
Internet Engineering Task Force Yogesh Swami
INTERNET DRAFT Khiem Le
File: draft-swami-tsvwg-tcp-dclor-01.txt Nokia Research Center
 Dallas
 Apr 2003
 Expires: Oct 2003

DCLOR: De-correlated Loss Recovery using SACK option
for spurious timeouts.

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 A spurious timeout in TCP forces the sender to unnecessarily
 retransmit one complete congestion window of data into the network.
 In addition, TCP uses the rate of arrival of ACKs as the basic
 criterion for congestion control. TCP makes the assumption that the
 rate at which ACKs are received reflects the end-to-end state of the
 network in terms of congestion. But after a spurious-timeout, the
 ACKs don't reflect the end-to-end congestion state of the network,
 but only a part of it. In these cases, the slow-start behavior after
 a timeout can further add to network congestion. In this draft we
 propose changes to the TCP sender (no change is needed for TCP
 receiver) that can be used to solve the problem of both redundant-
 retransmission and network congestion after a spurious timeout.

Expires: Oct 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

1. Introduction

 The response of a TCP sender after a retransmission timeout is
 governed by the underlying assumption that a mid-stream timeout can
 occur only if there is heavy congestion--manifested as packet
 loss--in the network. Even though loss is often caused by congestion,
 the loss recovery algorithm itself should only answer the question of
 "what" data (i.e., what sequence number of data) to send. While on
 the other hand, the congestion control algorithm should answer the
 question of "how much" data to send. But after a timeout, TCP
 addresses the issues of loss recovery and congestion control using a
 single mechanism--send one segment per round trip timeout (RTO)
 (answers the "how much" question) until an acknowledgment is
 received. The single segment sent is always the first unacknowledged
 outstanding packet in the retransmission queue (answers the "what"
 question). Since the present TCP's loss recovery and congestion
 control algorithms are coupled together, we call this "Correlated
 Loss Recovery (CLOR)."

 Although the assumption that a timeout can occur only if there is
 severe congestion is valid for traditional wire-line networks, it
 does not hold good for some other types of networks--networks where
 packets can be stalled "in the network" for a significant duration
 without being discarded. Typical examples of such networks are
 cellular networks. In cellular networks, the link layer can
 experience a relatively long disruption due to errors, and the link
 layer protocol can keep these packets-in-error buffered as long as
 the link layer disruption lasts.

 In this document we present an alternative approach to loss recovery
 and congestion control that "De-Correlates" Loss Recovery from
 congestion congestion and allows independent choice on using a
 particular TCP sequence number without compromising on the congestion
 control principles of [RFC2581][RFC2914][RFC2861].

 Although several drafts [LM02][LG03][SK03][BA02] have been presented
 on this topic, we believe that none of them fully considers all the
 problems associated with spurious timeouts. In the following section
 we first describe these problems in more detail and then describe the
 DCLOR mechanism in section-3.

2. Problem Description.

 Let us assume that a TCP sender has sent N packets, p(1) ... p(N),
 into the network and it's waiting for the ACK of p(1) (Figure-1). Due
 to bad network conditions or some other problem, these packets are
 excessively delayed at some some intermediary node NDN. Unlike
 standard IP routers, the NDN keeps these packets buffered for a

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861

Expires: Oct 2003 [Page 2]

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

 relatively long period of time until these packets are forwarded to
 their intended recipient. This excessive delay forces the TCP sender
 to timeout and enter slow start.

 Figure-1

 TCP-Sender NDN TCP-Receiver

 |----p(1)------>| |
 ^ |----p(2)------>| |
 : | . | |
 RTT=D | . | |
 : | . | |
 |----p(N)------>| |
 | ^ | |
 | : | |
 | RTO | |
 | : | |
 | V |----p(1)-->|
 ... |----p1(1)----->|<---a(1)---|...
 L | | |
 ... |<----a(1)------|----p(2)-->|
 |->p1(2),p1(3)->|<---a(2)---|...
 | . | . |
 | . | . |
 | . | . |
 | |<---a(N)---|
 | |---p1(1)-->|
 | |<---a(N)---|
 | | |

 As far as the sender is concerned, a timeout is always interpreted as
 heavy congestion. The TCP sender therefore makes the assumption that
 all packets between p(1) and p(N) were lost in the network. To
 recover from this misconstrued loss, the TCP sender retransmits P1(1)
 (Px(k) represents the xth retransmission of packet with sequence
 number k), and waits for the ACK a(1).

 After some period of time when the network conditions at NDN improve,
 the queued in packets are finally dispatched to their intended
 recipient; in response the TCP receiver generates the ACK a(1). When
 the TCP sender receives a(1), it's fooled into believing that a(1)
 was generated in response to the retransmitted packet p1(1), while in
 reality a(1) was generated in response to the originally transmitted
 packet p(1). When the sender receives a(1), it increases its
 congestion window to two, and retransmits p1(2) and p1(3). As the
 sender receives more acknowledgments, it continues with

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt

Expires: Oct 2003 [Page 3]

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

 retransmissions and finally starts sending new data.

 The following two sub sections examine the problems associated with
 the above-mentioned TCP behavior.

2.1 Redundant Data Retransmission

 The obvious and relatively easy-to-solve inefficiency of the above
 algorithm is that the entire congestion window worth of data is
 unnecessarily retransmitted. Although such retransmissions are
 harmless to high-bandwidth, well-provisioned, backbone links (so long
 they are infrequent), it could severely degrade the performance of
 slow links.

 In cases where bandwidth is a commodity at a premium, (e.g., cellular
 networks), unnecessary retransmission can also be costly.

2.2 Congestion after Spurious Timeout

 To analyze network congestion after spurious timeout, we compute the
 worst case scenario packet loss in the system--assuming only TCP
 connections to be present.

 After the spurious timeout, the TCP sender sets its SS_THRESH to N/2.
 Therefore, for the first N/2 ACKs received (i.e., ACK a(1) to a(N/2)
), the TCP sender will grow its congestion window by one and reach
 the SS_THRESH value of N/2. For each ACK received, the TCP sender
 sends 2 packets. Therefore, by the end of the slow start, the TCP
 sender would have sent 2*(N/2) packets into the network. For the
 remaining N/2 ACKs (i.e., ACKs between a(N/2+1) to a(N)) the TCP
 sender will remain in the congestion avoidance phase and send one
 packet for each ACK received--sending N/2 more data segments. The net
 amount of data sent is therefore N/2 + N = 3N/2.

 Please note that the entire 3N/2 packets are injected into the
 network within a time period less than or equal to RTT in most cases.
 The number of data segments that left the network during this time is
 only N. Therefore, N/2 packets out of 3N/2 packets will be lost with
 a very high probability. These N/2 lost packets, however, need not
 come from the same connection, and such a data-burst will
 unnecessarily penalize all the competing TCP connections that share
 the same bottleneck router.

 Going further ahead, let us assume there are M competing TCP
 connections that share the same bottleneck router(s) with
 C(0)(Figure-2). During the period of time while C(0) is stalled, the
 TCP sender of C(0) does not use its network resources--the buffer
 space--on the bottleneck router(s). The competing connections,

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt

Expires: Oct 2003 [Page 4]

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

 C(1)... C(M), however see this lack of activity as resource
 availability and start growing their window by at least one segment
 per RTT during this time period (by virtue of linear window increase
 during congestion avoidance phase). For simplicity reasons, we
 assume that each of these connections has the same round trip time of
 RTT, and the idle time for C(0) is k*RTT (where k > RTO/RTT). Under
 these assumptions, each of these competing connections will increase
 their congestion window by k segments. Therefore the amount of
 packets lost in the network due to slow start can be as high as:

 N/2 + M*k ... (4)

 the first term in the above equation is the packet loss due to slow
 start, while the second term is the loss due to window growth of
 completing connections (if the competing connections were in slow
 start the response could have been worse).

 Figure-2
 C(1) C(2)... C(M)
 | | ... |
 | | ... |
 | | ... |
 V V ... V
 \ \ /
 \ \ /
 \ \ /
 +------X--X--X---+ +------------------+
 Defaulting | | | |
 C(0) ----------->| Bottleneck |------>|Buffered packets |--->
 connection | router | | |
 +-----X--X----X--+ +------------------+
 | | |
 | | |
 c(1)c(2) C(M)

 Based on the above equation, we note that the congestion state of the
 network depends upon the duration of spurious timeout. In our reponse
 algorithm we therefore take the time duration of spurious timeout
 into account reduce the data rate by half every RTO. Please note that
 this scheme works well only when the number of competing connections
 M does not vary too much while C(0) was stalled. A more conservative
 response algorithm should reduce the data rate to INIT_WINDOW if M is
 not bounded.

 In the following sections we describe an algorithm that solves the
 problem of both redundant retransmission and packet loss after a
 spurious timeout.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt

Expires: Oct 2003 [Page 5]

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

3. De-correlated Loss Recovery (DCLOR)

 The basic idea behind DCLOR is to send a new data segment from
 outside the sender's retransmission queue and wait for the ACK or
 SACK of the new data before initiating the response algorithm. Unlike
 slow-start where the response algorithm starts immediately after
 receiving the first ACK, DCLOR waits for the ACK/SACK of the new data
 sent after timeout before initiating loss recovery. The SACK block
 for new data contains sufficient information to determine all the
 packets that were lost into the network. Once the sequence number of
 lost packets is determined, the TCP sender grows its congestion
 window as determined by the SS_THRESH and it's congestion window.

3.1 Probe phase after a timeout

 The following steps describe the response of a TCP sender on a
 timeout:

 1. If the timeout occurs before the 3 way handshake is complete,
 the TCP sender's behavior is unchanged,

 2. After each timeout, the TCP sender MUST set its congestion
 window to:

 cwnd = max(cwnd >> 1, IINIT_WINDOW).

 The value of SS_THRESH MUST be left UNCHANGED at this point. The
 TCP sender should also count the number of packets in flight at
 this time, and keep it in a state variable stale_outstanding.

 3. The TCP sender SHOULD also reset all the SACK tag bits in its
 retransmission queue if this the first timeout.

 4. Instead of sending the first unacknowledged packet P1
 after a timeout, the TCP sender should *disregard* its
 congestion window and send ONE NEW MSS size data Pn+1.

 The TCP sender should also store the sequence number of the new
 segment in a new state variable called SS_PTR (for slow start
 pointer).

 If the sender does not have any new data outside its
 retransmission queue, or if the receiver's flow control window
 cannot sustain any new data, the TCP sender SHOULD send the
 highest sequence numbered MSS sized data chunk from its
 retransmission queue (i.e., it should send the last packet from
 its retransmission queue).

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt

Expires: Oct 2003 [Page 6]

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

 5. A TCP sender MUST repeat step-2 to step-4 until it
 enters the Timeout-Recovery state as described in step 6.

3.2 Congestion Control After the probe phase

 6. For each ACK received with the ACK-sequence number
 less than SS_PTR, regardless of the value of the SS_THRESH, the
 TCP sender SHOULD NOT grow it's congestion window. If the ACK
 contains a new SACK block, the SACK tag SHOULD be set in the
 corresponding data packet. If new segments were ACKed, and the
 congestion window allows, the TCP sender SHOULD send new data.
 (Note: the idea here is that the congestion window should not be
 grown in response to stale ACKs since these ACKs don't reflect
 the end to end state of the network).

 In addition, the TCP sender SHOULD NOT take any timer sample for
 the stale ACKs. (NOTE: We do not attempt to change the RTT
 calculation in an ad-hoc manner; we believe that this is a
 reaseach problem that needs better network modelling before an
 appropriate timer calculation can be found)

 7. Step-6 continues until the TCP sender receives an
 ACK acking a sequence number greater than SS_PTR, or it receives
 a SACK block covering the sequence number greater than SS_PTR.

 If the sender receives a SACK block containing SS_PTR, i.e., if
 there is a packet loss in the stalled window, it SHOULD go to
 step-8.

 If the sender receives an ACK that acknowledges SS_PTR, i.e., if
 no packets were lost from the stalled window, it SHOULD go to
 step-10.

NOTE: In our previous experiments we had set the congestion window
 to one MSS after a spurious timeout, however this algorithm prerforms
 better if there is moderate load on the routers and the number of
 competing connections do not vary a lot duing the stalling period. In
 case of heavy load, setting the congestion window to INIT_WINDOW
 still performs better. We believe that using the present congestion
 response make a fair compromise for different scenarios.

3.3 Timeout-Recovery: recovering lost packets after timeout

 8. The TCP sender traverses the retransmission queue and marks
 all the packets without any SACK tag as lost. The TCP sender
 also updates its packets-in-flight (pipe) based on the SACK tags
 and the lost segment information (the packets-in-flight (pipe)
 should be ZERO after the update).

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt

Expires: Oct 2003 [Page 7]

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

 Please note that unlike Fast-Retransmit and Fast-recovery, DCLOR
 uses only one SACK block containing SS_PTR to mark packets as
 lost. This is because we do not expect packet reordering to
 exist over the period of RTO.

 9. The TCP sender should update its SS_THRESH, as:

 SS_THRESH= stale_outstanding >> 1 (step-2)

 10. The TCP sender SHOULD set its congestion window to cwnd+1.
 If packets were lost into the network (i.e., if a SACK for
 SS_PTR was received), the TCP sender should start by sending
 packets with lowest sequence number; else it should continue
 with new data. (Note: for each new SACK block received, the
 sender should send a segment--lost or new--and therefore the
 problem of duplicate ACKs is not of concern here.)

 The sender should follow the normal window growth strategy based
 on the value of SS_THRESH after this step.

 Please note that with a pure ACK acknowledging SS_PTR, the TCP sender
 does not update the SS_THRESH value (it directly enters step-10 from
 step-7). This prevents a TCP sender from setting its SS_THRESH to a
 very small values if the spurious timeout occurs at the start of the
 connection.

4. Data Delivery To Upper Layers

 If a TCP sender loses its entire congestion window worth of data,
 sending new data after timeout prevents a TCP receiver from
 forwarding the new data to the upper layers immediately. However,
 once the SACK for this new data is received, the TCP sender will send
 the first lost segment. This essentially means that data delivery to
 the upper layers could be delayed by at most one RTT when all the
 packets are lost in the network.

 This, however, does not affect the throughput of the connection in
 any way. If a timeout has occurred, then the data delivery to the
 upper layers has already been excessively delayed. Delaying it by
 another round trip is not a serious problem. Please note that
 reliability and timeliness are two conflicting issues and one cannot
 gain on one without sacrificing something else on the other.

5. Security Considerations

 The TCP SACK information is meant to be advisory, and a TCP receiver
 is allowed--though strongly discouraged--to discard data blocks the
 receiver has already SACKed [RFC2018]. Please note however that even

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt
https://datatracker.ietf.org/doc/html/rfc2018

Expires: Oct 2003 [Page 8]

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

 if the TCP sender discards the data block it received, it MUST still
 send the SACK block for at least the recent most data received.
 Therefore in spite of SACK reneging, DCLOR will work without any
 deadlocks.

 A SACK implementation is also allowed not to send a SACK block even
 though the TCP sender and receiver might have agreed to SACK-
 Permitted option at the start of the connection. In these cases,
 however, if the receiver sends one SACK block, it must send SACK
 blocks for the rest of the connection. Because of the above mentioned
 leniency in implementation, its possible that a TCP receiver may
 agree on SACK-Permitted option, and yet not send any SACK blocks. To
 make DCLOR robust under these circumstances, DCLOR SHOULD NOT be
 invoked unless the sender has seen at least one SACK block before
 timeout. We, however, believe that once the SACK-Permitted option is
 accepted, the TCP sender MUST send a SACK block--even though that
 block might finally be discarded. Otherwise, the SACK-Permitted
 option is completely redundant and serves little purpose. To the best
 of our knowledge, almost all SACK implementations send a SACK block
 if they have accepted the SACK-Permitted option.

6. References

 [RFC2581] M. Allman, V. Paxson, W. Stevens. "TCP Congestion
 Control," Apr, 1999.

 [RFC2914] S. Floyd, "Congestion Control Principles," Sep 2002.

 [RFC2861] M. Handley, J. Padhye, S. Floyd. "TCP Congestion
 Window Validation," Jun 2000.

 [BAFW03] E. Blanton, M. Allman, K. Fall, L. Wang, "Conservative
 SACK-based Loss Recovery Algorithm for TCP," draft-

allman-tcp-sack-13.txt. Internet draft; work in progress.
 Oct 2002.

 [RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, "TCP
 Selective Acknowledgment Options," Oct 1996.

 [RFC2883] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, "An
 Extension to the Selective Acknowledgment (SACK) Option
 for TCP," Jul 2000.

 [LM02] R. Ludwig, M. Meyer. "The Eiffel Detection Algorithm
 for TCP." Internet draft; work in progress, draft-ietf-

tsvwg-tcp-eifel-alg-07.txt, Dec 2002.

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt
https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-13.txt
https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-13.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-alg-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-alg-07.txt

Expires: Oct 2003 [Page 9]

draft-swami-tsvwg-tcp-dclor-01.txt Apr 2003

 [LG03] R. Ludwig, A. Gurtov, "The Eifel Response Algorithm for
 TCP." Internet draft; work in progress, draft-ietf-tsvwg-

tcp-eifel-response-03.txt, Mar 2003.

 [SK03] P. Sarolahti, M. Kojo. "F-RTO: A TCP RTO Recovery
 Algorithm for Avoiding Unnecessary Retransmissions."
 Internet draft; work in progress. draft-sarolahti-tsvwg-

tcp-frto-03.txt, Jan 2003.

 [RFC2988] V. Paxon, M. Allman. "Computing TCP's Retransmission
 Timer," Nov 2000.

 [BA02] E. Blanton, M. Allman, "Using TCP DSACKs and SCTP
 Duplicate TSNs to Detect Spurious Retransmissions,"
 Internet draft; work in progress, draft-blanton-dsack-

use-02.txt, Oct 2002.

7. IPR Statement

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the on-line list of claimed
 rights at http://www.ietf.org/ipr.

Author's Address:

 Yogesh Prem Swami Khiem Le
 Nokia Research Center Nokia Research Center
 6000 Connection Drive 6000 Connection Drive
 Irving TX-75063 Irving TX-75063
 USA USA

 Phone: +1 972-374-0669 Phone: +1 972-894-4882
 Email: yogesh.swami@nokia.com Email: khiem.le@nokia.com

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-response-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-response-03.txt
https://datatracker.ietf.org/doc/html/draft-sarolahti-tsvwg-tcp-frto-03.txt
https://datatracker.ietf.org/doc/html/draft-sarolahti-tsvwg-tcp-frto-03.txt
https://datatracker.ietf.org/doc/html/draft-blanton-dsack-use-02.txt
https://datatracker.ietf.org/doc/html/draft-blanton-dsack-use-02.txt
http://www.ietf.org/ipr

Expires: Oct 2003 [Page 10]

