
Network Working Group S. Valdez
Internet-Draft Google LLC
Intended status: Informational 13 July 2020
Expires: 14 January 2021

Privacy Pass: HTTP API
draft-svaldez-pp-http-api-01

Abstract

 This document specifies an integration for Privacy Pass over an HTTP
 API, along with recommendations on how key commitments are stored and
 accessed by HTTP-based consumers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 January 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Valdez Expires 14 January 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft PP http api July 2020

Table of Contents

1. Introduction . 2
1.1. Terminology . 2
1.2. Layout . 2
1.3. Requirements . 3

2. Privacy Pass HTTP API Wrapping 3
3. Server key registry . 3
3.1. Key Registry . 4
3.2. Server Configuration Retrieval 5

4. Key Commitment Retrieval 5
5. Privacy Pass Issuance . 7
6. Privacy Pass Redemption 8
6.1. Generic Token Redemption 8
6.2. Direct Redemption . 9
6.3. Delegated Redemption 9

7. Security Considerations 11
8. IANA Considerations . 11
8.1. Well-Known URI . 11

9. Normative References . 11
 Author's Address . 12

1. Introduction

 The Privacy Pass protocol as described in
 [draft-davidson-pp-protocol] can be integrated with a number of
 different settings, from server to server communication to browsing
 the internet.

 In this document, we will provide an API to use for integrating
 Privacy Pass with an HTTP framework. Providing the format of HTTP
 requests and responses needed to implement the Privacy Pass protocol.

1.1. Terminology

 We use the same definition of server and client that is used in
 [draft-davidson-pp-protocol] and [draft-davidson-pp-architecture].

 We assume that all protocol messages are encoded into raw byte format
 before being sent. We use the TLS presentation language [RFC8446] to
 describe the structure of protocol messages.

1.2. Layout

 * Section 2: Describes the wrapping of messages within HTTP
 requests/responses.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol
https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol
https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture
https://datatracker.ietf.org/doc/html/rfc8446

Valdez Expires 14 January 2021 [Page 2]

Internet-Draft PP http api July 2020

 * Section 3: Describes how HTTP clients retrieve server
 configurations and key commitments.

 * Section 5: Describes how issuance requests are performed via a
 HTTP API.

 * Section 6: Describes how redemption requests are performed via a
 HTTP API.

1.3. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Privacy Pass HTTP API Wrapping

 Messages from HTTP-based clients to HTTP-based servers are performed
 as GET and POST requests. The messages are sent via the "Sec-
 Privacy-Pass" header.

 "Sec-Privacy-Pass" is a Dictionary Structured Header
 [draft-ietf-httpbis-header-structure-15]. The dictionary has two
 keys:

 * "type" whose value is a String conveying the function that is
 being performed with this request.

 * "body" whose value is a byte sequence containing a Privacy Pass
 protocol message.

 Note that the requests may contain addition Headers, request data and
 URL parameters that are not specified here, these extra fields should
 be ignored, though may be used by the server to determine whether to
 fulfill the requested issuance/redemption.

3. Server key registry

 A client SHOULD fetch a server's current public key information prior
 to performing issuance and redemption. This configuration is
 accessible via a "CONFIG_ENDPOINT", either provided by the server or
 by a global registry that provides consistency and anonymization
 guarantees.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-15

Valdez Expires 14 January 2021 [Page 3]

Internet-Draft PP http api July 2020

3.1. Key Registry

 To ensure that a server isn't providing different views of their
 public key material to different users, servers are expected to write
 their commitments to a verifiable data structure.

 Using a verifiable log-backed map ([verifiable-data-structures]), the
 server can publish their commitments to the log in a way that clients
 can detect when the server is attempting to provide a split-view of
 their key commitments to different clients.

 The key to the map is the "server_origin", with the value being:

 struct {
 opaque public_key<1..2^16-1>;
 uint64 expiry;
 uint8 supported_methods; # 3:Issue/Redeem, 2:Redeem, 1:Issue
 opaque signature<1..2^16-1>;
 } KeyCommitment;

 struct {
 opaque server_id<1..2^16-1>;
 uint16 ciphersuite;
 opaque verification_key<1..2^16-1>;
 KeyCommitment commitments<1..2^16-1>;
 }

 The addition to the log is made via a signed message to the log
 operator, which verifies the authenticity against a public key
 associated with that server origin (either via the Web PKI or a out-
 of-band key). The signature should be computed under a long-term
 signing key that is associated with the server identity.

 The server SHOULD then store an inclusion proof of the current key
 commitment so that it can present it when delivering the key
 commitment directly to the client or when the key commitment is being
 delivered by a delegated party (other registries/preloaded
 configuration lists/etc).

 The client can then perform a request for the key commitment against
 either the global registry or the server as described in Section 4.
 Note that the signature should be verified by the client to ensure
 that the key material is owned by the server. This requires that the
 client know the public verification key that is associated with the
 server.

 To avoid user segregation as a result of server configuration/
 commitment rotation, the log operator SHOULD enforce limits on how

Valdez Expires 14 January 2021 [Page 4]

Internet-Draft PP http api July 2020

 many active commitments exist and how quickly the commitments are
 being rotated. Clients SHOULD reject configurations/commitments that
 violate their requirements for avoiding user segregation. These
 considerations are discussed as part of
 [draft-davidson-pp-architecture].

3.2. Server Configuration Retrieval

 Inputs: - "server_origin": The origin to retrieve a server
 configuration for.

 No outputs.

 1. The client makes an anonymous GET request to
 "CONFIG_ENDPOINT"/.well-known/privacy-pass with a message of type
 "fetch-config" and a body of:

 struct {
 opaque server_origin<1..2^16-1>;
 }

 1. The server looks up the configuration associated with the origin
 "server_origin" and responds with a message of type "config" and
 a body of:

 struct {
 opaque server_id<1..2^16-1>;
 uint16 ciphersuite;
 opaque commitment_id<1..2^8-1>;
 opaque verification_key<1..2^16-1>;
 }

 1. The client then stores the associated configuration state under
 the corresponding "server_origin".

 (TODO: This might be mergable with key commitment retrieval if
 server_id = server_origin)

4. Key Commitment Retrieval

 The client SHOULD retrieve server key commitments prior to both an
 issuance and redemption to verify the consistency of the keys and to
 monitor for key rotation between issuance and redemption events.

 Inputs: - "server_origin": The origin to retrieve a key commitment
 for.

 No outputs.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture

Valdez Expires 14 January 2021 [Page 5]

Internet-Draft PP http api July 2020

 1. The client fetches the configuration state "server_id",
 "ciphersuite", "commitment_id" associated with "server_origin".

 2. The client makes an anonymous GET request to
 "CONFIG_ENDPOINT"/.well-known/privacy-pass with a message of type
 "fetch-commitment" and a body of:

 struct {
 opaque server_id<1..2^16-1> = server_id;
 opaque commitment_id<1..2^8-1> = commitment_id;
 }

 1. The server looks up the current configuration, and constructs a
 list of commitments to return, noting whether a key commitment is
 valid for issuance or redemption or both.

 2. The server then responds with a message of type "commitment" and
 a body of:

 struct {
 opaque public_key<1..2^16-1>;
 uint64 expiry;
 uint8 supported_methods; # 3:Issue/Redeem, 2:Redeem, 1:Issue
 opaque signature<1..2^16-1>;
 } KeyCommitment;

 struct {
 opaque server_id<1..2^16-1>;
 uint16 ciphersuite;
 opaque verification_key<1..2^16-1>;
 KeyCommitment commitments<1..2^16-1>;
 opaque inclusion_proofs<1..2^16-1>;
 }

 1. The client then verifies the signature for each key commitment
 and stores the list of commitments to the current scope. The
 client SHOULD NOT cache the commitments beyond the current scope,
 as new commitments should be fetched for each independent
 issuance and redemption request. The client SHOULD verify the
 "inclusion_proofs" to confirm that the key commitment has been
 submitted to a trusted registry. Once the client receives the
 "ciphersuite" for the server, it should implement all Privacy
 Pass API functions (as detailed in [draft-davidson-pp-protocol])
 using this ciphersuite.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol

Valdez Expires 14 January 2021 [Page 6]

Internet-Draft PP http api July 2020

5. Privacy Pass Issuance

 Inputs: - "server_origin": The origin to request token issuance from.
 - "count": The number of tokens to request issuance for.

 Outputs: - "tokens": A list of tokens that have been signed via the
 Privacy Pass protocol.

 1. When a client wants to request tokens from a server, it should
 first fetch a key commitment from the server via the process
 described in Section 4 and keep the result as "commitment".

 2. The client should then call the "Generate" function requesting
 "count" tokens storing the resulting "input" data.

 3. The client then makes a POST request to <"server_origin">/.well-
 known/privacy-pass with a message of type "request-issuance" and
 a body of:

 enum { Normal(0) } IssuanceType;

 struct {
 IssuanceType type = 0;
 opaque msg<0..2^16-1> = input.msg;
 }

 1. The server, upon receipt of the "request" should call the "Issue"
 function with the "public_key", "secret_key" and the value of
 "msg" with a result of "resp".

 2. The server should then respond to the POST request with a message
 of type "issue" and a body of:

 struct {
 IssuanceType type = request.type;
 IssuanceResp resp = resp;
 }

 1. The client should then should call the "Process" function with
 the "public_key", stored "inputs" and resulting "resp", to
 extract a list of "redemption_tokens".

 2. The client should store the "public_key" associated with these
 tokens and the elements of "redemption_tokens" under storage
 partitioned by the "server_origin", accessible only via the
 Privacy Pass API.

Valdez Expires 14 January 2021 [Page 7]

Internet-Draft PP http api July 2020

6. Privacy Pass Redemption

 There are two forms of Privacy Pass redemption that could function
 under the HTTP API. Either passing along a token directly to the
 target endpoint, which would perform its own redemption Section 6.1,
 or the client redeeming the token and passing the result along to the
 target endpoint. These two methods are described below.

6.1. Generic Token Redemption

 Inputs: - "server_id": The server ID to redeem a token against. -
 "ciphersuite": The ciphersuite for this token. - "public_key": The
 public key associated with this token. - "redemption_token": A
 Privacy Pass token. - "info": Additional data to bind to this token
 redemption.

 Outputs: - "result": The result of the redemption from the server.

 1. The client should call the "Redeem" function with
 "redemption_token" and additional data of "info" storing the
 resulting "data" and "tag".

 2. The client makes a POST request to <"server_origin">/.well-known/
 privacy-pass with a message of type "token-redemption" and a body
 of:

 struct {
 opaque server_id<1..2^16-1> = server_id;
 opaque data<1..2^16-1> = data;
 opaque tag<1..2^16-1> = tag;
 opaque info<1..2^16-1> = info;
 }

 1. The server, upon receipt of "request" should call the "Verify"
 interface with "public_key", "secret_key" and the received
 "data", "tag", "info" storing the resulting "resp".

 2. The server should then respond to the POST request with a message
 of type "redemption-result" and a signed body of:

 struct {
 opaque info<1..2^16-1> = info;
 uint8 result = resp;
 // signature of info and result using
 // the server's verification key.
 opaque signature<1..2^16-1>;
 }

Valdez Expires 14 January 2021 [Page 8]

Internet-Draft PP http api July 2020

 1. The client upon receipt of this message should verify the
 "signature" using the "verification_key" from the configuration
 and return the "result".

6.2. Direct Redemption

 Inputs: - "server_origin": The server origin to redeem a token for. -
 "target": The target endpoint to send the token to. -
 "additional_data": Additional data to bind to this redemption
 request.

 1. When a client wants to redeem tokens for a server, it should
 first fetch a key commitment from the server via the process
 described in Section 4 and keep the result as "commitment".

 2. The client should then look up the storage partition associated
 with "server_origin" and fetch a "redemption_token" and
 "public_key".

 3. The client should verify that the "public_key" is in the current
 "commitment". If not, it should discard the token and fail the
 redemption attempt.

 4. As part of the request to "target", the client will include the
 token as part of the request in the "Sec-Privacy-Pass" header
 along with whatever other parameters are being passed as part of
 the request to "target". The header will contain a message of
 type "token-redemption" with a body of:

 struct {
 opaque server_id<1..2^16-1> = server_id;
 uint16 ciphersuite = ciphersuite;
 opaque public_key<1..2^16-1> = public_key;
 RedemptionToken token<1..2^16-1> = redemption_token;
 opaque additional_data<1..2^16-1> = additional_data;
 }

 At this point, the "target" can perform a generic redemption as
 described in Section 6.1 by forwarding the message included in the
 request to "target".

6.3. Delegated Redemption

 Inputs: - "server_origin": The server origin to redeem a token for. -
 "target": The target endpoint to send the token to. -
 "additional_data": Additional data to bind to this redemption
 request.

Valdez Expires 14 January 2021 [Page 9]

Internet-Draft PP http api July 2020

 1. When a client wants to redeem tokens for a server, it should
 first fetch a key commitment from the server via the process
 described in Section 4 and keep the result as "commitment".

 2. The client should then look up the storage partition associated
 with "server_origin" and fetch a "redemption_token" and
 "public_key".

 3. The client should verify that the "public_key" is in the current
 "commitment". If not, it should discard the token and fail the
 redemption attempt.

 4. The client constructs a bytestring "info" made up of the
 "target", the current "timestamp", and "additional_data":

 struct {
 opaque target<1..2^16-1>;
 uint64 timestamp;
 opaque additional_data<0..2^16-1>;
 }

 1. The client then performs a token redemption as described in
Section 6.1. Storing the resulting "redemption-result" message.

 2. As part of the request to "target", the client will include the
 redemption result as part of the request in the "Sec-Privacy-
 Pass" header along with whatever other parameters are being
 passed as part of the request to "target". The header will
 contain a message of type "signed-redemption-result" with a body
 of:

 struct {
 opaque server_origin<1..2^16-1>;
 opaque target<1..2^16-1>;
 uint64 timestamp;
 opaque additional_data<1..2^16-1> = additional_data;
 opaque signed_redemption<1..2^16-1>;
 }

 At this point, the "target" can verify the integrity of
 "signed_redemption.info" based on the values of "target",
 "timestamp", and "additional_data" and verify the signature of the
 redemption result by querying the current configuration of the
 Privacy Pass server. The inclusion of "target" and "timestamp"
 proves that the server attested to the validity of the token in
 relation to this particular request.

Valdez Expires 14 January 2021 [Page 10]

Internet-Draft PP http api July 2020

7. Security Considerations

 Security considerations for Privacy Pass are discussed in
 [draft-davidson-pp-architecture].

8. IANA Considerations

8.1. Well-Known URI

 This specification registers a new well-known URI.

 URI suffix: "privacy-pass"

 Change controller: IETF.

 Specification document(s): this specification

9. Normative References

 [draft-davidson-pp-architecture]
 Davidson, A., "Privacy Pass: Architectural Framework",
 n.d., <https://tools.ietf.org/html/draft-davidson-pp-

architecture-00>.

 [draft-davidson-pp-protocol]
 Davidson, A., "Privacy Pass: The Protocol", n.d.,
 <https://tools.ietf.org/html/draft-davidson-pp-protocol-

00>.

 [draft-ietf-httpbis-header-structure-15]
 Nottingham, M. and P-H. Kamp, "Structured Headers for
 HTTP", n.d., <https://tools.ietf.org/html/draft-ietf-

httpbis-header-structure-15>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [verifiable-data-structures]
 "Verifiable Data Structures", n.d.,
 <https://github.com/google/trillian/blob/master/docs/

papers/VerifiableDataStructures.pdf>.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture
https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture
https://tools.ietf.org/html/draft-davidson-pp-architecture-00
https://tools.ietf.org/html/draft-davidson-pp-architecture-00
https://datatracker.ietf.org/doc/html/draft-davidson-pp-protocol
https://tools.ietf.org/html/draft-davidson-pp-protocol-00
https://tools.ietf.org/html/draft-davidson-pp-protocol-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-15
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-15
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-15
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf

Valdez Expires 14 January 2021 [Page 11]

Internet-Draft PP http api July 2020

Author's Address

 Steven Valdez
 Google LLC

 Email: svaldez@chromium.org

Valdez Expires 14 January 2021 [Page 12]

