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DCLOR: De-correlated Loss Recovery using SACK option
for spurious timeouts.

Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of [RFC2026].

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress.

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

   A spurious timeout in TCP forces the sender to unnecessarily
   retransmit one complete congestion window of data into the network.
   In addition, TCP uses the rate of arrival of ACKs as the basic
   criterion for congestion control. TCP makes the assumption that the
   rate at which ACKs are received reflects the end-to-end state of the
   network in terms of congestion. But after a spurious-timeout, the
   ACKs don't reflect the end-to-end congestion state of the network,
   but only a part of it. In these cases, the slow-start behavior after
   a timeout can further add to network congestion instead of relieving
   it.

   In this draft we propose changes to the TCP sender (no change is
   needed for TCP receiver) that can be used to solve the problems of
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   both redundant-retransmission and network congestion after a spurious
   timeout. These changes preserve the sanctity of congestion control
   principles and are conservative in nature. The proposed
   algorithm--called DCLOR--separates congestion control from loss
   recovery, and uses the TCP SACK option to achieve this. DCLOR can be
   used as a congestion control algorithm (after a spurious timeout) only,
   and it can work with other spurious timeout detection mechanisms such
   as the Eifel detection scheme.
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1. Introduction

   The response of a TCP sender after a retransmission timeout is
   governed by the underlying assumption that a mid-stream timeout can
   occur only if there is heavy congestion--manifested as packet
   loss--in the network. Even though loss is often caused by congestion,
   the loss recovery algorithm itself should only answer the question of
   "what" data (i.e., what sequence number of data ) to send. While on
   the other hand, the congestion control algorithm should answer the
   question of "how much" data to send. But after a timeout TCP
   addresses the issues of loss recovery and congestion control using a
   single mechanism--send one segment per round trip timeout (RTO)
   (answers the "how much" question) until an acknowledgment is
   received. The single segment sent is always the first unacknowledged
   outstanding packet in the retransmission queue (answers the "what"
   question).  Since the present TCP's loss recovery and congestion
   control algorithms are coupled together, we call this "Correlated
   Loss Recovery (CLOR)."

   Although the assumption that a timeout can occur only if there is
   severe congestion is valid for traditional wire-line networks, it
   does not hold good for some other types of networks--networks where
   packets can be stalled "in the network" for a significant duration
   without being discarded. Typical examples of such networks are
   cellular networks. In cellular networks, the link layer can
   experience a relatively long disruption due to errors, and the link
   layer protocol can keep these packets-in-error buffered as long as
   the link layer disruption lasts.

   In this document we present an alternative approach to loss recovery
   and congestion control that "De-Correlates" Loss Recovery from
   congestion congestion and allows independent choice on using a
   particular TCP sequence number without compromising on the congestion
   control principles of [1][2][3][4]. In doing so, the algorithm
   mitigates the ill effects of spurious retransmission timeouts.
   Spurious timeouts are not only detrimental to the throughput of the
   defaulting connection, but they also add to the overall network
   congestion--paradoxically enough, due to the subsequent slow-start.

   Although several drafts [7][8] have been presented on this topic in
   the IETF, we believe that none of them fully considers all the
   problems associated with spurious timeouts.  In the following section
   we first describe these problems in more detail and then describe the
   DCLOR mechanism in section-4.
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2. Problem Description.

   Let us assume that a TCP sender has sent N packets, p(1) ...  p(N),
   into the network and it's waiting for the ACK of p(1) (Figure-1). Due
   to bad network conditions or some other problem, these packets are
   excessively delayed at some some intermediary node NDN. Unlike
   standard IP routers, the NDN keeps these packets buffered for a
   relatively long period of time until these packets are forwarded to
   their intended recipient.  This excessive delay forces the TCP sender
   to timeout and enter slow start.

   Figure-1

       TCP-Sender         NDN      TCP-Receiver

     ..... |----p(1)------>|           |
       ^   |----p(2)------>|           |
       :   |      .        |           |
    RTT=D  |      .        |           |
       :   |      .        |           |
     ..... |----p(N)------>|           |
           |      ^        |           |
           |      :        |           |
           |     RTO       |           |
           |      :        |           |
           |      V        |----p(1)-->|
       ... |----p1(1)----->|<---a(1)---|...
        L  |               |           |
       ... |<----a(1)------|----p(2)-->|  Inter ACK arrival time (IAT)
           |->p1(2),p1(3)->|<---a(2)---|...
           |      .        |     .     |
           |      .        |     .     |
           |      .        |     .     |
           |               |<---a(N)---|
           |               |---p1(1)-->|
           |               |<---a(N)---|
           |               |           |

   As far as the TCP sender is concerned, a timeout is always
   interpreted as heavy congestion. The TCP sender therefore makes the
   assumption that all packets between p(1) and p(N) were lost in the
   network. To recover from this misconstrued loss, the TCP sender
   retransmits P1(1) ( Px(k) represents the xth retransmission of packet
   with sequence number k), and waits for the ACK a(1).

   After some period of time the network conditions at NDN become
   amicable again, and the queued in packets at NDN are finally
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   dispatched to their intended recipient, to which the the TCP receiver
   generates the ACK a(1). When the TCP sender receives a(1), it's
   fooled into believing that this ACK was generated in response to the
   retransmitted packet p1(1), while in reality a(1) was generated in
   response to the originally transmitted packet p(1). When the sender
   receives a(1), it increases its congestion window to two, and
   retransmits p1(2) and p1(3). As the sender receives more
   acknowledgments, it continues with retransmissions and finally starts
   sending new data.

   The following two subsections examine the problems associated with
   the above-mentioned TCP behavior.

2.1 Redundant Data Retransmission

   The obvious and relatively easy-to-solve inefficiency of the above
   algorithm is that the entire congestion window worth of data is
   unnecessarily retransmitted. Although such retransmissions are
   harmless to high-bandwidth, well-provisioned, backbone links (so long
   they are infrequent), it could severely degrade the performance of
   slow links.

   In cases where bandwidth is a commodity at a premium, (e.g., cellular
   networks), unnecessary retransmission can also be costly.

2.2 Can Slow Start add to Congestion after Spurious Timeout

   Paradoxically, slow start--the epitome of congestion control--can
   itself add to network congestion after a spurious timeout. Going back
   to the previous example, when the TCP sender receives a(1), it
   falsely assumes that a(1) was triggered by p1(1). But in reality,
   a(1) was triggered by p(1), not p1(1).  This ambiguity exits because
   of the cumulative acknowledgment property of TCP. In this case, if
   the TCP sender were to take RTT samples (which it does not take
   because of ACK ambiguity), it would register a value of L (Figure-1)
   instead of D--the RTT. In addition to this, when the TCP sender sends
   a1(2) and a1(3), it will receive the ACK for a1(2) and a1(3) right
   after the inter ACK arrival time IAT. Then-after, the TCP sender will
   keep increasing the data rate every IAT as new ACKs arrive.
   Mathematically, one can show that after a spurious timeout, the rate
   at which data is injected in to the network is given by 1. But if we
   want to preserve the network probing capability [2] of a TCP sender,
   then the rate should be given by (2).

           r(t) = 2*ceil(t-t0/IAT)         ... (1)

           r(t) = 2^ceil(t-t0/D)           ... (2)
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   Where t>t0, and t0 is the time when first ACK after spurious timeout
   is received, and IAT and D are related by (3)

               IAT <= D/N                  ... (3)

   (N is the flight size at the time of spurious timeout).

   Figure-2
                      C(1) C(2)... C(M)
                        |  |   ... |
                        |  |   ... |
                        |  |   ... |
                        V  V   ... V
                        \  \      /
                         \  \    /
                          \  \  /
                    +------X--X--X---+       +------------------+
        Defaulting  |                |       |                  |
   C(0) ----------->|   Bottleneck   |------>|Buffered packets  |--->
        connection  |   router       |       |                  |
                    +-----X--X----X--+       +------------------+
                          |  |    |
                          |  |    |
                        c(1)c(2) C(M)

   We now compute the worst-case packet loss due to this data burst.
   After the timeout, the TCP sender will set its SS_THRESH to N/2
   (packets-in-flight/2). Therefore, for the first N/2 ACKs received
   (i.e., ACK a(1) to a(N/2) ), the TCP sender will grow its congestion
   window by one and reach the SS_THRESH value of N/2.  For each ACK
   received, the TCP sender also sends 2 packets.  Therefore by the end
   of the slow start, the TCP sender would have sent 2*(N/2) packets
   into the network. For the remaining N/2 ACKs (i.e., ACKs between
   a(N/2+1) to a(N)) the TCP sender will remain in the congestion
   avoidance phase and send one packet for each ACK received--sending
   N/2 more data segments. The net amount of data sent is therefore N/2
   + N = 3N/2 . Please note that the entire 3N/2 packets are injected
   into the network within a time period less than or equal to RTT. The
   number of data segments that left the network during this time is
   only N. Therefore, there is a high probability that N/2 packets out
   of 3N/2 packets will be lost. These N/2 lost packets, however, need
   not come from the same connection, and such a data-burst will
   unnecessarily penalize all the competing TCP connections that share
   the same bottleneck router.
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   Going further ahead, let us assume there are M competing TCP
   connections that share the same bottleneck router as the defaulting
   connection C(0) does (Figure-2). During the period of time while C(0)
   is stalled, the TCP sender of C(0) does not use its network
   resources--the buffer space--on the bottleneck router(s). The
   competing connections, C(1) ... C(M), however see this lack of
   activity as resource availability and start growing their window by
   at least one segment per RTT during this time period (by virtue of
   linear window increase during congestion avoidance phase).  If, for
   simplicity  reasons, we assume that each of these TCP connections has
   the same round trip time of RTT, and if the idle time for C(0) is
    k*RTT, (where k > RTO/RTT) then each of these competing connections
   will increase their congestion window by k segments. Therefore the
   amount of packets lost in the network due to slow start can be as
   high as:

                   N/2 + M*k       ... (4)

   where the first term is the packet loss due to slow start, while the
   second term is the loss due to window growth of completing
   connections.

   Please note that even if a TCP sender restores its congestion window
   [7](or halves [8] it) to avoid slow start and redundant
   retransmission, it still cannot avoid the loss of M*k segments (M*k-
   N/2 segments in case the window was halved) that were added in the
   network because of sender's inactivity. Since a TCP sender does not
   know the number of connections it's competing with, or the time
   duration for which packets could be stalled in the network, the
   number of segments lost due to spurious timeout could be large.

   In the following sections we describe an algorithm that solves the
   problem of both redundant retransmission and packet loss after a
   spurious timeout.

3. Sources of spurious timeout

   Since the response algorithm after a timeout depends on the event
   that triggered it, it is important to know the factors that can cause
   such timeouts (in addition to the timeouts caused by congestion.) The
   following list enumerates few broad categories of events that can
   cause spurious timeouts in TCP.

3.1 Spurious timeout due to Excessive delay at a router

   Many link layer technologies have their own loss recovery schemes
   that use link layer feedback mechanisms to recover bit losses. These
   loss recovery schemes are often unaware of the transport layer loss
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   recovery schemes. Therefore, if there is burst of error at the link
   layer, the TCP sender may timeout because of
    the loss recovery scheme used by the link layers.

3.2 Spurious timeout due to change of subnets

   A TCP receiver or sender may change subnets due to sender or receiver
   mobility (Figure-3). While the change of subnets is taking place, a
   router may keep the data packets buffered until a new route is
   established (i.e., until Path-3 and Path-2 are established in
   Figure-3).  Since establishing a new route can take a long time, a
   TCP sender may timeout.

   Figure-3
                    <.... Path of new data and ACK. ...>
                                   Path-2
                               +----------->     After
       +-------------+         |     ^       Subnet Change
       |             +---------+     .
       | TCP Sender  |               .Path-3
       |             +---------+     .
       +-------------+         |     .
                               +----------->    Before
                                   Path-1    Subnet Change

   Once the new path is established, the router may forward all data
   packets to the TCP receiver using Path-3. However, the ACKs triggered
   by these packets will reach the TCP sender using Path-2. In addition,
   the TCP sender will send new data in response to these ACKs on
   Path-2.

   When there is a change of subnets, the entire end-to-end path between
   the sender and receiver might change completely (for example, Path-1
   and Path-2 may not have any common routers between then). A complete
   change in the end-to-end path may take place, for example, if a TCP
   receiver uses Mobile-IPv6 with route optimization to move from one
   subnet to another.  Since the TCP connection does not have any
   information about the BDP on new path (Path-2), the TCP connection
   should start with a window size same as the window size of a new
   connection, i.e., with a size of two.

   Please note that of all possible reasons for spurious timeout, a
   change in subnets has maximum impact on network congestion. Since the
   BDP on a new path could be tens of orders of magnitude higher or
   lower than the BDP on an old path, an inappropriate congestion
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   control scheme could severely add to network congestion on the new
   path (Path-2). For example, let us assume there are 100 TCP
   connections sharing the same bottleneck router. Let's also assume
   that the average number of subnet change per second per TCP receiver
   is 1/50, and the average congestion window for each TCP connection at
   the time of spurious timeout is 5 segments. Then in the worst case,
   the network may drop as many as (1/50)*(5/2)*100 = 20 segments every
   second if the congestion window is restored as done in [7].

3.3 Spurious Timeout due to Protocol Inefficiencies

   A TCP sender may timeout because of inherent protocol inefficiencies
   in TCP. For example, a spurious timeout may occur if
    multiple packets are lost and fast-retransmit/fast-recovery
   algorithms could not recover the lost packets within an RTO. A
   spurious timeout may also occur if there are so few packets injected
   into the network that in case of a packet loss the receiver cannot
   generate 3 duplicate ACKs.

4. De-correlated Loss Recovery (DCLOR)

   De-correlated loss recovery tries to remedy the problems described in
   Section-2 by separating congestion control from loss recovery
   mechanism. In doing so, we make the decision of "which packets to
   send" independent from "how much" data to send. In addition to this,
   the rate at which data is injected into the network preserves the
   conservation control principles as described in [1][2][3].

   The basic idea behind DCLOR is to send a new data segment from
   outside the sender's retransmission queue--the queue of
   unacknowledged data segments--and wait for the ACK or SACK of the new
   data before initiating the response algorithm. Unlike slow-start
   where the response algorithm starts immediately after receiving the
   first ACK, DCLOR waits for the ACK/SACK of the new data sent after
   timeout before initiating loss recovery. The SACK block for new data
   contains sufficient information to determine all the packets that
   were lost into the network. Once the sequence number of lost packets
   is determined, the TCP sender grows its congestion window as in case
   of slow-start, but only tries to recover those segments that were
   lost in the network. This not only allows the TCP sender to avoid the
   go-back-N problem, but also prevents superfluous congestion window
   growth as seen with slow-start (section-2.2).

   Before describing the algorithm itself, we fist enumerate the
   underlying design philosophy behind DCLOR as it can give more insight
   into the workings of the algorithm:

     1. A spurious timeout should not degrade the performance of
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        other TCP connections sharing the same network path. As pointed
        out in Section-2, the slow-start subsequent to spurious timeout
        not only affects the performance of the defaulting connections,
        but it can also confer data-loss on other competing connections.

     2. Congestion control decisions should be made independent of the
        loss recovery decision. In other words, the congestion control
        algorithm should only determines the amount of data to be
        injected into the network, while the loss recovery algorithm
        should determine the sequence number of data to be recovered.

     3. Since the state of the network can change dramatically
        after a long interruption--long with respect to
        RTT--(Section-3), the response algorithm after a timeout should
        be conservative in the amount of data injected into the network
        after a timeout.  This avoids packet loss (and congestion) due
        to inappropriately inflated congestion window after spurious
        timeouts (Section-2.2)

     4. The TCP sender's estimate of network capacity--the
        SS_THRESH--should be updated if and only if packets are lost in
        the network. A spurious timeout without packet loss should not
        affect the SS_THRESH since SS_THRESH is a measure of the
        network's buffering capacity and there is no need to updated it
        unless packet loss is detected.

     5. If there is packet loss in addition to packet stalling, all
        the lost packets within that window should be recovered without
        any need for future timeouts. In other words, the algorithm
        should not require the TCP sender to timeout again due to
        protocol limitations.

   We now describe the algorithm in more detail, keeping the above
   mentioned points in mind. Please see Figure-4 for certain parameters.

4.1  Probe phase after a timeout

   The following steps describe the response of a TCP sender on a
   timeout:

     1. If the timeout occurs before the 3 way handshake is complete,
         the TCP sender's behavior is unchanged,

     2. After a timeout, the TCP sender MUST set its congestion window
        to ZERO (CWND = 0), and keep the number of outstanding packets
        (N)into a state variable for future use (step-9). The value of
        SS_THRESH MUST be left UNCHANGED at this point.
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     3. The TCP sender SHOULD also reset all the SACK tag bits in its
        retransmission queue (essentially renege all the SACK
        information in accordance with the recommendation in [5]. Please
        also see Section-6 on SACK reneging for more information.)

     4. Instead of sending the first unacknowledged packet P1
        after a timeout, the TCP sender disregards its congestion window
        and sends ONE NEW MSS size data packet Pn+1.

        Figure-4                .
                                . DCLOR:
                                . a) At timeout send Pn+1 in stead of P1;
                                .    store SS_PTR=seq-num(Pn+1);set CWND=0
        <.....CWND.....>        . b) Don't update CWND for ACK/SACK <= SS_PTR
        +--+--+-...-+--+----+   . c) Once ACK/SACK > SS_PTR is  received
        |P1|P2|     |Pn|Pn+1|   .    Update SS_THRESH if SACK received
        +--+--+-...-+--+----+   . d) Update lost-packet information
                       ^        . e) set CWND=2 and start loss-recovery/
                       |        .    start sending new data in case pure ACK
                    SS_PTR      .    greater than SS_PTR is received.

        TCP Sender's Retransmission
                Queue

        The TCP sender also stores the sequence number of this new data
        packet in a new state variable called SS_PTR (for slow start
        pointer).

        If the sender does not have any new data outside its
        retransmission queue, or if the receiver's flow control window
        cannot sustain any new data, the TCP sender should send the
        highest sequence numbered MSS sized data chunk from its
        retransmission queue (i.e., it should send the last packet from
        its retransmission queue).

   The idea behind sending one packet on a timeout is to probe the
   network and determine if the network is congested. However, from the
   network point of view it does not matter what the sequence number of
   data sent was. What matters is the "amount" of data sent into the
   network. Therefore, sending a new packet from outside the
   retransmission queue has the same affect as sending an old packet.
   Therefore this behavior is in accordance with the TCP congestion
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   control and avoidance mechanisms described in [1].

     5. A TCP sender MUST repeat step-2 until it enters the
        Timeout-Recovery state as described in step 6.

4.2 Congestion Control After the probe phase

     6. After the timeout, for each ACK received with the ACK-sequence
        number less than SS_PTR, the packet ACKed is removed from the
        retransmission queue. If the ACK contains a new SACK block, then
        the SACK tag is set in the corresponding data packet. However,
        no data is sent for these ACKs.

     7. The TCP sender MUST NOT update its congestion window from a
        value of ZERO until an ACK-sequence number greater than SS_PTR,
        or a SACK block containing SS_PTR is received. In other words,
        until the ACK-sequence for Pn+1 is received or a SACK block
        containing information about Pn+1 is received, NO new data
        segments (i.e., segments Pn+2 ...,) are added into the network.
        This allows the TCP sender to discard all the "stale ACKs"--the
        ACKs that are generated for stalled packets--and prevents
        superfluous growth of congestion window.

        The TCP sender MUST NOT take RTT samples for stale-ACKs. The
        SACK information present in stale-ACKs SHOULD be however used to
        put SACK tags on the retransmission queue. A TCP sender MAY
        reset its retransmission timer with every stale ACK received.

        If the sender receives a SACK block containing SS_PTR, i.e., if
        there is a packet loss in the stalled window, it SHOULD go to
        step-8.

        If the sender receives an ACK that acknowledges SS_PTR, i.e., if
        no packets were lost from the stalled window, it SHOULD go to
        step-10.

   The rationale for not sending any data segment for stale ACKs is to
   minimize congestion after a timeout. Since the duration of packet
   stalling could be large, the congestion state of the network could
   have change dramatically. Therefore, not using the stale ACKs to send
   data allows the TCP sender to recompute its congestion state from
   scratch and also minimizes packet loss.

NOTE-1: In our experiments, we have tried sending new data for
   stale ACKs in the spirit of reverting the congestion window as
   described in [7]. We have also tried setting the congestion window to
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   half the packets-in-flight (pipe) as described in [8]. But we have
   found that not sending any new data, as described above, is the best
   scheme whenever there are multiple competing connections in the
   system. The results of these experiments, along with the experimental
   setup, are listed in Appendix-1.

   If a TCP sender has not received any ACK within an RTT, sending more
   than a few data segments (>4) will add to network congestion in one
   form or the other (in varying degrees) and the overall performance of
   the system as a whole degrades--on an average. In addition, the DCLOR
   scheme works well in case of subnet change where there could be
   orders of magnitude difference in BDP. DCLOR also has minimal effect
   on other competing connections.

   Based on our experiments, we do not recommend sending new data for
   stale ACKs, but it's possible to deploy a variety of congestion
   control schemes with the DCLOR framework. For example, a TCP sender
   on the reception of an old ACK MAY revert (or halve) its congestion
   window to the old value of packets-in-flight (pipe) and MAY send new
   data depending upon the congestion window. But the TCP sender SHOULD
   initiate its loss recovery ONLY after SS_PTR has been ACKed or
   SACKed. In other words, if the TCP sender receives duplicate ACKs
   with ACK-sequence number less than SS_PTR, it SHOULD NOT use these
   duplicate ACKs to initiate Fast-Retransmit and Fast-Recovery. The
   loss recovery SHOULD be initiated only after ACK/SACK for SS_PTR is
   received. After that the sender should follow the same steps as
   described in step-8, step-9, and step-10 (with a different congestion
   window of course).

NOTE-2: For the congestion response of DCLOR, we have also considered
   adaptive update of congestion window after each timeout. In this
   scheme a TCP sender reduces its congestion window by a factor of 2
   for every RTO period of inactivity. The SS_THRESH is not updated
   until a loss is detected. At the time of this writing we are still
   experimenting with the usefulness of such a scheme.  However, such a
   scheme is not well suited for spurious timeouts caused by change
   of subnets as described in Section-3.2.

4.3 Timeout-Recovery: recovering lost packets after timeout

     8. The TCP sender traverses the retransmission queue and marks
        all the packets without any SACK tag as lost. The TCP sender
        also updates its packets-in-flight (pipe) based on the SACK tags
        and the lost segment information (the packets-in-flight (pipe)
        should be ZERO after the update).

   Please note that unlike Fast-Retransmit and Fast-recovery, DCLOR uses
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   only one SACK block containing SS_PTR to mark packets as lost.  This
   is because we do not expect packet reordering to exist over the
   period of RTO.

     9. The TCP sender updates its SS_THRESH, as following:

           SS_THRESH=packets-in-flight (pipe) at the time of timeout / 2

        Please note that the TCP sender stored the value of packets-in-
        flight at the time of timeout in step-2.

    10. The TCP sender sets its congestion window to 2. If packets
        were lost into the network (i.e., if a SACK for SS_PTR was
        received), the TCP sender should start by sending the least
        sequence number packets, else it should continue by sending new
        data.

   Please note that with a pure ACK acknowledging SS_PTR, the TCP sender
   does not update the SS_THRESH value (it directly enters step-10 from
   step-7). This prevents a TCP sender from setting its SS_THRESH to a
   very small value if the spurious timeout occurs at the start of the
   connection.

   The rationale behind not updating the SS_THRESH if no loss is
   detected is that SS_THRESH represents the sender's estimate of
   network capacity--the BDP. Unless a loss is detected, there is no
   reason to update the value of BDP.

5. Data Delivery To Upper Layers

   If a TCP sender loses its entire congestion window worth of data due
   to congestion, sending new data after timeout prevents a TCP receiver
   from forwarding the new data to the upper layers immediately.
   However, once the SACK for this new data is received, the TCP sender
   will send the first lost segment. This essentially means that data
   delivery to the upper layers could be delayed by ONE RTT when all the
   packets are lost in the network.

   This, however, does not affect the throughput of the connection in
   any way. If a timeout has occurred, then the data delivery to the
   upper layers has already been excessively delayed.  Delaying it by
   another round trip is not a serious problem.  Please note that
   reliability and timeliness are two conflicting issues and one cannot
   gain on one without sacrificing something else on the other.
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6. Sack Reneging

   The TCP SACK information is meant to be advisory, and a TCP receiver
   is allowed--though strongly discouraged--to discard data blocks the
   receiver has already SACKed[5]. Please note however that even if the
   TCP sender discards the data block it received, it MUST still send
   the SACK block for at least the recent most data received. Therefore
   in spite of SACK reneging, DCLOR will work without any deadlocks.

   A SACK implementation is also allowed not to send a SACK block even
   though the TCP sender and receiver might have agreed to SACK-
   Permitted option at the start of the connection. In these cases,
   however, if the receiver sends one SACK block, it must send SACK
   blocks for the rest of the connection. Because of the above mentioned
   leniency in implementation, its possible that a TCP receiver may
   agree on SACK-Permitted option, and yet not send any SACK blocks. To
   make DCLOR robust under these circumstances, DCLOR SHOULD NOT be
   invoked unless the sender has seen at least one SACK block before
   timeout. We, however, believe that once the SACK-Permitted option is
   accepted, the TCP sender MUST send a SACK block--even though that
   block might finally be discarded.  Otherwise, the SACK-Permitted
   option is completely redundant and serves little purpose. To the best
   of our knowledge, almost all SACK implementations send a SACK block
   if they have accepted the SACK-Permitted option.

7. DCLOR Examples

   We now demonstrate the working of DCLOR with a few concrete examples.
   We first take the case in which the timeout is caused due to
   congestion. We then consider the case, in which all the packets are
   stalled in the network but there is no packet loss.  Finally, we take
   the example in which packets are both lost and stalled at the same
   time.

   In all these examples, the TCP sender has 20 MSS packets in flight
   (pipe) at the time when timeout occurs and each packet is denoted by
   P(i) (please note that we are using packet numbers instead of TCP
   sequence numbers to make the presentation simple. The example can be
   modified to take TCP sequence numbers into account too.) An ACK is
   denoted by A(i)[x,y][z,w], where i is the highest packet number
   acknowledged, and the ordered pair [x,y] and [z,w] represent the sack
   blocks present in that ACK (please note that i < x,y,z,w and its
   possible that x=y if just one packet is being sacked.)

7.1 Timeout due to congestion.

   In this case, we assume that all packets P(1) to P(20) are lost into
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   the network. The following time-line shows the sequence of events:

           TCP Sender      Network        TCP Receiver
           ----------      -------        -----------
               P(1)-----------X        (Highest In-order seq = 0)
                .
                .     LOST IN NETWORK
                .   DUE TO CONGESTION
              P(20)-----------X
                ^
                :
               RTO
                :
                V
    preserve old_pkt_in_flight (pipe) = 20
        send   P(21)-------------------------> rec P(21)
    set SS_PTR = 21
        rcv A(0)[21,21] <-------------------- send A(0)[21, 21]

    Since SACK contains SS_PTR ==>
    Tag P(1) to P(20) as Lost
    Tag P(21) as SACKED
    Update pkt_in_flight (pipe) = 21 - 20 -1 = 0
    Since SACK=21 was received therefore
    set SS_THRESH to old_pkt_in_flight/2 = 10
    set CWND = 2
    Restart RTO-timer

        Send P(1)--------------------------->
        Send P(2)--------------------------->

7.2 Timeout due to pure packet stalling.

   In this case, we assume that all the packets P(1) to P(20) are
   stalled in the network. The following time-line shows the sequence of
   events:

           TCP Sender      Network        TCP Receiver
           ----------      -------        -----------
               P(1)-----------+        (Highest In-order seq = 0)
                .             |
                .             |
              P(20)-----------+
                ^             |
               RTO            |
                V             | Packets delayed
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    old_pkt_in_flight (pipe) = 20    |
        send   P(21)----------+
        set SS_PTR = 21       |
        CWND=0                +--------------> rec P(1)
        rcv A(1) <---------------------------- send A(1)
    SS_PTR > A(1)=>           |
    no change in CWND = 0     .
    Remove P(1) from          .
    retransmission queue      .
    No timer sample taken     .
                              +--------------> rec P(i) {1<i<21}
        rcv A(i) <---------------------------- send A(i)
    SS_PTR > A(i) ==>         |
    no change in CWND = 0     |
    Remove P(i) from          |
    retransmission queue      .
    No timer sample taken     .
                              +---------------> rec P(21)
        rcv A(21) <---------------------------- send A(21)
    SS_PTR = A(21) ==>
    pure ACK received
    Remove P(21) from retransmission queue
    Update pkt_in_flight (pipe) = 0
    Since Pure ACK was received therefore
    SS_THRESH remains unchanged.
    set CWND = 2
    Restart RTO-timer
        Send P(22)--------------------------->
        Send P(23)--------------------------->

7.3 Comprehensive Scenario: Timeout due to stalling and loss.

   Building upon the previous two example, we now assume that in
   addition to data stalling, P(10) was lost into the network.

   The following time-line shows the sequence of events:

           TCP Sender      Network        TCP Receiver
           ----------      -------        -----------
               P(1)-------------+      (Highest In-order seq = 0)
                .               |
              P(10)----X Lost   |
                .               |
              P(20)-------------+
                ^               |
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               RTO              |
                V               | Packets delayed
    old_pkt_in_flight (pipe) = 20      |
        send   P(21)------------+
        set SS_PTR = 21         |
        CWND=0                  +--------------> rec P(1)
        rcv A(1) <-----------------------------  send A(1)
    SS_PTR > A(1)=>             |
    no change in CWND = 0       .
    Remove P(1) from            .
    retransmission queue        .
    No RTT sample taken         .  {1<i<10}
                                +--------------> rec P(i)
        rcv A(i) <---------------------------- send A(i)
    SS_PTR > A(i) ==>           |
    no change in CWND = 0       |
    Remove P(i) from            |
    retransmission queue        .
    No RTT sample taken         .    {10<j<21}
                                +---------------> rec P(j)
        rcv A(9)[11,j] <------------------------  send A(9)[11,j]
    SS_PTR > A(9) and           |
    SS_PTR outside A[11,j]==>   |
    Tag P(j) as SACKED          |
    NO change in CWND=0         +---------------> rec P(21)

        rcv A(21) <---------------------------- send A(9)[11,21]
    Since SS_PTR = 21 ==>
    Tag P(10) as Lost
    Update pkt_in_flight (pipe) = 11-10-1
    (Note, P(1) ... P(9) are already removed
    from the retransmission queue)
    Since a SACK was received therefore
    set SS_THRESH=20/2 = 10
    set CWND = 2
    Restart RTO-timer
      recover the lost packet first
        Send P(10)--------------------------->
        Send P(22)--------------------------->

8. Security Considerations

   No new security threats are introduced by the use of DCLOR.
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                               Appendix - 1

   In this section we provide information on our test setup and provide
   test results for comparison of DCLOR with Standard TCP, Eifel, and
   FRTO schemes.

App-1: Testing Methodology

   Please see Figure-5 for the test setup. The TCP sender and TCP
   receiver are connected through an intermediary "spurious timeout and
   network impairment simulator (STIS)," that simulates packet delay and
   certain network impairments.  The STIS is capable of reading all TCP
   packets received on any of its interfaces. It is capable of
   processing packets coming from multiple TCP connections. Each TCP
   packet is then subjected to a series of network impairments that are
   expected to be present in a typical IP network. The specifics of
   these impairments along with the model used to simulate them is
   enumerated below:

   Figure-5

       +---------------+    +--------------------+   +---------------+
       | TCP Sender    |    | Spurious timeout & |   |               |
       |               +----+ network impairment +---+ TCP Receiver  |
       | Linux-2.5.40  |    |  simulator         |   |               |
       +---------------+    +--------------------+   +---------------+
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     1. Bottleneck Router

        The STIS is capable of simulating a bottleneck router on the
        end-to-end path of a TCP connection. For TCP, a bottleneck
        router is one that has the minimum ratio for the buffer-space to
        difference in link speed on the end-to-end path (i.e., if b(i)
        represents the buffer space of router i, and a(i) and d(i) be
        the incoming and the outgoing link speed of the router for a
        particular TCP connection, then the bottle neck router for such
        a connection is one that has min{ b(i)/[d(i)-a(i)]} for all
        routers i on the end-to-end path of the TCP connection).

        The bottleneck router is simulated by specifying a buffer space
        and the outgoing link speed (the arrival rate in our simulation
        was fixed by the link speed of the interface on which the packet
        arrived. This speed was a fixed value of 10Mbps).  In order to
        simulate outgoing link, the STIS enqueues each TCP packet and
        schedules them based on the queuing delay  and link-delay
        (service time) of packets in the queue (please see item-2 for
        more details). A packet received on any of the interfaces is
        processed only if the total bytes of enqueued data in the router
        is less than the specified buffer space.  A packet is dropped if
        the buffer space is full. Please note that the buffer space is
        allocated for and shared by all possible TCP connections going
        through STIS.

     2. Link Speed Simulation

        Although each TCP connection shares the same buffer space, each
        TCP connection has its own logical queue for each direction.
        The departure time of a new packet is computed by addition the
        link delay (packet-size / outgoing-link-speed) of the new packet
        to the queuing delay of all packets ahead of it. A TCP sender is
        scheduled on the appropriate interface once its departure time
        expires.

     3. Fixed Network Delay

        The wired-network delay seen by individual packets is the sum of
        the queuing delay and link delay of each packet on individual
        routers. If we assume that the number of routers are infinitely
        many on the end-to-end path, and if the variance of the delay is
        bounded (which is the case with finite queue sizes), then by the
        law of large numbers, the delay seen by each packet will be a
        constant. Although there are not infinitely many routers in the
        real networks, to make our model simple we assume that the delay
        added to each packet on the end-to-end path is a constant. This
        delay is added in addition to the queuing delay incurred due to
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        link speed simulation. (Please note that fixed network delay
        tries to capture the queuing delay on the high speed link, while
        the delay incurred due to link speed simulation is the delay due
        to a last hop slow link.)

        The fixed network delay is simulated by adding a fixed delay to
        the departure time of each packet.

     4. Prolonged packet stalling

        In addition to the delay models described above, the STIS also
        simulates prolonged packet stalling in the network.  Although
        the end result of packet stalling is a delay spike, we do not
        simply add a long delay burst to achieve packet stalling rather
        use the Markov model shown in Figure-6. (This model is based on
        the two different kinds of delay spikes seen in many cellular-
        networks.)

        Every second a random number r (<1) is generated(lets say the
        random number is generated at time T) for each TCP connection
        and compared with p1 and p2. If r is less than p1 or P2 a state
        transition is made into state-2 or state-3.  When a TCP
        connection is in state-2 or state-3, each packet arriving in the
        time interval T and T+D (where D = d1 or d2 depending upon the
        state), is treated as if it arrived at time T+D. By altering the
        arrival time of each packet, this model simulates packet
        stalling in the network.

   Figure-6

                                   p=1-p1-p2
                                    +------+
                                    \     /
                               +----+-----V-----+
               p=1             | No Delay Spike |
              +--------------->|   (state-1)    |<--------------+
              |                +--+--------+----+               |
              |                   |        |                    |p=1
              |       +-----------+        +--------------+     |
              |       |  p=p1                         p=p2|     |
       +------+-------V-------+                      +----V-----+--------+
       | Moderate delay spike |                      | Large delay spike |
       |   delay=d1(state-2)  |                      | delay=d2(state-2) |
       +----------------------+                      +-------------------+
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        Please note that in a real network, when packet stalling
        occurs--for whatever reason--all packets remain queued in the
        network until the packets can be forwarded again. Therefore the
        effect of packet stalling is different from adding a long burst
        of delay to a few of the packets. Please note that with such a
        model, the delay incurred by individual packets will not be the
        same.

        Please also note that the state transitions are based on time.
        Therefore the STIS will keep entering state-2 and state-3
        whether or not there are any TCP packets to be forwarded.

     5. Packet Reordering

        Since the Internet is known to reorder 12% of the packets (this
        study was done by Vern Paxson of UC Berkeley) on the end-to-end
        path, we try to simulate this behavior in our simulations. To
        simulate packet reordering we try to emulate the network
        behavior that creates packet reordering--that is we try to
        emulate router failure or load balancing to achieve packet
        reordering.

        A router failure is modeled using a two state Markov model, in
        which transition from state to another means a route failure. In
        each of the different states, the TCP connection incurs a
        different fixed network delay as described above in item-2.
        This model is based on the assumption that when a route failure
        takes place, the delay on new path is different from the delay
        on the old path.

App-2: Test setup, parameters, and Results

   Based on the model described above, the STIS uses following
   parameters for testing.

Table-1: STIS parameters

     +---------------------------------------+------------------+
     | Parameter Name                        | Parameter Value  |
     +---------------------------------------+------------------+
     | Path MTU                              |       1500 Bytes |
     | Bottleneck Router's Capacity          |        74K Bytes |
     | Outgoing link data rate               |    50 K Bits/sec |
     | Fixed Network Delay (one way)         |           200 ms |
     | Pkt Stalling delay in state-2 (d1)    |            5 sec |
     | Pkt Stalling delay in state-3 (d2)    |            8 sec |
     | Pkt Stalling prob to state-2 (p1)     |    0.05  per-sec |
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     | Pkt Stalling prob to state-3 (p2)     |    0.005 per-sec |
     | Pkt reordering probability            |             0.12 |
     | Pkt reordering delay                  |            20 ms |
     +---------------------------------------+------------------+

   On the TCP receiver, multiple TCP receiver processes simultaneously
   run and try to download files of different sizes--each connection
   competing to download a file of given size. In addition, each process
   waits for a random time interval and iterates  over and over again to
   download the same file.  The following table shows the traffic mix
   used for our experiments.

Table-2: Traffic Mix

     +---------------+------------------+--------------+
     | File Size     | # simultaneous   | # iterations |
     |   (KB)        |  connections     |              |
     +---------------+------------------+--------------+
     |           5   |               6  |         2000 |
     |          10   |               5  |         1000 |
     |         100   |               5  |          100 |
     |        1000   |               3  |           10 |
     |       10000   |               1  |            1 |
     +---------------+------------------+--------------+

   Based on the STIS parameters and traffic mix, the cumulative
   probability distribution of download time, i.e., the plot of number
   of points with a download time of less than a give time duration in
   the above experiment, for each file size was generated (because of
   proper format for representing these plots, we are unable to include
   these plots in this document.  We can provide this plot on request.)

   Tables 3,4,and 5 show the mean and variance (in second) for
   downloading different file sizes using DCLOR, EIFEL, FRTO, and
   Standard TCP. Please note that not every connection was subjected to
   a spurious timeout, and therefore the mean value alone is not a good
   measure of performance. The variance captures the impact of such
   spurious timeouts (the probability distribution is the best
   representation of how individual schemes perform for different
   download time range). As can be seen from the following table, Eifel
   has a large variance because of restoring the window. Please note
   that the variance for standard TCP is less than Eifel, or Frto,
   because the first N packets in case of standard TCP are redundant,
   and therefore even if they are lost due to error burst, the
   defaulting connection does not incur a very severe penalty and
   therefore the variance is small.  But for Eifel and FRTO, the N
   packets after spurious timeout are new and therefore loss of these
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   packets has a huge impact on the variance.

Table-3: Download Time Statistics for 5K files

     +---------+--------+-------+--------+-------+
     | (sec)   |  DCLOR | EIFEL |STD_TCP | FRTO  |
     +---------+--------+-------+--------+-------+
     |Mean     | 2.3869 | 2.4162| 2.3962 | 2.4049|
     |Variance | 3.2473 |10.2579| 3.2164 | 4.0466|
     +---------+--------+-------+--------+-------+

Table-4: Download Time Statistics for 10K files

     +---------+-------+--------+--------+------+
     | (sec)   | DCLOR |  EIFEL |STD_TCP | FRTO |
     +---------+-------+--------+--------+------+
     |Mean     |3.4547 | 4.0560 | 3.7314 |3.7317|
     |Variance |4.7452 |19.7828 | 7.6378 |8.4576|
     +---------+-------+--------+--------+------+

Table-5: Download Time Statistics for 100K files

     +---------+---------+---------+---------+---------+
     | (sec)   | DCLOR   | EIFEL   | STD_TCP |  FRTO   |
     +---------+---------+---------+---------+---------+
     |Mean     | 24.6297 | 26.1017 | 26.7425 | 25.5325 |
     |Variance | 66.0804 | 98.4933 | 98.9363 | 78.1667 |
     +---------+---------+---------+---------+---------+

   In addition to the mean and variance of download times, we also
   calculated the "spectral efficiency" of the system.  The spectral
   efficiency was computed as:

               (redundant_bytes_received)
         SE= --------------------------------
                  mean(cwnd)*MSS

   The spectral efficiency is a measure of usefulness of a particular
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   scheme in terms of fraction of extra bytes sent due to spurious
   timeout for every byte sent into the network. The smaller this number
   is, the better the scheme is.  The numerator is the amount of
   unnecessary data, while the denominator is the average network
   capacity experienced by the connection. Since some schemes (Eifel for
   example) requires more TCP options, the MSS was used instead of MTU
   in the denominator.  Table-5 shows these results for all the four
   different TCP implementations. Please note that FRTO behaves like
   standard TCP if there is no new data to send or if the congestion
   window is as big as flow control window. This is one of the reasons
   why FRTO performance is worse than Eifel or DCLOR.

Table-6: Spectral Efficiency

     +-----------+----------+----------+----------+----------+
     | File Size |   DCLOR  |  EIFEL   | STD_TCP  |  FRTO    |
     |           |(MSS=1460)|  (1448)  |  (1460)  | (1460)   |
     +-----------+----------+----------+----------+----------+
     |     5K    | 0.004042 | 0.004454 | 0.092714 | 0.071336 |
     |    10k    | 0.005249 | 0.012293 | 0.078977 | 0.052581 |
     |   100k    | 0.017124 | 0.036748 | 0.624361 | 0.079285 |
     +-----------+----------+----------+----------+----------+

   The DCLOR algorithm for all these tests cases were implemented
   in the Linux Kernel-2.5.40 (the source code for DCLOR
   could be provided on request). The same kernel version was
   used for all the other TCP enhancements too.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt
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