
Internet Engineering Task Force A. Sullivan
Internet-Draft Dyn
Intended status: Informational A. Freytag
Expires: September 10, 2015 ASMUS Inc.
 March 9, 2015

A Problem Statement to Motivate Work on Locale-free Unicode Identifiers
draft-sullivan-lucid-prob-stmt-00

Abstract

 Internationalization techniques that the IETF has adopted depended on
 some assumptions about the way characters get added to Unicode. Some
 of those assumptions turn out not to have been true. Discussion is
 necessary to determine how the IETF should respond to the new
 understanding of how Unicode works.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Sullivan & Freytag Expires September 10, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/draft-sullivan-lucid-prob-stmt-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft LUCID Problem Statement March 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Background . 3
2.1. The Inclusion Mechanism 3
2.2. The Difference Between Theory and Practice 4
2.2.1. Confusability . 4
2.2.1.1. Not everything can be solved 5

2.2.2. The Problem Now Before Us 6
3. Identifiers . 7
3.1. Types of Identifiers 8

4. Possible Nature of Problem 9
4.1. Just a Species of Confusables 9
4.2. Just a Species of Homoglyphs 9
4.3. Separate Problem . 10
4.4. Unimportant Problem 10

5. Possible Ways Forward . 10
 5.1. Find the Cases, Disallow New Ones, and Deal
 With Old Ones . 10
 5.2. Disallow Certain Combining Sequences
 Absolutely . 11

5.3. Do Nothing, Possibly Warn 11
 5.4. Identify Enough Commonality for a New
 Property . 12

5.5. Create an IETF-only Normalization Form 12
6. Acknowledgements . 12
7. Informative References 12
Appendix A. Examples . 13

 Authors' Addresses . 15

1. Introduction

 Among its features, IDNA2008 [RFC5890] [RFC5891] [RFC5892] [RFC5893]
 [RFC5894] [RFC5895] provides a way of using Unicode [Unicode]
 characters without regard to the version of Unicode available. The
 same approach is generalized for protocols other than DNS by the
 PRECIS framework [I-D.ietf-precis-framework].

 The mechanism used is called "inclusion", and is outlined in
Section 2.1 below. We call the general strategy "inclusion-based

 identifier internationalization" or "i3" for short. I3 depends on
 certain assumptions made in the IETF at the time it was being
 developed. Some of those assumptions were about the relationships
 between various characters and the likelihood that similar such
 relationships would get added to future versions of Unicode. Those

https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc5892
https://datatracker.ietf.org/doc/html/rfc5893
https://datatracker.ietf.org/doc/html/rfc5894
https://datatracker.ietf.org/doc/html/rfc5895

Sullivan & Freytag Expires September 10, 2015 [Page 2]

Internet-Draft LUCID Problem Statement March 2015

 assumptions turn out not to have been true in every case. This
 raises a question, therefore, about whether the current approach
 meets the needs of the IETF for internationalizing identifiers.

 This memo attempts to give enough background about the situation so
 that IETF participants can participate in a discussion about what (if
 anything) to do about the state of affairs; the discussion is
 expected to happen as part of the LUCID BoF at IETF 92. The reader
 is assumed to be familiar with the terminology in [RFC6365]. This
 memo owes a great deal to the exposition in
 [I-D.klensin-idna-5892upd-unicode70].

2. Background

 The intent of Unicode is to encode all known writing systems into a
 single coded character set. One consequence of that goal is that
 Unicode encodes an enormous number of characters. Another is that
 the work of Unicode does not end until every writing system is
 encoded; even after that, it needs to continue to track any changes
 in those writing systems. Unicode encodes abstract characters, not
 glyphs. Because of the way Unicode was built up over time, there are
 sometimes multiple ways to encode the same abstract character. If
 Unicode encodes an abstract character in more than one way, then for
 most purposes the different encodings should all be treated as though
 they're the same character. This is called "canonical equivalence".

 A lack of a defined canonical equivalence is tantamount to an
 assertion by Unicode that the two encodings do not represent the same
 abstract character, even if both happen to result in the same
 appearance.

 Every encoded character in Unicode (that is, every code point) is
 associated with a set of properties. The properties define what
 script a code point is in, whether it is a letter or a number or
 punctuation and so forth, what direction it is written in, to what
 other code point or code point sequence it is canonically equivalent,
 and many other properties. These properties are important to the
 inclusion mechanism.

2.1. The Inclusion Mechanism

 Because of both the enormous number of characters in Unicode and the
 many purposes it must serve, Unicode contains characters that are not
 well-suited for use as part of identifiers for network protocols.
 The inclusion mechanism starts by assuming an empty set of
 characters. It then evaluates Unicode characters not individually,
 but instead by classifying them according to their properties. This

https://datatracker.ietf.org/doc/html/rfc6365

Sullivan & Freytag Expires September 10, 2015 [Page 3]

Internet-Draft LUCID Problem Statement March 2015

 classification provides the "derived properties" that IDNA2008 and
 PRECIS rely upon.

 In practice, the inclusion mechanism includes code points that are
 letters or digits. There are some ways to include or exclude
 characters that otherwise would be excluded or included
 (respectively); but it is impractical to evaluate each character, so
 most characters are included or excluded based on the properties they
 have.

 I3 depends on the assumption that strings that will be used in
 identifiers will not have any ambiguous matching to other strings.
 In practice, this means that input strings to the protocol are
 expected to be in Normalization Form C. This way, any alternative
 sequences of code points for the same characters will be normalized
 to a single form. Assuming then that those characters are all
 included by the inclusion mechanism, the string is eligible to be an
 identifier under the protocol.

2.2. The Difference Between Theory and Practice

 In principle, under i3 identifiers should be unambiguous. It has
 always been recognized, however, that for humans some ambiguity was
 inevitable, because of the vagaries of writing systems and of human
 perception.

 Normalization Form NFC removes the ambiguities based on dual or
 multiple encoding for the same abstract character. However,
 characters are not the same as their glyphs. This means that it is
 possible for certain abstract characters to share a glyph. We call
 such abstract characters "homoglyphs". While this looks at first
 like something that should be handled (or should have been handled)
 by normalization (NFC or something else), there are important
 differences; the situation is in some sense an extreme case of a
 spectrum of ambiguity discussed in the following section.

2.2.1. Confusability

 While Unicode deals in abstract characters and i3 works on Unicode
 code points, users interact with the characters as actually rendered:
 glyphs. There are characters that, depending on font, sometimes look
 quite similar to one another (such as "l" and "1"); any character
 that is like this is often called "visually similar". More difficult
 are characters that, in any normal rendering, always look the same as
 one another. The shared history of Cyrillic, Greek, and Latin
 scripts, for example, means that there are characters in each script
 that function similarly and that are usually indistinguishable from
 one another, though they are not the same abstract character. These

Sullivan & Freytag Expires September 10, 2015 [Page 4]

Internet-Draft LUCID Problem Statement March 2015

 are examples of "homoglyphs." Any character that can be confused for
 another one can be called confusable, and confusability can be
 thought of as a spectrum with "visually similar" at one end, and
 "homoglyphs" at the other. (We use the term "homoglyph" strictly:
 code points that normally use the same glyph when rendered.)

 Most of the time, there is some characteristic that can help to
 mitigate confusion. Mitigation may be as simple as using a font
 designed to distinguish among different characters. For homoglyphs,
 a large number of cases (but not all of them) turn out to be in
 different scripts. As a result, there is an operational convention
 that identifiers should always be in a single script. (This strategy
 can be less than successful in cases where each identifier is in a
 single script, but the repertoire used in operation allows multiple
 scripts, because of whole string confusables -- strings made up
 entirely of homoglyphs of another string in a different script.)

 There is another convention that operators should only ever use the
 smallest repertoire of code points possible for their environment.
 So, for example, if there is a code point that is sometimes used but
 is perhaps a little obscure, it is better to leave it out and gain
 some experience with other cases first. In particular, code points
 used in a language with which the administrator is not familiar
 should probably be excluded. In the case of IDNA, some client
 programs restrict display of U-labels to top-level domains known to
 have policies about single-script labels. None of these policies or
 convention will do anything to help strict homoglyphs of each other
 in the same script (see Appendix A for some example cases.)

2.2.1.1. Not everything can be solved

 Before continuing, it is worth noting that there are some cases that,
 regardless of mitigation, are fundamentally impossible to solve.
 There are certainly cases of two strings in which all the code points
 in one script in the first string, and all the code points in another
 script in the second string, are respectively confusable with one
 another. In that case, the strings cannot be distinguished by a
 reader, and the whole string is confusable. Further, human
 perception is easily tricked, so that entirely unrelated character
 sequences can become confusable, for example "rn" being confused with
 "m".

 Given the facts of history and the contingencies of writing systems,
 one cannot defend against all of these cases; and it seems all but
 certain that many of these cases cannot successfully be addressed on
 the protocol level alone. In general, the i3 strategy can only
 define rules for one identifier at a time, and has no way to offer
 guidance about how different identifiers under the same scheme ought

Sullivan & Freytag Expires September 10, 2015 [Page 5]

Internet-Draft LUCID Problem Statement March 2015

 to interact. Humans are likely to respond according to the entire
 identifier string, so there seems to be a deep tension between the
 narrow focus of i3, and the actual experience of users.

 In addition, several factors limit the ability to ensure that any
 solution adopted is final and complete: the sheer complexity of
 writing systems, the fact that many of them are not equally well
 understood as Latin or Han, and that many less developed writing
 systems are potentially susceptible to paradigm changes as digital
 support for them becomes more widespread. Detailed knowledge about,
 and implementation experience for, these writing systems only emerges
 over time; disruptive changes are neither predictable ahead of time
 nor preventable. In essence, any solution to eliminate ambiguity can
 be expected to get some detail wrong.

 Nobody should imagine that the present discussion takes as its goal
 the complete elimination of all possible confusion. The failure to
 achieve such a goal does not mean, however, that we should do
 nothing, any more than the low chances of ever arresting all grifters
 means that we should not enact laws against fraud. Our discussion,
 then, must focus on those problems that are able to be addressed in
 the constraint of the protocols; and, in particular, the subset that
 are suitable for that

2.2.2. The Problem Now Before Us

 During the expert review necessary for supporting Unicode 7.0.0 for
 use with IDNA, a new code point U+08A1, ARABIC LETTER BEH WITH HAMZA
 ABOVE came in for some scrutiny. Using versions of Unicode up to and
 including 7.0.0, it is possible to combine ARABIC LETTER BEH (U+0628)
 and ARABIC HAMZA ABOVE (U+0654) to produce a glyph that is
 indistinguishable from the one produced by U+08A1. But U+08A1 and
 \u'0628'\u'0654' are not canonically equivalent. (For more
 discussion of this issue, see [I-D.klensin-idna-5892upd-unicode70].)

 Further investigation reveals that there are several similar cases.
 ARABIC HAMZA ABOVE (U+0654) turns out to be implicated in some cases,
 but not all of them. There are cases in Latin (see Appendix A for
 examples). There are certainly cases in other scripts (some examples
 are provided in Appendix A). The majority of cases all have a
 handful of things in common:

 o There are at least two forms by which the same glyph is produced.

 o One of the forms uses a combining sequence and another form is a
 precomposed character, or else one of the forms is a digraph.
 [[CREF1: Is this true? Are there any cases that don't match it?
 --ajs]]

Sullivan & Freytag Expires September 10, 2015 [Page 6]

Internet-Draft LUCID Problem Statement March 2015

 o The results when rendered as glyphs cannot be distinguished from
 one another.

 o The two forms are not canonically equivalent.

 o All of the relevant code points have the same script property, or
 else inherit the script property of the previous character so that
 it is not possible to select on the basis of the script.

 o Competent users of the writing system in a language do not treat
 one of the combining sequence or the precomposed character as
 reasonable. To writers for whom the combining sequence is
 "wrong", it is not a case of a base character modified by an
 additional mark, but instead a separate letter. Conversely, to
 writers for whom the precomposed character is "wrong", it is
 definitely a matter of adding something to a character that
 otherwise stands on its own. (Not every possible combination
 would normally be used by anyone, of course, and sometimes -- not
 infrequently -- one of the alternatives is not used by any
 orthography.)

 Cases that match these conditions might be considered to involve
 "non-normalizable diacritics", because most of the combining marks in
 question are non-spacing marks that are or act like diacritics.

3. Identifiers

 Part of the reason i3 works from the assumption that not all Unicode
 code points are appropriate for identifiers is that identifiers do
 not work like words of phrases in a language. First, identifiers
 often appear in contexts where there is no way to tell the language
 of the identifiers. Indeed, many identifiers are not really "in a
 language" at all. Second, and partly because of that lack of
 linguistic root, identifiers are often either not words or use
 unusual orthography precisely to differentiate themselves.

 In ordinary language use, the ambiguity identified in Section 2.2 may
 well create no difficulty. Running text has two properties that make
 this so. First, because there is a linguistic context (the rest of
 the text), it is possible to detect code points that are used in an
 unusual way and flag them or, even, create automatic rules to "fix"
 such issues. Second, linguistic context comes with spelling rules
 that automatically determine whether something is written the right
 way. Because of these facts, it is often possible even without a
 locale identifier to work out what the locale of the text ought to
 be. So, even in cases where passages of text need to be compared, it
 is possible to mitigate the issue.

Sullivan & Freytag Expires September 10, 2015 [Page 7]

Internet-Draft LUCID Problem Statement March 2015

 The same locale-detection approach does not work for identifiers.
 Worse, identifiers, by their very nature, are things that must
 provide reliable exact matches. The whole point of an identifier is
 that it provides a reliable way of uniquely naming the thing to be
 identified. Partial matches and heuristics are inadequate for those
 purposes. Identifiers are often used as part of the security
 practices for a protocol, and therefore ambiguity in matching
 presents a risk for the security of any protocol relying on the
 identifier.

3.1. Types of Identifiers

 It is worth observing that not all identifiers are of the same type.
 There are four relevant dimensions in which identifiers can differ in
 type:

 1. Scope

 (a) Internet-wide

 (b) Unique within a context (often a site)

 (c) Link-local only

 2. Management

 (a) Centrally managed

 (b) Contextually managed (e.g. registering a nickname with a
 server for a session)

 (c) Unmanaged

 3. Durability

 (a) Permanent

 (b) Durable but with possible expiration

 (c) Temporary

 (d) Ephemeral

 4. Authority

 (a) Single authority

 (b) Multiple authorities (possibly within a hierarchy)

Sullivan & Freytag Expires September 10, 2015 [Page 8]

Internet-Draft LUCID Problem Statement March 2015

 (c) No authority

 These different dimensions present ways in which mitigation of the
 identified issue might be possible. For instance, a protocol that
 uses only link-local identifiers that are unmanaged, temporary, and
 configured automatically does not really present a problem, because
 for practical purposes its linguistic context is constrained to the
 social realities of the LAN in question. A durable Internet-wide
 identifier centrally managed by multiple authorities will present a
 greater issue unless locale information comes along with the
 identifier.

4. Possible Nature of Problem

 We may regard this problem as one of several different kinds, and
 depending on how we view it we will have different approaches to
 addressing it.

4.1. Just a Species of Confusables

 Under this interpretation, the current issue is no different to any
 other confusable case, except in detail. Since there is no way to
 solve the general problem of confusables, there is no way to solve
 this problem either. Moreover, to the degree that confusables are
 solved outside protocols, by administration and policy, the current
 issue might be addressed by the same strategy.

 This interpretation seems unsatisfying, because there exist some
 partial mitigations, and if suitable further mitigations are possible
 it would be wise to apply them.

4.2. Just a Species of Homoglyphs

 Under this interpretation, the current issue is no different than any
 other homoglyph case. After all, the basic problem is that there is
 no way for a user to tell which codepoint is represented by what the
 user sees in either case.

 There is some merit to this view, but it has the problem that many of
 the homoglyph issues (admittedly not all of them) can be mitigated
 through registration rules, and those rules can be established
 without examining the particular code points in question (that is,
 they can operate just on the properties of code points, such as
 script membership). The current issue does not allow such mitigation
 given the properties that are currently available. At the same time,
 it may be that it is impossible to deal with this adequately, and
 some judgement will be needed for what is adequate. This is an area
 where more discussion is clearly needed.

Sullivan & Freytag Expires September 10, 2015 [Page 9]

Internet-Draft LUCID Problem Statement March 2015

4.3. Separate Problem

 Under this interpretation, there is a definable problem, and its
 boundaries can be specified.

 That we can list some necessary conditions for the problem suggests
 that it is a separable problem. The list of factors in Section 2.2.2
 seems to indicate that it is possible to describe the bounds of a
 problem that can be addressed separately.

 What is not clear is whether it is separable enough to make it worth
 treating separately.

4.4. Unimportant Problem

 Under this interpretation, while it is possible to describe the
 problem, it is not a problem worth addressing since nobody would ever
 create such identifiers on purpose.

 The problem with this approach, for identifiers, is that it
 represents an opportunity for phishing and other similar attacks.
 While mitigation will not stop all such attacks, we should try to
 understand opportunities for those attacks and close when we have
 identified them and it is practical to do so.

 Whether phishing or other attacks using confusable code points "pay
 off" depends to some extent on the popularity or frequency of the
 code points in question. While it may be worth to address the
 generalized issue, individual edge cases may have no practical
 consequences. The inability to address them then, should not hold up
 progress on a solution for the more common, general case.

5. Possible Ways Forward

 There are a few ways that this issue could be mitigated. Note that
 this section is closely related to Section 3 in
 [I-D.klensin-idna-5892upd-unicode70].

5.1. Find the Cases, Disallow New Ones, and Deal With Old Ones

 In this case, it is necessary to enumerate all the cases, add
 exceptions to DISALLOW any new cases from happening, and make a
 determination about what to do for every past case. There are two
 reasons to doubt whether this approach will work.

 1. The IETF did not catch these issues during previous
 internationalization efforts, and it seems unlikely that in the

Sullivan & Freytag Expires September 10, 2015 [Page 10]

Internet-Draft LUCID Problem Statement March 2015

 meantime it has acquired enough expertise in writing systems to
 do a proper job of it this time.

 2. This approach blunts the effectiveness of being Unicode version-
 agnostic, since it would effectively block any future additions
 to Unicode that had any interaction with the present version.

 So, this approach does not seem too promising.

5.2. Disallow Certain Combining Sequences Absolutely

 In this case, instead of treating all the code points in Unicode, the
 IETF would need only to look at all combining characters. While the
 IETF obviously does not have the requisite expertise in writing
 systems to do this unilaterally, the Unicode Consortium does. In
 fact the Unicode Technical Committee has a clear understanding that
 some combining sequences are never intended to be used for
 orthographic purposes. Any glyph needed for an orthography or
 writing system will, once identified, be added as a single code point
 with "pre-composed" glyph.

 In principle there is no obstacle, in these cases, to asking Unicode
 to express this understanding in form of a character property, which
 then means that IETF could DISALLOW the combining marks having such a
 property.

5.3. Do Nothing, Possibly Warn

 One possibility is to accept that there is nothing one can do in
 general here, and that therefore the best one can do is warn people
 to be careful.

 The problem with this approach, of course, is that it all but
 guarantees future problems with ambiguous identifiers. It would
 provide a good reason to reject all internationalized identifiers as
 representing a significant security risk, and would therefore mean
 that internationalized identifiers would become "second class".
 Unfortunately, however, the demand for internationalized identifiers
 would not likely be reduced by this decision, so some people would
 end up using identifiers with known security problems.

 This approach may be the only possible in some of the borderline
 cases where mitigation approaches are not successful.

Sullivan & Freytag Expires September 10, 2015 [Page 11]

Internet-Draft LUCID Problem Statement March 2015

5.4. Identify Enough Commonality for a New Property

 There is reason to suppose that, if the IETF can come up with clear
 and complete conditions under which code points causing an issue
 could be classified, the Unicode Technical Committee would add such a
 property to code points in future versions of the Unicode Standard.
 Assuming the conditions were clear, future additions to the Standard
 could also be assigned appropriate values of the property, meaning
 that the IETF could revert to making decisions about code points
 based on derived properties. Beyond the property mentioned in

Section 5.2 this property could cover certain combining marks in the
 Arabic script.

 If this is possible, it seems a desirable course of action.

5.5. Create an IETF-only Normalization Form

 Under this approach, the IETF creates a special normalization form
 that it maintains outside the Unicode Standard. For the sake of the
 discussion, we'll call this "NFI".

 This option does not seem workable. The IETF would have to evaluate
 every new release of Unicode to discover the extent to which the new
 release interacts with NFI. Because it would be independently
 maintained, Unicode stability guarantees would not apply to NFI; the
 results would be unpredictable. As a result, either the IETF would
 have to ignore new additions to Unicode, or else it would need UTC to
 take NFI into account. If UTC were able to do so, this option
 reduces to the option in Section 5.4. The UTC might not be able to
 do this, however, because the very principles that Unicode uses to
 assign new characters in certain situations guarantees that new
 characters will be added that cannot be so normalized and yet are
 essential for still-to-be-encoded writing systems. Communities for
 which these new characters would be added would also not accept any
 existing code point sequence as equivalent. This also means that
 Unicode cannot create a stability policy to take into account the
 needs of such an NFI.

6. Acknowledgements

 The discussion in this memo owes a great deal to the IAB
 Internationalization program, and particularly to John Klensin.

7. Informative References

Sullivan & Freytag Expires September 10, 2015 [Page 12]

Internet-Draft LUCID Problem Statement March 2015

 [I-D.ietf-precis-framework]
 Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",

draft-ietf-precis-framework-23 (work in progress),
 February 2015.

 [I-D.klensin-idna-5892upd-unicode70]
 Klensin, J. and P. Faeltstroem, "IDNA Update for Unicode
 7.0.0", draft-klensin-idna-5892upd-unicode70-03 (work in
 progress), January 2015.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, August 2010.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010.

 [RFC5892] Faltstrom, P., "The Unicode Code Points and
 Internationalized Domain Names for Applications (IDNA)",

RFC 5892, August 2010.

 [RFC5893] Alvestrand, H. and C. Karp, "Right-to-Left Scripts for
 Internationalized Domain Names for Applications (IDNA)",

RFC 5893, August 2010.

 [RFC5894] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Background, Explanation, and
 Rationale", RFC 5894, August 2010.

 [RFC5895] Resnick, P. and P. Hoffman, "Mapping Characters for
 Internationalized Domain Names in Applications (IDNA)
 2008", RFC 5895, September 2010.

 [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 September 2011.

 [Unicode] "The Unicode Standard",
http://www.unicode.org/versions/Unicode7.0.0/, .

Appendix A. Examples

 There are a number of cases that illustrate the combining sequence or
 digraph issue:

https://datatracker.ietf.org/doc/html/draft-ietf-precis-framework-23
https://datatracker.ietf.org/doc/html/draft-klensin-idna-5892upd-unicode70-03
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc5892
https://datatracker.ietf.org/doc/html/rfc5893
https://datatracker.ietf.org/doc/html/rfc5894
https://datatracker.ietf.org/doc/html/rfc5895
https://datatracker.ietf.org/doc/html/bcp166
https://datatracker.ietf.org/doc/html/rfc6365
http://www.unicode.org/versions/Unicode7.0.0/

Sullivan & Freytag Expires September 10, 2015 [Page 13]

Internet-Draft LUCID Problem Statement March 2015

 U+08A1 vs \u'0628'\u'0654' This case is ARABIC LETTER BEH WITH HAMZA
 ABOVE, which is the one that was detected during expert review
 that caused the IETF to notice the issue. The issue existed
 before this, but we did not know it. For detailed discussion of
 this case and some of the following ones, see
 [I-D.klensin-idna-5892upd-unicode70]

 U+0681 vs \u'062D'\u'0654' This case is ARABIC LETTER HAH WITH HAMZA
 ABOVE, which (like U+08A1) does not have a canonical equivalent.
 In both cases, the places where hamza above are used are
 specialized enough that the combining marks can be excluded in
 some cases (for example, the root zone under IDNA).

 U+0623 vs \u'0627'\u'0654' This case is ARABIC LETTER ALEF WITH
 HAMZA ABOVE. Unlike the previous two cases, it does have a
 canonical equivalence with the combining sequence. In the past,
 the IETF misunderstood the reasons for the difference between this
 pair and the previous two cases.

 U+09E1 vs u\'098C'u\'09E2' This case is BENGALI LETTER VOCALIC LL.
 This is an example in Bengali script of a case without a canonical
 equivalence to the combining sequence. Per Unicode, the single
 code point should be used to represent vowel letters in text, and
 the sequence of code points should not be used. But it is not a
 simple matter of disallowing the combining vowel mark in cases
 like this; where the combination does not exist and the use of the
 sequence is already established, Unicode is unlikely to encode the
 combination.

 U+019A vs \u'006C'\u'0335' This case is LATIN SMALL LETTER L WITH
 BAR. In at least some fonts, there is a detectable difference
 with the combining sequence, but only if one types them one after
 another and compares them. There is no canonical equivalence
 here. Unicode has a principle of encoding barred letters as
 composites when needed for any writing system.

 U+00F8 vs \u'006F'\u'0337' This is LATIN SMALL LETTER O WITH STROKE.
 The effect are similar to the previous case. Unicode has a
 principle of encoding stroked letters as composites when needed
 for any writing system.

 U+02A6 vs \u'0074'\u'0073' This is LATIN SMALL LETTER TS DIGRAPH,
 which is not canonically equivalent to the letters t and s. The
 intent appears to be that the digraph shows the two shapes as
 kerned, but the difference may be slight out of context.

 U+01C9 vs \u'006C'\u'006A' Unlike the TS digraph, the LJ digraph has
 a relevant compatibility decomposition, so it fails the relevant

Sullivan & Freytag Expires September 10, 2015 [Page 14]

Internet-Draft LUCID Problem Statement March 2015

 stability rules under i3 and is therefore DISALLOWED. This
 illustrates the way that consistencies that might be natural to
 some users of a script are not necessarily found in it, possibly
 because of uses by another writing system.

 U+06C8 vs u\'0648'u\'0670' ARABIC LETTER YU is an example where the
 normally-rendered character looks just like a combining sequence,
 but are named differently. In other words, this is an example
 where the simple fact of the Unicode name would have concealed the
 apparent relationship from the casual observer.

 U+069 vs \u'0069'\u'0307' LATIN SMALL LETTER I followed by COMBINING
 DOT ABOVE by definition, renders exactly the same as LATIN SMALL
 LETTER I by itself and does so in practice for any good font. The
 same would be true if "i" was replaced with any of the other
 Soft_Dotted characters defined in Unicode. The character sequence
 \u'0069'\u'0307' (followed by no other combining mark) is
 reportedly rather common on the Internet. Because base character
 and stand-alone code point are the same in this case, and the code
 points affected have the Soft_Dotted property already, this could
 be mitigated separately via a context rule affecting U+0307.

 Other cases test the claim that the issue lies primarily with
 combining sequences at all:

 U+0B95 vs U+0BE7 The TAMIL LETTER KA and TAMIL DIGIT ONE are always
 indistinguishable, but needed to be encoded separately because one
 is a letter and the other is a digit.

 Arabic-Indic Digits vs. Extended Arabic-Indic Digits Seven
 digits of these two sequences have entirely identical shapes.
 This case is an example of something dealt with in i3 that
 nevertheless can lead to confusions that are not fully mitigated.
 IDNA, for example, contains context rules restricting the digits
 to one set or another; but such rules apply only to a single
 label, not to an entire name. Moreover, it provides no way of
 distinguishing between two labels that both conform to the context
 rule, but where each contains one of the seven identical shapes.

 U+53E3 vs U+56D7 These are two Han characters (roughly rectangular)
 that are different when laid side by side; but they may be
 impossible to distinguish out of context or in small print.

Authors' Addresses

Sullivan & Freytag Expires September 10, 2015 [Page 15]

Internet-Draft LUCID Problem Statement March 2015

 Andrew Sullivan
 Dyn
 150 Dow St.
 Manchester, NH 03101
 US

 Email: asullivan@dyn.com

 Asmus Freytag
 ASMUS Inc.

 Email: asmus@unicode.org

Sullivan & Freytag Expires September 10, 2015 [Page 16]

