
Network Working Group Y. Swami
Internet-Draft K. Le
Expires: August 5, 2006 Nokia Research Center, Dallas
 W. Eddy
 NASA GRC/Verizon FNS
 Feb 2006

Lightweight Mobility Detection and Response (LMDR) Algorithm for TCP
draft-swami-tcp-lmdr-07

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 5, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 TCP congestion control is based on the assumption that the end-to-end
 path of a connection changes only insignificantly after connection
 establishment. Network layer mobility protocols that change a
 connection's point of attachment transparently to the transport layer
 may violate this assumption and cause TCP to make congestion control
 decisions based on invalid information. This document describes a

Swami, et al. Expires August 5, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TCP LMDR Feb 2006

 TCP option that allows a connection endpoint to inform a peer when it
 changes location. This document also outlines the proper congestion
 control behavior that should take place in the face of such network
 layer mobility.

Swami, et al. Expires August 5, 2006 [Page 2]

Internet-Draft TCP LMDR Feb 2006

1. Introduction

 TCP congestion control [1] assumes that once a connection is
 established, the end-to-end path it traverses is relatively stable.
 Several network layer mobility protocols may be in use underneath
 TCP, which are capable of quickly changing a node's point of Internet
 attachment (and thus the end-to-end connection path) without
 notifying TCP. This can easily lead to invalid TCP congestion
 control decisions. Examples of such network layer mobility protocols
 include Mobile IPv4 [2], Mobile IPv6 [3] and HIP-based mobility [4].

 When a TCP sender or receiver changes its point of attachment to the
 Internet (henceforth referred as "changes subnets"), the entire end-
 to-end path between the sender and receiver can change. In many host
 mobility scenarios, it is expected that only a small portion of the
 path nearest to the mobile node changes, and the links exchanged are
 assumed to be heterogenous. This makes the path change have little
 effect on TCP congestion control state, and so in-progress
 connections are mostly oblivious to the change. However, it is easy
 to envision mobility scenarios where large portions of the end-to-end
 path change. For instance, a mobile device may transition between
 wireless service providers, and thus have its packets routed over
 distinct backbone networks. A host may also have multiple interfaces
 (perhaps of widely varying media type) and change its IP connectivity
 over from one to the other as signal levels change. If the
 interfaces are of different speeds or the networks at different
 loads, the paths can change significantly.

 There are several problems with allowing topologically-significant
 path changes to occur transparently to TCP. There is no guarantee
 that the congestion control state associated with the old path has
 any meaning for the new path, and the congestion control and RTTM
 state should be reinitialized. ACKs received for packets sent on the
 old path do not indicate the congestion state of the new path, and
 should not be used in the computation of TCP's congestion window.
 Slow-start based probing from the initial window should take place in
 the new path, with the slow-start threshold (SS_THRESH) reset to its
 initial value. These actions should take place in both directions of
 a TCP connection. It is relatively easy for the mobile node to
 perform these congestion control modifications when it moves, but the
 host on the other side of the connection has no means of inferring
 the path change.

 In this document, we describe a network-layer-independent mechanism
 by which mobile hosts can propagate path-change notifications to
 their peers, based on which both sides can react to correct their
 performance. We assume that a mobile host always knows about its own
 subnet information (for example, by looking at its neighbor cache,

Swami, et al. Expires August 5, 2006 [Page 3]

Internet-Draft TCP LMDR Feb 2006

 destination cache, default router, or a combination of these [5], but
 it is not able to inform its peer of subnet changes without
 implementing the TCP option described in this document.

 While some network layer mobility management techniques may be used
 to indirectly derive a remote peer's mobility information (e.g. by
 looking into the binding cache when using Mobile IPv6 with route
 optimization), such techniques are not available with other network
 layer mobility protocols such as Mobile IPv6 with reverse tunneling,
 Mobile IPv4, or traditional cellular networking. This motivates the
 need for a means of signalling such mobility information.

 Other modern transport protocols have features similar to LMDR. For
 example, in spirit, LMDR is similar to the "Reset Congestion State"
 option in DCCP [11], which is part of the base specification. DCCP
 has been designed more recently than TCP, with mobility as a possible
 consideration from the beginning. Originally, TCP was not designed
 with mobility in mind, and so, understandably, lacks mobility-support
 features. Adding LMDR to TCP brings the protocol more up-to-date
 with regards to mobility support, and extends the range of viable
 environments where TCP can be effectively used.

 This document does not describe a response to link-up/link-down
 events. Link-up/link-down events are triggered by link layer state
 changes which may or may not indicate subnet change. For example,
 unplugging and replugging an Ethernet cable constitutes a link-up/
 link-down event, even though the host might remain in the same subnet
 after replugging the cable. This document does not specify the
 processing of such events, instead the protocol described in this
 document acts only after detection of attachment to *new* subnets.

Swami, et al. Expires August 5, 2006 [Page 4]

Internet-Draft TCP LMDR Feb 2006

2. Terminology

 The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT,"
 "SHOULD," "SHOULD NOT," "RECOMMENDED," "MAY," "OPTIONAL," and
 "silently ignore" in this document are to be interpreted as described
 in RFC 2119.

 Mobile Node (MN): An end-host capable of changing its point of
 attachment to the Internet without breaking transport layer
 connectivity. Hosts that change their point of attachment to the
 Internet but use DHCP or other mechanism to get a new IP address
 are not considered in this document.

 Corresponding Node (CN): An end-host that has active TCP connections
 with a Mobile Node. The corresponding node may itself be mobile
 without influencing the applicability of the protocol described in
 this document.

 Old Subnet: MN's point of attachment to the Internet prior to
 movement. The Old Subnet is a component of the "Old Path".

 New Subnet: MN's point of attachment after movement. "New Subnet" is
 a component of "New Path".

 Initial Window: The initial congestion window size at the start of a
 connection as described in [6].

 Stale ACK: When a New Path is in use, acknowledgements corresponding
 to data sent on the Old Path are termed "stale". These stale ACKs
 don't contain meaningful information about the new path and should
 be ignored for congestion window calculations on the new path.

https://datatracker.ietf.org/doc/html/rfc2119

Swami, et al. Expires August 5, 2006 [Page 5]

Internet-Draft TCP LMDR Feb 2006

3. Congestion Control Issues with Subnet Change

 For concreteness, the description below assumes network mobility
 based on Mobile IP, but the same concepts are readily applicable to
 other network layer mobility protocols.

 To illustrate the problems that transparent network layer mobility
 may cause for TCP congestion control, consider Figure 1. At time=T,
 MN is reachable on the Old Subnet through access router AR-1 and has
 the care-of address <Old Subnet, MN>. A TCP connection is
 established between MN and CN. While MN is attached to AR-1, packets
 between CN and <Old Subnet, MN> are routed using PATH-1 (through
 Cloud-1 and AR-1). Assume that at some time, T+1, MN moves and
 becomes reattached New Subnet, which is reachable through AR-2 with
 the care-of address <New Subnet, MN>. While MN is attached to AR-2,
 all packets between CN and <New Subnet, MN> are routed using PATH-2
 (through Cloud-2 and AR-2).

 <---------PATH-1---------->

 /---------\ +------+
 | | | | Old Subnet
 +---+ Cloud-1 +---+ AR-1 +-----> MN (time=T)
 | | | | |

 | \----+----/ +---+--+ |
 | | | |
 CN <------+ | PATH-3 | PATH-4 |
 | | | |
 | /----V----\ +---V---+ V
 | | | | |
 +---+ Cloud-2 +---+ AR-2 +-----> MN (time=T+1)
 | | | | New Subnet
 \---------/ +-------+

 <--------PATH-2----------->

 Figure 1

 During the transitional period, when MN moves from Old to New Subnet,
 AR-1 might not be able to deliver packets it receives which are
 addressed for MN. This could result in a large burst of packet loss.
 To address this, there are several suggested means of doing "fast" or
 "seamless" handovers, which involve adding machinery in the ARs to
 buffer and redirect packets originally sent to the Old Subnet, to the
 New Subnet (e.g. [7]). These redirected packets may travel through
 either PATH-3 or PATH-4. The distinction between PATH-3 and PATH-4
 is that PATH-4 may belong to a well-provisioned network specially

Swami, et al. Expires August 5, 2006 [Page 6]

Internet-Draft TCP LMDR Feb 2006

 designed to accommodate extremely bursty traffic. On the other hand,
 in the absence of such a PATH-4, PATH-3 will be used, and may consist
 of more arbitrary routers without special provisioning.

 Congestion control on PATH-1 is governed by basic slow-start and
 congestion avoidance mechanisms [1]. As long as MN remains in
 Subnet-1, standard congestion control algorithms is sufficient. But
 once it moves from Subnet-1 to Subnet-2, two different scenarios are
 possible depending on the network topology. Access routers may
 either buffer and forward packets via a PATH-4 (or PATH-3), or not.

 In a typical Mobile IPv4 scenario, all packets destined to <Subnet-1,
 MN> are dropped by AR-1 once the mobile node has moved. Since the
 latency involved in establishing a new tunnel to the HA is of the
 order of RTT (2*RTT in case of Mobile IPv6), roughly an entire window
 worth of data and ACKs will be dropped by AR-1. Because of this
 window loss, the CN and MN are likely to take expensive
 retransmission timeouts.

 In the alternative scenario, all packets destined to <Subnet-1, MN>
 are forwarded to <Subnet-2, MN> by AR-1 by some means [7]. AR-1
 might forward packets to <Subnet-2, MN> using PATH-3 or PATH-4.
 These two cases are considered separately. If AR-1 forwards packets
 to AR-2 using PATH-3, PATH-3 may experience a sudden burst of
 packets. If multiple MNs move between AR-2 and AR-1, PATH-3 may
 easily become congested. The exact means of buffering and forwarding
 segments between the ARs is not guaranteed to occur in a manner
 relative to the congestion level of PATH-3, nor to conform to TCP's
 clocking expectations. This may be risky behavior. If PATH-4 is
 available, and used to redirect packets to MN, the resulting burst of
 packets may still be an issue with regards to clocking, even though
 congestion control on PATH-4 itself is not an issue.

 Whether PATH-3 or PATH-4 is used, receiving stale ACKs (for data sent
 on PATH-1) will cause MN to wrongly inflate its congestion window.
 Stale ACKs do not provide any indication of the congestion state on
 the New Path, and should not be used for this computation. MN will
 also generate stale ACKs for any redirected data segments. This will
 similarly cause CN to improperly adjust its congestion window. If
 the congestion windows from the Old Path are already too big for the
 New Path, this may be a problem. Consider, for example, the case
 where a train moves across a subnet boundary due to wireless radio
 coverage limitations, and hundreds of mobile users on that train
 handoff to a new subnet. In this case, the New Subnet and Path will
 see a burst of segments that can cause unnecessary packet loss and
 timeouts.

 Conversely, if PATH-2 is of greater capacity or more lightly loaded

Swami, et al. Expires August 5, 2006 [Page 7]

Internet-Draft TCP LMDR Feb 2006

 than PATH-1, and if the sender is in congestion avoidance, it will
 spend multiple RTTs before reaching a reasonable throughput. This is
 due to the slowness of additive increase in probing available
 capacity, and caused by a value of SS_THRESH that has become
 irrelevant. Consider the case where the Old Path's available
 capacity was 10 segments, while the New Path can handle 1000
 segments. With a normal timeout based loss recovery algorithm, the
 sender's SS_THRESH will be set to 10 segments, and reaching a
 reasonable window of around 500 segments (half of the available
 capacity) will require (log_2(10/2) + (500-5)) RTTs (recall that
 congestion window increase during congestion avoidance is just one
 packet per RTT). Contrast this with a scheme where the sender resets
 the SS_THRESH to a large value after subnet change and only spends
 log_2(500/2) RTT to reach a reasonable throughput.

Swami, et al. Expires August 5, 2006 [Page 8]

Internet-Draft TCP LMDR Feb 2006

4. Subnet Change Detection and Notification

 For proper congestion control behavior in the face of mobility, a
 mobile node first needs to know if it has moved from one subnet to
 another, then it needs a means to propagate this information to its
 peer. Detecting when a mobile node has changed subnets can be
 performed using neighbor discovery [5]. In this document we assume
 that mobile hosts can determine their own subnet changes either from
 lower layers or through other out of band mechanisms. The remaining
 problem is relaying this change of path information to the other
 connection endpoint. A TCP option can be employed for this purpose.

 The LMDR option holds a counter that represents the number of times a
 side has changed attachment points. At the start of the connection,
 both endpoints use this option in the SYN and SYN-ACK segments, with
 an initial counter value of 7, to advertise support for the option.
 A host MUST NOT place the LMDR option on a SYN-ACK unless it was
 present on the generating SYN. After the SYN exchange is completed,
 hosts SHOULD NOT send this option until there is a subnet change.
 After connection setup, the LMDR option is only generated by a host's
 detection of its own mobility, or in response to a received LMDR
 option. A host MUST NOT send the LMDR option during the course of a
 connection unless it was advertised by both sides at startup.

 Figure 2 depicts the LMDR TCP Option format:

 1 1 2 2
 0 8 6 8 1 4
 +----------------+----------------+----+------+------+
 | KIND | LENGTH |RES | CNTR | ECNT |
 +----------------+----------------+----+------+------+

 Figure 2

 TYPE: (8 Bits) TCP Option Type. Value set to 25 for experimental
 purposes.

 LENGTH: (8 Bits) TCP Option Length. Value = 3.

 RES: (2 Bits) Reserved bits. Sender should set the value to zero.
 Receiver should ignore these fields.

 CNTR: (3 Bits) The subnet counter value of the host sending this
 option. This value is decremented once for ever subnet change
 (i.e., if the mobile host moves from Subnet-A to Subnet-B, and the
 counter value in Subnet-A was C1, then the counter value in
 Subnet-B will be C1-1, wrapping back to 7 after 0).

Swami, et al. Expires August 5, 2006 [Page 9]

Internet-Draft TCP LMDR Feb 2006

 ECNT: (3 Bits) The echoed value of CNTR. On reception of an LMDR
 option, a host copies the received CNTR value to the ECNT field of
 its response. The CNTR field is filled in with the host's own
 subnet counter value.

 When there is a subnet change, the Initiator (the host that wants to
 inform its peer, the Responder, about the subnet change) decrements
 its counter and sends an LMDR option in every subsequent ACK or data
 segment, until it sees its new counter value echoed back. When the
 Responder sees an LMDR option, it echoes back the Initiator's
 counter. The Responder keeps echoing back the value until the
 Initiator stops sending the option. In the case of simultaneous
 movement by both sides of a connection, the side who sent the highest
 initial sequence number assumes itself to be the Initiator, and the
 other host assumes itself to be the Responder.

 As an example, assume MN-A has a subnet counter CNTR-A = 5 and MN-B
 has CNTR-B = 3. If at some point MN-B moves to a new subnet,
 Figure 3 shows the LMDR options exchange.

 Time = T (MN-A and MN-B have an established
 connection with the LMDR option negotiated)
                  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

                           [NO LMDR OPTION]
                MN-A <-----------------------------------> MN-B
       (my_subnet_count  = 5)                  (my_subnet_count  = 3)
       (rem_subnet_count = 3)                  (rem_subnet_count = 5)

                  Time = T+1 (MN-B moves to a new subnet)
                  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 LMDR: CNTR=2 (3-1), ECNT=5
 MN-A <----------------------------------- MN-B
 (my_subnet_count = 5) (my_subnet_count = 2)
 (rem_subnet_count = 3) (rem_subnet_count = 5)

 LMDR: CNTR=5, ECNT=2
 MN-A -------------------------------------> MN-B
 (B Has Moved. Echo back ECNTR=2) (Stop sending LMDR)
 (my_subnet_count = 5) (my_subnet_count = 2)
 (rem_subnet_count = 2) (rem_subnet_count = 5)

 Figure 3

 Each TCP implementation should keep three new variables:
 my_subnet_count, remote_subnet_count, and in_transition. The

Swami, et al. Expires August 5, 2006 [Page 10]

Internet-Draft TCP LMDR Feb 2006

 variables my_subnet_count, and rem_subnet_count store the mobility
 counters for this host and the remote host respectively. The
 variable in_transition is set to one when the Responder receives the
 first LMDR option. The value is reset to zero when the Responder
 receives a packet without the LMDR option set.

 For each packet sent, a host should determine if it has moved to a
 new subnet. If a host determines that it has moved, it SHOULD update
 the value of my_subnet_count as follows: my_subnet_count =
 (my_subnet_count - 1); in_transition = 1; The node that updates this
 value is referred to as Initiator. The Initiator SHOULD send an LMDR
 option for every packet as long as in_transition == 1. The Initiator
 MUST follow the congestion response algorithm described in Section 5.
 The Initiator MUST keep the in_transition value unaltered until it
 receives a packet with ECNT == my_subnet_counter; (i.e., until the
 recent most CNTR value is echoed back by the Responder).

 When a host receives a valid TCP segment (one that meets the sequence
 number and ACK sequence number criteria of RFC 793 [8]), it should
 compare the value of 'CNTR' with the value of 'rem_subnet_counter.'
 If the two values match, the Responder should conclude that the
 Initiator has not moved and MUST NOT update its in_transition
 variable. (Although it MUST echo back the LMDR option. Note that in
 case of simultaneous move it will result in sending the option for
 every subsequent packet. To break this infinite loop, the host with
 largest Initial TCP sequence number should assume the role of
 Initiator.)

 If the two values of remote_subnet_counter and the CNTR in a received
 LMDR option differ, a host can conclude that the other side has
 moved. The host MUST update the variables as follows:
 rem_subnet_count = CNTR; in_transition = 1; After making these
 changes, the host MUST follow the congestion response algorithm as
 described in Section 5. The value of in_transition SHOULD be reset
 to zero when the Responder receives a segment from the Initiator
 without the LMDR option.

 NOTE: In certain network architectures it's possible that a mobile
 (and the associated link technology) have sufficient congestion
 information about the new path. In these cases, a node MAY choose
 not to indicate subnet change information to the sender since there
 is no need to reduce the data rate. However, the mobility
 information MUST be indicated if no such information is available, or
 if the congestion information is not for the entire path (i.e., if
 the congestion information is only for a part of the new path, then
 the Initiator MUST inform about subnet change). It might be possible
 to use the reserved bits in the LMDR option for some advantage in
 such situations, however, this document does not discuss the matter

https://datatracker.ietf.org/doc/html/rfc793

Swami, et al. Expires August 5, 2006 [Page 11]

Internet-Draft TCP LMDR Feb 2006

 further.

Swami, et al. Expires August 5, 2006 [Page 12]

Internet-Draft TCP LMDR Feb 2006

5. Congestion Response After Subnet Change

 The motivations behind a congestion response after subnet change are
 to prevent a large burst of congestion on PATH-2 and to quickly probe
 the path's available capacity. In principle, the congestion control
 state for PATH-2 has the same requirements as that of a new
 connection: The sender should transmit no more than a default initial
 window of data outstanding on the New Path, in order to prevent over-
 congesting it, and the slow-start threshold (SS_THRESH) should be set
 to a large value, to allow for rapid probing of available capacity.
 What makes this slightly more complex is that connections after
 subnet change may have segments in flight from before the subnet
 change. Therefore, after subnet change, congestion control MUST
 ignore any stale ACKs and MUST update the congestion window based
 solely on ACKs for data sent on new path.

 The LMDR congestion response to subnet changes can be described in
 two steps:

 1. When a TCP end-host concludes that there has been a remote subnet
 change, its value of in_transition is set to one (as described
 previously). At this time, it may send INIT_WINDOW worth of data
 on the new path and MUST reset the congestion control state, RTTM
 state, and RTO timer as if this were a new connection [1][9].
 This applies whether the host detects its own subnet change, or
 infers a movement by the other side of the connection via a
 received LMDR option.

 2. For each stale ACK received, a host MUST NOT adjust the
 congestion window and MUST NOT send any new data into the
 network. This behavior should continue until in_transition is
 zero again or there is a timeout. Once in_transition is set to
 zero, the sender should consider any unsacked segments below the
 highest received ACK or SACK as lost, and discount them from the
 segments in flight. The sender MUST use slow-start based loss
 recovery for these segments.

 There are several ways that a host may detect stale ACKs. In the
 simplest case, when the SACK Option is enabled, the host stores the
 highest sequence number of data in its retransmission queue before
 the movement, and uses the sequence number as a marker to determine
 whether the ACKs (and SACK in case of loss) are stale or not. Only
 after the host receives an ACK or SACK greater than the marker value,
 does it increase it's congestion window. A host could use other
 techniques, either independently or in conjunction with different TCP
 options (such as time stamps) to achieve similar results.

 In case no reasonable means is available to disambiguate stale ACKs

Swami, et al. Expires August 5, 2006 [Page 13]

Internet-Draft TCP LMDR Feb 2006

 from new ACKs, a host could use the LMDR option indirectly. For
 example, an LMDR Responder can assume that as long as it continues
 seeing LMDR options on incoming segments, the LMDR Initiator has not
 received an echo of its new counter value. Since the Initiator will
 stop sending the LMDR option after receiving the echoed value, the
 first segment where the Responder stops receiving the LMDR option is
 a good indication that the Responder's packets have completed one
 round trip. This strategy works well if the Initiator and Responder
 don't move simultaneously (i.e., the two sides don't move within an
 RTT duration.)

 When a mobile node moves from a low-speed link to a high-speed link,
 there is a possibility that the packets sent on the new path reach
 the other side before the low-speed queue is cleared. This could
 cause severe packet reordering. Since the LMDR response algorithm
 assumes that out of order packets are lost, in some cases the
 response algorithm might unnecessarily resend data on the new path.
 We believe that this behavior will occur infrequently, given that the
 delay in establishing the new route often takes greater than a round-
 trip time. If a host wants to reduce the possibility of such
 unnecessary retransmission, it MAY wait for one RTT (measured on the
 old path), from the time of movement before increasing its congestion
 window.

Swami, et al. Expires August 5, 2006 [Page 14]

Internet-Draft TCP LMDR Feb 2006

6. Architectural Considerations

 The LMDR technique described in this document does not add any new
 requirements to the network. The LMDR modifications are strictly to
 end-hosts, making them perform properly with regards to congestion
 control, in a way more friendly to the network. LMDR addresses a
 problem created when transparent network layer mobility protocols
 modify lower layers of the protocol stack without considering the
 possible ill-effects for higher layers [10].

Swami, et al. Expires August 5, 2006 [Page 15]

Internet-Draft TCP LMDR Feb 2006

7. Security Considerations

 Use of the LMDR option does not open up a TCP connection to any form
 of abuse not already present in TCP. If an attacker possesses the
 ability to generate segments that would normally appear valid and
 acceptable to a TCP stack, then the attacker might produce a stream
 of LMDR options that could keep a connection in slow-start at the
 initial window. This is probably less serious than other attacks
 such an adversary could perform, however, like resetting the
 connection or injecting data, and a similar effect could be achieved
 without the LMDR option by forging duplicate ACKs that would keep a
 sender in loss recovery. If both sets of IP addresses, port numbers,
 and sequence numbers are guessable for a connection, then the
 connection should use IPSec for protection against spoofed segments.

Swami, et al. Expires August 5, 2006 [Page 16]

Internet-Draft TCP LMDR Feb 2006

8. Acknowledgments

 We would like to thank Lars Eggert, Ilkka Oksanen, Shashikant
 Maheshwari and Mark Allman for their comments and suggestions.

9. References

 [1] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [2] Perkins, C., "Mobility Support for IPv4", RFC 3344,
 August 2002.

 [3] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
 IPv6", RFC 3775, June 2004.

 [4] Nikander, P., Arkko, J., and T. Henderson, "End-Host Mobility
 and Multi-Homing with Host Identity Protocol", Internet Draft
 (work in progress), July 2004.

 [5] Narten, T., Nordmark, V., and W. Simpson, "Neighbor Discover
 for IP Version 6 (IPv6)", RFC 2461, December 1998.

 [6] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002.

 [7] Koodli, R. and C. Perkins, "Fast Handovers and Context
 Transfers in Mobile Networks", ACM Computer Communication
 Review (31) 5, October 2001.

 [8] Postel, J., "Transmission Control Protocol", RFC 793,
 September 1981.

 [9] Paxson, V. and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

 [10] Eddy, W., "At What Layer Does Mobility Belong?", to appear in
 IEEE Communications, 2004.

 [11] Kohler, E., Handley, M., and S. Floyd, "Datagram Congestion
 Control Protocol (DCCP)", Internet Draft (work in progress),
 July 2004.

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3344
https://datatracker.ietf.org/doc/html/rfc3775
https://datatracker.ietf.org/doc/html/rfc2461
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2988

Swami, et al. Expires August 5, 2006 [Page 17]

Internet-Draft TCP LMDR Feb 2006

Authors' Addresses

 Yogesh Prem Swami
 Nokia Research Center, Dallas
 6000 Connection Drive
 Irving, TX 75603
 USA

 Phone: +1 972 374 0669
 Email: yogesh.swami@nokia.com

 Khiem Le
 Nokia Research Center, Dallas
 6000 Connection Drive
 Irving, TX 75603
 USA

 Phone: +1 972 894 4882
 Email: khiem.le@nokia.com

 Wesley M. Eddy
 NASA GRC/Verizon FNS
 NASA Glenn Research Center
 21000 Brookpark Road, MS 54-5
 Cleveland, OH 44135
 USA

 Email: weddy@grc.nasa.gov

Swami, et al. Expires August 5, 2006 [Page 18]

Internet-Draft TCP LMDR Feb 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Swami, et al. Expires August 5, 2006 [Page 19]

