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Abstract

   TCP congestion control is based on the assumption that the end-to-end
   path of a connection changes only insignificantly after connection
   establishment.  Network layer mobility protocols that change a
   connection's point of attachment transparently to the transport layer
   may violate this assumption and cause TCP to make congestion control
   decisions based on invalid information.  This document describes a
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   TCP option that allows a connection endpoint to inform a peer when it
   changes location.  This document also outlines the proper congestion
   control behavior that should take place in the face of such network
   layer mobility.
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1.  Introduction

   TCP congestion control [1] assumes that once a connection is
   established, the end-to-end path it traverses is relatively stable.
   Several network layer mobility protocols may be in use underneath
   TCP, which are capable of quickly changing a node's point of Internet
   attachment (and thus the end-to-end connection path) without
   notifying TCP.  This can easily lead to invalid TCP congestion
   control decisions.  Examples of such network layer mobility protocols
   include Mobile IPv4 [2], Mobile IPv6 [3] and HIP-based mobility [4].

   When a TCP sender or receiver changes its point of attachment to the
   Internet (henceforth referred as "changes subnets"), the entire end-
   to-end path between the sender and receiver can change.  In many host
   mobility scenarios, it is expected that only a small portion of the
   path nearest to the mobile node changes, and the links exchanged are
   assumed to be heterogenous.  This makes the path change have little
   effect on TCP congestion control state, and so in-progress
   connections are mostly oblivious to the change.  However, it is easy
   to envision mobility scenarios where large portions of the end-to-end
   path change.  For instance, a mobile device may transition between
   wireless service providers, and thus have its packets routed over
   distinct backbone networks.  A host may also have multiple interfaces
   (perhaps of widely varying media type) and change its IP connectivity
   over from one to the other as signal levels change.  If the
   interfaces are of different speeds or the networks at different
   loads, the paths can change significantly.

   There are several problems with allowing topologically-significant
   path changes to occur transparently to TCP.  There is no guarantee
   that the congestion control state associated with the old path has
   any meaning for the new path, and the congestion control and RTTM
   state should be reinitialized.  ACKs received for packets sent on the
   old path do not indicate the congestion state of the new path, and
   should not be used in the computation of TCP's congestion window.
   Slow-start based probing from the initial window should take place in
   the new path, with the slow-start threshold (SS_THRESH) reset to its
   initial value.  These actions should take place in both directions of
   a TCP connection.  It is relatively easy for the mobile node to
   perform these congestion control modifications when it moves, but the
   host on the other side of the connection has no means of inferring
   the path change.

   In this document, we describe a network-layer-independent mechanism
   by which mobile hosts can propagate path-change notifications to
   their peers, based on which both sides can react to correct their
   performance.  We assume that a mobile host always knows about its own
   subnet information (for example, by looking at its neighbor cache,
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   destination cache, default router, or a combination of these [5], but
   it is not able to inform its peer of subnet changes without
   implementing the TCP option described in this document.

   While some network layer mobility management techniques may be used
   to indirectly derive a remote peer's mobility information (e.g. by
   looking into the binding cache when using Mobile IPv6 with route
   optimization), such techniques are not available with other network
   layer mobility protocols such as Mobile IPv6 with reverse tunneling,
   Mobile IPv4, or traditional cellular networking.  This motivates the
   need for a means of signalling such mobility information.

   Other modern transport protocols have features similar to LMDR.  For
   example, in spirit, LMDR is similar to the "Reset Congestion State"
   option in DCCP [11], which is part of the base specification.  DCCP
   has been designed more recently than TCP, with mobility as a possible
   consideration from the beginning.  Originally, TCP was not designed
   with mobility in mind, and so, understandably, lacks mobility-support
   features.  Adding LMDR to TCP brings the protocol more up-to-date
   with regards to mobility support, and extends the range of viable
   environments where TCP can be effectively used.

   This document does not describe a response to link-up/link-down
   events.  Link-up/link-down events are triggered by link layer state
   changes which may or may not indicate subnet change.  For example,
   unplugging and replugging an Ethernet cable constitutes a link-up/
   link-down event, even though the host might remain in the same subnet
   after replugging the cable.  This document does not specify the
   processing of such events, instead the protocol described in this
   document acts only after detection of attachment to *new* subnets.
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2.  Terminology

   The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT,"
   "SHOULD," "SHOULD NOT," "RECOMMENDED," "MAY," "OPTIONAL," and
   "silently ignore" in this document are to be interpreted as described
   in RFC 2119.

   Mobile Node (MN): An end-host capable of changing its point of
      attachment to the Internet without breaking transport layer
      connectivity.  Hosts that change their point of attachment to the
      Internet but use DHCP or other mechanism to get a new IP address
      are not considered in this document.

   Corresponding Node (CN): An end-host that has active TCP connections
      with a Mobile Node.  The corresponding node may itself be mobile
      without influencing the applicability of the protocol described in
      this document.

   Old Subnet: MN's point of attachment to the Internet prior to
      movement.  The Old Subnet is a component of the "Old Path".

   New Subnet: MN's point of attachment after movement.  "New Subnet" is
      a component of "New Path".

   Initial Window: The initial congestion window size at the start of a
      connection as described in [6].

   Stale ACK: When a New Path is in use, acknowledgements corresponding
      to data sent on the Old Path are termed "stale".  These stale ACKs
      don't contain meaningful information about the new path and should
      be ignored for congestion window calculations on the new path.

https://datatracker.ietf.org/doc/html/rfc2119
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3.  Congestion Control Issues with Subnet Change

   For concreteness, the description below assumes network mobility
   based on Mobile IP, but the same concepts are readily applicable to
   other network layer mobility protocols.

   To illustrate the problems that transparent network layer mobility
   may cause for TCP congestion control, consider Figure 1.  At time=T,
   MN is reachable on the Old Subnet through access router AR-1 and has
   the care-of address <Old Subnet, MN>.  A TCP connection is
   established between MN and CN.  While MN is attached to AR-1, packets
   between CN and <Old Subnet, MN> are routed using PATH-1 (through
   Cloud-1 and AR-1).  Assume that at some time, T+1, MN moves and
   becomes reattached New Subnet, which is reachable through AR-2 with
   the care-of address <New Subnet, MN>.  While MN is attached to AR-2,
   all packets between CN and <New Subnet, MN> are routed using PATH-2
   (through Cloud-2 and AR-2).

                    <---------PATH-1---------->

                      /---------\   +------+
                      |         |   |      | Old Subnet
                  +---+ Cloud-1 +---+ AR-1 +-----> MN (time=T)
                  |   |         |   |      |

                  |   \----+----/   +---+--+        |
                  |        |            |           |
        CN <------+        | PATH-3     | PATH-4    |
                  |        |            |           |
                  |   /----V----\   +---V---+       V
                  |   |         |   |       |
                  +---+ Cloud-2 +---+ AR-2  +-----> MN (time=T+1)
                      |         |   |       | New Subnet
                      \---------/   +-------+

                     <--------PATH-2----------->

   Figure 1

   During the transitional period, when MN moves from Old to New Subnet,
   AR-1 might not be able to deliver packets it receives which are
   addressed for MN.  This could result in a large burst of packet loss.
   To address this, there are several suggested means of doing "fast" or
   "seamless" handovers, which involve adding machinery in the ARs to
   buffer and redirect packets originally sent to the Old Subnet, to the
   New Subnet (e.g. [7]).  These redirected packets may travel through
   either PATH-3 or PATH-4.  The distinction between PATH-3 and PATH-4
   is that PATH-4 may belong to a well-provisioned network specially
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   designed to accommodate extremely bursty traffic.  On the other hand,
   in the absence of such a PATH-4, PATH-3 will be used, and may consist
   of more arbitrary routers without special provisioning.

   Congestion control on PATH-1 is governed by basic slow-start and
   congestion avoidance mechanisms [1].  As long as MN remains in
   Subnet-1, standard congestion control algorithms is sufficient.  But
   once it moves from Subnet-1 to Subnet-2, two different scenarios are
   possible depending on the network topology.  Access routers may
   either buffer and forward packets via a PATH-4 (or PATH-3), or not.

   In a typical Mobile IPv4 scenario, all packets destined to <Subnet-1,
   MN> are dropped by AR-1 once the mobile node has moved.  Since the
   latency involved in establishing a new tunnel to the HA is of the
   order of RTT (2*RTT in case of Mobile IPv6), roughly an entire window
   worth of data and ACKs will be dropped by AR-1.  Because of this
   window loss, the CN and MN are likely to take expensive
   retransmission timeouts.

   In the alternative scenario, all packets destined to <Subnet-1, MN>
   are forwarded to <Subnet-2, MN> by AR-1 by some means [7].  AR-1
   might forward packets to <Subnet-2, MN> using PATH-3 or PATH-4.
   These two cases are considered separately.  If AR-1 forwards packets
   to AR-2 using PATH-3, PATH-3 may experience a sudden burst of
   packets.  If multiple MNs move between AR-2 and AR-1, PATH-3 may
   easily become congested.  The exact means of buffering and forwarding
   segments between the ARs is not guaranteed to occur in a manner
   relative to the congestion level of PATH-3, nor to conform to TCP's
   clocking expectations.  This may be risky behavior.  If PATH-4 is
   available, and used to redirect packets to MN, the resulting burst of
   packets may still be an issue with regards to clocking, even though
   congestion control on PATH-4 itself is not an issue.

   Whether PATH-3 or PATH-4 is used, receiving stale ACKs (for data sent
   on PATH-1) will cause MN to wrongly inflate its congestion window.
   Stale ACKs do not provide any indication of the congestion state on
   the New Path, and should not be used for this computation.  MN will
   also generate stale ACKs for any redirected data segments.  This will
   similarly cause CN to improperly adjust its congestion window.  If
   the congestion windows from the Old Path are already too big for the
   New Path, this may be a problem.  Consider, for example, the case
   where a train moves across a subnet boundary due to wireless radio
   coverage limitations, and hundreds of mobile users on that train
   handoff to a new subnet.  In this case, the New Subnet and Path will
   see a burst of segments that can cause unnecessary packet loss and
   timeouts.

   Conversely, if PATH-2 is of greater capacity or more lightly loaded
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   than PATH-1, and if the sender is in congestion avoidance, it will
   spend multiple RTTs before reaching a reasonable throughput.  This is
   due to the slowness of additive increase in probing available
   capacity, and caused by a value of SS_THRESH that has become
   irrelevant.  Consider the case where the Old Path's available
   capacity was 10 segments, while the New Path can handle 1000
   segments.  With a normal timeout based loss recovery algorithm, the
   sender's SS_THRESH will be set to 10 segments, and reaching a
   reasonable window of around 500 segments (half of the available
   capacity) will require (log_2(10/2) + (500-5)) RTTs (recall that
   congestion window increase during congestion avoidance is just one
   packet per RTT).  Contrast this with a scheme where the sender resets
   the SS_THRESH to a large value after subnet change and only spends
   log_2(500/2) RTT to reach a reasonable throughput.
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4.  Subnet Change Detection and Notification

   For proper congestion control behavior in the face of mobility, a
   mobile node first needs to know if it has moved from one subnet to
   another, then it needs a means to propagate this information to its
   peer.  Detecting when a mobile node has changed subnets can be
   performed using neighbor discovery [5].  In this document we assume
   that mobile hosts can determine their own subnet changes either from
   lower layers or through other out of band mechanisms.  The remaining
   problem is relaying this change of path information to the other
   connection endpoint.  A TCP option can be employed for this purpose.

   The LMDR option holds a counter that represents the number of times a
   side has changed attachment points.  At the start of the connection,
   both endpoints use this option in the SYN and SYN-ACK segments, with
   an initial counter value of 7, to advertise support for the option.
   A host MUST NOT place the LMDR option on a SYN-ACK unless it was
   present on the generating SYN.  After the SYN exchange is completed,
   hosts SHOULD NOT send this option until there is a subnet change.
   After connection setup, the LMDR option is only generated by a host's
   detection of its own mobility, or in response to a received LMDR
   option.  A host MUST NOT send the LMDR option during the course of a
   connection unless it was advertised by both sides at startup.

   Figure 2 depicts the LMDR TCP Option format:

                                          1    1      2      2
        0                8                6    8      1      4
        +----------------+----------------+----+------+------+
        |      KIND      |     LENGTH     |RES | CNTR | ECNT |
        +----------------+----------------+----+------+------+

   Figure 2

      TYPE: (8 Bits) TCP Option Type.  Value set to 25 for experimental
      purposes.

      LENGTH: (8 Bits) TCP Option Length.  Value = 3.

      RES: (2 Bits) Reserved bits.  Sender should set the value to zero.
      Receiver should ignore these fields.

      CNTR: (3 Bits) The subnet counter value of the host sending this
      option.  This value is decremented once for ever subnet change
      (i.e., if the mobile host moves from Subnet-A to Subnet-B, and the
      counter value in Subnet-A was C1, then the counter value in
      Subnet-B will be C1-1, wrapping back to 7 after 0).
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      ECNT: (3 Bits) The echoed value of CNTR.  On reception of an LMDR
      option, a host copies the received CNTR value to the ECNT field of
      its response.  The CNTR field is filled in with the host's own
      subnet counter value.

   When there is a subnet change, the Initiator (the host that wants to
   inform its peer, the Responder, about the subnet change) decrements
   its counter and sends an LMDR option in every subsequent ACK or data
   segment, until it sees its new counter value echoed back.  When the
   Responder sees an LMDR option, it echoes back the Initiator's
   counter.  The Responder keeps echoing back the value until the
   Initiator stops sending the option.  In the case of simultaneous
   movement by both sides of a connection, the side who sent the highest
   initial sequence number assumes itself to be the Initiator, and the
   other host assumes itself to be the Responder.

   As an example, assume MN-A has a subnet counter CNTR-A = 5 and MN-B
   has CNTR-B = 3.  If at some point MN-B moves to a new subnet,
   Figure 3 shows the LMDR options exchange.

                  Time = T (MN-A and MN-B have an established
                  connection with the LMDR option negotiated)
                  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

                           [NO LMDR OPTION]
                MN-A <-----------------------------------> MN-B
       (my_subnet_count  = 5)                  (my_subnet_count  = 3)
       (rem_subnet_count = 3)                  (rem_subnet_count = 5)

                  Time = T+1 (MN-B moves to a new subnet)
                  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

                         LMDR: CNTR=2 (3-1), ECNT=5
                MN-A <-----------------------------------  MN-B
          (my_subnet_count  = 5)              (my_subnet_count  = 2)
          (rem_subnet_count = 3)              (rem_subnet_count = 5)

                         LMDR: CNTR=5, ECNT=2
                MN-A -------------------------------------> MN-B
          (B Has Moved. Echo back ECNTR=2)       (Stop sending LMDR)
          (my_subnet_count  = 5)              (my_subnet_count  = 2)
          (rem_subnet_count = 2)              (rem_subnet_count = 5)

   Figure 3

   Each TCP implementation should keep three new variables:
   my_subnet_count, remote_subnet_count, and in_transition.  The
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   variables my_subnet_count, and rem_subnet_count store the mobility
   counters for this host and the remote host respectively.  The
   variable in_transition is set to one when the Responder receives the
   first LMDR option.  The value is reset to zero when the Responder
   receives a packet without the LMDR option set.

   For each packet sent, a host should determine if it has moved to a
   new subnet.  If a host determines that it has moved, it SHOULD update
   the value of my_subnet_count as follows: my_subnet_count =
   (my_subnet_count - 1); in_transition = 1; The node that updates this
   value is referred to as Initiator.  The Initiator SHOULD send an LMDR
   option for every packet as long as in_transition == 1.  The Initiator
   MUST follow the congestion response algorithm described in Section 5.
   The Initiator MUST keep the in_transition value unaltered until it
   receives a packet with ECNT == my_subnet_counter; (i.e., until the
   recent most CNTR value is echoed back by the Responder).

   When a host receives a valid TCP segment (one that meets the sequence
   number and ACK sequence number criteria of RFC 793 [8]), it should
   compare the value of 'CNTR' with the value of 'rem_subnet_counter.'
   If the two values match, the Responder should conclude that the
   Initiator has not moved and MUST NOT update its in_transition
   variable.  (Although it MUST echo back the LMDR option.  Note that in
   case of simultaneous move it will result in sending the option for
   every subsequent packet.  To break this infinite loop, the host with
   largest Initial TCP sequence number should assume the role of
   Initiator.)

   If the two values of remote_subnet_counter and the CNTR in a received
   LMDR option differ, a host can conclude that the other side has
   moved.  The host MUST update the variables as follows:
   rem_subnet_count = CNTR; in_transition = 1; After making these
   changes, the host MUST follow the congestion response algorithm as
   described in Section 5.  The value of in_transition SHOULD be reset
   to zero when the Responder receives a segment from the Initiator
   without the LMDR option.

   NOTE: In certain network architectures it's possible that a mobile
   (and the associated link technology) have sufficient congestion
   information about the new path.  In these cases, a node MAY choose
   not to indicate subnet change information to the sender since there
   is no need to reduce the data rate.  However, the mobility
   information MUST be indicated if no such information is available, or
   if the congestion information is not for the entire path (i.e., if
   the congestion information is only for a part of the new path, then
   the Initiator MUST inform about subnet change).  It might be possible
   to use the reserved bits in the LMDR option for some advantage in
   such situations, however, this document does not discuss the matter

https://datatracker.ietf.org/doc/html/rfc793
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   further.
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5.  Congestion Response After Subnet Change

   The motivations behind a congestion response after subnet change are
   to prevent a large burst of congestion on PATH-2 and to quickly probe
   the path's available capacity.  In principle, the congestion control
   state for PATH-2 has the same requirements as that of a new
   connection: The sender should transmit no more than a default initial
   window of data outstanding on the New Path, in order to prevent over-
   congesting it, and the slow-start threshold (SS_THRESH) should be set
   to a large value, to allow for rapid probing of available capacity.
   What makes this slightly more complex is that connections after
   subnet change may have segments in flight from before the subnet
   change.  Therefore, after subnet change, congestion control MUST
   ignore any stale ACKs and MUST update the congestion window based
   solely on ACKs for data sent on new path.

   The LMDR congestion response to subnet changes can be described in
   two steps:

   1.  When a TCP end-host concludes that there has been a remote subnet
       change, its value of in_transition is set to one (as described
       previously).  At this time, it may send INIT_WINDOW worth of data
       on the new path and MUST reset the congestion control state, RTTM
       state, and RTO timer as if this were a new connection [1][9].
       This applies whether the host detects its own subnet change, or
       infers a movement by the other side of the connection via a
       received LMDR option.

   2.  For each stale ACK received, a host MUST NOT adjust the
       congestion window and MUST NOT send any new data into the
       network.  This behavior should continue until in_transition is
       zero again or there is a timeout.  Once in_transition is set to
       zero, the sender should consider any unsacked segments below the
       highest received ACK or SACK as lost, and discount them from the
       segments in flight.  The sender MUST use slow-start based loss
       recovery for these segments.

   There are several ways that a host may detect stale ACKs.  In the
   simplest case, when the SACK Option is enabled, the host stores the
   highest sequence number of data in its retransmission queue before
   the movement, and uses the sequence number as a marker to determine
   whether the ACKs (and SACK in case of loss) are stale or not.  Only
   after the host receives an ACK or SACK greater than the marker value,
   does it increase it's congestion window.  A host could use other
   techniques, either independently or in conjunction with different TCP
   options (such as time stamps) to achieve similar results.

   In case no reasonable means is available to disambiguate stale ACKs
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   from new ACKs, a host could use the LMDR option indirectly.  For
   example, an LMDR Responder can assume that as long as it continues
   seeing LMDR options on incoming segments, the LMDR Initiator has not
   received an echo of its new counter value.  Since the Initiator will
   stop sending the LMDR option after receiving the echoed value, the
   first segment where the Responder stops receiving the LMDR option is
   a good indication that the Responder's packets have completed one
   round trip.  This strategy works well if the Initiator and Responder
   don't move simultaneously (i.e., the two sides don't move within an
   RTT duration.)

   When a mobile node moves from a low-speed link to a high-speed link,
   there is a possibility that the packets sent on the new path reach
   the other side before the low-speed queue is cleared.  This could
   cause severe packet reordering.  Since the LMDR response algorithm
   assumes that out of order packets are lost, in some cases the
   response algorithm might unnecessarily resend data on the new path.
   We believe that this behavior will occur infrequently, given that the
   delay in establishing the new route often takes greater than a round-
   trip time.  If a host wants to reduce the possibility of such
   unnecessary retransmission, it MAY wait for one RTT (measured on the
   old path), from the time of movement before increasing its congestion
   window.
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6.  Architectural Considerations

   The LMDR technique described in this document does not add any new
   requirements to the network.  The LMDR modifications are strictly to
   end-hosts, making them perform properly with regards to congestion
   control, in a way more friendly to the network.  LMDR addresses a
   problem created when transparent network layer mobility protocols
   modify lower layers of the protocol stack without considering the
   possible ill-effects for higher layers [10].
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7.  Security Considerations

   Use of the LMDR option does not open up a TCP connection to any form
   of abuse not already present in TCP.  If an attacker possesses the
   ability to generate segments that would normally appear valid and
   acceptable to a TCP stack, then the attacker might produce a stream
   of LMDR options that could keep a connection in slow-start at the
   initial window.  This is probably less serious than other attacks
   such an adversary could perform, however, like resetting the
   connection or injecting data, and a similar effect could be achieved
   without the LMDR option by forging duplicate ACKs that would keep a
   sender in loss recovery.  If both sets of IP addresses, port numbers,
   and sequence numbers are guessable for a connection, then the
   connection should use IPSec for protection against spoofed segments.
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