
Network Working Group A. Davidson
Internet-Draft N. Sullivan
Intended status: Informational Cloudflare
Expires: September 12, 2019 C. Wood
 Apple Inc.
 March 11, 2019

Oblivious Pseudorandom Functions (OPRFs) using Prime-Order Groups
draft-sullivan-cfrg-voprf-03

Abstract

 An Oblivious Pseudorandom Function (OPRF) is a two-party protocol for
 computing the output of a PRF. One party (the server) holds the PRF
 secret key, and the other (the client) holds the PRF input. The
 'obliviousness' property ensures that the server does not learn
 anything about the client's input during the evaluation. The client
 should also not learn anything about the server's secret PRF key.
 Optionally, OPRFs can also satisfy a notion 'verifiability' (VOPRF).
 In this setting, the client can verify that the server's output is
 indeed the result of evaluating the underlying PRF with just a public
 key. This document specifies OPRF and VOPRF constructions
 instantiated within prime-order groups, including elliptic curves.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Davidson, et al. Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OPRFs March 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4
1.2. Requirements . 5

2. Background . 5
3. Security Properties . 6
4. OPRF Protocol . 6
4.1. Protocol correctness 8
4.2. Instantiations of GG 8
4.3. OPRF algorithms . 9
4.3.1. OPRF_Setup . 9
4.3.2. OPRF_Blind . 10
4.3.3. OPRF_Sign . 10
4.3.4. OPRF_Unblind . 11
4.3.5. OPRF_Finalize . 11

4.4. VOPRF algorithms . 11
4.4.1. VOPRF_Setup . 12
4.4.2. VOPRF_Blind . 12
4.4.3. VOPRF_Sign . 13
4.4.4. VOPRF_Unblind . 13
4.4.5. VOPRF_Finalize 13

4.5. Utility algorithms 14
4.5.1. bin2scalar . 14

 4.6. Efficiency gains with pre-processing and additive
 blinding . 14

4.6.1. OPRF_Preprocess 15
4.6.2. OPRF_Blind . 15
4.6.3. OPRF_Unblind . 16

5. NIZK Discrete Logarithm Equality Proof 16
5.1. DLEQ_Generate . 16
5.2. DLEQ_Verify . 17

6. Batched VOPRF evaluation 17
6.1. Batched DLEQ algorithms 18
6.1.1. Batched_DLEQ_Generate 18
6.1.2. Batched_DLEQ_Verify 19

6.2. Modified protocol execution 20
6.3. PRNG and resampling 20

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Davidson, et al. Expires September 12, 2019 [Page 2]

Internet-Draft OPRFs March 2019

7. Supported ciphersuites 20
7.1. ECVOPRF-P256-HKDF-SHA256-SSWU: 20
7.2. ECVOPRF-RISTRETTO-HKDF-SHA512-Elligator2: 21

8. Security Considerations 21
8.1. Timing Leaks . 21
8.2. Hashing to curves . 22
8.3. Verifiability (key consistency) 22

9. Applications . 22
9.1. Privacy Pass . 22
9.2. Private Password Checker 23
9.2.1. Parameter Commitments 23

10. Acknowledgements . 23
11. Normative References . 23
Appendix A. Test Vectors . 25

 Authors' Addresses . 27

1. Introduction

 A pseudorandom function (PRF) F(k, x) is an efficiently computable
 function with secret key k on input x. Roughly, F is pseudorandom if
 the output y = F(k, x) is indistinguishable from uniformly sampling
 any element in F's range for random choice of k. An oblivious PRF
 (OPRF) is a two-party protocol between a prover P and verifier V
 where P holds a PRF key k and V holds some input x. The protocol
 allows both parties to cooperate in computing F(k, x) with P's secret
 key k and V's input x such that: V learns F(k, x) without learning
 anything about k; and P does not learn anything about x. A
 Verifiable OPRF (VOPRF) is an OPRF wherein P can prove to V that F(k,
 x) was computed using key k, which is bound to a trusted public key Y
 = kG. Informally, this is done by presenting a non-interactive zero-
 knowledge (NIZK) proof of equality between (G, Y) and (Z, M), where Z
 = kM for some point M.

 OPRFs have been shown to be useful for constructing: password-
 protected secret sharing schemes [JKK14]; privacy-preserving password
 stores [SJKS17]; and password-authenticated key exchange or PAKE
 [OPAQUE]. VOPRFs are useful for producing tokens that are verifiable
 by V. This may be needed, for example, if V wants assurance that P
 did not use a unique key in its computation, i.e., if V wants key
 consistency from P. This property is necessary in some applications,
 e.g., the Privacy Pass protocol [PrivacyPass], wherein this VOPRF is
 used to generate one-time authentication tokens to bypass CAPTCHA
 challenges. VOPRFs have also been used for password-protected secret
 sharing schemes e.g. [JKKX16].

 This document introduces an OPRF protocol built in prime-order
 groups, applying to finite fields of prime-order and also elliptic
 curve (EC) settings. The protocol has the option of being extended

Davidson, et al. Expires September 12, 2019 [Page 3]

Internet-Draft OPRFs March 2019

 to a VOPRF with the addition of a NIZK proof for proving discrete log
 equality relations. This proof demonstrates correctness of the
 computation using a known public key that serves as a commitment to
 the server's secret key. In the EC setting, we will refer to the
 protocol as ECOPRF (or ECVOPRF if verifiability is concerned). The
 document describes the protocol, its security properties, and
 provides preliminary test vectors for experimentation. The rest of
 the document is structured as follows:

 o Section Section 2: Describe background, related work, and use
 cases of OPRF/VOPRF protocols.

 o Section Section 3: Discuss security properties of OPRFs/VOPRFs.

 o Section Section 4: Specify an authentication protocol from OPRF
 functionality, based in prime-order groups (with an optional
 verifiable mode). Algorithms are stated formally for OPRFs in

Section 4.3 and for VOPRFs in Section 4.4.

 o Section Section 5: Specify the NIZK discrete logarithm equality
 (DLEQ) construction used for constructing the VOPRF protocol.

 o Section Section 6: Specifies how the DLEQ proof mechanism can be
 batched for multiple VOPRF invocations, and how this changes the
 protocol execution.

 o Section Section 7: Considers explicit instantiations of the
 protocol in the elliptic curve setting.

 o Section Section 8: Discusses the security considerations for the
 OPRF and VOPRF protocol.

 o Section Section 9: Discusses some existing applications of OPRF
 and VOPRF protocols.

 o Section Appendix A: Specifies test vectors for implementations in
 the elliptic curve setting.

1.1. Terminology

 The following terms are used throughout this document.

 o PRF: Pseudorandom Function.

 o OPRF: Oblivious PRF.

 o VOPRF: Verifiable Oblivious Pseudorandom Function.

Davidson, et al. Expires September 12, 2019 [Page 4]

Internet-Draft OPRFs March 2019

 o ECVOPRF: A VOPRF built on Elliptic Curves.

 o Verifier (V): Protocol initiator when computing F(k, x).

 o Prover (P): Holder of secret key k.

 o NIZK: Non-interactive zero knowledge.

 o DLEQ: Discrete Logarithm Equality.

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Background

 OPRFs are functionally related to RSA-based blind signature schemes,
 e.g., [ChaumBlindSignature]. Briefly, a blind signature scheme works
 as follows. Let m be a message to be signed by a server. It is
 assumed to be a member of the RSA group. Also, let N be the RSA
 modulus, and e and d be the public and private keys, respectively. A
 prover P and verifier V engage in the following protocol given input
 m.

 1. V generates a random blinding element r from the RSA group, and
 compute m' = m^r (mod N). Send m' to the P.

 2. P uses m' to compute s' = (m')^d (mod N), and sends s' to the V.

 3. V removes the blinding factor r to obtain the original signature
 as s = (s')^(r^-1) (mod N).

 By the properties of RSA, s is clearly a valid signature for m. OPRF
 protocols can be used to provide a symmetric equivalent to blind
 signatures. Essentially the client learns y = PRF(k,x) for some
 input x of their choice, from a server that holds k. Since the
 security of an OPRF means that x is hidden in the interaction, then
 the client can later reveal x to the server along with y.

 The server can verify that y is computed correctly by recomputing the
 PRF on x using k. In doing so, the client provides knowledge of a
 'signature' y for their value x. However, the verification procedure
 is symmetric since it requires knowledge of k. This is discussed
 more in the following section.

https://datatracker.ietf.org/doc/html/rfc2119

Davidson, et al. Expires September 12, 2019 [Page 5]

Internet-Draft OPRFs March 2019

3. Security Properties

 The security properties of an OPRF protocol with functionality y =
 F(k, x) include those of a standard PRF. Specifically:

 o Given value x, it is infeasible to compute y = F(k, x) without
 knowledge of k.

 o The output distribution of y = F(k, x) is indistinguishable from
 the uniform distribution in the domain of the function F.

 Additionally, we require the following additional properties:

 o Non-malleable: Given (x, y = F(k, x)), V must not be able to
 generate (x', y') where x' != x and y' = F(k, x').

 o Oblivious: P must learn nothing about V's input, and V must learn
 nothing about P's private key.

 o Unlinkable: If V reveals x to P, P cannot link x to the protocol
 instance in which y = F(k, x) was computed.

 Optionally, for any protocol that satisfies the above properties,
 there is an additional security property:

 o Verifiable: V must only complete execution of the protocol if it
 can successfully assert that P used its secret key k.

 In practice, the notion of verifiability requires that P commits to
 the key k before the actual protocol execution takes place. Then V
 verifies that P has used k in the protocol using this commitment.

4. OPRF Protocol

 In this section we describe the OPRF protocol. Let GG be a prime-
 order additive subgroup, with two distinct hash functions H_1 and
 H_2, where H_1 maps arbitrary input onto GG and H_2 maps arbitrary
 input to a fixed-length output, e.g., SHA256. All hash functions in
 the protocol are modelled as random oracles. Let L be the security
 parameter. Let k be the prover's (P) secret key, and Y = kG be its
 corresponding 'public key' for some generator G taken from the group
 GG. This public key is also referred to as a commitment to the key
 k. Let x be the verifier's (V) input to the OPRF protocol.
 (Commonly, it is a random L-bit string, though this is not required.)

 The OPRF protocol begins with V blinding its input for the signer
 such that it appears uniformly distributed GG. The latter then
 applies its secret key to the blinded value and returns the result.

Davidson, et al. Expires September 12, 2019 [Page 6]

Internet-Draft OPRFs March 2019

 To finish the computation, V then removes its blind and hashes the
 result using H_2 to yield an output. This flow is illustrated below.

 Verifier Prover

 r <-$ GG
 M = rH_1(x)
 M
 ------->
 Z = kM
 [D = DLEQ_Generate(k,G,Y,M,Z)]
 Z[,D]
 <-------
 [b = DLEQ_Verify(G,Y,M,Z,D)]
 N = Zr^(-1)
 Output H_2(x, N) [if b=1, else "error"]

 Steps that are enclosed in square brackets (DLEQ_Generate and
 DLEQ_Verify) are optional for achieving verifiability. These are
 described in Section Section 5. In the verifiable mode, we assume
 that P has previously committed to their choice of key k with some
 values (G,Y=kG) and these are publicly known by V. Notice that
 revealing (G,Y) does not reveal k by the well-known hardness of the
 discrete log problem.

 Strictly speaking, the actual PRF function that is computed is:

 F(k, x) = N = kH_1(x)

 It is clear that this is a PRF H_1(x) maps x to a random element in
 GG, and GG is cyclic. This output is computed when the client
 computes Zr^(-1) by the commutativity of the multiplication. The
 client finishes the computation by outputting H_2(x,N). Note that
 the output from P is not the PRF value because the actual input x is
 blinded by r.

 This protocol may be decomposed into a series of steps, as described
 below:

 o OPRF_Setup(l): Generate am integer k of sufficient bit-length l
 and output k.

 o OPRF_Blind(x): Compute and return a blind, r, and blinded
 representation of x in GG, denoted M.

 o OPRF_Sign(k,M,h): Sign input M using secret key k to produce Z,
 the input h is optional and equal to the cofactor of an elliptic
 curve. If h is not provided then it defaults to 1.

Davidson, et al. Expires September 12, 2019 [Page 7]

Internet-Draft OPRFs March 2019

 o OPRF_Unblind(r,Z): Unblind blinded signature Z with blind r,
 yielding N and output N.

 o OPRF_Finalize(x,N): Finalize N to produce the output H_2(x, N).

 For verifiability we modify the algorithms of VOPRF_Setup, VOPRF_Sign
 and VOPRF_Unblind to be the following:

 o VOPRF_Setup(l): Generate an integer k of sufficient bit-length l
 and output (k, (G,Y)) where Y = kG for some generator G in GG.

 o VOPRF_Sign(k,(G,Y),M,h): Sign input M using secret key k to
 produce Z. Generate a NIZK proof D = DLEQ_Generate(k,G,Y,M,Z),
 and output (Z, D). The optional cofactor h can also be provided
 as in OPRF_Sign.

 o VOPRF_Unblind(r,G,Y,M,(Z,D)): Unblind blinded signature Z with
 blind r, yielding N. Output N if 1 = DLEQ_Verify(G,Y,M,Z,D).
 Otherwise, output "error".

 We leave the rest of the OPRF algorithms unmodified. When referring
 explicitly to VOPRF execution, we replace 'OPRF' in all method names
 with 'VOPRF'.

4.1. Protocol correctness

 Protocol correctness requires that, for any key k, input x, and (r,
 M) = OPRF_Blind(x), it must be true that:

 OPRF_Finalize(x, OPRF_Unblind(r,M,OPRF_Sign(k,M))) = H_2(x, F(k,x))

 with overwhelming probability. Likewise, in the verifiable setting,
 we require that:

VOPRF_Finalize(x, VOPRF_Unblind(r,(G,Y),M,(VOPRF_Sign(k,(G,Y),M)))) = H_2(x,
F(k,x))

 with overwhelming probability, where (r, M) = VOPRF_Blind(x).

4.2. Instantiations of GG

 As we remarked above, GG is a subgroup with associated prime-order p.
 While we choose to write operations in the setting where GG comes
 equipped with an additive operation, we could also define the
 operations in the multiplicative setting. In the multiplicative
 setting we can choose GG to be a prime-order subgroup of a finite
 field FF_p. For example, let p be some large prime (e.g. > 2048
 bits) where p = 2q+1 for some other prime q. Then the subgroup of
 squares of FF_p (elements u^2 where u is an element of FF_p) is

Davidson, et al. Expires September 12, 2019 [Page 8]

Internet-Draft OPRFs March 2019

 cyclic, and we can pick a generator of this subgroup by picking g
 from FF_p (ignoring the identity element).

 For practicality of the protocol, it is preferable to focus on the
 cases where GG is an additive subgroup so that we can instantiate the
 OPRF in the elliptic curve setting. This amounts to choosing GG to
 be a prime-order subgroup of an elliptic curve over base field GF(p)
 for prime p. There are also other settings where GG is a prime-order
 subgroup of an elliptic curve over a base field of non-prime order,
 these include the work of Ristretto [RISTRETTO] and Decaf [DECAF].

 We will use p > 0 generally for constructing the base field GF(p),
 not just those where p is prime. To reiterate, we focus only on the
 additive case, and so we focus only on the cases where GF(p) is
 indeed the base field.

4.3. OPRF algorithms

 This section provides algorithms for each step in the OPRF protocol.
 We describe the VOPRF analogues in Section 4.4. We provide generic
 utility algorithms in Section 4.5.

 1. P samples a uniformly random key k <- {0,1}^l for sufficient
 length l, and interprets it as an integer.

 2. V computes X = H_1(x) and a random element r (blinding factor)
 from GF(p), and computes M = rX.

 3. V sends M to P.

 4. P computes Z = kM = rkX.

 5. In the elliptic curve setting, P multiplies Z by the cofactor
 (denoted h) of the elliptic curve.

 6. P sends Z to V.

 7. V unblinds Z to compute N = r^(-1)Z = kX.

 8. V outputs the pair H_2(x, N).

4.3.1. OPRF_Setup

Davidson, et al. Expires September 12, 2019 [Page 9]

Internet-Draft OPRFs March 2019

 Input:

 l: Some suitable choice of key-length (e.g. as described in {{NIST}}).

 Output:

 k: A key chosen from {0,1}^l and interpreted as an integer value.

 Steps:

 1. Sample k_bin <-$ {0,1}^l
 2. Output k <- bin2scalar(k_bin, l)

4.3.2. OPRF_Blind

 Input:

 x: V's PRF input.

 Output:

 r: Random scalar in [1, p - 1].
 M: Blinded representation of x using blind r, an element in GG.

 Steps:

 1. r <-$ GF(p)
 2. M := rH_1(x)
 3. Output (r, M)

4.3.3. OPRF_Sign

 Input:

 k: Signer secret key.
 M: An element in GG.
 h: optional cofactor (defaults to 1).

 Output:

 Z: Scalar multiplication of the point M by k, element in GG.

 Steps:

 1. Z := kM
 2. Z <- hZ
 3. Output Z

Davidson, et al. Expires September 12, 2019 [Page 10]

Internet-Draft OPRFs March 2019

4.3.4. OPRF_Unblind

 Input:

 r: Random scalar in [1, p - 1].
 Z: An element in GG.

 Output:

 N: Unblinded signature, element in GG.

 Steps:

 1. N := (1/r)Z
 2. Output N

4.3.5. OPRF_Finalize

 Input:

 x: PRF input string.
 N: An element in GG.

 Output:

 y: Random element in {0,1}^L.

 Steps:

 1. y := H_2(x, N)
 2. Output y

4.4. VOPRF algorithms

 The steps in the VOPRF setting are written as:

 1. P samples a uniformly random key k <- {0,1}^l for sufficient
 length l, and interprets it as an integer.

 2. P commits to k by computing (G,Y) for Y=kG and where G is a
 generator of GG. P makes (G,Y) publicly available.

 3. V computes X = H_1(x) and a random element r (blinding factor)
 from GF(p), and computes M = rX.

 4. V sends M to P.

 5. P computes Z = kM = rkX, and D = DLEQ_Generate(k,G,Y,M,Z).

Davidson, et al. Expires September 12, 2019 [Page 11]

Internet-Draft OPRFs March 2019

 6. P sends (Z, D) to V.

 7. V ensures that 1 = DLEQ_Verify(G,Y,M,Z,D). If not, V outputs an
 error.

 8. V unblinds Z to compute N = r^(-1)Z = kX.

 9. V outputs the pair H_2(x, N).

4.4.1. VOPRF_Setup

 Input:

 G: Public generator of GG.
 l: Some suitable choice of key-length (e.g. as described in {{NIST}}).

 Output:

 k: A key chosen from {0,1}^l and interpreted as an integer value.
 (G,Y): A pair of curve points, where Y=kG.

 Steps:

 1. k <- OPRF_Setup(l)
 2. Y := kG
 3. Output (k, (G,Y))

4.4.2. VOPRF_Blind

 Input:

 x: V's PRF input.

 Output:

 r: Random scalar in [1, p - 1].
 M: Blinded representation of x using blind r, an element in GG.

 Steps:

 1. r <-$ GF(p)
 2. M := rH_1(x)
 3. Output (r, M)

Davidson, et al. Expires September 12, 2019 [Page 12]

Internet-Draft OPRFs March 2019

4.4.3. VOPRF_Sign

 Input:

 k: Signer secret key.
 G: Public generator of group GG.
 Y: Signer public key (= kG).
 M: An element in GG.
 h: optional cofactor (defaults to 1).

 Output:

 Z: Scalar multiplication of the point M by k, element in GG.
 D: DLEQ proof that log_G(Y) == log_M(Z).

 Steps:

 1. Z := kM
 2. Z <- hZ
 3. D = DLEQ_Generate(k,G,Y,M,Z)
 4. Output (Z, D)

4.4.4. VOPRF_Unblind

 Input:

 r: Random scalar in [1, p - 1].
 G: Public generator of group GG.
 Y: Signer public key.
 M: Blinded representation of x using blind r, an element in GG.
 Z: An element in GG.
 D: D = DLEQ_Generate(k,G,Y,M,Z).

 Output:

 N: Unblinded signature, element in GG.

 Steps:

 1. N := (1/r)Z
 2. If 1 = DLEQ_Verify(G,Y,M,Z,D), output N
 3. Output "error"

4.4.5. VOPRF_Finalize

Davidson, et al. Expires September 12, 2019 [Page 13]

Internet-Draft OPRFs March 2019

 Input:

 x: PRF input string.
 N: An element in GG, or "error".

 Output:

 y: Random element in {0,1}^L, or "error"

 Steps:

 1. If N == "error", output "error".
 2. y := H_2(x, N)
 3. Output y

4.5. Utility algorithms

4.5.1. bin2scalar

 This algorithm converts a binary string to an integer modulo p.

 Input:

 s: binary string (little-endian)
 l: length of binary string
 p: modulus

 Output:

 z: An integer modulo p

 Steps:

 1. sVec <- vec(s) (converts s to a column vector of dimension l)
 2. p2Vec <- (2^0, 2^1, ..., 2^{l-1}) (row vector of dimension l)
 3. z <- p2Vec * sVec (mod p)
 4. Output z

4.6. Efficiency gains with pre-processing and additive blinding

 In the [OPAQUE] draft, it is noted that it may be more efficient to
 use additive blinding rather than multiplicative if the client can
 preprocess some values. For example, computing rH_1(x) is an example
 of multiplicative blinding. A valid way of computing additive
 blinding would be to instead compute H_1(x)+rG, where G is the common
 generator for the group.

Davidson, et al. Expires September 12, 2019 [Page 14]

Internet-Draft OPRFs March 2019

 If the client preprocesses values of the form rG, then computing
 H_1(x)+rG is more efficient than computing rH_1(x) (one addition
 against log_2(r)). Therefore, it may be advantageous to define the
 OPRF and VOPRF protocols using additive blinding rather than
 multiplicative blinding. In fact the only algorithms that need to
 change are OPRF_Blind and OPRF_Unblind (and similarly for the VOPRF
 variants).

 We define the additive blinding variants of the above algorithms
 below along with a new algorithm OPRF_Preprocess that defines how
 preprocessing is carried out. The equivalent algorithms for VOPRF
 are almost identical and so we do not redefine them here. Notice
 that the only computation that changes is for V, the necessary
 computation of P does not change.

4.6.1. OPRF_Preprocess

 Input:

 G: Public generator of GG

 Output:

 r: Random scalar in [1, p-1]
 rG: An element in GG.
 rY: An element in GG.

 Steps:

 1. r <-$ GF(p)
 2. Output (r, rG, rY)

4.6.2. OPRF_Blind

 Input:

 x: V's PRF input.
 rG: Preprocessed element of GG.

 Output:

 M: Blinded representation of x using blind r, an element in GG.

 Steps:

 1. M := H_1(x)+rG
 2. Output M

Davidson, et al. Expires September 12, 2019 [Page 15]

Internet-Draft OPRFs March 2019

4.6.3. OPRF_Unblind

 Input:

 rY: Preprocessed element of GG.
 M: Blinded representation of x using rG, an element in GG.
 Z: An element in GG.

 Output:

 N: Unblinded signature, element in GG.

 Steps:

 1. N := Z-rY
 2. Output N

 Notice that OPRF_Unblind computes (Z-rY) = k(H_1(x)+rG) - rkG =
 kH_1(x) by the commutativity of scalar multiplication in GG. This is
 the same output as in the original OPRF_Unblind algorithm.

5. NIZK Discrete Logarithm Equality Proof

 For the VOPRF protocol we require that V is able to verify that P has
 used its private key k to evaluate the PRF. We can do this by
 showing that the original commitment (G,Y) output by VOPRF_Setup(l)
 satisfies log_G(Y) == log_M(Z) where Z is the output of
 VOPRF_Sign(k,(G,Y),M).

 This may be used, for example, to ensure that P uses the same private
 key for computing the VOPRF output and does not attempt to "tag"
 individual verifiers with select keys. This proof must not reveal
 the P's long-term private key to V.

 Consequently, this allows extending the OPRF protocol with a (non-
 interactive) discrete logarithm equality (DLEQ) algorithm built on a
 Chaum-Pedersen [ChaumPedersen] proof. This proof is divided into two
 procedures: DLEQ_Generate and DLEQ_Verify. These are specified
 below.

5.1. DLEQ_Generate

Davidson, et al. Expires September 12, 2019 [Page 16]

Internet-Draft OPRFs March 2019

 Input:

 k: Signer secret key.
 G: Public generator of GG.
 Y: Signer public key (= kG).
 M: An element in GG.
 Z: An element in GG.
 H_3: A hash function from GG to {0,1}^L, modelled as a random oracle.

 Output:

 D: DLEQ proof (c, s).

 Steps:

 1. r <-$ GF(p)
 2. A := rG and B := rM.
 3. c <- H_3(G,Y,M,Z,A,B)
 4. s := (r - ck) (mod p)
 5. Output D := (c, s)

5.2. DLEQ_Verify

 Input:

 G: Public generator of GG.
 Y: Signer public key.
 M: An element in GG.
 Z: An element in GG.
 D: DLEQ proof (c, s).

 Output:

 True if log_G(Y) == log_M(Z), False otherwise.

 Steps:

 1. A' := (sG + cY)
 2. B' := (sM + cZ)
 3. c' <- H_3(G,Y,M,Z,A',B')
 4. Output c == c'

6. Batched VOPRF evaluation

 Common applications (e.g. [PrivacyPass]) require V to obtain
 multiple PRF evaluations from P. In the VOPRF case, this would also
 require generation and verification of a DLEQ proof for each Zi
 received by V. This is costly, both in terms of computation and

Davidson, et al. Expires September 12, 2019 [Page 17]

Internet-Draft OPRFs March 2019

 communication. To get around this, applications use a 'batching'
 procedure for generating and verifying DLEQ proofs for a finite
 number of PRF evaluation pairs (Mi,Zi). For n PRF evaluations:

 o Proof generation is slightly more expensive from 2n modular
 exponentiations to 2n+2.

 o Proof verification is much more efficient, from 4m modular
 exponentiations to 2n+4.

 o Communications falls from 2n to 2 group elements.

 Therefore, since P is usually a powerful server, we can tolerate a
 slight increase in proof generation complexity for much more
 efficient communication and proof verification.

 In this section, we describe algorithms for batching the DLEQ
 generation and verification procedure. For these algorithms we
 require a pseudorandom generator PRNG: {0,1}^a x ZZ -> ({0,1}^b)^n
 that takes a seed of length a and an integer n as input, and outputs
 n elements in {0,1}^b.

6.1. Batched DLEQ algorithms

6.1.1. Batched_DLEQ_Generate

Davidson, et al. Expires September 12, 2019 [Page 18]

Internet-Draft OPRFs March 2019

Input:

 k: Signer secret key.
 G: Public generator of group GG.
 Y: Signer public key (= kG).
 n: Number of PRF evaluations.
 [Mi]: An array of points in GG of length n.
 [Zi]: An array of points in GG of length n.
 PRNG: A pseudorandom generator of the form above.
 salt: An integer salt value for each PRNG invocation
 info: A string value for splitting the domain of the PRNG
 H_4: A hash function from GG^(2n+2) to {0,1}^a, modelled as a random oracle.

Output:

 D: DLEQ proof (c, s).

Steps:

 1. seed <- H_4(G,Y,[Mi,Zi]))
 2. d1,...dn <- PRNG(seed,salt,info,n)
 3. c1,...,cn := (int)d1,...,(int)dn
 4. M := c1M1 + ... + cnMn
 5. Z := c1Z1 + ... + cnZn
 6. Output D <- DLEQ_Generate(k,G,Y,M,Z)

6.1.2. Batched_DLEQ_Verify

 Input:

 G: Public generator of group GG.
 Y: Signer public key.
 [Mi]: An array of points in GG of length n.
 [Zi]: An array of points in GG of length n.
 D: DLEQ proof (c, s).

 Output:

 True if log_G(Y) == log_(Mi)(Zi) for each i in 1...n, False otherwise.

 Steps:

 1. seed <- H_4(G,Y,[Mi,Zi]))
 2. d1,...dn <- PRNG(seed,salt,info,n)
 3. c1,...,cn := (int)d1,...,(int)dn
 4. M := c1M1 + ... + cnMn
 5. Z := c1Z1 + ... + cnZn
 6. Output DLEQ_Verify(G,Y,M,Z,D)

Davidson, et al. Expires September 12, 2019 [Page 19]

Internet-Draft OPRFs March 2019

6.2. Modified protocol execution

 The VOPRF protocol from Section Section 4 changes to allow specifying
 multiple blinded PRF inputs [Mi] for i in 1...n. Then P computes the
 array [Zi] and replaces DLEQ_Generate with Batched_DLEQ_Generate over
 these arrays. The same applies to the algorithm VOPRF_Sign. The
 same applies for replacing DLEQ_Verify with Batched_DLEQ_Verify when
 V verifies the response from P and during the algorithm VOPRF_Verify.

6.3. PRNG and resampling

 Any function that satisfies the security properties of a pseudorandom
 number generator can be used for computing the batched DLEQ proof.
 For example, SHAKE-256 [SHAKE] or HKDF-SHA256 [RFC5869] would be
 reasonable choices for groups that have an order of 256 bits.

 We note that the PRNG outputs d1,...,dn must be smaller than the
 order of the group/curve that is being used. Resampling can be
 achieved by increasing the value of the iterator that is used in the
 info field of the PRNG input.

7. Supported ciphersuites

 This section specifies supported ECVOPRF group and hash function
 instantiations. We only provide ciphersuites in the EC setting as
 these provide the most efficient way of instantiating the OPRF. Our
 instantiation includes considerations for providing the DLEQ proofs
 that make the instantiation a VOPRF. Supporting OPRF operations
 (ECOPRF) alone can be allowed by simply dropping the relevant
 components. In addition, we currently only support ciphersuites
 demonstrating 128 bits of security.

7.1. ECVOPRF-P256-HKDF-SHA256-SSWU:

 o GG: SECP256K1 curve [SEC2]

 o H_1: H2C-P256-SHA256-SSWU- [I-D.irtf-cfrg-hash-to-curve]

 * label: voprf_h2c

 o H_2: SHA256

 o H_3: SHA256

 o H_4: SHA256

 o PRNG: HKDF-SHA256

https://datatracker.ietf.org/doc/html/rfc5869

Davidson, et al. Expires September 12, 2019 [Page 20]

Internet-Draft OPRFs March 2019

7.2. ECVOPRF-RISTRETTO-HKDF-SHA512-Elligator2:

 o GG: Ristretto [RISTRETTO]

 o H_1: H2C-Curve25519-SHA512-Elligator2-Clear
 [I-D.irtf-cfrg-hash-to-curve]

 * label: voprf_h2c

 o H_2: SHA512

 o H_3: SHA512

 o H_4: SHA512

 o PRNG: HKDF-SHA512

 In the case of Ristretto, internal point representations are
 represented by Ed25519 [RFC7748] points. As a result, we can use the
 same hash-to-curve encoding as we would use for Ed25519
 [I-D.irtf-cfrg-hash-to-curve]. We remark that the 'label' field is
 necessary for domain separation of the hash-to-curve functionality.

8. Security Considerations

 Security of the protocol depends on P's secrecy of k. Best practices
 recommend P regularly rotate k so as to keep its window of compromise
 small. Moreover, it each key should be generated from a source of
 safe, cryptographic randomness.

 Another critical aspect of this protocol is reliance on
 [I-D.irtf-cfrg-hash-to-curve] for mapping arbitrary inputs x to
 points on a curve. Security requires this mapping be pre-image and
 collision resistant.

8.1. Timing Leaks

 To ensure no information is leaked during protocol execution, all
 operations that use secret data MUST be constant time. Operations
 that SHOULD be constant time include: H_1() (hashing arbitrary
 strings to curves) and DLEQ_Generate().
 [I-D.irtf-cfrg-hash-to-curve] describes various algorithms for
 constant-time implementations of H_1.

https://datatracker.ietf.org/doc/html/rfc7748

Davidson, et al. Expires September 12, 2019 [Page 21]

Internet-Draft OPRFs March 2019

8.2. Hashing to curves

 We choose different encodings in relation to the elliptic curve that
 is used, all methods are illuminated precisely in
 [I-D.irtf-cfrg-hash-to-curve]. In summary, we use the simplified
 Shallue-Woestijne-Ulas algorithm for hashing binary strings to the
 P-256 curve; the Icart algorithm for hashing binary strings to P384;
 the Elligator2 algorithm for hashing binary strings to CURVE25519 and
 CURVE448.

8.3. Verifiability (key consistency)

 DLEQ proofs are essential to the protocol to allow V to check that
 P's designated private key was used in the computation. A side
 effect of this property is that it prevents P from using a unique key
 for select verifiers as a way of "tagging" them. If all verifiers
 expect use of a certain private key, e.g., by locating P's public key
 published from a trusted registry, then P cannot present unique keys
 to an individual verifier.

 For this side effect to hold, P must also be prevented from using
 other techniques to manipulate their public key within the trusted
 registry to reduce client anonymity. For example, if P's public key
 is rotated too frequently then this may stratify the user base into
 small anonymity groups (those with VOPRF_Sign outputs taken from a
 given key epoch). In this case, it may become practical to link
 VOPRF sessions for a given user and thus compromises their privacy.

 Similarly, if P can publish N public keys to a trusted registry then
 P may be able to control presentation of these keys in such a way
 that V is retroactively identified by V's key choice across multiple
 requests.

9. Applications

 This section describes various applications of the VOPRF protocol.

9.1. Privacy Pass

 This VOPRF protocol is used by Privacy Pass system to help Tor users
 bypass CAPTCHA challenges. Their system works as follows. Client C
 connects - through Tor - to an edge server E serving content. Upon
 receipt, E serves a CAPTCHA to C, who then solves the CAPTCHA and
 supplies, in response, n blinded points. E verifies the CAPTCHA
 response and, if valid, signs (at most) n blinded points, which are
 then returned to C along with a batched DLEQ proof. C stores the
 tokens if the batched proof verifies correctly. When C attempts to
 connect to E again and is prompted with a CAPTCHA, C uses one of the

Davidson, et al. Expires September 12, 2019 [Page 22]

Internet-Draft OPRFs March 2019

 unblinded and signed points, or tokens, to derive a shared symmetric
 key sk used to MAC the CAPTCHA challenge. C sends the CAPTCHA, MAC,
 and token input x to E, who can use x to derive sk and verify the
 CAPTCHA MAC. Thus, each token is used at most once by the system.

 The Privacy Pass implementation uses the P-256 instantiation of the
 VOPRF protocol. For more details, see [DGSTV18].

9.2. Private Password Checker

 In this application, let D be a collection of plaintext passwords
 obtained by prover P. For each password p in D, P computes
 VOPRF_Sign on H_1(p), where H_1 is as described above, and stores the
 result in a separate collection D'. P then publishes D' with Y, its
 public key. If a client C wishes to query D' for a password p', it
 runs the VOPRF protocol using p as input x to obtain output y. By
 construction, y will be the signature of p hashed onto the curve. C
 can then search D' for y to determine if there is a match.

 Examples of such password checkers already exist, for example:
 [JKKX16], [JKK14] and [SJKS17].

9.2.1. Parameter Commitments

 For some applications, it may be desirable for P to bind tokens to
 certain parameters, e.g., protocol versions, ciphersuites, etc. To
 accomplish this, P should use a distinct scalar for each parameter
 combination. Upon redemption of a token T from V, P can later verify
 that T was generated using the scalar associated with the
 corresponding parameters.

10. Acknowledgements

 This document resulted from the work of the Privacy Pass team
 [PrivacyPass]. The authors would also like to acknowledge the
 helpful conversations with Hugo Krawczyk. Eli-Shaoul Khedouri
 provided additional review and comments on key consistency.

11. Normative References

 [ChaumBlindSignature]
 "Blind Signatures for Untraceable Payments", n.d.,
 <http://sceweb.sce.uhcl.edu/yang/teaching/

csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF>.

 [ChaumPedersen]
 "Wallet Databases with Observers", n.d.,
 <https://chaum.com/publications/Wallet_Databases.pdf>.

http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
https://chaum.com/publications/Wallet_Databases.pdf

Davidson, et al. Expires September 12, 2019 [Page 23]

Internet-Draft OPRFs March 2019

 [DECAF] "Decaf, Eliminating cofactors through point compression",
 n.d., <https://www.shiftleft.org/papers/decaf/decaf.pdf>.

 [DGSTV18] "Privacy Pass, Bypassing Internet Challenges Anonymously",
 n.d., <https://www.degruyter.com/view/j/

popets.2018.2018.issue-3/popets-2018-0026/
popets-2018-0026.xml>.

 [I-D.irtf-cfrg-hash-to-curve]
 Scott, S., Sullivan, N., and C. Wood, "Hashing to Elliptic
 Curves", draft-irtf-cfrg-hash-to-curve-02 (work in
 progress), October 2018.

 [JKK14] "Round-Optimal Password-Protected Secret Sharing and
 T-PAKE in the Password-Only model", n.d.,
 <https://eprint.iacr.org/2014/650.pdf>.

 [JKKX16] "Highly-Efficient and Composable Password-Protected Secret
 Sharing (Or, How to Protect Your Bitcoin Wallet Online)",
 n.d., <https://eprint.iacr.org/2016/144>.

 [NIST] "Keylength - NIST Report on Cryptographic Key Length and
 Cryptoperiod (2016)", n.d.,
 <https://www.keylength.com/en/4/>.

 [OPAQUE] "The OPAQUE Asymmetric PAKE Protocol", n.d.,
 <https://tools.ietf.org/html/

draft-krawczyk-cfrg-opaque-01>.

 [PrivacyPass]
 "Privacy Pass", n.d.,
 <https://github.com/privacypass/challenge-bypass-server>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

https://www.shiftleft.org/papers/decaf/decaf.pdf
https://www.degruyter.com/view/j/popets.2018.2018.issue-3/popets-2018-0026/popets-2018-0026.xml
https://www.degruyter.com/view/j/popets.2018.2018.issue-3/popets-2018-0026/popets-2018-0026.xml
https://www.degruyter.com/view/j/popets.2018.2018.issue-3/popets-2018-0026/popets-2018-0026.xml
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-02
https://eprint.iacr.org/2014/650.pdf
https://eprint.iacr.org/2016/144
https://www.keylength.com/en/4/
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-01
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-01
https://github.com/privacypass/challenge-bypass-server
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748

Davidson, et al. Expires September 12, 2019 [Page 24]

Internet-Draft OPRFs March 2019

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RISTRETTO]
 "The ristretto255 Group", n.d.,
 <https://tools.ietf.org/html/

draft-hdevalence-cfrg-ristretto-00>.

 [SEC2] Standards for Efficient Cryptography Group (SECG), ., "SEC
 2: Recommended Elliptic Curve Domain Parameters", n.d.,
 <http://www.secg.org/sec2-v2.pdf>.

 [SHAKE] "SHA-3 Standard, Permutation-Based Hash and Extendable-
 Output Functions", n.d.,
 <https://www.nist.gov/publications/sha-3-standard-

permutation-based-hash-and-extendable-output-
functions?pub_id=919061>.

 [SJKS17] "SPHINX, A Password Store that Perfectly Hides from
 Itself", n.d.,
 <http://webee.technion.ac.il/%7Ehugo/sphinx.pdf>.

Appendix A. Test Vectors

 This section includes test vectors for the ECVOPRF-P256-HKDF-SHA256
 VOPRF ciphersuite, including batched DLEQ output.

https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-00
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-00
http://www.secg.org/sec2-v2.pdf
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
http://webee.technion.ac.il/%7Ehugo/sphinx.pdf

Davidson, et al. Expires September 12, 2019 [Page 25]

Internet-Draft OPRFs March 2019

P-256
X: 04b14b08f954f5b6ab1d014b1398f03881d70842acdf06194eb96a6d08186f8cb985c1c5521
\
 f4ee19e290745331f7eb89a4053de0673dc8ef14cfe9bf8226c6b31
r: b72265c85b1ba42cfed7caaf00d2ccac0b1a99259ba0dbb5a1fc2941526a6849
M: 046025a41f81a160c648cfe8fdcaa42e5f7da7a71055f8e23f1dc7e4204ab84b705043ba5c7
\
 000123e1fd058150a4d3797008f57a8b2537766d9419c7396ba5279
k: f84e197c8b712cdf452d2cff52dec1bd96220ed7b9a6f66ed28c67503ae62133
Z: 043ab5ccb690d844dcb780b2d9e59126d62bc853ba01b2c339ba1c1b78c03e4b6adc5402f77
\
 9fc29f639edc138012f0e61960e1784973b37f864e4dc8abbc68e0b
N: 04e8aa6792d859075821e2fba28500d6974ba776fe230ba47ef7e42be1d967654ce776f889e
\
 e1f374ffa0bce904408aaa4ed8a19c6cc7801022b7848031f4e442a
D: { s: faddfaf6b5d6b4b6357adf856fc1e0044614ebf9dafdb4c6541c1c9e61243c5b,
 c: 8b403e170b56c915cc18864b3ab3c2502bd8f5ca25301bc03ab5138343040c7b }

P-256
X: 047e8d567e854e6bdc95727d48b40cbb5569299e0a4e339b6d707b2da3508eb6c238d3d4cb4
\
 68afc6ffc82fccbda8051478d1d2c9b21ffdfd628506c873ebb1249
r: f222dfe530fdbfcb02eb851867bfa8a6da1664dfc7cee4a51eb6ff83c901e15e
M: 04e2efdc73747e15e38b7a1bb90fe5e4ef964b3b8dccfda428f85a431420c84efca02f0f09c
\
 83a8241b44572a059ab49c080a39d0bce2d5d0b44ff5d012b5184e7
k: fb164de0a87e601fd4435c0d7441ff822b5fa5975d0c68035beac05a82c41118
Z: 049d01e1c555bd3324e8ce93a13946b98bdcc765298e6d60808f93c00bdfba2ebf48eef8f28
\
 d8c91c903ad6bea3d840f3b9631424a6cc543a0a0e1f2d487192d5b
N: 04723880e480b60b4415ca627585d1715ab5965570d30c94391a8b023f8854ac26f76c1d6ab
\
 bb38688a5affbcadad50ecbf7c93ef33ddfd735003b5a4b1a21ba14
D: { s: dfdf6ae40d141b61d5b2d72cf39c4a6c88db6ac5b12044a70c212e2bf80255b4,
 c: 271979a6b51d5f71719127102621fe250e3235867cfcf8dea749c3e253b81997 }

Batched DLEQ (P256)
M_0:
046025a41f81a160c648cfe8fdcaa42e5f7da7a71055f8e23f1dc7e4204ab84b705043ba5c\
 7000123e1fd058150a4d3797008f57a8b2537766d9419c7396ba5279
M_1:
04e2efdc73747e15e38b7a1bb90fe5e4ef964b3b8dccfda428f85a431420c84efca02f0f09\
 c83a8241b44572a059ab49c080a39d0bce2d5d0b44ff5d012b5184e7
Z_0:
043ab5ccb690d844dcb780b2d9e59126d62bc853ba01b2c339ba1c1b78c03e4b6adc5402f7\
 79fc29f639edc138012f0e61960e1784973b37f864e4dc8abbc68e0b
Z_1:
04647e1ab7946b10c1c1c92dd333e2fc9e93e85fdef5939bf2f376ae859248513e0cd91115\

 e48c6852d8dd173956aec7a81401c3f63a133934898d177f2a237eeb
k: f84e197c8b712cdf452d2cff52dec1bd96220ed7b9a6f66ed28c67503ae62133
PRNG: HKDF-SHA256
salt: "DLEQ_PROOF"
info: an iterator i for invoking the PRNG on M_i and Z_i
D: { s: b2123044e633d4721894d573decebc9366869fe3c6b4b79a00311ecfa46c9e34,
 c: 3506df9008e60130fcddf86fdb02cbfe4ceb88ff73f66953b1606f6603309862 }

Davidson, et al. Expires September 12, 2019 [Page 26]

Internet-Draft OPRFs March 2019

Authors' Addresses

 Alex Davidson
 Cloudflare
 County Hall
 London, SE1 7GP
 United Kingdom

 Email: adavidson@cloudflare.com

 Nick Sullivan
 Cloudflare
 101 Townsend St
 San Francisco
 United States of America

 Email: nick@cloudflare.com

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Davidson, et al. Expires September 12, 2019 [Page 27]

