
Internet Engineering Task Force Yogesh Swami
INTERNET DRAFT Khiem Le
File: draft-swami-tsvwg-tcp-dclor-00.txt Nokia Research Center
 Dallas
 November 2002
 Expires: Apr 2003

DCLOR: De-correlated Loss Recovery using SACK option
for spurious timeouts.

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 A spurious timeout in TCP forces the sender to unnecessarily
 retransmit one complete congestion window of data into the network.
 In addition, TCP uses the rate of arrival of ACKs as the basic
 criterion for congestion control. TCP makes the assumption that the
 rate at which ACKs are received reflects the end-to-end state of the
 network in terms of congestion. But after a spurious-timeout, the
 ACKs don't reflect the end-to-end congestion state of the network,
 but only a part of it. In these cases, the slow-start behavior after
 a timeout can further add to network congestion instead of relieving
 it.

 In this draft we propose changes to the TCP sender (no change is
 needed for TCP receiver) that can be used to solve the problems of

Expires: Apr 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 both redundant-retransmission and network congestion after a spurious
 timeout. These changes preserve the sanctity of congestion control
 principles and are conservative in nature. The proposed
 algorithm--called DCLOR--separates congestion control from loss
 recovery, and uses the TCP SACK option to achieve this. DCLOR can be
 used as a congestion control algorithm (after a spurious timeout) only,
 and it can work with other spurious timeout detection mechanisms such
 as the Eifel detection scheme.

Table of Contents

 Abstract ... 1

1. Introduction .. 3

2. Problem Description 4
2.1 Redundant Data Retransmission 5
2.2 Can Slow Start add to Congestion 5

3. Sources of spurious timeout 3
3.1 Spurious timeout due to Excessive delay 7
3.2 Spurious timeout due to change of subnets 8
3.3 Spurious Timeout due to Protocol Inefficiencies 9

4. De-correlated Loss Recovery (DCLOR) 9
4.1 Probe phase after a timeout 10
4.2 Congestion Control After the probe phase 12
4.3 Recovering lost packets after timeout 13

5. Data Delivery To Upper Layers 14

6. Sack Reneging ... 15

7. DCLOR Examples .. 15
7.1 Timeout due to congestion 15
7.2 Timeout due to pure packet stalling 16
7.3 Timeout due to stalling and loss 17

8. Security Considerations 18

9. References ... 19

10. IPR Statement .. 19

 Author's Address .. 19

 Appendix - 1 ... 20

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 2]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

1. Introduction

 The response of a TCP sender after a retransmission timeout is
 governed by the underlying assumption that a mid-stream timeout can
 occur only if there is heavy congestion--manifested as packet
 loss--in the network. Even though loss is often caused by congestion,
 the loss recovery algorithm itself should only answer the question of
 "what" data (i.e., what sequence number of data) to send. While on
 the other hand, the congestion control algorithm should answer the
 question of "how much" data to send. But after a timeout TCP
 addresses the issues of loss recovery and congestion control using a
 single mechanism--send one segment per round trip timeout (RTO)
 (answers the "how much" question) until an acknowledgment is
 received. The single segment sent is always the first unacknowledged
 outstanding packet in the retransmission queue (answers the "what"
 question). Since the present TCP's loss recovery and congestion
 control algorithms are coupled together, we call this "Correlated
 Loss Recovery (CLOR)."

 Although the assumption that a timeout can occur only if there is
 severe congestion is valid for traditional wire-line networks, it
 does not hold good for some other types of networks--networks where
 packets can be stalled "in the network" for a significant duration
 without being discarded. Typical examples of such networks are
 cellular networks. In cellular networks, the link layer can
 experience a relatively long disruption due to errors, and the link
 layer protocol can keep these packets-in-error buffered as long as
 the link layer disruption lasts.

 In this document we present an alternative approach to loss recovery
 and congestion control that "De-Correlates" Loss Recovery from
 congestion congestion and allows independent choice on using a
 particular TCP sequence number without compromising on the congestion
 control principles of [1][2][3][4]. In doing so, the algorithm
 mitigates the ill effects of spurious retransmission timeouts.
 Spurious timeouts are not only detrimental to the throughput of the
 defaulting connection, but they also add to the overall network
 congestion--paradoxically enough, due to the subsequent slow-start.

 Although several drafts [7][8] have been presented on this topic in
 the IETF, we believe that none of them fully considers all the
 problems associated with spurious timeouts. In the following section
 we first describe these problems in more detail and then describe the
 DCLOR mechanism in section-4.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 3]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

2. Problem Description.

 Let us assume that a TCP sender has sent N packets, p(1) ... p(N),
 into the network and it's waiting for the ACK of p(1) (Figure-1). Due
 to bad network conditions or some other problem, these packets are
 excessively delayed at some some intermediary node NDN. Unlike
 standard IP routers, the NDN keeps these packets buffered for a
 relatively long period of time until these packets are forwarded to
 their intended recipient. This excessive delay forces the TCP sender
 to timeout and enter slow start.

 Figure-1

 TCP-Sender NDN TCP-Receiver

 |----p(1)------>| |
 ^ |----p(2)------>| |
 : | . | |
 RTT=D | . | |
 : | . | |
 |----p(N)------>| |
 | ^ | |
 | : | |
 | RTO | |
 | : | |
 | V |----p(1)-->|
 ... |----p1(1)----->|<---a(1)---|...
 L | | |
 ... |<----a(1)------|----p(2)-->| Inter ACK arrival time (IAT)
 |->p1(2),p1(3)->|<---a(2)---|...
 | . | . |
 | . | . |
 | . | . |
 | |<---a(N)---|
 | |---p1(1)-->|
 | |<---a(N)---|
 | | |

 As far as the TCP sender is concerned, a timeout is always
 interpreted as heavy congestion. The TCP sender therefore makes the
 assumption that all packets between p(1) and p(N) were lost in the
 network. To recover from this misconstrued loss, the TCP sender
 retransmits P1(1) (Px(k) represents the xth retransmission of packet
 with sequence number k), and waits for the ACK a(1).

 After some period of time the network conditions at NDN become
 amicable again, and the queued in packets at NDN are finally

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 4]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 dispatched to their intended recipient, to which the the TCP receiver
 generates the ACK a(1). When the TCP sender receives a(1), it's
 fooled into believing that this ACK was generated in response to the
 retransmitted packet p1(1), while in reality a(1) was generated in
 response to the originally transmitted packet p(1). When the sender
 receives a(1), it increases its congestion window to two, and
 retransmits p1(2) and p1(3). As the sender receives more
 acknowledgments, it continues with retransmissions and finally starts
 sending new data.

 The following two subsections examine the problems associated with
 the above-mentioned TCP behavior.

2.1 Redundant Data Retransmission

 The obvious and relatively easy-to-solve inefficiency of the above
 algorithm is that the entire congestion window worth of data is
 unnecessarily retransmitted. Although such retransmissions are
 harmless to high-bandwidth, well-provisioned, backbone links (so long
 they are infrequent), it could severely degrade the performance of
 slow links.

 In cases where bandwidth is a commodity at a premium, (e.g., cellular
 networks), unnecessary retransmission can also be costly.

2.2 Can Slow Start add to Congestion after Spurious Timeout

 Paradoxically, slow start--the epitome of congestion control--can
 itself add to network congestion after a spurious timeout. Going back
 to the previous example, when the TCP sender receives a(1), it
 falsely assumes that a(1) was triggered by p1(1). But in reality,
 a(1) was triggered by p(1), not p1(1). This ambiguity exits because
 of the cumulative acknowledgment property of TCP. In this case, if
 the TCP sender were to take RTT samples (which it does not take
 because of ACK ambiguity), it would register a value of L (Figure-1)
 instead of D--the RTT. In addition to this, when the TCP sender sends
 a1(2) and a1(3), it will receive the ACK for a1(2) and a1(3) right
 after the inter ACK arrival time IAT. Then-after, the TCP sender will
 keep increasing the data rate every IAT as new ACKs arrive.
 Mathematically, one can show that after a spurious timeout, the rate
 at which data is injected in to the network is given by 1. But if we
 want to preserve the network probing capability [2] of a TCP sender,
 then the rate should be given by (2).

 r(t) = 2*ceil(t-t0/IAT) ... (1)

 r(t) = 2^ceil(t-t0/D) ... (2)

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 5]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 Where t>t0, and t0 is the time when first ACK after spurious timeout
 is received, and IAT and D are related by (3)

 IAT <= D/N ... (3)

 (N is the flight size at the time of spurious timeout).

 Figure-2
 C(1) C(2)... C(M)
 | | ... |
 | | ... |
 | | ... |
 V V ... V
 \ \ /
 \ \ /
 \ \ /
 +------X--X--X---+ +------------------+
 Defaulting | | | |
 C(0) ----------->| Bottleneck |------>|Buffered packets |--->
 connection | router | | |
 +-----X--X----X--+ +------------------+
 | | |
 | | |
 c(1)c(2) C(M)

 We now compute the worst-case packet loss due to this data burst.
 After the timeout, the TCP sender will set its SS_THRESH to N/2
 (packets-in-flight/2). Therefore, for the first N/2 ACKs received
 (i.e., ACK a(1) to a(N/2)), the TCP sender will grow its congestion
 window by one and reach the SS_THRESH value of N/2. For each ACK
 received, the TCP sender also sends 2 packets. Therefore by the end
 of the slow start, the TCP sender would have sent 2*(N/2) packets
 into the network. For the remaining N/2 ACKs (i.e., ACKs between
 a(N/2+1) to a(N)) the TCP sender will remain in the congestion
 avoidance phase and send one packet for each ACK received--sending
 N/2 more data segments. The net amount of data sent is therefore N/2
 + N = 3N/2 . Please note that the entire 3N/2 packets are injected
 into the network within a time period less than or equal to RTT. The
 number of data segments that left the network during this time is
 only N. Therefore, there is a high probability that N/2 packets out
 of 3N/2 packets will be lost. These N/2 lost packets, however, need
 not come from the same connection, and such a data-burst will
 unnecessarily penalize all the competing TCP connections that share
 the same bottleneck router.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 6]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 Going further ahead, let us assume there are M competing TCP
 connections that share the same bottleneck router as the defaulting
 connection C(0) does (Figure-2). During the period of time while C(0)
 is stalled, the TCP sender of C(0) does not use its network
 resources--the buffer space--on the bottleneck router(s). The
 competing connections, C(1) ... C(M), however see this lack of
 activity as resource availability and start growing their window by
 at least one segment per RTT during this time period (by virtue of
 linear window increase during congestion avoidance phase). If, for
 simplicity reasons, we assume that each of these TCP connections has
 the same round trip time of RTT, and if the idle time for C(0) is
 k*RTT, (where k > RTO/RTT) then each of these competing connections
 will increase their congestion window by k segments. Therefore the
 amount of packets lost in the network due to slow start can be as
 high as:

 N/2 + M*k ... (4)

 where the first term is the packet loss due to slow start, while the
 second term is the loss due to window growth of completing
 connections.

 Please note that even if a TCP sender restores its congestion window
 [7](or halves [8] it) to avoid slow start and redundant
 retransmission, it still cannot avoid the loss of M*k segments (M*k-
 N/2 segments in case the window was halved) that were added in the
 network because of sender's inactivity. Since a TCP sender does not
 know the number of connections it's competing with, or the time
 duration for which packets could be stalled in the network, the
 number of segments lost due to spurious timeout could be large.

 In the following sections we describe an algorithm that solves the
 problem of both redundant retransmission and packet loss after a
 spurious timeout.

3. Sources of spurious timeout

 Since the response algorithm after a timeout depends on the event
 that triggered it, it is important to know the factors that can cause
 such timeouts (in addition to the timeouts caused by congestion.) The
 following list enumerates few broad categories of events that can
 cause spurious timeouts in TCP.

3.1 Spurious timeout due to Excessive delay at a router

 Many link layer technologies have their own loss recovery schemes
 that use link layer feedback mechanisms to recover bit losses. These
 loss recovery schemes are often unaware of the transport layer loss

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 7]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 recovery schemes. Therefore, if there is burst of error at the link
 layer, the TCP sender may timeout because of
 the loss recovery scheme used by the link layers.

3.2 Spurious timeout due to change of subnets

 A TCP receiver or sender may change subnets due to sender or receiver
 mobility (Figure-3). While the change of subnets is taking place, a
 router may keep the data packets buffered until a new route is
 established (i.e., until Path-3 and Path-2 are established in
 Figure-3). Since establishing a new route can take a long time, a
 TCP sender may timeout.

 Figure-3
 <.... Path of new data and ACK. ...>
 Path-2
 +-----------> After
 +-------------+ | ^ Subnet Change
 | +---------+ .
 | TCP Sender | .Path-3
 | +---------+ .
 +-------------+ | .
 +-----------> Before
 Path-1 Subnet Change

 Once the new path is established, the router may forward all data
 packets to the TCP receiver using Path-3. However, the ACKs triggered
 by these packets will reach the TCP sender using Path-2. In addition,
 the TCP sender will send new data in response to these ACKs on
 Path-2.

 When there is a change of subnets, the entire end-to-end path between
 the sender and receiver might change completely (for example, Path-1
 and Path-2 may not have any common routers between then). A complete
 change in the end-to-end path may take place, for example, if a TCP
 receiver uses Mobile-IPv6 with route optimization to move from one
 subnet to another. Since the TCP connection does not have any
 information about the BDP on new path (Path-2), the TCP connection
 should start with a window size same as the window size of a new
 connection, i.e., with a size of two.

 Please note that of all possible reasons for spurious timeout, a
 change in subnets has maximum impact on network congestion. Since the
 BDP on a new path could be tens of orders of magnitude higher or
 lower than the BDP on an old path, an inappropriate congestion

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 8]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 control scheme could severely add to network congestion on the new
 path (Path-2). For example, let us assume there are 100 TCP
 connections sharing the same bottleneck router. Let's also assume
 that the average number of subnet change per second per TCP receiver
 is 1/50, and the average congestion window for each TCP connection at
 the time of spurious timeout is 5 segments. Then in the worst case,
 the network may drop as many as (1/50)*(5/2)*100 = 20 segments every
 second if the congestion window is restored as done in [7].

3.3 Spurious Timeout due to Protocol Inefficiencies

 A TCP sender may timeout because of inherent protocol inefficiencies
 in TCP. For example, a spurious timeout may occur if
 multiple packets are lost and fast-retransmit/fast-recovery
 algorithms could not recover the lost packets within an RTO. A
 spurious timeout may also occur if there are so few packets injected
 into the network that in case of a packet loss the receiver cannot
 generate 3 duplicate ACKs.

4. De-correlated Loss Recovery (DCLOR)

 De-correlated loss recovery tries to remedy the problems described in
 Section-2 by separating congestion control from loss recovery
 mechanism. In doing so, we make the decision of "which packets to
 send" independent from "how much" data to send. In addition to this,
 the rate at which data is injected into the network preserves the
 conservation control principles as described in [1][2][3].

 The basic idea behind DCLOR is to send a new data segment from
 outside the sender's retransmission queue--the queue of
 unacknowledged data segments--and wait for the ACK or SACK of the new
 data before initiating the response algorithm. Unlike slow-start
 where the response algorithm starts immediately after receiving the
 first ACK, DCLOR waits for the ACK/SACK of the new data sent after
 timeout before initiating loss recovery. The SACK block for new data
 contains sufficient information to determine all the packets that
 were lost into the network. Once the sequence number of lost packets
 is determined, the TCP sender grows its congestion window as in case
 of slow-start, but only tries to recover those segments that were
 lost in the network. This not only allows the TCP sender to avoid the
 go-back-N problem, but also prevents superfluous congestion window
 growth as seen with slow-start (section-2.2).

 Before describing the algorithm itself, we fist enumerate the
 underlying design philosophy behind DCLOR as it can give more insight
 into the workings of the algorithm:

 1. A spurious timeout should not degrade the performance of

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 9]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 other TCP connections sharing the same network path. As pointed
 out in Section-2, the slow-start subsequent to spurious timeout
 not only affects the performance of the defaulting connections,
 but it can also confer data-loss on other competing connections.

 2. Congestion control decisions should be made independent of the
 loss recovery decision. In other words, the congestion control
 algorithm should only determines the amount of data to be
 injected into the network, while the loss recovery algorithm
 should determine the sequence number of data to be recovered.

 3. Since the state of the network can change dramatically
 after a long interruption--long with respect to
 RTT--(Section-3), the response algorithm after a timeout should
 be conservative in the amount of data injected into the network
 after a timeout. This avoids packet loss (and congestion) due
 to inappropriately inflated congestion window after spurious
 timeouts (Section-2.2)

 4. The TCP sender's estimate of network capacity--the
 SS_THRESH--should be updated if and only if packets are lost in
 the network. A spurious timeout without packet loss should not
 affect the SS_THRESH since SS_THRESH is a measure of the
 network's buffering capacity and there is no need to updated it
 unless packet loss is detected.

 5. If there is packet loss in addition to packet stalling, all
 the lost packets within that window should be recovered without
 any need for future timeouts. In other words, the algorithm
 should not require the TCP sender to timeout again due to
 protocol limitations.

 We now describe the algorithm in more detail, keeping the above
 mentioned points in mind. Please see Figure-4 for certain parameters.

4.1 Probe phase after a timeout

 The following steps describe the response of a TCP sender on a
 timeout:

 1. If the timeout occurs before the 3 way handshake is complete,
 the TCP sender's behavior is unchanged,

 2. After a timeout, the TCP sender MUST set its congestion window
 to ZERO (CWND = 0), and keep the number of outstanding packets
 (N)into a state variable for future use (step-9). The value of
 SS_THRESH MUST be left UNCHANGED at this point.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 10]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 3. The TCP sender SHOULD also reset all the SACK tag bits in its
 retransmission queue (essentially renege all the SACK
 information in accordance with the recommendation in [5]. Please
 also see Section-6 on SACK reneging for more information.)

 4. Instead of sending the first unacknowledged packet P1
 after a timeout, the TCP sender disregards its congestion window
 and sends ONE NEW MSS size data packet Pn+1.

 Figure-4 .
 . DCLOR:
 . a) At timeout send Pn+1 in stead of P1;
 . store SS_PTR=seq-num(Pn+1);set CWND=0
 <.....CWND.....> . b) Don't update CWND for ACK/SACK <= SS_PTR
 +--+--+-...-+--+----+ . c) Once ACK/SACK > SS_PTR is received
 |P1|P2| |Pn|Pn+1| . Update SS_THRESH if SACK received
 +--+--+-...-+--+----+ . d) Update lost-packet information
 ^ . e) set CWND=2 and start loss-recovery/
 | . start sending new data in case pure ACK
 SS_PTR . greater than SS_PTR is received.

 TCP Sender's Retransmission
 Queue

 The TCP sender also stores the sequence number of this new data
 packet in a new state variable called SS_PTR (for slow start
 pointer).

 If the sender does not have any new data outside its
 retransmission queue, or if the receiver's flow control window
 cannot sustain any new data, the TCP sender should send the
 highest sequence numbered MSS sized data chunk from its
 retransmission queue (i.e., it should send the last packet from
 its retransmission queue).

 The idea behind sending one packet on a timeout is to probe the
 network and determine if the network is congested. However, from the
 network point of view it does not matter what the sequence number of
 data sent was. What matters is the "amount" of data sent into the
 network. Therefore, sending a new packet from outside the
 retransmission queue has the same affect as sending an old packet.
 Therefore this behavior is in accordance with the TCP congestion

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 11]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 control and avoidance mechanisms described in [1].

 5. A TCP sender MUST repeat step-2 until it enters the
 Timeout-Recovery state as described in step 6.

4.2 Congestion Control After the probe phase

 6. After the timeout, for each ACK received with the ACK-sequence
 number less than SS_PTR, the packet ACKed is removed from the
 retransmission queue. If the ACK contains a new SACK block, then
 the SACK tag is set in the corresponding data packet. However,
 no data is sent for these ACKs.

 7. The TCP sender MUST NOT update its congestion window from a
 value of ZERO until an ACK-sequence number greater than SS_PTR,
 or a SACK block containing SS_PTR is received. In other words,
 until the ACK-sequence for Pn+1 is received or a SACK block
 containing information about Pn+1 is received, NO new data
 segments (i.e., segments Pn+2 ...,) are added into the network.
 This allows the TCP sender to discard all the "stale ACKs"--the
 ACKs that are generated for stalled packets--and prevents
 superfluous growth of congestion window.

 The TCP sender MUST NOT take RTT samples for stale-ACKs. The
 SACK information present in stale-ACKs SHOULD be however used to
 put SACK tags on the retransmission queue. A TCP sender MAY
 reset its retransmission timer with every stale ACK received.

 If the sender receives a SACK block containing SS_PTR, i.e., if
 there is a packet loss in the stalled window, it SHOULD go to
 step-8.

 If the sender receives an ACK that acknowledges SS_PTR, i.e., if
 no packets were lost from the stalled window, it SHOULD go to
 step-10.

 The rationale for not sending any data segment for stale ACKs is to
 minimize congestion after a timeout. Since the duration of packet
 stalling could be large, the congestion state of the network could
 have change dramatically. Therefore, not using the stale ACKs to send
 data allows the TCP sender to recompute its congestion state from
 scratch and also minimizes packet loss.

NOTE-1: In our experiments, we have tried sending new data for
 stale ACKs in the spirit of reverting the congestion window as
 described in [7]. We have also tried setting the congestion window to

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 12]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 half the packets-in-flight (pipe) as described in [8]. But we have
 found that not sending any new data, as described above, is the best
 scheme whenever there are multiple competing connections in the
 system. The results of these experiments, along with the experimental
 setup, are listed in Appendix-1.

 If a TCP sender has not received any ACK within an RTT, sending more
 than a few data segments (>4) will add to network congestion in one
 form or the other (in varying degrees) and the overall performance of
 the system as a whole degrades--on an average. In addition, the DCLOR
 scheme works well in case of subnet change where there could be
 orders of magnitude difference in BDP. DCLOR also has minimal effect
 on other competing connections.

 Based on our experiments, we do not recommend sending new data for
 stale ACKs, but it's possible to deploy a variety of congestion
 control schemes with the DCLOR framework. For example, a TCP sender
 on the reception of an old ACK MAY revert (or halve) its congestion
 window to the old value of packets-in-flight (pipe) and MAY send new
 data depending upon the congestion window. But the TCP sender SHOULD
 initiate its loss recovery ONLY after SS_PTR has been ACKed or
 SACKed. In other words, if the TCP sender receives duplicate ACKs
 with ACK-sequence number less than SS_PTR, it SHOULD NOT use these
 duplicate ACKs to initiate Fast-Retransmit and Fast-Recovery. The
 loss recovery SHOULD be initiated only after ACK/SACK for SS_PTR is
 received. After that the sender should follow the same steps as
 described in step-8, step-9, and step-10 (with a different congestion
 window of course).

NOTE-2: For the congestion response of DCLOR, we have also considered
 adaptive update of congestion window after each timeout. In this
 scheme a TCP sender reduces its congestion window by a factor of 2
 for every RTO period of inactivity. The SS_THRESH is not updated
 until a loss is detected. At the time of this writing we are still
 experimenting with the usefulness of such a scheme. However, such a
 scheme is not well suited for spurious timeouts caused by change
 of subnets as described in Section-3.2.

4.3 Timeout-Recovery: recovering lost packets after timeout

 8. The TCP sender traverses the retransmission queue and marks
 all the packets without any SACK tag as lost. The TCP sender
 also updates its packets-in-flight (pipe) based on the SACK tags
 and the lost segment information (the packets-in-flight (pipe)
 should be ZERO after the update).

 Please note that unlike Fast-Retransmit and Fast-recovery, DCLOR uses

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 13]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 only one SACK block containing SS_PTR to mark packets as lost. This
 is because we do not expect packet reordering to exist over the
 period of RTO.

 9. The TCP sender updates its SS_THRESH, as following:

 SS_THRESH=packets-in-flight (pipe) at the time of timeout / 2

 Please note that the TCP sender stored the value of packets-in-
 flight at the time of timeout in step-2.

 10. The TCP sender sets its congestion window to 2. If packets
 were lost into the network (i.e., if a SACK for SS_PTR was
 received), the TCP sender should start by sending the least
 sequence number packets, else it should continue by sending new
 data.

 Please note that with a pure ACK acknowledging SS_PTR, the TCP sender
 does not update the SS_THRESH value (it directly enters step-10 from
 step-7). This prevents a TCP sender from setting its SS_THRESH to a
 very small value if the spurious timeout occurs at the start of the
 connection.

 The rationale behind not updating the SS_THRESH if no loss is
 detected is that SS_THRESH represents the sender's estimate of
 network capacity--the BDP. Unless a loss is detected, there is no
 reason to update the value of BDP.

5. Data Delivery To Upper Layers

 If a TCP sender loses its entire congestion window worth of data due
 to congestion, sending new data after timeout prevents a TCP receiver
 from forwarding the new data to the upper layers immediately.
 However, once the SACK for this new data is received, the TCP sender
 will send the first lost segment. This essentially means that data
 delivery to the upper layers could be delayed by ONE RTT when all the
 packets are lost in the network.

 This, however, does not affect the throughput of the connection in
 any way. If a timeout has occurred, then the data delivery to the
 upper layers has already been excessively delayed. Delaying it by
 another round trip is not a serious problem. Please note that
 reliability and timeliness are two conflicting issues and one cannot
 gain on one without sacrificing something else on the other.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 14]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

6. Sack Reneging

 The TCP SACK information is meant to be advisory, and a TCP receiver
 is allowed--though strongly discouraged--to discard data blocks the
 receiver has already SACKed[5]. Please note however that even if the
 TCP sender discards the data block it received, it MUST still send
 the SACK block for at least the recent most data received. Therefore
 in spite of SACK reneging, DCLOR will work without any deadlocks.

 A SACK implementation is also allowed not to send a SACK block even
 though the TCP sender and receiver might have agreed to SACK-
 Permitted option at the start of the connection. In these cases,
 however, if the receiver sends one SACK block, it must send SACK
 blocks for the rest of the connection. Because of the above mentioned
 leniency in implementation, its possible that a TCP receiver may
 agree on SACK-Permitted option, and yet not send any SACK blocks. To
 make DCLOR robust under these circumstances, DCLOR SHOULD NOT be
 invoked unless the sender has seen at least one SACK block before
 timeout. We, however, believe that once the SACK-Permitted option is
 accepted, the TCP sender MUST send a SACK block--even though that
 block might finally be discarded. Otherwise, the SACK-Permitted
 option is completely redundant and serves little purpose. To the best
 of our knowledge, almost all SACK implementations send a SACK block
 if they have accepted the SACK-Permitted option.

7. DCLOR Examples

 We now demonstrate the working of DCLOR with a few concrete examples.
 We first take the case in which the timeout is caused due to
 congestion. We then consider the case, in which all the packets are
 stalled in the network but there is no packet loss. Finally, we take
 the example in which packets are both lost and stalled at the same
 time.

 In all these examples, the TCP sender has 20 MSS packets in flight
 (pipe) at the time when timeout occurs and each packet is denoted by
 P(i) (please note that we are using packet numbers instead of TCP
 sequence numbers to make the presentation simple. The example can be
 modified to take TCP sequence numbers into account too.) An ACK is
 denoted by A(i)[x,y][z,w], where i is the highest packet number
 acknowledged, and the ordered pair [x,y] and [z,w] represent the sack
 blocks present in that ACK (please note that i < x,y,z,w and its
 possible that x=y if just one packet is being sacked.)

7.1 Timeout due to congestion.

 In this case, we assume that all packets P(1) to P(20) are lost into

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 15]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 the network. The following time-line shows the sequence of events:

 TCP Sender Network TCP Receiver
 ---------- ------- -----------
 P(1)-----------X (Highest In-order seq = 0)
 .
 . LOST IN NETWORK
 . DUE TO CONGESTION
 P(20)-----------X
 ^
 :
 RTO
 :
 V
 preserve old_pkt_in_flight (pipe) = 20
 send P(21)-------------------------> rec P(21)
 set SS_PTR = 21
 rcv A(0)[21,21] <-------------------- send A(0)[21, 21]

 Since SACK contains SS_PTR ==>
 Tag P(1) to P(20) as Lost
 Tag P(21) as SACKED
 Update pkt_in_flight (pipe) = 21 - 20 -1 = 0
 Since SACK=21 was received therefore
 set SS_THRESH to old_pkt_in_flight/2 = 10
 set CWND = 2
 Restart RTO-timer

 Send P(1)--------------------------->
 Send P(2)--------------------------->

7.2 Timeout due to pure packet stalling.

 In this case, we assume that all the packets P(1) to P(20) are
 stalled in the network. The following time-line shows the sequence of
 events:

 TCP Sender Network TCP Receiver
 ---------- ------- -----------
 P(1)-----------+ (Highest In-order seq = 0)
 . |
 . |
 P(20)-----------+
 ^ |
 RTO |
 V | Packets delayed

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 16]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 old_pkt_in_flight (pipe) = 20 |
 send P(21)----------+
 set SS_PTR = 21 |
 CWND=0 +--------------> rec P(1)
 rcv A(1) <---------------------------- send A(1)
 SS_PTR > A(1)=> |
 no change in CWND = 0 .
 Remove P(1) from .
 retransmission queue .
 No timer sample taken .
 +--------------> rec P(i) {1<i<21}
 rcv A(i) <---------------------------- send A(i)
 SS_PTR > A(i) ==> |
 no change in CWND = 0 |
 Remove P(i) from |
 retransmission queue .
 No timer sample taken .
 +---------------> rec P(21)
 rcv A(21) <---------------------------- send A(21)
 SS_PTR = A(21) ==>
 pure ACK received
 Remove P(21) from retransmission queue
 Update pkt_in_flight (pipe) = 0
 Since Pure ACK was received therefore
 SS_THRESH remains unchanged.
 set CWND = 2
 Restart RTO-timer
 Send P(22)--------------------------->
 Send P(23)--------------------------->

7.3 Comprehensive Scenario: Timeout due to stalling and loss.

 Building upon the previous two example, we now assume that in
 addition to data stalling, P(10) was lost into the network.

 The following time-line shows the sequence of events:

 TCP Sender Network TCP Receiver
 ---------- ------- -----------
 P(1)-------------+ (Highest In-order seq = 0)
 . |
 P(10)----X Lost |
 . |
 P(20)-------------+
 ^ |

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 17]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 RTO |
 V | Packets delayed
 old_pkt_in_flight (pipe) = 20 |
 send P(21)------------+
 set SS_PTR = 21 |
 CWND=0 +--------------> rec P(1)
 rcv A(1) <----------------------------- send A(1)
 SS_PTR > A(1)=> |
 no change in CWND = 0 .
 Remove P(1) from .
 retransmission queue .
 No RTT sample taken . {1<i<10}
 +--------------> rec P(i)
 rcv A(i) <---------------------------- send A(i)
 SS_PTR > A(i) ==> |
 no change in CWND = 0 |
 Remove P(i) from |
 retransmission queue .
 No RTT sample taken . {10<j<21}
 +---------------> rec P(j)
 rcv A(9)[11,j] <------------------------ send A(9)[11,j]
 SS_PTR > A(9) and |
 SS_PTR outside A[11,j]==> |
 Tag P(j) as SACKED |
 NO change in CWND=0 +---------------> rec P(21)

 rcv A(21) <---------------------------- send A(9)[11,21]
 Since SS_PTR = 21 ==>
 Tag P(10) as Lost
 Update pkt_in_flight (pipe) = 11-10-1
 (Note, P(1) ... P(9) are already removed
 from the retransmission queue)
 Since a SACK was received therefore
 set SS_THRESH=20/2 = 10
 set CWND = 2
 Restart RTO-timer
 recover the lost packet first
 Send P(10)--------------------------->
 Send P(22)--------------------------->

8. Security Considerations

 No new security threats are introduced by the use of DCLOR.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 18]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

9. References

 [1] M. Allman, V. Paxson, W. Stevens. "TCP Congestion Control.
RFC-2581."

 [2] S. Floyd. "Congestion Control Principles." RFC-2914.

 [3] M. Handley, J. Padhye, S. Floyd. "TCP Congestion Window
 Validation." RFC-2861.

 [4] Ethan Blanton, Mark Allman, Kevin Fall. "Conservative
 SACK-based Loss Recovery Algorithm for TCP." draft-allman-tcp-

sack-10.txt. Work in Progress.

 [5] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow. "TCP Selective
 Acknowledgment Options." RFC-2018.

 [6] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky. "An Extension to
 the Selective Acknowledgment (SACK) Option for TCP" RCF-2883.

 [7] Reiner Ludwig, Michael Meyer. "The Eiffel Detection Algorithm
 for TCP." Internet Draft-work in progress. draft-ietf-tsvwg-

tcp-eifel-alg-05.txt.

 [8] P. Sarolahti, M. Kojo. "F-RTO: A TCP RTO Recovery Algorithm
 for Avoiding Unnecessary Retransmissions." Internet Draft--work
 in progress. draft-sarolahti-tsvwg-tcp-frto-01.txt

 [9] V. Paxon, M. Allman. "Computing TCP's Retransmission
 Timer." RFC-2998

10. IPR Statement

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the on-line list of claimed
 rights at http://www.ietf.org/ipr.

Author's Address:

 Yogesh Prem Swami
 Nokia Research Center
 6000 Connection Drive
 Irving TX-75063

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-10.txt
https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-10.txt
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-alg-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-alg-05.txt
https://datatracker.ietf.org/doc/html/draft-sarolahti-tsvwg-tcp-frto-01.txt
https://datatracker.ietf.org/doc/html/rfc2998
http://www.ietf.org/ipr

Expires: Apr 2003 [Page 19]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 USA

 Phone: +1 972-374-0669
 Email: yogesh.swami@nokia.com

 Khiem Le
 Nokia Research Center
 6000 Connection Drive
 Irving TX-75063
 USA

 Phone: +1 972-894-4882
 Email: khiem.le@nokia.com

 Appendix - 1

 In this section we provide information on our test setup and provide
 test results for comparison of DCLOR with Standard TCP, Eifel, and
 FRTO schemes.

App-1: Testing Methodology

 Please see Figure-5 for the test setup. The TCP sender and TCP
 receiver are connected through an intermediary "spurious timeout and
 network impairment simulator (STIS)," that simulates packet delay and
 certain network impairments. The STIS is capable of reading all TCP
 packets received on any of its interfaces. It is capable of
 processing packets coming from multiple TCP connections. Each TCP
 packet is then subjected to a series of network impairments that are
 expected to be present in a typical IP network. The specifics of
 these impairments along with the model used to simulate them is
 enumerated below:

 Figure-5

 +---------------+ +--------------------+ +---------------+
 | TCP Sender | | Spurious timeout & | | |
 | +----+ network impairment +---+ TCP Receiver |
 | Linux-2.5.40 | | simulator | | |
 +---------------+ +--------------------+ +---------------+

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 20]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 1. Bottleneck Router

 The STIS is capable of simulating a bottleneck router on the
 end-to-end path of a TCP connection. For TCP, a bottleneck
 router is one that has the minimum ratio for the buffer-space to
 difference in link speed on the end-to-end path (i.e., if b(i)
 represents the buffer space of router i, and a(i) and d(i) be
 the incoming and the outgoing link speed of the router for a
 particular TCP connection, then the bottle neck router for such
 a connection is one that has min{ b(i)/[d(i)-a(i)]} for all
 routers i on the end-to-end path of the TCP connection).

 The bottleneck router is simulated by specifying a buffer space
 and the outgoing link speed (the arrival rate in our simulation
 was fixed by the link speed of the interface on which the packet
 arrived. This speed was a fixed value of 10Mbps). In order to
 simulate outgoing link, the STIS enqueues each TCP packet and
 schedules them based on the queuing delay and link-delay
 (service time) of packets in the queue (please see item-2 for
 more details). A packet received on any of the interfaces is
 processed only if the total bytes of enqueued data in the router
 is less than the specified buffer space. A packet is dropped if
 the buffer space is full. Please note that the buffer space is
 allocated for and shared by all possible TCP connections going
 through STIS.

 2. Link Speed Simulation

 Although each TCP connection shares the same buffer space, each
 TCP connection has its own logical queue for each direction.
 The departure time of a new packet is computed by addition the
 link delay (packet-size / outgoing-link-speed) of the new packet
 to the queuing delay of all packets ahead of it. A TCP sender is
 scheduled on the appropriate interface once its departure time
 expires.

 3. Fixed Network Delay

 The wired-network delay seen by individual packets is the sum of
 the queuing delay and link delay of each packet on individual
 routers. If we assume that the number of routers are infinitely
 many on the end-to-end path, and if the variance of the delay is
 bounded (which is the case with finite queue sizes), then by the
 law of large numbers, the delay seen by each packet will be a
 constant. Although there are not infinitely many routers in the
 real networks, to make our model simple we assume that the delay
 added to each packet on the end-to-end path is a constant. This
 delay is added in addition to the queuing delay incurred due to

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 21]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 link speed simulation. (Please note that fixed network delay
 tries to capture the queuing delay on the high speed link, while
 the delay incurred due to link speed simulation is the delay due
 to a last hop slow link.)

 The fixed network delay is simulated by adding a fixed delay to
 the departure time of each packet.

 4. Prolonged packet stalling

 In addition to the delay models described above, the STIS also
 simulates prolonged packet stalling in the network. Although
 the end result of packet stalling is a delay spike, we do not
 simply add a long delay burst to achieve packet stalling rather
 use the Markov model shown in Figure-6. (This model is based on
 the two different kinds of delay spikes seen in many cellular-
 networks.)

 Every second a random number r (<1) is generated(lets say the
 random number is generated at time T) for each TCP connection
 and compared with p1 and p2. If r is less than p1 or P2 a state
 transition is made into state-2 or state-3. When a TCP
 connection is in state-2 or state-3, each packet arriving in the
 time interval T and T+D (where D = d1 or d2 depending upon the
 state), is treated as if it arrived at time T+D. By altering the
 arrival time of each packet, this model simulates packet
 stalling in the network.

 Figure-6

 p=1-p1-p2
 +------+
 \ /
 +----+-----V-----+
 p=1 | No Delay Spike |
 +--------------->| (state-1) |<--------------+
 | +--+--------+----+ |
 | | | |p=1
 | +-----------+ +--------------+ |
 | | p=p1 p=p2| |
 +------+-------V-------+ +----V-----+--------+
 | Moderate delay spike | | Large delay spike |
 | delay=d1(state-2) | | delay=d2(state-2) |
 +----------------------+ +-------------------+

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 22]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 Please note that in a real network, when packet stalling
 occurs--for whatever reason--all packets remain queued in the
 network until the packets can be forwarded again. Therefore the
 effect of packet stalling is different from adding a long burst
 of delay to a few of the packets. Please note that with such a
 model, the delay incurred by individual packets will not be the
 same.

 Please also note that the state transitions are based on time.
 Therefore the STIS will keep entering state-2 and state-3
 whether or not there are any TCP packets to be forwarded.

 5. Packet Reordering

 Since the Internet is known to reorder 12% of the packets (this
 study was done by Vern Paxson of UC Berkeley) on the end-to-end
 path, we try to simulate this behavior in our simulations. To
 simulate packet reordering we try to emulate the network
 behavior that creates packet reordering--that is we try to
 emulate router failure or load balancing to achieve packet
 reordering.

 A router failure is modeled using a two state Markov model, in
 which transition from state to another means a route failure. In
 each of the different states, the TCP connection incurs a
 different fixed network delay as described above in item-2.
 This model is based on the assumption that when a route failure
 takes place, the delay on new path is different from the delay
 on the old path.

App-2: Test setup, parameters, and Results

 Based on the model described above, the STIS uses following
 parameters for testing.

Table-1: STIS parameters

 +---------------------------------------+------------------+
 | Parameter Name | Parameter Value |
 +---------------------------------------+------------------+
 | Path MTU | 1500 Bytes |
 | Bottleneck Router's Capacity | 74K Bytes |
 | Outgoing link data rate | 50 K Bits/sec |
 | Fixed Network Delay (one way) | 200 ms |
 | Pkt Stalling delay in state-2 (d1) | 5 sec |
 | Pkt Stalling delay in state-3 (d2) | 8 sec |
 | Pkt Stalling prob to state-2 (p1) | 0.05 per-sec |

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 23]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 | Pkt Stalling prob to state-3 (p2) | 0.005 per-sec |
 | Pkt reordering probability | 0.12 |
 | Pkt reordering delay | 20 ms |
 +---------------------------------------+------------------+

 On the TCP receiver, multiple TCP receiver processes simultaneously
 run and try to download files of different sizes--each connection
 competing to download a file of given size. In addition, each process
 waits for a random time interval and iterates over and over again to
 download the same file. The following table shows the traffic mix
 used for our experiments.

Table-2: Traffic Mix

 +---------------+------------------+--------------+
 | File Size | # simultaneous | # iterations |
 | (KB) | connections | |
 +---------------+------------------+--------------+
 | 5 | 6 | 2000 |
 | 10 | 5 | 1000 |
 | 100 | 5 | 100 |
 | 1000 | 3 | 10 |
 | 10000 | 1 | 1 |
 +---------------+------------------+--------------+

 Based on the STIS parameters and traffic mix, the cumulative
 probability distribution of download time, i.e., the plot of number
 of points with a download time of less than a give time duration in
 the above experiment, for each file size was generated (because of
 proper format for representing these plots, we are unable to include
 these plots in this document. We can provide this plot on request.)

 Tables 3,4,and 5 show the mean and variance (in second) for
 downloading different file sizes using DCLOR, EIFEL, FRTO, and
 Standard TCP. Please note that not every connection was subjected to
 a spurious timeout, and therefore the mean value alone is not a good
 measure of performance. The variance captures the impact of such
 spurious timeouts (the probability distribution is the best
 representation of how individual schemes perform for different
 download time range). As can be seen from the following table, Eifel
 has a large variance because of restoring the window. Please note
 that the variance for standard TCP is less than Eifel, or Frto,
 because the first N packets in case of standard TCP are redundant,
 and therefore even if they are lost due to error burst, the
 defaulting connection does not incur a very severe penalty and
 therefore the variance is small. But for Eifel and FRTO, the N
 packets after spurious timeout are new and therefore loss of these

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 24]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 packets has a huge impact on the variance.

Table-3: Download Time Statistics for 5K files

 +---------+--------+-------+--------+-------+
 | (sec) | DCLOR | EIFEL |STD_TCP | FRTO |
 +---------+--------+-------+--------+-------+
 |Mean | 2.3869 | 2.4162| 2.3962 | 2.4049|
 |Variance | 3.2473 |10.2579| 3.2164 | 4.0466|
 +---------+--------+-------+--------+-------+

Table-4: Download Time Statistics for 10K files

 +---------+-------+--------+--------+------+
 | (sec) | DCLOR | EIFEL |STD_TCP | FRTO |
 +---------+-------+--------+--------+------+
 |Mean |3.4547 | 4.0560 | 3.7314 |3.7317|
 |Variance |4.7452 |19.7828 | 7.6378 |8.4576|
 +---------+-------+--------+--------+------+

Table-5: Download Time Statistics for 100K files

 +---------+---------+---------+---------+---------+
 | (sec) | DCLOR | EIFEL | STD_TCP | FRTO |
 +---------+---------+---------+---------+---------+
 |Mean | 24.6297 | 26.1017 | 26.7425 | 25.5325 |
 |Variance | 66.0804 | 98.4933 | 98.9363 | 78.1667 |
 +---------+---------+---------+---------+---------+

 In addition to the mean and variance of download times, we also
 calculated the "spectral efficiency" of the system. The spectral
 efficiency was computed as:

 (redundant_bytes_received)
 SE= --------------------------------
 mean(cwnd)*MSS

 The spectral efficiency is a measure of usefulness of a particular

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 25]

draft-swami-tsvwg-tcp-dclor-00.txt November 2002

 scheme in terms of fraction of extra bytes sent due to spurious
 timeout for every byte sent into the network. The smaller this number
 is, the better the scheme is. The numerator is the amount of
 unnecessary data, while the denominator is the average network
 capacity experienced by the connection. Since some schemes (Eifel for
 example) requires more TCP options, the MSS was used instead of MTU
 in the denominator. Table-5 shows these results for all the four
 different TCP implementations. Please note that FRTO behaves like
 standard TCP if there is no new data to send or if the congestion
 window is as big as flow control window. This is one of the reasons
 why FRTO performance is worse than Eifel or DCLOR.

Table-6: Spectral Efficiency

 +-----------+----------+----------+----------+----------+
 | File Size | DCLOR | EIFEL | STD_TCP | FRTO |
 | |(MSS=1460)| (1448) | (1460) | (1460) |
 +-----------+----------+----------+----------+----------+
 | 5K | 0.004042 | 0.004454 | 0.092714 | 0.071336 |
 | 10k | 0.005249 | 0.012293 | 0.078977 | 0.052581 |
 | 100k | 0.017124 | 0.036748 | 0.624361 | 0.079285 |
 +-----------+----------+----------+----------+----------+

 The DCLOR algorithm for all these tests cases were implemented
 in the Linux Kernel-2.5.40 (the source code for DCLOR
 could be provided on request). The same kernel version was
 used for all the other TCP enhancements too.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-00.txt

Expires: Apr 2003 [Page 26]

