
Workgroup: Independent Stream

Internet-Draft:

draft-summermatter-set-union-01

Published: 23 January 2021

Intended Status: Informational

Expires: 27 July 2021

Authors: E. Summermatter

Seccom GmbH

C. Grothoff

Berner Fachhochschule

Byzantine Fault Tolerant Set Reconciliation

Abstract

This document contains a protocol specification for Byzantine fault-

tolerant Set Reconciliation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 July 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

2.  Background

2.1.  Bloom Filters

2.2.  Counting Bloom Filter

3.  Invertible Bloom Filter

3.1.  Structure

3.2.  Operations

3.2.1.  Insert Element

3.2.2.  Remove Element

3.2.3.  Decode IBF

3.2.4.  Set Difference

3.3.  Wire format

3.3.1.  ID Calculation

3.3.2.  Mapping Function

3.3.3.  HASH calculation

4.  Strata Estimator

4.1.  Description

5.  Mode of operation

5.1.  Full Synchronisation Mode

5.2.  Delta Synchronisation Mode

5.3.  Combined Mode

6.  Messages

6.1.  Operation Request

6.1.1.  Description

6.1.2.  Structure

6.2.  IBF

6.2.1.  Description

6.2.2.  Structure

6.3.  IBF

6.3.1.  Description

6.4.  Elements

6.4.1.  Description

6.4.2.  Structure

6.5.  Offer

6.5.1.  Description

6.5.2.  Structure

6.6.  Inquiry

6.6.1.  Description

6.6.2.  Structure

6.7.  Demand

6.7.1.  Description

6.7.2.  Structure

6.8.  Done

6.8.1.  Description

6.8.2.  Structure

6.9.  Full Done

6.9.1.  Description

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



6.9.2.  Structure

6.10. Request Full

6.10.1.  Description

6.10.2.  Structure

6.11. Strata Estimator

6.11.1.  Description

6.11.2.  Structure

6.12. Strata Estimator Compressed

6.12.1.  Description

6.13. Full Element

6.13.1.  Description

6.13.2.  Structure

7.  GANA Considerations

8.  Contributors

9.  Normative References

Authors' Addresses

1. Introduction

This document describes a Byzantine fault-tolerant set

reconciliation protocol used to efficient and securely synchronize

two sets of elements between two peers.

This Byzantine fault-tolerant set reconciliation protocol can be

used in a variety of applications. Our primary envisioned

application domain is the distribution of revocation messages in the

GNU Name System (GNS) [GNUNET] [GNS] . In GNS, key revocation

messages are usually flooded across the peer-to-peer overlay network

to all connected peers whenever a key is revoked. However, as peers

may be offline or the network might have been partitioned, there is

a need to reconcile revocation lists whenever network partitions are

healed or peers go online. The GNU Name System uses the protocol

described in this specification to efficiently distribute revocation

messages whenever network partitions are healed. Another application

domain for the protocol described in this specification are

Byzantine fault-tolerant bulletin boards, like those required in

some secure multiparty computations. A well-known example for secure

multiparty computations are various E-voting protocols 

[CryptographicallySecureVoting] which use a bulletin board to share

the votes and intermediate computational results. We note that for

such systems, the set reconciliation protocol is merely a component

of a multiparty consensus protocol, such as the one described in

(FIXME-CITE: DOLD MS Thesis! Which paper is his MS thesis on

fdold.eu).

The protocol described in this report is generic and suitable for a

wide range of applicaitons. As a result, the internal structure of

the elements in the sets must be defined and verified by the

application using the protocol. This document thus does not cover

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



the elemtn structure, except for imposing a limit on the maximum

size of an element.

The protocol faces an inherent trade-off between minimizing the

number of network round-trips and the number of bytes sent over the

network. Thus, for the protocol to choose the right parameters for a

given situation, applications using the protocol must provide a

parameter that specifies the cost-ratio of round-trips vs. bandwidth

usage. Given this trade-off factor, the protocol will then choose

parameters that minimize the total execution cost. In particular,

there is one major choice to be made, which is between sending the

full set of elements, or just sending the elements that differ. In

the latter case, our design is basically a concrete implementation

of a proposal by Eppstein. [Eppstein]

We say that our set reconciliation protocol is Byzantine fault-

tolerant because it provides cryptographic and probabilistic methods

to discover if the other peer is dishonest or misbehaving.

The objective here is to limit resources wasted on malicious actors.

Malicious actors could send malformed messages, including malformed

set elements, claim to have much larger numbers of valid set

elements than the actually hold, or request the retransmission of

elements that they have already received in previous interactions.

Bounding resources consumed by malicous actors is important to

ensure that higher-level protocols can use set reconciliation and

still meet their resource targets. This can be particularly critical

in multi-round synchronous consensus protocols where peers that

cannot answer in a timely fashion would have to be treated as failed

or malicious.

To defend against some of these attacks, applications need to

remember the number of elements previously shared with a peer, and

offer a means to check that elements are well-formed. Applications

may also be able to provide an upper bound on the total number of

valid elements that may exist. For example, in E-voting, the number

of eligible voters could be used to provide such an upper bound.

This document defines the normative wire format of resource records,

resolution processes, cryptographic routines and security

considerations for use by implementors. SETU requires a

bidirectional secure communication channel between the two parties.

Specification of the communication channel is out of scope of this

document.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in[RFC2119].

¶

¶

¶

¶

¶

¶

¶



2. Background

2.1. Bloom Filters

A Bloom filter (BF) is a space-efficient datastructure to test if am

element is part of a set of elements. Elements are identified by an

element ID. Since a BF is a probabilistic datastructure, it is

possible to have false-positives: when asked if an element is in the

set, the answer from a BF is either "no" or "maybe".

A BF consists of L buckets. Every bucket is a binary value that can

be either 0 or 1. All buckets are initialized to 0. A mapping

function M is used to map each the ID of each element from the set

to a subset of k buckets. M is non-injective and can thus map the

same element multiple times to the same bucket. The type of the

mapping function can thus be described by the following mathematical

notation:

Figure 1

A typical mapping function is constructed by hashing the element,

for example using the well-known Section 2 of HKDF construction

[RFC5869].

To add an element to the BF, the corresponding buckets under the map

M are set to 1. To check if an element may be in the set, one tests

if all buckets under the map M are set to 1.

Further in this document a bitstream outputted by the mapping

function is represented by a set of numeric values for example

(0101) = (2,4). In the BF the buckets are set to 1 if the

corresponding bit in the bitstream is 1. If there is a collision and

a bucket is already set to 1, the bucket stays 1.

In the following example the element M(element) = (1,3) has been

added:

¶

¶

------------------------------------

# M: E->B^k

------------------------------------

# L = Number of buckets

# B = 0,1,2,3,4,...L-1 (the buckets)

# k = Number of buckets per element

# E = Set of elements

------------------------------------

Example: L=256, k=3

M('element-data') = {4,6,255}

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5869#section-2


Figure 2

Is easy to see that the M(element) = (0,3) could be in the BF bellow

and M(element) = (0,2) can't be in the BF bellow:

Figure 3

The parameters L and k depend on the set size and must be chosen

carefully to ensure that the BF does not return too many false-

positives.

It is not possible to remove an element from the BF because buckets

can only be set to 1 or 0. Hence it is impossible to differentiate

between buckets containing one or more elements. To remove elements

from the BF a Counting Bloom Filter is required.

2.2. Counting Bloom Filter

A Counting Bloom Filter (CBF) is an extension of theBloom Filters.

In the CBF, buckets are unsigned numbers instead of binary values.

This allows the removal of an elements from the CBF.

Adding an element to the CBF is similar to the adding operation of

the BF. However, instead of setting the bucket on hit to 1 the

numeric value stored in the bucket is increased by 1. For example if

two colliding elements M(element1) = (1,3) and M(element2) = (0,3)

are added to the CBF, bucket 0 and 1 are set to 1 and bucket 3 (the

colliding bucket) is set to 2:

Figure 4

The counter stored in the bucket is also called the order of the

bucket.

    bucket-0     bucket-1       bucket-2      bucket-3

+-------------+-------------+-------------+-------------+

|      0      |      1      |      0      |      1      |

+-------------+-------------+-------------+-------------+

¶

    bucket-0     bucket-1       bucket-2      bucket-3

+-------------+-------------+-------------+-------------+

|      1      |      0      |      0      |      1      |

+-------------+-------------+-------------+-------------+

¶

¶

¶

¶

    bucket-0     bucket-1       bucket-2      bucket-3

+-------------+-------------+-------------+-------------+

|      1      |      1      |      0      |      2      |

+-------------+-------------+-------------+-------------+

¶



To remove an element form the CBF the counters of all buckets the

element is mapped to are decreased by 1.

Removing M(element2) = (1,3) from the CBF above:

Figure 5

In practice, the number of bits available for the counters is

usually finite. For example, given a 4-bit counter, a CBF bucket

would overflow once 16 elements are mapped to the same bucket. To

efficiently handle this case, the maximum value (15 in our example)

is considered to represent "infinity". Once the order of a bucket

reaches "infinity", it is no longer incremented or decremented.

The parameters L and k and the number of bits allocated to the

counters should depend on the set size. An IBF will degenerate when

subjected to insert and remove iterations of different elements, and

eventually all buckets will reach "infinity". The speed of the

degradation will depend on the choice of L and k in relation to the

number of elements stored in the IBF.

3. Invertible Bloom Filter

An Invertible Bloom Filter (IBF) is a further extension of

theCounting Bloom Filter. An IBF extends the Counting Bloom Filter

with two more operations: decode and set difference. This two extra

operations are useful to efficiently extract small differences

between large sets.

3.1. Structure

An IBF consists of a mapping function M and L buckets that each

store a signed counter and an XHASH. An XHASH is the XOR of various

hash values. As before, the values used for k, L and the number of

bits used for the signed counter and the XHASH depend on the set

size and various other trade-offs, including the CPU architecture.

If the IBF size is to small or the mapping function does not spread

out the elements uniformly, the signed counter can overflow or

underflow. As with the CBF, the "maximum" value is thus used to

represent "infinite". As there is no need to distinguish between

overflow and underflow, the most canonical representation of

"infinite" would be the minimum value of the counter in the

canonical 2-complement interpretation. For example, given a 4-bit

counter a value of -8 would be used to represent "infinity".

¶

¶

    bucket-0     bucket-1       bucket-2      bucket-3

+-------------+-------------+-------------+-------------+

|      1      |      0      |      0      |      1      |

+-------------+-------------+-------------+-------------+

¶

¶

¶

¶

¶



Figure 6

3.2. Operations

When an IBF is created, all counters and IDSUM and HASHSUM values of

all buckets are initialized to zero.

3.2.1. Insert Element

To add an element to a IBF, the element is mapped to a subset of k

buckets using the mapping function M as described in the Bloom

Filters section introducing BFs. For the buckets selected by the

mapping function, the counter is increased by one and the IDSUM

field is set to the XOR of the element ID and the previously stored

IDSUM. Furthermore, the HASHSUM is set to the XOR of the hash of the

element ID and the previously stored HASHSUM.

In the following example, the insert operation is illustrated using

an element with the ID 0x0102 and a hash of 0x4242, and a second

element with the ID 0x0304 and a hash of 0x0101.

Empty IBF:

Figure 7

Insert first element: [0101] with ID 0x0102 and hash 0x4242:

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+-------

  count |   COUNTER   |   COUNTER   |   COUNTER   |   COUNTER   |  C...

        +-------------+-------------+-------------+-------------+------

  idSum |    IDSUM    |    IDSUM    |    IDSUM    |     IDSUM   |  I...

        +-------------+-------------+-------------+-------------+------

hashSum |   HASHSUM   |   HASHSUM   |   HASHSUM   |    HASHSUM  |  H..

        +-------------+-------------+-------------+-------------+-------

¶

¶

¶

¶

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      0      |      0      |      0      |      0      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0000   |    0x0000   |    0x0000   |    0x0000   |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0000   |    0x0000   |    0x0000   |    0x0000   |

        +-------------+-------------+-------------+-------------+

¶



Figure 8

Insert second element: [1100] with ID 0x0304 and hash 0101:

Figure 9

3.2.2. Remove Element

To remove an element from the IBF the element is again mapped to a

subset of the buckets using M. Then all the counters of the buckets

selected by M are reduced by one, the IDSUM is replaced by the XOR

of the old IDSUM and the ID of the element being removed, and the

HASHSUM is similarly replaced with the XOR of the old HASHSUM and

the hash of the ID.

In the following example the remove operation for the element [1100]

with the hash 0x0101 is demonstrated.

IBF with encoded elements:

Figure 10

Remove element [1100] with ID 0x0304 and hash 0x0101 from the IBF:

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      0      |      1      |      0      |      1      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0000   |   0x0102    |    0x0000   |   0x0102    |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0000   |   0x4242    |    0x0000   |   0x4242    |

        +-------------+-------------+-------------+-------------+

¶

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      1      |      2      |      0      |      1      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0304   |   0x0206    |    0x0000   |   0x0102    |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0101   |   0x4343    |    0x0000   |   0x4242    |

        +-------------+-------------+-------------+-------------+

¶

¶

¶

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      1      |      2      |      0      |      1      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0304   |   0x0206    |    0x0000   |   0x0102    |

        +-------------+-------------+-------------+-------------+

hashSum |   0x0101    |   0x4343    |    0x0000   |   0x4242    |

        +-------------+-------------+-------------+-------------+

¶



Figure 11

Note that it is possible to "remove" elements from an IBF that were

never present in the IBF in the first place. A negative counter

value is thus indicative of elements that were removed without

having been added. Note that an IBF bucket counter of zero no longer

warrants that an element mapped to that bucket is not present in the

set: a bucket with a counter of zero can be the result of one

element being added and a different element (mapped to the same

bucket) being removed. To check that an element is not present

requires a counter of zero and an IDSUM and HASHSUM of zero --- and

some assurance that there was no collision due to the limited number

of bits in IDSUM and HASHSUM. Thus, IBFs are not suitable to replace

BFs or IBFs.

Buckets in an IBF with a counter of 1 or -1 are crucial for decoding

an IBF, as they might represent only a single element, with the

IDSUM being the ID of that element. Following Eppstein (CITE), we

will call buckets that only represent a single element pure buckets.

Note that due to the possibility of multiple insertion and removal

operations affecting the same bucket, not all buckets with a counter

of 1 or -1 are actually pure buckets. Sometimes a counter can be 1

or -1 because N elements mapped to that bucket were added while N-1

or N+1 different elements also mapped to that bucket were removed.

3.2.3. Decode IBF

Decoding an IBF yields the HASH of an element from the IBF, or

failure.

A decode operation requires a pure bucket, that is a bucket to which

M only mapped a single element, to succeed. Thus, if there is no

bucket with a counter of 1 or -1, decoding fails. However, as a

counter of 1 or -1 is not a guarantee that the bucket is pure, there

is also a chance that the decoder returns an IDSUM value that is

actually the XOR of several IDSUMs. This is primarily detected by

checking that the HASHSUM is the hash of the IDSUM. Only if the

HASHSUM also matches, the bucket could be pure. Additionally, one

should check that the IDSUM value actually would be mapped by M to

the respective bucket. If not, there was a hash collision.

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      0      |      1      |      0      |      1      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0000   |   0x0102    |    0x0000   |   0x0102    |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0000   |   0x4242    |    0x0000   |   0x4242    |

        +-------------+-------------+-------------+-------------+

¶

¶

¶

¶



The very rare case that after all these checks a bucket is still

falsely identified as pure must be detected (say by determining that

extracted element IDs do not match any actual elements), and

addressed at a higher level in the protocol. As these failures are

probabilistic and depend on element IDs and the IBF construction,

they can typically be avoided by retrying with different parameters,

such as a different way to assign element IDs to elements, using a

larger value for L, or a different mapping function M. A more common

scenario (especially if L was too small) is that IBF decoding fails

because there is no pure bucket. In this case, the higher-level

protocol also should retry using different parameters.

Suppose the IBF contains a pure bucket. In this case, the IDSUM in

the bucket identifies a single element. Furthermore, it is then

possible to remove that element from the IBF (by inserting it if the

counter was negative, and by removing it if the counter was

positive). This is likely to cause other buckets to become pure,

allowing further elements to be decoded. Eventually, decoding should

succeed with all counters and IDSUM and HASHSUM values reaching

zero. However, it is also possible that an IBF only partly decodes

and then decoding fails after yielding some elements.

In the following example the successful decoding of an IBF

containing the two elements previously added in our running example.

IBF with the two encoded elements:

Figure 12

In the IBF are two pure buckets to decode (bit-1 and bit-4) we

choose to start with decoding bucket 1, we decode the element with

the hash 1010 and we see that there is a new pure bucket created

(bit-2)

¶

¶

¶

¶

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      1      |      2      |      0      |      1      |

        +-------------+-------------+-------------+-------------+

  idSum |   0x0304    |   0x0206    |    0x0000   |   0x0102    |

        +-------------+-------------+-------------+-------------+

hashSum |   0x0101    |   0x4343    |    0x0000   |   0x4242    |

        +-------------+-------------+-------------+-------------+

¶



Figure 13

In the IBF only pure buckets are left, we choose to continue

decoding bucket 2 and decode element with the hash 0x4242. Now the

IBF is empty (all buckets have count 0) that means the IBF has

successfully decoded.

Figure 14

3.2.4. Set Difference

Given addition and removal as defined above, it is possible to

define an operation on IBFs that computes an IBF representing the

set difference. Suppose IBF1 represents set A, and IBF2 represents

set B. Then this set difference operation will compute IBF3 which

represents the set A - B --- without needing elements from set A or

B. To calculate the IBF representing this set difference, both IBFs

must have the same length L, the same number of buckets per element

k and use the same map M. Given this, one can compute the IBF

representing the set difference by taking the XOR of the IDSUM and

HASHSUM values of the respective buckets and subtracting the

respective counters. Care should be taken to handle overflows and

underflows by setting the counter to "infinity" as necessary. The

result is a new IBF with the same number of buckets representing the

set difference.

This new IBF can be decoded as described in section3.2.3. The new

IBF can have two types of pure buckets with counter set to 1 or -1.

If the counter is set to 1 the element is missing in the secondary

set, and if the counter is set to -1 the element is missing in the

primary set.

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      0      |      1      |      0      |      1      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0000   |   0x0102    |    0x0000   |   0x0102    |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0000   |   0x4242    |    0x0000   |   0x4242    |

        +-------------+-------------+-------------+-------------+

¶

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      0      |      0      |      0      |      0      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0000   |    0x0000   |    0x0000   |    0x0000   |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0000   |    0x0000   |    0x0000   |    0x0000   |

        +-------------+-------------+-------------+-------------+

¶

¶



To demonstrate the set difference operation we compare IBF-A with

IBF-B and generate as described IBF-AB

IBF-A containing elements with hashes 0x0101 and 0x4242:

Figure 15

IBF-B containing elements with hashes 0x4242 and 0x5050

Figure 16

IBF-AB XOR value and subtract count:

Figure 17

After calculating and decoding the IBF-AB its clear that in IBF-A

the element with the hash 0x5050 is missing (-1 in bit-3) while in

IBF-B the element with the hash 0101 is missing (1 in bit-1 and

bit-2). The element with hash 0x4242 is present in IBF-A and IBF-B

and is removed by the set difference operation (bit-4).

¶

¶

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      1      |      2      |      0      |      1      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0304   |   0x0206    |    0x0000   |   0x0102    |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0101   |   0x4343    |    0x0000   |   0x4242    |

        +-------------+-------------+-------------+-------------+

¶

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      0      |      1      |      1      |      1      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0000   |    0x0102   |    0x1345   |    0x0102    |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0000   |    0x4242   |    0x5050   |    0x4242   |

        +-------------+-------------+-------------+-------------+

¶

            bucket-0     bucket-1       bucket-2      bucket-3

        +-------------+-------------+-------------+-------------+

  count |      1      |      1      |      -1     |      0      |

        +-------------+-------------+-------------+-------------+

  idSum |    0x0304   |    0x0304   |    0x1345   |    0x0000   |

        +-------------+-------------+-------------+-------------+

hashSum |    0x0101   |    0x0101   |    0x5050   |    0x0000   |

        +-------------+-------------+-------------+-------------+

¶



3.3. Wire format

To facilitate a reasonably CPU-efficient implementation, this

specification requires the IBF counter to always use 8 bits. Fewer

bits would result in a paritcularly inefficient implementation,

while more bits are rarely useful as sets with so many elements

should likely be represented using a larger number of buckets. This

means the counter of this design can reach a minimum of -127 and a

maximum of 127 before the counter reaches "infinity" (-128).

For the "IDSUM", we always use a 64-bit representation. The IDSUM

value must have sufficient entropy for the mapping function M to

yield reasonably random buckets even for very large values of L.

With a 32 bit value the chance that multiple elements may be mapped

to the same ID would be quite high, even for moderately large sets.

Using more than 64 bits would at best make sense for very large

sets, but then it is likely always better to simply afford

additional round trips to handle the occasional collision. 64 bits

are also a reasonable size for many CPU architectures.

For the "HASHSUM", we always use a 32-bit representation. Here, it

is mostly important to avoid collisions, where different elements

are mapped to the same hash. However, we note that by design only a

few elements (certainly less than 127) should ever be mapped to the

same bucket, so a small number of bits should suffice. Furthermore,

our protocol is designed to handle occasional collisions, so while

with 32-bits there remains a chance of accidental collisions, at 32

bit the chance is generally believed to be sufficiently small enough

for the protocol to handle those cases efficiently for a wide range

of use-cases. Smaller hash values would safe bandwidth, but also

drastically increase the chance of collisions. 32 bits are also

again a reasonable size for many CPU architectures.

3.3.1. ID Calculation

The ID is generated as 64-bit output from a Section 2 of HKDF

construction [RFC5869] with HMAC-SHA512 as XTR and HMAC-SHA256 as

PRF and salt is set to the unsigned 64-bit equivalent of 0. The

output is then truncated to 64-bit. Its important that the elements

can be redistributed over the buckets in case the IBF does not

decode, that's why the ID is salted with a random salt given in the

SALT field of this message. Salting is done by calculation the a

random salt modulo 64 (using only the lowest 6-bits of the salt) and

do a bitwise right rotation of output of KDF by the 6-bit salts

numeric representation.

Representation in pseudocode:

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5869#section-2


Figure 18

3.3.2. Mapping Function

The mapping function M as described above in the figure Figure 1

decides in which buckets the ID and HASH have to be binary XORed to.

In practice there the following algorithm is used:

The first index is simply the HASH modulo the IBF size. The second

index is calculated by creating a new 64-bit value by shifting the

32-bit value left and setting the lower 32-bit to the number of

indexes already processed. From the resulting 64-bit value a CRC32

checksum is created the second index is now the modulo of the CRC32

output this is repeated until the predefined amount indexes is

generated. In the case a index is hit twice, which would mean this

bucket could not get pure again, the second hit is just skipped and

the next iteration is used as.

# INPUTS:

# key: Pre calculated and truncated key from id_calculation function

# ibf_salt: Salt of the IBF

# OUTPUT:

# value: salted key

FUNCTION salt_key(key,ibf_salt):

  s = ibf_salt % 64;

  k = key

  /* rotate ibf key */

  k = (k >> s) | (k << (64 - k))

  return key

# INPUTS:

# element: Element to calculated id from.

# salt: Salt of the IBF

# OUTPUT:

# value: the ID of the element

FUNCTION id_calculation (element,ibf_salt):

    salt = 0

    XTR=HMAC-SHA256

    PRF=HMAC-SHA256

    key = HKDF(XTR, PRF, salt, element)

    key = key modulo 2^64 // Truncate

    return salt_key(key,ibf_salt)

¶

¶



Figure 19

3.3.3. HASH calculation

The HASH is calculated by calculating the CRC32 checksum of the 64-

bit ID value which returns a 32-bit value.

4. Strata Estimator

4.1. Description

Strata Estimators help estimate the size of the set difference

between two set of elements. This is necessary to efficiently

determinate the tuning parameters for an IBF, in particular a good

value for L.

# INPUTS:

# key: Is the ID of the element calculated in the id_calculation function above.

# number_of_buckets_per_element: Pre-defined count of buckets elements are inserted into

# ibf_size: the size of the ibf (count of buckets)

# OUTPUT:

# dst: Array with bucket IDs to insert ID and HASH

FUNCTION get_bucket_id (key, number_of_buckets_per_element, ibf_size)

  bucket = CRC32(key)

  i = 0

  filled = 0

  WHILE filled < number_of_buckets_per_element

    element_already_in_bucket = false

    j = 0

    WHILE j < filled

      IF dst[j] == bucket modulo ibf_size THEN

        element_already_in_bucket = true

      ENDIF

      j++

    ENDWHILE

    IF !element_already_in_bucket THEN

        dst[filled++] = bucket modulo ibf_size

    ENDIF

    x = (bucket << 32) | i

    bucket = CRC32(x)

    i++

  ENDWHILE

  return dst

¶

¶



Basically a Strata Estimator (SE) is a series of IBFs (with a rather

small value of L) in which increasingly large subsets of the full

set of elements are added to each IBF. For the n-th IBF, the

function selecting the subset of elements should sample to select

(probabilistically) 1/(2^n) of all elements. This can be done by

counting the number of trailing bits set to "1" in an element ID,

and then inserting the element into the IBF identified by that

counter. As a result, all elements will be mapped to one IBF, with

the n-th IBF being statistically expected to contain 1/(2^n)

elements.

Given two SEs, the set size difference can be estimated by trying to

decode all of the IBFs. Given that L was set to a rather small

value, IBFs containing large strata will likely fail to decode. For

those IBFs that failed to decode, one simply extrapolates the number

of elements by scaling the numbers obtained from the other IBFs that

did decode. If none of the IBFs of the SE decoded (which given a

reasonable choice of L should be highly unlikely), one can retry

using a different mapping function M.

5. Mode of operation

The set union protocol uses IBFs and SEs as primitives. Depending on

the state of the two sets there are different strategies or

operation modes how to efficiently determinate missing elements

between the two sets.

The simplest mode is the "full" synchronization mode. The idea is

that if the difference between the sets of the two peers exceeds a

certain threshold, the overhead to determine which elements are

different outweighs the overhead of sending the complete set. In

this case, the most efficient method can be to just exchange the

full sets.

Link to statemachine diagram 

The second possibility is that the difference of the sets is small

compared to the set size. Here, an efficient "delta" synchronization

mode is more efficient. Given these two possibilities, the first

steps of the protocol are used to determine which mode should be

used.

Thus, the set synchronization protocol always begins with the

following operation mode independent steps.

The initiating peer begins in the Initiating Connection state and

the receiving peer in the Expecting Connection state. The first step

for the initiating peer in the protocol is to send an Operation

Request to the receiving peer and transition into the Expect SE

state. After receiving the Operation Request the receiving peer

¶

¶

¶

¶

¶

¶

¶

https://git.gnunet.org/lsd0003.git/plain/statemaschine/full_state_maschine.jpg


Expecting IBF:

Full Sending:

Full Receiving (In code: Expecting IBF):

transitions to the Expecting IBF state and answers with the Strata

Estimator message. When the initiating peer receives the Strata

Estimator message, it decides with some heuristics which operation

mode is likely more suitable for the estimated set difference and

the application-provided latency-bandwidth tradeoff. The detailed

tradeoff between the Full Synchronisation Mode and the Delta

Synchronisation Mode is explained in the sectionCombined Mode.

5.1. Full Synchronisation Mode

When the initiating peer decides to use the full synchronisation

mode and the set of the initiating peer is bigger than the set of

the receiving peer, the initiating peer sends a Request Full

message, and transitions from Expecting SE to the Full Receiving

state. If the set of the initiating peer is smaller, it sends all

set elements to the other peer followed by the Full Done message,

and transitions into the Full Sending state.

Link to statemachine diagram 

The behavior of the participants the different state is described

below:

If a peer in the Expecting IBF state receives a 

Request Full message from the other peer, the peer sends all the

elements of its set followed by a Full Done message to the other

peer, and transitions to the Full Sending state. If the peer

receives an Full Element message, it processes the element and

transitions to the Full Receiving state.

While a peer is in Full Sending state the peer

expects to continuously receive elements from the other peer. As

soon as a the Full Done message is received, the peer transitions

into the Finished state.

While a peer is in the 

Full Receiving state, it expects to continuously receive elements

from the other peer. As soon as a the Full Done message is

received, it sends the remaining elements (those it did not

receive) from its set to the other peer, followed by a Full

Done . After sending the last message, the peer transitions into

the Finished state.

5.2. Delta Synchronisation Mode

When the initiating peer in the Expected SE state decides to use the

delta synchronisation mode, it sends a IBF to the receiving peer and

transitions into the Passive Decoding state.

¶

¶

¶

¶

¶

¶

¶

¶

https://git.gnunet.org/lsd0003.git/plain/statemaschine/full_state_maschine.jpg


Passive Decoding:

Inquiry  message: 

Demand  message: 

Offer  message: 

The receiving peer in the Expecting IBF state receives the IBF

message from the initiating peer and transitions into the Expecting

IBF Last state when there are multiple IBF messages to sent, when

there is just a single IBF message the reviving peer transitions

directly to the Active Decoding state.

The peer that is in the Active Decoding, Finish Closing or in the 

Expecting IBF Last state is called the active peer and the peer that

is in either the Passive Decoding or the Finish Waiting state is

called the passive peer.

Link to statemachine diagram 

The behavior of the participants the different states is described

below:

In the Passive Decoding state the passive peer

reacts to requests from the active peer. The action the passive

peer executes depends on the message the passive peer receives in

the Passive Decoding state from the active peer and is described

below on a per message basis.

The Inquiry message is received if the active

peer requests the SHA-512 hash of one or more elements (by

sending the 64 bit element ID) that are missing from the

active peer's set. In this case the passive peer answers with 

Offer messages which contain the SHA-512 hash of the requested

element. If the passive peer does not have an element with a

matching element ID, it MUST ignore the inquiry. If multiple

elements match the 64 bit element ID, the passive peer MUST

send offers for all of the matching elements.

The Demand message is received if the active

peer requests a complete element that is missing in the active

peers set. If the requested element is valid the passive peer

answers with an Elements message which contains the full,

application-dependent data of the requested element. If the

passive peer receives a demand for a SHA-512 hash for which it

has no element, a protocol violation is detected and the

protocol MUST be aborted. Implementations MAY strengthen this

and forbid demands without previous matching offers.

The Offer message is received if the active peer

has decoded an element that is present in the active peers set

and may be missing in the set of the passive peer. If the

SHA-512 hash of the offer is indeed not a hash of any of the

elements from the set of the passive peer, the passive peer

MUST answer with a Demand message for that SHA-512 hash and

¶

¶

¶

¶

¶

¶

¶

https://git.gnunet.org/lsd0003.git/plain/statemaschine/full_state_maschine.jpg


Elements  message: 

IBF  message: 

IBF  message: 

Done  message: 

Active Decoding:

remember that it issued this demand. The send demand need to

be added to a list with unsatisfied demands.

When a new element message has been received

the peer checks if a corresponding Demand for the element has

been sent and the demand is still unsatisfied. If the element

has been demanded the peer checks the element for validity,

removed it from the list of pending demands and then then

saves the element to the the set otherwise the peer rejects

the element.

If an IBF message is received, this indicates that

decoding of the IBF on the active site has failed and roles

should be swapped. The receiving passive peer transitions into

the Expecting IBF Last state, and waits for more IBF messages

or the final IBF message to be received.

If an IBF message is received this indicates that

the there is just one IBF slice and a direct state and role

transition from Passive Decoding to Active Decoding is

initiated.

Receiving the Done message signals the passive

peer that all demands of the active peer have been satisfied.

Alas, the active peer will continue to process demands from

the passive peer. Upon receiving this message, the passive

peer transitions into the Finish Waiting state.

In the Active Decoding state the active peer

decodes the IBFs and evaluates the set difference between the

active and passive peer. Whenever an element ID is obtained by

decoding the IBF, the active peer sends either an offer or an

inquiry to the passive peer, depending on which site the decoded

element is missing.

If the IBF decodes a positive (1) pure bucket, the element is

missing on the passive peers site. Thus the active peer sends an 

Offer to the passive peer. A negative (-1) pure bucket indicates

that a element is missing in the active peers set, so the active

peer sends a Inquiry to the passive peer.

In case the IBF does not successfully decode anymore, the active

peer sends a new IBF to the passive client and changes into 

Passive Decoding state. This initiates a role swap. To reduce

overhead and prevent double transmission of offers and elements

the new IBF is created on the new complete set after all demands

and inquiries have been satisfied.

As soon as the active peer successfully finished decoding the

IBF, the active peer sends a Done message to the passive peer.

¶

¶

¶

¶

¶

¶

¶

¶

¶



Offer  message: 

Demand  message: 

Elements  message: 

Done  message: 

Expecing IBF Last

Finish Closing / Finish Waiting

All other actions taken by the active peer depend on the message

the active peer receives from the passive peer. The actions are

described below on a per message basis:

The Offer message indicates that the passive

peer received a Inquiry message from the active peer. If a

Inquiry has been sent and the offered element is missing in

the active peers set, the active peer sends a Demand message

to the passive peer. The send demand need to be added to a

list with unsatisfied demands. In the case the received offer

is for an element that is already in the set of the peer the

offer is ignored.

The Demand message indicates that the passive

peer received a Offer from the active peer. The active peer

satisfies the demand of the passive peer by sending Elements

message if a offer request for the element has been sent. In

the case the demanded element does not exist in the set there

was probably a bucket decoded that was not really pure so

potentially all Offer and Demand messages sent after are

invalid in this case a role change active -> passive with a

new IBF is easiest. If a demand for the same element is

received multiple times the demands should be discarded.

A element that is received is marked in the

list of demanded elements as satisfied, validated and saved

and not further action is taken. Elements that are not

demanded or already known are discarded.

Receiving the message Done indicates that all

demands of the passive peer have been satisfied. The active

peer then changes into the state Finish Closing state. If the

IBF is not finished decoding and the Done is received the

other peer is not in compliance with the protocol and the set

reconciliation MUST be aborted.

In the Expecing IBF Last state the active peer

continuously receives IBF messages from the passive peer. When

the last IBF message is received the active peer changes into 

Active Decoding state.

In this states the peers are

waiting for all demands to be satisfied and for the

synchronisation to be completed. When all demands are satisfied

the peer changes into state Finished.

5.3. Combined Mode

In the combined mode the Full Synchronisation Mode and the Delta

Synchronisation Mode are combined to minimize resource consumption.

¶

¶

¶

¶

¶

¶

¶

¶



The Delta Synchronisation Mode is only efficient on small set

differences or if the byte-size of the elements is large. Is the set

difference is estimated to be large the Full Synchronisation Mode is

more efficient. The exact heuristics and parameters on which the

protocol decides which mode should be used are described in the

section of this document.

There are two main cases when a Full Synchronisation Mode is always

used. The first case is when one of the peers announces having an

empty set. This is announced by setting the SETSIZE field in the 

Strata Estimator to 0. The second case is if the application

requested full synchronization explicitly. This is useful for

testing and should not be used in production.

6. Messages

6.1. Operation Request

6.1.1. Description

This message is the first message of the protocol and it is sent to

signal to the receiving peer that the initiating peer wants to

initialize a new connection.

This message is sent in the transition between the Initiating

Connection state and the Expect SE state.

If a peer receives this message and is willing to run the protocol,

it answers by sending back a Strata Estimator message. Otherwise it

simply closes the connection.

6.1.2. Structure

Figure 20

where:

¶

¶

¶

¶

¶

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |    ELEMENT COUNT      |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |                      APX

        +-----+-----+-----+-----+-----+-----+-----+-----+                                               /

        /                                               /

        /                                               /

¶



MSG SIZE

MSG TYPE

ELEMENT COUNT

APX

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_OPERATION_REQUEST as registered

inGANA Considerations, in network byte order.

is the number of the elements the requesting party

has in its set, as a 32-bit unsigned integer in network byte

order.

is a SHA-512 hash that identifies the application.

6.2. IBF

6.2.1. Description

The IBF message contains a slice of the IBF.

The IBF message is sent at the start of the protocol from the

initiating peer in the transaction between Expect SE -> Expecting

IBF Last or when the IBF does not decode and there is a role change

in the transition between Active Decoding -> Expecting IBF Last.

This message is only sent if there are more than one IBF slice to

sent, in the case there is just one slice the IBF message is sent.

6.2.2. Structure

Figure 21

where:

¶

¶

¶

¶

¶

¶

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |ORDER|       PAD       |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |         OFFSET        |          SALT         |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |                  IBF-SLICE

        +                                               /

        /                                               /

        /                                               /

¶



MSG SIZE

MSG TYPE

ORDER

PAD

OFFSET

SALT

IBF-SLICE

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_REQUEST_IBF as registered in GANA

Considerations in network byte order.

is a 8-bit unsigned integer which signals the order of the

IBF. The order of the IBF is defined as the logarithm of the

number of buckets of the IBF.

is 24-bit always set to zero

is a 32-bit unsigned integer which signals the offset to the

following ibf slices in the original.

is a 32-bit unsigned integer that contains the salt which was

used to create the IBF.

are variable count of slices in an array. A single slice

contains out multiple 64-bit IDSUMS, 32-bit HASHSUMS and 8-bit

COUNTERS. In the network order the array of IDSUMS is first,

followed by an array of HASHSUMS and ended with an array of

COUNTERS. Length of the array is defined by MIN( 2^ORDER -

OFFSET, MAX_BUCKETS_PER_MESSAGE). MAX_BUCKETS_PER_MESSAGE is

defined as 32768 divided by the BUCKET_SIZE which is 13-byte

(104-bit).

To get the IDSUM field, all IDs who hit a bucket are added up

with a binary XOR operation. See ID Calculation for details about

ID generation.

The calculation of the HASHSUM field is done accordingly to the

calculation of the IDSUM field: all HASHes are added up with a

binary XOR operation. The HASH value is calculated as described

in detail in sectionHASH calculation.

The algorithm to find the correct bucket in which the ID and the

HASH have to be added is described in detail in sectionMapping

Function.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Figure 22

6.3. IBF

6.3.1. Description

This message indicates to the remote peer that all slices of the

bloom filter have been sent. The binary structure is exactly the

same as the Structure of the message IBF with a different "MSG TYPE"

which is defined in GANA Considerations "SETU_P2P_IBF_LAST".

Receiving this message initiates the state transmissions Expecting

IBF Last -> Active Decoding, Expecting IBF -> Active Decoding and 

Passive Decoding -> Active Decoding. This message can initiate a

peer the roll change from Active Decoding to Passive Decoding.

6.4. Elements

6.4.1. Description

The Element message contains an element that is synchronized in the 

Delta Synchronisation Mode and transmits a full element between the

peers.

This message is sent in the state Active Decoding and Passive

Decoding as answer to a Demand message from the remote peer. The

Element message can also be received in the Finish Closing or Finish

Waiting state after receiving a Done message from the remote peer,

in this case the client changes to the Finished state as soon as all

demands for elements have been satisfied.

This message is exclusively sent in theDelta Synchronisation Mode.

                             IBF-SLICE

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |                    IDSUMS                     |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |                    IDSUMS                     |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |         HASHSUMS      |        HASHSUMS       |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |        COUNTERS       |       COUNTERS        |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        /                                               /

        /                                               /

¶

¶

¶

¶

¶



MSG SIZE

MSG TYPE

E TYPE

PADDING

E SIZE

AE TYPE

DATA

6.4.2. Structure

Figure 23

where:

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_ELEMENTS as registered in GANA

Considerations in network byte order.

element type is a 16-bit unsigned integer witch defines the

element type for the application.

is 16-bit always set to zero

element size is 16-bit unsigned integer that signals the

size of the elements data part.

application specific element type is a 16-bit unsigned

integer that is needed to identify the type of element that is in

the data field

is a field with variable length that contains the data of the

element.

6.5. Offer

6.5.1. Description

The offer message is an answer to an Inquiry message and transmits

the full hash of an element that has been requested by the other

peer. This full hash enables the other peer to check if the element

is really missing in its set and eventually sends a Demand message

for that a element.

The offer is sent and received only in the Active Decoding and in

the Passive Decoding state.

This message is exclusively sent in theDelta Synchronisation Mode.

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |   E TYPE  |  PADDING  |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |   E SIZE  |   AE TYPE |           DATA

        +-----+-----+-----+-----+                       /

        /                                               /

        /                                               /

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



MSG SIZE

MSG TYPE

HASH

MSG SIZE

6.5.2. Structure

Figure 24

where:

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_OFFER as registered in GANA

Considerations in network byte order.

is a SHA 512-bit hash of the element that is requested with a

inquiry message.

6.6. Inquiry

6.6.1. Description

The Inquiry message is exclusively sent by the active peer in Active

Decoding state to request the full hash of an element that is

missing in the active peers set. This is normally answered by the

passive peer with Offer message.

This message is exclusively sent in theDelta Synchronisation Mode.

NOTE: HERE IS AN IMPLEMENTATION BUG UNNECESSARY 32-BIT PADDING!

6.6.2. Structure

Figure 25

where:

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |         HASH

        +-----+-----+-----+-----+

        /                                               /

        /                                               /

¶

¶

¶

¶

¶

¶

¶

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |          SALT         |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |                    IBF KEY                    |

        +-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶



MSG TYPE

IBF KEY

MSG SIZE

MSG TYPE

HASH

the type of SETU_P2P_INQUIRY as registered in GANA

Considerations in network byte order.

is a 64-bit unsigned integer that contains the key for

which the inquiry is sent.

6.7. Demand

6.7.1. Description

The demand message is sent in the Active Decoding and in the Passive

Decoding state. It is a answer to a received Offer message and is

sent if the element described in the Offer message is missing in the

peers set. In the normal workflow the answer to the demand message

is an Elements message.

This message is exclusively sent in theDelta Synchronisation Mode.

6.7.2. Structure

Figure 26

where:

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_DEMAND as registered in GANA

Considerations in network byte order.

is a 512-bit Hash of the element that is demanded.

6.8. Done

6.8.1. Description

The done message is sent when all Demand messages have been

successfully satisfied and the set is complete synchronized. A final

checksum (XOR SHA-512 hash) over all elements of the set is added to

the message to allow the other peer to make sure that the sets are

equal.

¶

¶

¶

¶

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |          HASH

        +-----+-----+-----+-----+

        /                                               /

        /                                               /

¶

¶

¶

¶

¶



MSG SIZE

MSG TYPE

HASH

This message is exclusively sent in theDelta Synchronisation Mode.

6.8.2. Structure

Figure 27

where:

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_DONE as registered in GANA

Considerations in network byte order.

is a 512-bit hash of the set to allow a final equality check.

6.9. Full Done

6.9.1. Description

The full done message is sent in the Full Synchronisation Mode to

signal that all remaining elements of the set have been sent. The

message is received and sent in in the Full Sending and in the Full

Receiving state. When the full done message is received in Full

Sending state the peer changes directly into Finished state. In Full

Receiving state receiving a full done message initiates the sending

of the remaining elements that are missing in the set of the other

peer.

6.9.2. Structure

Figure 28

where:

¶

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE | HASH

        +-----+-----+-----+-----+

¶

¶

¶

¶

¶

        0     8     16    24    32

        +-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |

        +-----+-----+-----+-----+

¶



MSG SIZE

MSG TYPE

MSG SIZE

MSG TYPE

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_FULL_DONE as registered in GANA

Considerations in network byte order.

6.10. Request Full

6.10.1. Description

The request full message is sent by the initiating peer in Expect SE

state to the receiving peer if the operation mode "Full

Synchronisation Mode" is determined as the better Mode of operation

and the set size of the initiating peer is smaller than the set size

of the receiving peer. The initiating peer changes after sending the

request full message into Full Receiving state.

The receiving peer receives the Request Full message in the 

Expecting IBF, afterwards the receiving peer starts sending its

complete set in Full Element messages to the initiating peer.

6.10.2. Structure

Figure 29

where:

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_REQUEST_FULL as registered in GANA

Considerations in network byte order.

6.11. Strata Estimator

6.11.1. Description

The strata estimator is sent by the receiving peer at the start of

the protocol right after the Operation Request message has been

received.

The strata estimator is used to estimate the difference between the

two sets as described in section4.

¶

¶

¶

¶

        0     8     16    24    32

        +-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |

        +-----+-----+-----+-----+

¶

¶

¶

¶

¶



MSG SIZE

MSG TYPE

SETSIZE

SE-SLICES

When the initiating peer receives the strata estimator the peer

decides which Mode of operation to use for the synchronization.

Depending on the size of the set difference and the Mode of

operation the initiating peer changes into Full Sending, Full

Receiving or Passive Decoding state.

6.11.2. Structure

Figure 30

where:

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_SE as registered in GANA

Considerations in network byte order.

is a 64-bit unsigned integer that is defined by the size of

the set the SE is

is variable in size and contains the same structure as

the IBF-SLICES field in the IBF message.

6.12. Strata Estimator Compressed

6.12.1. Description

The Strata estimator can be compressed with gzip to improve

performance. For details see section.

Since the content of the message is the same as the uncompressed

Strata Estimator, the details aren't repeated here for details see

section6.11.

¶

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |        SETSIZE

        +-----+-----+-----+-----+-----+-----+-----+-----+

              SETSIZE           |          SE-SLICES

        +-----+-----+-----+-----+

        /                                               /

        /                                               /

¶

¶

¶

¶

¶

¶

¶



MSG SIZE

MSG TYPE

E TYPE

PADDING

E SIZE

AE TYPE

6.13. Full Element

6.13.1. Description

The full element message is the equivalent of the Elements message

in theFull Synchronisation Mode. It contains a complete element that

is missing in the set of the peer that receives this message.

The full element message is exclusively sent in the transitions 

Expecting IBF -> Full Receiving and Full Receiving -> Finished. The

message is only received in the Full Sending and Full Receiving

state.

After the last full element messages has been sent the Full Done

message is sent to conclude the full synchronisation of the element

sending peer.

6.13.2. Structure

Figure 31

where:

is 16-bit unsigned integer in network byte order witch

describes the message size in bytes and the header is included.

the type of SETU_P2P_REQUEST_FULL_ELEMENT as registered in

GANA Considerations in network byte order.

element type is a 16-bit unsigned integer witch defines the

element type for the application.

is 16-bit always set to zero

element size is 16-bit unsigned integer that signals the

size of the elements data part.

application specific element type is a 16-bit unsigned

integer that is needed to identify the type of element that is in

the data field

¶

¶

¶

        0     8     16    24    32    40    48    56

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |  MSG SIZE |  MSG TYPE |   E TYPE  |  PADDING  |

        +-----+-----+-----+-----+-----+-----+-----+-----+

        |    SIZE   |   AE TYPE |  DATA

        +-----+-----+-----+-----+

        /                                               /

        /                                               /

¶

¶

¶

¶

¶

¶

¶



DATA

[RFC5869]

[RFC2119]

is a field with variable length that contains the data of the

element.

7. GANA Considerations

GNUnet Assigned Numbers Authority (GANA) is requested to amend the

"GNUnet Message Type" registry as follows:

Figure 32

8. Contributors

The original GNUnet implementation of the Byzantine Fault Tolerant

Set Reconciliation protocol has mainly been written by Florian Dold

and Christian Grothoff.

9. Normative References

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

Type    | Name                       | References | Description

--------+----------------------------+------------+--------------------------

 559    | SETU_P2P_REQUEST_FULL      | [This.I-D] | Request the full set of the other peer

 560    | SETU_P2P_DEMAND            | [This.I-D] | Demand the whole element from the other peer, given only the hash code.

 561    | SETU_P2P_INQUIRY           | [This.I-D] | Tell the other peer to send us a list of hashes that match an IBF key.

 562    | SETU_P2P_OFFER             | [This.I-D] | Tell the other peer which hashes match a given IBF key.

 563    | SETU_P2P_OPERATION_REQUEST | [This.I-D] | Request a set union operation from a remote peer.

 564    | SETU_P2P_SE                | [This.I-D] | Strata Estimator uncompressed

 565    | SETU_P2P_IBF               | [This.I-D] | Invertible Bloom Filter Slice.

 566    | SETU_P2P_ELEMENTS          | [This.I-D] | Actual set elements.

 567    | SETU_P2P_IBF_LAST          | [This.I-D] | Invertible Bloom Filter Last Slice.

 568    | SETU_P2P_DONE              | [This.I-D] | Set operation is done.

 569    | SETU_P2P_SEC               | [This.I-D] | Strata Estimator compressed

 570    | SETU_P2P_FULL_DONE         | [This.I-D] | All elements in full synchronization mode have been send is done.

 571    | SETU_P2P_FULL_ELEMENT      | [This.I-D] | Send an actual element in full synchronization mode.

¶

https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869


[GANA]

[CryptographicallySecureVoting]

[GNUNET]

[Eppstein]

[GNS]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

GNUnet e.V., "GNUnet Assigned Numbers Authority (GANA)", 

April 2020, <https://gana.gnunet.org/>. 

Dold, F., "Cryptographically Secure,

DistributedElectronic Voting", <https://git.gnunet.org/

bibliography.git/plain/docs/

ba_dold_voting_24aug2014.pdf>. 

Wachs, M., Schanzenbach, M., and C. Grothoff, "A

Censorship-Resistant, Privacy-Enhancing andFully

Decentralized Name System", <https://git.gnunet.org/

bibliography.git/plain/docs/gns2014wachs.pdf>. 

Eppstein, D., Goodrich, M., Uyeda, F., and G. Varghese, 

"What’s the Difference? Efficient Set Reconciliation

without Prior Context", <https://doi.org/

10.1145/2018436.2018462>. 

Wachs, M., Schanzenbach, M., and C. Grothoff, "A

Censorship-Resistant, Privacy-Enhancing and Fully

Decentralized Name System", 2014, <https://doi.org/

10.1007/978-3-319-12280-9_9>. 

Authors' Addresses

Elias Summermatter

Seccom GmbH

Brunnmattstrasse 44

CH-3007 Bern

Switzerland

Email: elias.summermatter@seccom.ch

Christian Grothoff

Berner Fachhochschule

Hoeheweg 80

CH-2501 Biel/Bienne

Switzerland

Email: grothoff@gnunet.org

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://gana.gnunet.org/
https://git.gnunet.org/bibliography.git/plain/docs/ba_dold_voting_24aug2014.pdf
https://git.gnunet.org/bibliography.git/plain/docs/ba_dold_voting_24aug2014.pdf
https://git.gnunet.org/bibliography.git/plain/docs/ba_dold_voting_24aug2014.pdf
https://git.gnunet.org/bibliography.git/plain/docs/gns2014wachs.pdf
https://git.gnunet.org/bibliography.git/plain/docs/gns2014wachs.pdf
https://doi.org/10.1145/2018436.2018462
https://doi.org/10.1145/2018436.2018462
https://doi.org/10.1007/978-3-319-12280-9_9
https://doi.org/10.1007/978-3-319-12280-9_9
mailto:elias.summermatter@seccom.ch
mailto:grothoff@gnunet.org

	Byzantine Fault Tolerant Set Reconciliation
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Background
	2.1. Bloom Filters
	2.2. Counting Bloom Filter

	3. Invertible Bloom Filter
	3.1. Structure
	3.2. Operations
	3.2.1. Insert Element
	3.2.2. Remove Element
	3.2.3. Decode IBF
	3.2.4. Set Difference

	3.3. Wire format
	3.3.1. ID Calculation
	3.3.2. Mapping Function
	3.3.3. HASH calculation


	4. Strata Estimator
	4.1. Description

	5. Mode of operation
	5.1. Full Synchronisation Mode
	5.2. Delta Synchronisation Mode
	5.3. Combined Mode

	6. Messages
	6.1. Operation Request
	6.1.1. Description
	6.1.2. Structure

	6.2. IBF
	6.2.1. Description
	6.2.2. Structure

	6.3. IBF
	6.3.1. Description

	6.4. Elements
	6.4.1. Description
	6.4.2. Structure

	6.5. Offer
	6.5.1. Description
	6.5.2. Structure

	6.6. Inquiry
	6.6.1. Description
	6.6.2. Structure

	6.7. Demand
	6.7.1. Description
	6.7.2. Structure

	6.8. Done
	6.8.1. Description
	6.8.2. Structure

	6.9. Full Done
	6.9.1. Description
	6.9.2. Structure

	6.10. Request Full
	6.10.1. Description
	6.10.2. Structure

	6.11. Strata Estimator
	6.11.1. Description
	6.11.2. Structure

	6.12. Strata Estimator Compressed
	6.12.1. Description

	6.13. Full Element
	6.13.1. Description
	6.13.2. Structure


	7. GANA Considerations
	8. Contributors
	9. Normative References
	Authors' Addresses


