it causes to send change notifications to the subscribers.

 If "renew" is specified, the lease value of the presence section is
 renewed. It resets the lease timer with the duration specified by
 the Duration header field in the response. It does not cause any
 notifications.

 If "revert" is specified, the lease value is removed and the value of
 the presence section reverts to its permanent value. It causes
 notification messages to subscribers.

7.7. CANCEL

7.7.1. Command

 "CANCEL" SP PePP-Address

7.7.2. Direction

 c->s

7.7.3. Headers

 From
 [Section-ID]
 [Subscription-ID]
 [Cancel-Type]

7.7.4. Description

 The CANCEL method is used to direct the target resource to discard
 the subscription specified in the Subscription-ID header. This is
 only issued by the client of the PRESENTITY.

 When a subscription is canceled by a successful CANCEL request, a
 NOTIFY request message reporting the cancellation is sent to the
 subscriber. If the CANCEL request contains the Cancel-Type header
 field (possible values are 'retry' and 'cancel'), the resulting
 NOTIFY request MUST contain the Cancel-Type header field with the
 same value. If the CANCEL request does not contain the Cancel-Type
 header, the resulting NOTIFY request MUST contain the Cancel-Type
 header with the value 'cancel'.

 Even if the subscription to be canceled is in the Pull mode, such a

Sugano et al. [Page 39]

INTERNET DRAFT PePP Specification April 2000

 reporting NOTIFY message SHOULD be issued. However, in the case that
 the NOTIFY message is not delivered to the subscriber successfully,
 the subscriber may send a PULL request through the CANCELed
 subscription. In this case, the server MUST retrun the '404
 Subscription Not Found' error.

 If the CANCEL request specifies neither Subscription-ID nor Section-
 ID headers, all the subscription SHOULD be canceled at the target
 PePP resource. If the CANCEL request has the Section-ID header and
 does not include the Subscription-ID header, all the subscriptions in
 relation to the specified section SHOULD be canceled. If there the
 subscription specified by the Subscription-ID header does not exist,
 it MUST cause 404 Subscription Not Found error.

7.8. FETCH

7.8.1. Command

 "FETCH" SP PePP-Address

7.8.2. Direction

 c->s

7.8.3. Headers

 From
 Regarding
 [Section-ID]

7.8.4. Description

 The FETCH method is used to get presence information and/or control
 information in the targeted resource. This method is mainly used for
 control use by the owner of the resource.

 FETCH requests can be targeted both to a resource and to a presence
 section contained in a resource. If the FETCH request contains the
 Section-ID header, the content of the specified presence section is
 returned. The response MUST also include the Section-ID header.

 When targeted to an entire resource, and if the resource contains
 multiple sections, the contents of multiple sections are returned in
 a single response formatted in MIME multipart. Each part MUST
 contain the Section-ID header whose value is the Section ID of the
 corresponding section.

Sugano et al. [Page 40]

INTERNET DRAFT PePP Specification April 2000

7.9. NOTIFY

7.9.1. Command

 "NOTIFY" SP PePP-Address

7.9.2. Direction

 s->s
 c->s

7.9.3. Headers

 From
 Subscription-ID
 Section-Name
 Content-Length
 Content-Type
 [Regarding]
 [Cancel-Type]

7.9.4. Description

 The NOTIFY method is used (1) to report CHANGEs inside a
 subscription; and (2) to report CANCELs of subscriptions to the
 subscribers.

 The NOTIFY request MUST include the Subscription-ID header to specify
 the subscription by which the notification is required. This
 specification does not specify the behavior of the receiver in the
 case the Subscription-ID is missing.

 The target address of the NOTIFY request MUST be the address in the
 From header of the corresponding SUBSCRIBE request.

 The Regarding header has the same value as specified in the
 corresponding SUBSCRIBE request. The default value is 'value'.

 If a subscription at a resource is canceled by a successful CANCEL
 request, it causes the NOTIFY request to the subscriber. Such a
 NOTIFY MUST contain the Cancel-Type header field. If the
 corresponding CANCEL request contains the Cancel-Type header field
 with the value 'retry', the resulting NOTIFY request MUST contain the
 Cancel-Type header field with the same value. Otherwise, the NOTIFY
 request MUST contain the Cancel-Type header field with the value
 'cancel'.

Sugano et al. [Page 41]

INTERNET DRAFT PePP Specification April 2000

7.10. PULL

7.10.1. Command

 "PULL" SP PePP-Address

7.10.2. Direction

 s->s
 c->s

7.10.3. Headers

 From
 Subscription-ID
 [Section-Name]

7.10.4. Description

 The PULL method is used to get the content of the resource which is
 currently subscribed by the same issuer of this message. The PULL
 request MUST contain 'Subscription-ID' header, and the value of this
 header MUST contain a valid subscription ID.

 If the PULL request does not have a Section-Name header, the response
 contains all the disclosed sections encoded in MIME Multipart.

7.11. SEND

7.11.1. Command

 "SEND" SP PePP-Address

7.11.2. Direction

 s->s
 c->s
 s->c
 c->c

7.11.3. Headers

 From
 Message-ID
 Content-Length
 Content-Type
 [Conversation-ID]

Sugano et al. [Page 42]

INTERNET DRAFT PePP Specification April 2000

 [Reply-To]

7.11.4. Description

 The SEND method is used to send arbitrary content to a targeted PePP
 address. This is usually used for IMs.

 The SEND request MUST contain the Message-ID header whose value is
 the globally unique identifier of the message. The client MUST have
 responsibility for the uniqueness.

 If the receivers are set by the RECEIVE requests at the target
 resource of the SEND request, the server MUST issue another SEND
 request with the same PePP Resource and header fields to the receiver
 connections. If the target resource has no receivers, the '502
 Service Unavailable' error is returned.

 When the client wishes to start a conversational IM exchange, the
 SEND request MUST contain the Conversation-ID header field whose
 value is a globally unique identifier to be shared by the
 participants of the conversation. Assume that a client has reveived
 an IM with the Conversation-ID header. If the client wishes to reply
 to it in the same conversation channel, it MUST specify the same
 Conversation-ID field in the reply SEND message.

 The SEND request is REQUIRED to tranport any MIME entity. Thus, it
 MAY contain any legal MIME header which may not be defined here. The
 servers MUST forward the SEND message as is when the message is
 relayed to the clients or other servers. That is, the servers MUST
 NOT delete or modify any header which appears in the SEND message.

7.12. RECEIVE

7.12.1. Command

 "RECEIVE" SP PePP-Address

7.12.2. Direction

 c->s

7.12.3. Headers

7.12.4. Description

 The RECEIVE method is used to specify the connection to forward the

Sugano et al. [Page 43]

INTERNET DRAFT PePP Specification April 2000

 delivered SEND message at the target resource. When the server
 receives the RECEIVE request, the Client connection of the issuer
 client is set as a 'Receiver' connection at the target resource.

 More than one 'Receiver' connections MAY be set if other clients
 issue the RECEIVE request at the same resource. The server MUST
 manage the 'Receiver' connections of every resources in it, and, when
 it receives a SEND message targeted at the resource, it MUST issue
 the new SEND requests with the same PePP-Address and headers to its
 'Receiver' connections.

7.13. CALLBACK

7.13.1. Command

 "CALLBACK"

7.13.2. Direction

 s->c

7.13.3. Headers

 Max-Content-Length
 [Location]
 [Connection-Mode]

7.13.4. Description

 The CALLBACK method is used by the server to ask the client to create
 a new "backup" Client Connection.

 The server will use the newly established connection to send the
 message whose body size exceeds the Max-Content-Length values of the
 existing Client Connections.

 The CALLBACK request MUST contain the Max-Content-Length header field
 to tell the required value for new connection.

 The server MAY specify the Location header field to specify a
 different server location and/or port number to be called back from
 the client. If Location header value contains other than server and
 port number, rest part of PePP-Address will be ignored.

 If the client accepts the request, it returns '200 OK' as the
 response and it MUST issue a LOGIN request to a newly opened TCP

Sugano et al. [Page 44]

INTERNET DRAFT PePP Specification April 2000

 connection to establish a "backup" Client Connection. If the client
 rejects the request, the client returns '402 Permission Denied'
 response.

 The Target Server will use this request to ask the Target Client for
 creating "raw TCP connection", which provides the Direct Connection.
 In this case, the CALLBACK command MUST contain the Connection-Mode
 header field with the value "direct".

7.14. REDIRECT

7.14.1. Command

 "REDIRECT" SP PePP-Address

7.14.2. Direction

 c->s

7.14.3. Headers

 Location

7.14.4. Description

 The REDIRECT method is used to specify the address for redirection of
 the SUBSCRIBE or SEND request to the PePP resource. A successful
 REDIRECT request results in returning the 300 Moved Temporary
 response to the subsequent SUBSCRIBE or SEND requests. Established
 subscriptions at the time of the REDIRECT request are still alive as
 they were. PULL requests through the subscriptions MAY still be
 accepted. As the subscribers cannot know the target resource was
 REDIRECTed, the client MUST issue CANCEL request in order to tell the
 subscribers that the resource was REDIRECTed.

 The destination resource of the redirection is specified in the
 Location header. The REDIRECT request without a Location header
 cancels the redirection settled before. Even if no redirection was
 settled, cancellation request is returned with 200 OK.

7.15. SETACL

7.15.1. Command

Sugano et al. [Page 45]

INTERNET DRAFT PePP Specification April 2000

 "SETACL" SP PePP-Address

7.15.2. Direction

 c->s

7.15.3. Headers

 Content-Type
 Content-Length

7.15.4. Description

 The SETACL method is used to specify the ACL at the targeted
 resource. The message body of the SETACL request is used as a new
 ACL. The format of the ACL is described in Section 12.

 The owner of the resource, or a user specially authorized by the
 system administrator, can issue the SETACL requests.

7.16. GETACL

7.16.1. Command

 "GETACL" SP PePP-Address

7.16.2. Direction

 c->s

7.16.3. Headers

7.16.4. Description

 The GETACL method is used to acquire the ACL at the targeted
 resource. The successful response contains the currently set ACL at
 the resource in its body part. The format of the ACL is described in

Section 12.

 The owner of the resource, or a user specially authorized by the
 system administrator, can issue the GETACL requests.

7.17. CREATESECTION

7.17.1. Command

Sugano et al. [Page 46]

INTERNET DRAFT PePP Specification April 2000

 "CREATESECTION" SP PePP-Address

7.17.2. Direction

 c->s

7.17.3. Headers

 Section-ID
 Section-Name
 Content-Type
 Content-Length

7.17.4. Description

 The CREATESECTION request is used to create a new presence section.
 Section-ID and Section-Name are mandatory headers and, if either of
 those is omitted, it causes 400 Bad Request error. The message body
 is set as a permanent value of this section.

 The server checks the uniqueness of the Section-ID at the resource,
 and return 405 Section Already Exists if there already exists. This
 request does not contain any content of the presence section.

7.18. DELETESECTION

7.18.1. Command

 "DELETESECTION" SP PePP-Address

7.18.2. Direction

 c->s

7.18.3. Headers

 Section-ID

7.18.4. Description

 The DELETESECTION request is used to delete the specified presence
 section. The Section-ID header is mandatory. If absence, 400 Bad
 Request error is returned. If the section is still subscribed, a
 '407 Subscription Still Exists' error is returned.

7.19. PING

Sugano et al. [Page 47]

INTERNET DRAFT PePP Specification April 2000

7.19.1. Command

 "PING"

7.19.2. Direction

 s->s
 c->s
 s->c
 c->c

7.19.3. Headers

7.19.4. Description

 The PING request is used by the server or the client to confirm that
 the PePP connection is alive. When this request is received, the
 receiver MUST return '200 OK' response.

7.20. STARTTLS

7.20.1. Command

 "STARTTLS"

7.20.2. Direction

 s->s
 c->s

7.20.3. Headers

7.20.4. Description

 A client or server MAY issue STARTTLS request to upgrade the existing
 TCP connection to the TLS [TLS] (formerly known as SSL) enabled one
 instead of using separate port for "secure" PePP connection.
 Implementations that support TLS SHOULD issue a STARTTLS request
 prior to issuing any other requests.

 A TLS negotiation begins immediately after the "200 OK" response from
 the another peer. Once a STARTTLS command issued, the initiator MUST
 NOT issue further requests until a server response is received and
 the TLS negotiation is completed.

Sugano et al. [Page 48]

INTERNET DRAFT PePP Specification April 2000

 Once the client credentials are successfully exchanged using TLS
 negotiation, the "EXTERNAL" SASL mechanism MAY be used in the
 subsequent LOGIN process. The "PLAIN" SASL mechanism MUST NOT be
 used if the STARTTLS upgrading process fails to establish a fully
 strong encryption layer.

 The implementation which does not support TLS SHOULD return the "501
 Not Implemented" response. In this case, the client MUST
 authenticate itself in the following LOGIN process.

7.21. CONNECT

7.21.1. Command

 "CONNECT" SP PePP-Address

7.21.2. Direction

 s->s
 c->s

7.21.3. Headers

 From

7.21.4. Description

 The CONNECT method is used to establish the Direct Connection between
 clients. The established connection will provide a private
 conversation channel for IMs.

 The CONNECT request issued by a client intended to the other client
 is sent to the Home Server, and is forwarded to the Target Server by
 opening a new connection. Then, the Target Server issues a CALLBACK
 request to the destination client to tell the request from the
 initiator client (see Section 3.3.3 for details).

8. Status Codes

 The policy for assigning PePP status codes basically follows the
 convention used in HTTP/1.1 [HTTP1.1].

 - 1xx: Informational - Request received, continuing process

 - 2xx: Success - The action was successfully received,
 understood, and accepted

Sugano et al. [Page 49]

INTERNET DRAFT PePP Specification April 2000

 - 3xx: Redirection - Further action must be taken in order to
 complete the request

 - 4xx: Client Error - The request contains bad syntax or cannot
 be fulfilled

 - 5xx: Server Error - The server failed to fulfill an apparently
 valid request

8.1. 1xx

8.1.1. 100 Authentication Continued

 The request for authentication has been accepted and the
 authentication process is continued.

8.2. 2xx

8.2.1. 200 OK

8.2.2. 201 Subscription Created

 It appears in the response to a SUBSCRIBE request, reporting the
 successful result. In the subscription for 'Regarding: value' and
 'control', the relevant content MUST be contained in the response.

8.2.3. 202 Section Created

 It appears in the response to a CREATESECTION request, reporting the
 successful result.

8.3. 3xx

8.3.1. 300 Moved Temporary

 The requested resource has been assigned a new URI temporarily and
 the requester SHOULD resend the request to the specified resource.
 The new URI MUST be given by the Location header field in the
 response. It depends on the server's policy to select the 300 or 301
 response.

8.3.2. 301 Moved Permanently

 The requested resource has been assigned a new permanent URI and any
 future references to this resource SHOULD use the returned URI. The
 new permanent URI MUST be given by the Location header field in the

Sugano et al. [Page 50]

INTERNET DRAFT PePP Specification April 2000

 response. It depends on the server's policy to select the 300 or 301
 response.

8.4. 4xx

8.4.1. 400 Bad Request

 The request could not be understood by the server due to malformed
 syntax. The client SHOULD NOT repeat the request without
 modifications.

8.4.2. 401 Unauthorized

 The request requires user authentication. The client MUST
 authenticate itself by the LOGIN request.

8.4.3. 402 Forbidden

 The server understood the request, but it has not been authorized.

8.4.4. 403 Resource Not Found

 The specified resource was not found at the server.

8.4.5. 404 Subscription Not Found

 The Subscription specified in the Subscription-ID header was not
 found at the resource. This status code MAY appear in the response
 to the UNSUBSCRIBE, CANCEL, PULL requests and the SUBSCRIBE request
 in "renew" mode.

8.4.6. 405 Section Already Exists

 The section specified in the Section-ID header of the CREATESECTION
 request already exists.

8.4.7. 406 Authentication Failed

 The authentication process has been failed. The reason for it is one
 of the followings.

 o The authentication process using the specified SASL-Mechanism
 was failed.
 o The LOGIN request does not specify any SASL-Mechanism.
 o The LOGIN request specifies inappropriate SASL-Mechanism.
 o In the midst of the authentication process, the client tries to
 start another authentication process by specifying

Sugano et al. [Page 51]

INTERNET DRAFT PePP Specification April 2000

 'Auth-State: init'.

 This response MAY contain a SASL-Mechanism header specifying the
 applicable SASL-Mechanism.

8.4.8. 407 Subscription Still Exists

 The request has not been fulfilled because the subscription to the
 specified section still exists. This status code appears in the
 response to the DELETESECTION request. The client which has received
 this response MUST send a CANCEL request before requesting the
 DELETESECTION.

8.5. 5xx

8.5.1. 500 Internal Server Error

 The request has not been fulfilled because of the error internal to
 the server.

8.5.2. 501 Not Implemented

 The server does not support the functionality required to fulfill the
 request.

8.5.3. 502 Service Unavailable

 This status code is returned when the client issues the SEND request
 to the resource which any 'receiver' connection is not set.

8.5.4. 503 PePP Version Not Supported

 The server or the client does not support the specified version of
 PePP used for the request.

8.5.5. 504 Gateway Timeout

 The server forwarded the request to the specified server, but has not
 been received within the time that it was prepared to wait. the
 forwarded request has been timeout.

8.5.6. 505 Too Many Subscription

 The SUBSCRIBE request has not been fulfilled because the request
 exceeds the specified maximum number of subscription at the resource.
 When received this status code, the client SHOULD NOT retry
 subscription immediately.

Sugano et al. [Page 52]

INTERNET DRAFT PePP Specification April 2000

9. Presence Information Data Format

9.1. Overview

 In PePP, Presence Information is encoded in Well-Formed XML without a
 DTD. Although any XML components MAY appear as a presence data, only
 the elements defined in this documents have a meaning.

 Presence Information at a PePP resource is composed of a set of
 presence sections, each of which is contained in the <section>
 element. Each presence section has a unique identifier called Section
 ID, which is not to be shown to subscribers, and a section name which
 is sent to subscribers for the sake of selective subscription.
 However, both of section IDs and names are not included in the
 content of Presence Information. Instead, for each presence section,
 a display-name is contained in the content of PI to be displayed to
 subscribers. Display names are contained in the content of
 <display-name> element.

 A typical example of Presence Information is availability of
 communication means, such as IM and telephone. Such information is
 contained in a <communication> sub-element. The <communication>
 element contains <address>, and <status> and <capability> sub-
 elements.

 For IM, the <address> element contains the PePP address of the
 recipient. For the communication means where the target address can
 be expressed by a URL, the <address> element contains the URL (ex.
 <address>tel:+81-123-456-7890</address>). For other communication
 means, the <means> element contains supplementary information for the
 communication means.

 Example:

 <section>
 <communication>
 <address>pepp://pepp.org/Alice/iibox</address>
 <status><open><away/></open></status>
 </communication>
 <note>Out to Lunch.</note>
 <display-name>IM</display-name>
 </section>

 Example:

 <section>
 <communication>
 <address>tel:+81-123-456-7890</address>

Sugano et al. [Page 53]

INTERNET DRAFT PePP Specification April 2000

 <status><closed/></status>
 </communication>
 <display-name>Telephone at Home</display-name>
 </section>

 The <communication> element MAY have a <capability> sub-element,
 which specifies the device capability of the communication means or
 the user's preference. Although this document does not specifies the
 concrete format of capability, we will allow to contain a URL where a
 capability for the device is stored in other future standard format
 as CONNEG or CC/PP [CC/PP].

9.2. Tag Descriptions

9.2.1. section

 Tag: section
 Context: top level
 Appearance: mandatory
 Sub-elements: display-name note (communication | principal)
 Description:
 The section tag is top-level tag for presence sections.

9.2.2. display-name

 Tag: display-name
 Appearance: mandatory
 Context: section
 Sub-elements: none
 Description:
 Text to be displayed by the client UI.

9.2.3. note

 Tag: note
 Appearance: optional
 Context: section
 Sub-elements: none
 Description:
 Text to be handled as a short note in relation to the presence
 information.

9.2.4. communication

 Tag: communication
 Appearance: mandatory
 Context: section

Sugano et al. [Page 54]

INTERNET DRAFT PePP Specification April 2000

 Sub-elements: address communication-status capability
 Description:
 Information about communication means is contained. This element
 appears in a section element if the section is used to express
 status of a communication means. This element can have additional
 sub-elements.

9.2.5. communication-status

 Tag: status
 Appearance: mandatory
 Context: section
 Sub-elements: (open | closed)
 Description:
 Availability of the communication means.

9.2.6. open

 Tag: open
 Appearance: mandatory
 Context: status
 Sub-elements: (busy | away)
 Description:
 The open tag means that the communication device is available.
 It MAY contain other elements not defined here.

9.2.7. closed

 Tag: closed
 Appearance: mandatory
 Context: status
 Sub-elements: none
 Description:
 The closed tag means that the communication device is not
 available.

9.2.8. busy

 Tag: busy
 Appearance: optional
 Context: open
 Sub-elements: none
 Description:
 The communication device is available, but a communication
 request may not be noticed because the user is busy.

9.2.9. away

Sugano et al. [Page 55]

INTERNET DRAFT PePP Specification April 2000

 Tag: away
 Appearance: optional
 Context: open
 Sub-elements: none
 Description:
 The communication device is available, but a communication
 request may not be noticed because the user is away from the
 device.

9.2.10. capability

 Tag: capability
 Appearance: optional
 Context: section
 Sub-elements: none
 Description:
 If this element appears, the capability information of the
 corresponding communication device can be retrieved.

9.2.11. address

 Tag: address
 Appearance: mandatory
 Context: communication
 Sub-elements: none
 Description:
 The address of the communication device in the form of URI.

9.2.12. principal

 Tag: principal
 Appearance: mandatory
 Context: section
 Sub-elements: principal-status
 Description:
 Information in relation to the relevant principal is contained.
 The principal usually has various status information other than
 any communication means. This tag is for such information.

9.2.13. principal-status

 Tag: status
 Appearance: mandatory
 Context: principal
 Sub-elements: none
 Description:
 Status information for the principal which may be used by
 the applications.

Sugano et al. [Page 56]

INTERNET DRAFT PePP Specification April 2000

10. Subscribers Information

 The owner or specially authorized user can get the information of the
 current subscribers at the resource. This is called Subscribers
 Information. The Subscribers Information is a list of subscription
 information at the resource, each of which contains the subscription
 ID, the subscriber's PePP address, the date of the subscription, and
 so on.

 The Subscribers Information can be acquired by a SUBSCRIBE or FETCH
 request in 'Regarding: control'. Even if the Section-Name header
 appears in this request, it MUST be ignored. If the 'Subscription-
 Type: Notify' is specified, any change at the Subscribers Information
 will be notified.

 The syntax of Subscribers Information is based on XML, and is defined
 by the following ABNF.

 information = "<information>" 1*subscription "</information>"
 subscription = "<subscription>" subscription-ID subscriber
 created mode regarding "</subscription>"
 subscription-ID = "<subscription-ID>" token "</subscription-ID>"
 subscriber = "<subscriber>" PePP-Address "</subscriber>"
 created = "<created>" date "T" time "Z" "</created>"
 mode = "<mode>" ("notify" / "pull") "</mode>"
 regarding = "<regarding>" ("value" / "control") "</regarding>"

 Here, the "created" element represents the date that the subscription
 was created. The format of the value is same as the Last-Modified
 header field specified in section 6.10.

 The "mode" element represents the Subscription-Mode of the
 subscription which is defined in section 6.4 and 7.3.

 The "regarding" element represents what property of the resource is
 subscribed. The value and its semantics is same as the Regarding
 header field in corresponding SUBSCRIBE request.

 Example:

 <information>
 <subscription>
 <subscription-ID>a1b2c3d4e5f6</subscription-ID>
 <subscriber>pepp://pepp.org/bob</subscriber>
 <created>2000-06-10T09:10:43Z</created>
 <mode>notify</mode>
 <regarding>value</regarding>
 </subscription>

Sugano et al. [Page 57]

INTERNET DRAFT PePP Specification April 2000

 </information>

11. Access Control List

11.1. Overview

 Access Control in PePP has two aspects; one is to decide allowing or
 rejecting the access request from the requesters, and the other is to
 select which presence sections should be disclosed to the
 SUBSCRIBERS. The user controlling a PePP resource can indicate how
 to handle the requests to it specifying Access Control List (ACL).

 The PePP ACL specifies the action of the server at the time of
 receiving the following requests; SUBSCRIBE, SEND, FETCH, CHANGE,
 CANCEL, REDIRECT. For all of those requests but SUBSCRIBE, an
 allow-list and deny-list can be specified in the ACL. For SUBSCRIBE
 requests, a disclose-list can be specified for each section instead
 of an allow-list. This is a design decision based on our experience
 through the practice of presence services in our company.

 By default, all requests are handled as they are denied, or nothing
 is disclosed, unless the system configuration allows. Because
 presence and instant messaging services are pretty sensitive to
 privacy issues, we took a safer side.

11.2. ACL Functions

11.2.1. SUBSCRIBE

 For the SUBSCRIBE request, a basic action is 'deny' and 'disclose'.
 The ACL has a deny list and a disclose list for SUBSCRIBE.

 o Deny-list is a list of principals whose requests are denied.
 o Disclose-list is a set of lists, each of which is a list of
 principals allowed for each section.

 A deny-list and a disclose-list appears once in the ACL, and the
 deny-list has a priority over the disclose list. In other words, a
 request from a principal matching the deny-list is rejected
 regardless of the disclose-list. The default action is also 'deny'.

 Each section is specified by the Section ID and Section names does
 not appear in the ACL. This implies that it is possible to show more
 than one sections with the same name. The current specification does

Sugano et al. [Page 58]

INTERNET DRAFT PePP Specification April 2000

 not forbid this situation.

 A 'default' tag MAY be assigned to one or more sections. The
 assigned section becomes a default section, which is shown when no
 section to be shown was specified explicitly.

11.2.2. SEND, FETCH, CHANGE, CANCEL, REDIRECT

 For the SEND, FETCH, CHANGE, CANCEL, and REDIRECT requests, a basic
 action is 'deny' and 'allow', same as the conventional ACLs. The ACL
 has a deny list and an allow list for them.

 o Deny-list is a list of principals whose requests are denied.
 o Allow-list is a list of principals whose requests are allowed.

 A deny-list and an allow-list appears once in the ACL, and the deny-
 list has a priority over the allow-list unless otherwise stated. In
 other words, a request from a principal matching the deny-list is
 rejected regardless of the allow-list. The default action is also
 'deny'.

 The priority can be reversed by specifying the 'priority-allow' tag.
 In this case, the allow-list has a priority over the deny-list and
 the default action becomes 'allow'.

11.3. Syntax of ACL

 The syntax of ACL in PePP is based on XML as defined in this section.
 Command Names and Section IDs are case-sensitive.

 The syntax is defined by the following ABNF.

 acl = "<acl>" subscribe *other-command "</acl>"
 subscribe = "<subscribe>" [deny-list] disclose-list "</subscribe>"
 disclose-list = "<disclose>" 1*section "</disclose>"
 section = "<section>" section-body "</section>"
 section-body = section-id (default / all / user-group-list)
 user-group-list = *(user / group)
 default = "<default/>"
 other-command = "<command>" command-body "</command>"
 command-body = command-name [reverse-priority] [allow-list] [deny-
 list]
 command-name = "<name>" command-token "</name>"
 command-token = "SEND" / "FETCH" / "CHANGE" / "CANCEL" / "REDIRECT"
 reverse-priority = "<priority-allow/>"
 allow-list = "<allow>" (all / user-group-list) "</allow>"

Sugano et al. [Page 59]

INTERNET DRAFT PePP Specification April 2000

 deny-list = "<deny>" user-group-list "</deny>"
 user = "<user>" user-id "</user>"
 group = "<group>" group-name "</group>"
 all = "<all/>"

 Here, <group> tag is prepared for the future extension where a group
 of users can be specified as a principal.

 Example:

 <acl>
 <subscribe>
 <deny>
 <user>pepp://pepp.fujitsu.com/suga</user>
 </deny>
 <disclose>
 <section>
 <secid>for-office1</secid>
 <user>pepp://pepp.fujitsu.com/sho</user>
 <group>group2</group>
 </section>
 <section>
 <secid>for-office2</secid>
 <group>group1</group>
 <group>group2</group>
 </section>
 <section>
 <secid>private</secid>
 <user>pepp://pepp.fujitsu.com/iwakawa</user>
 <user>pepp://pepp.fujitsu.com/sho</user>
 </section>
 <section>
 <secid>default</secid>
 <default/>
 </section>
 </disclose>
 </subscribe>

 <command>
 <name>FETCH</name>
 <allow>
 <group>group1</group>
 <group>group2</group>
 </allow>
 </command>
 <command>
 <name>SEND</name>

Sugano et al. [Page 60]

INTERNET DRAFT PePP Specification April 2000

 <allow>
 <all/>
 </allow>
 <deny>
 <user>pepp://foo.net/unknown</user>
 </deny>
 </command>
 </acl>

12. Sample Transcripts

 Consider Alice starts to connect to her home server and her PePP
 address is "pepp://pepp.fujitsu.com/alice".

12.1. LOGIN

 // In order to login the PePP service, the client initiate the LOGIN
 // request to establish a PePP connection.
 // Alice connects PePP service,
 // opening the PePP connection from her client to port ??? of
 // pepp.fujitsu.com

 LOGIN 00153678 PePP/0.5
 From: pepp://pepp.fujitsu.com/alice
 SASL-mechanism: CRAM-MD5
 Auth-State: init

 // Response from server.
 // A challenge is given as the content

 PePP/0.5 00153678 100 Authentication Continued
 Content-Type: text/plain
 Content-Length: xxx

 1234.14782225@pepp.org

 // The client returns a response in the succeeding LOGIN request

 LOGIN 00153679 PePP/0.5
 From: pepp://pepp.fujitsu.com/alice
 Auth-State: continue
 Content-Type: text/plain
 Content-Length: xxx

Sugano et al. [Page 61]

INTERNET DRAFT PePP Specification April 2000

 alice b913a602c7eda7a495b4e6e7334d3890

 // Authentication succeeded

 PePP/0.5 00153679 200 OK

12.2. CREATESECTION

 // Alice creates a new section containing an IM presence.
 // This content is set as a permanent value of this section.

 CREATESECTION pepp://pepp.fujitsu.com/alice 00153783 PePP/0.5
 From: pepp://pepp.fujitsu.com/alice
 Section-ID: PublicIM
 Section-Name: IM
 Content-Type: text/xml
 Content-Length: yyy

 <section>
 <display-name>Instant Message</display-name>
 <communication>
 <status><closed/></status>
 <address>pepp://pepp.fujitsu.com/alice/iibox</address>
 </communication>
 </section>

 // The new section was successfully created.

 PePP/0.5 00153783 202 Section Created

12.3. CHANGE

 // Alice changes her presence information

 CHANGE pepp://pepp.fujitsu.com/alice 00153793 PePP/0.5
 From: pepp://pepp.fujitsu.com/alice
 Section-ID: PublicIM
 Duration: 180
 Content-Type: text/xml
 Content-Length: xxx

 <section>
 <display-name>Instant Message</display-name>
 <note>Meeting, Room 5B</note>
 <communication>

Sugano et al. [Page 62]

INTERNET DRAFT PePP Specification April 2000

 <status><online><away/></online></status>
 <address>pepp://pepp.org/alice/iibox</address>
 </communication>
 </section>

 // Presence information was successfully changed

 PePP/0.5 00153793 200 OK
 Duration: 180

12.4. SUBSCRIBE

 // Bob subscribes to Alice's presence information.
 // Assumes that ACL specifies to show "PublicIM" (Section-ID) for
 // the subscription from Bob. The section has a Section-Name "IM".
 // The disclosed content of the presence information is returned
 // as an initial value.

 SUBSCRIBE pepp://pepp.fujitsu.com/alice 02658472 PePP/0.5
 From: pepp://pepp.org/bob
 Subscription-Mode: Notify
 Regarding: value

 // Subscription has succeeded, and Bob's client receives the
 // response with Alice's PI at the moment.

 PePP/0.5 02658472 201 Subscription Created
 Subscription-ID: a1b2c3d4e5f6
 Content-Type: multipart/mixed; boundary="Multipart0123456789"
 Content-Length: xxx

 --Multipart0123456789
 Content-Type: text/xml
 Content-Length: zzz
 Last-Modified: 2000-06-10T09:10:43Z

 <section>
 <display-name>Instant Message</display-name>
 <note>Meeting, Room 5B</note>
 <communication>
 <status><online><away /></online></status>s
 <address>pepp://pepp.org/alice/iibox</address>
 </communication>
 </section>
 --Multipart0123456789
 (if other section is allowed for Bob to subscribe, they will appear
here.)
 --Multipart0123456789

Sugano et al. [Page 63]

INTERNET DRAFT PePP Specification April 2000

12.5. NOTIFY

 // When Alice changes her presence, it is notified to the subscriber.

 NOTIFY pepp://pepp.org/bob 31975431 PePP/0.5
 From: pepp://pepp.fujitsu.com/alice
 Section-Name: IM
 Subscription-ID: a1b2c3d4e5f6
 Last-Modified: 2000-06-10T12:03:22Z
 Content-Type: text/xml
 Content-Length: xxx

 <section>
 <display-name>Instant Message</display-name>
 <note>I'm back!</note>
 <communication>
 <status><online></online></status>
 <address>pepp://pepp.org/alice/iibox</address>
 </communication>
 </section>

 // The client returns a successful response.

 PePP/0.5 31975431 200 OK

12.6. SEND

 // Bob sends IM to Alice.

 SEND pepp://pepp.fujitsu.com/alice/iibox 01348590 PePP/0.5
 From: pepp://pepp.org/bob
 Message-ID: 200006101523.ZDFN0478//pepp.org/bob
 Conversation-ID: 200006101523.ZDFN0478//pepp.org/bob
 Content-Type:text/plain
 Context-Length: xxx

 Hello!

 // The server returns a successful response if the message is
 // deliverable.

 PePP/0.5 01348590 200 OK

 // Then the server fowards the message to the client connection.

 SEND pepp://pepp.fujitsu.com/alice/iibox 31978216 PePP/0.5

Sugano et al. [Page 64]

INTERNET DRAFT PePP Specification April 2000

 From: pepp://pepp.org/bob
 Message-ID: 200006101523.ZDFN0478//pepp.org/bob
 Conversation-ID: 200006101523.ZDFN0478//pepp.org/bob
 Content-Type:text/plain
 Context-Length: xxx

 Hello!

 // The Alice's client returns a successful response.

 PePP/0.5 31978216 200 OK

12.7. LOGOUT

 // Alice closes the PePP connection.

 LOGOUT 00258674 PePP/0.5
 From: pepp://pepp.fujitsu.com/alice

 // The server returns a successful response.

 PePP/0.5 00258674 200 OK

 // Alice's client closes the TCP connection.

13. Security Considerations

 Security considerations are described in Section 4.2.

14. Acknowledgments

 Some of the ideas in this document are inspired by private
 correspondence with John Stracke, eCal Corp., especially for IM
 transfer and IM conversation. The authors gratefully acknowledge his
 contributions.

15. References

 [Model] M.Day, J.Rosenberg, H.Sugano, "A Model for Presence and Instant

Sugano et al. [Page 65]

INTERNET DRAFT PePP Specification April 2000

 Messaging", RFC 2778, February 2000.
 [Reqts] M.Day, S.Aggarwal, G.Mohr, and J.Vincent, "Instant Messaging
 / Presence Protocol Requirements", RFC 2779, February 2000.
 [RelURL] R.Fielding, "Relative Uniform Resource Locators", RFC1808
 [HTTP1.1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
 P. Leach, and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2616, June 1999
 [SASL] J. Myers, "Simple Authentication and Security Layer (SASL)",

RFC2222, October 1997.
 [SASL-PLAIN] C. Newman, "Using TLS with IMAP, POP3 and ACAP", RFC2595,
 June 1999.
 [CRAM-MD5] J.Klensin, R.Catoe and P. Krumviede, "IMAP/POP AUTHorize
 Extension for Simple Challenge/Response", RFC 2195, September 1997.
 [TLS] T.Dierks, and C. Allen, "The TLS Protocol Version 1.0", RFC2246,
 January 1999.
 [MIME] N. Freed et al., "Multipurpose Internet Mail Extensions (MIME)
 Part One" to "Five", RFC 2045-2049, November 1996.
 [URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource
 Identifiers (URI): Generic Syntax", RFC2396, August 1998.
 [ISO8601] "Data elements and interchange formats -- Information
 interchange -- Representation of dates and times", 1988.
 [CC/PP] M.Nilsson, J.Hjelm, H.Ohto, "Composit Capabilities/Preference
 Profiles: Requirements and Architecture", W3C CC/PP Working Group,

http://www.w3.org/TR/CCPP-ra/, February, 2000.

16. Authors' Addresses

 Hiroyasu Sugano
 Fujitsu Laboratories Ltd.
 64 Nishiwaki, Ohkubo-cho
 Akashi 674-8555
 Japan
 email: suga@flab.fujitsu.co.jp

 Akinori Iwakawa
 Fujitsu Laboratories Ltd.
 64 Nishiwaki, Ohkubo-cho
 Akashi 674-8555
 Japan
 email: iwakawa@flab.fujitsu.co.jp

 Koji Otani
 Fujitsu Laboratories Ltd.
 64 Nishiwaki, Ohkubo-cho
 Akashi 674-8555
 Japan
 email: sho@flab.fujitsu.co.jp

https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/rfc1808
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2396
http://www.w3.org/TR/CCPP-ra/

Sugano et al. [Page 66]

INTERNET DRAFT PePP Specification April 2000

 Takashi Ohno
 Fujitsu Laboratories Ltd.
 64 Nishiwaki, Ohkubo-cho
 Akashi 674-8555
 Japan
 email: ohno@flab.fujitsu.co.jp

 Shingo Fujimoto
 Fujitsu Laboratories of America, Inc.
 595 Lawrence Expressway
 Sunnyvale, CA 94086
 USA
 email: shingo@fla.fujitsu.com

Sugano et al. [Page 67]

