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DCLOR: De-correlated Loss Recovery using SACK option
for spurious timeouts.

Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of [RFC2026].

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

   A spurious timeout in TCP forces the sender to unnecessarily
   retransmit one complete congestion window of data into the network.
   In addition, TCP uses the rate of arrival of ACKs as the basic
   criterion for congestion control. TCP makes the assumption that the
   rate at which ACKs are received reflects the end-to-end state of the
   network in terms of congestion. But after a spurious-timeout, the
   ACKs don't reflect the end-to-end congestion state of the network,
   but only a part of it. In these cases, the slow-start behavior after
   a timeout can further add to network congestion. In this draft we
   propose changes to the TCP sender (no change is needed for TCP
   receiver) that can be used to solve the problem of both redundant-
   retransmission and network congestion after a spurious timeout.
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1. Introduction

   The response of a TCP sender after a retransmission timeout is
   governed by the underlying assumption that a mid-stream timeout can
   occur only if there is heavy congestion--manifested as packet
   loss--in the network. Even though loss is often caused by congestion,
   the loss recovery algorithm itself should only answer the question of
   "what" data (i.e., what sequence number of data ) to send. While on
   the other hand, the congestion control algorithm should answer the
   question of "how much" data to send. But after a timeout, TCP
   addresses the issues of loss recovery and congestion control using a
   single mechanism--send one segment per round trip timeout (RTO)
   (answers the "how much" question) until an acknowledgment is
   received. The single segment sent is always the first unacknowledged
   outstanding packet in the retransmission queue (answers the "what"
   question).  Since the present TCP's loss recovery and congestion
   control algorithms are coupled together, we call this "Correlated
   Loss Recovery (CLOR)."

   Although the assumption that a timeout can occur only if there is
   severe congestion is valid for traditional wire-line networks, it
   does not hold good for some other types of networks--networks where
   packets can be stalled "in the network" for a significant duration
   without being discarded. Typical examples of such networks are
   cellular networks. In cellular networks, the link layer can
   experience a relatively long disruption due to errors, and the link
   layer protocol can keep these packets-in-error buffered as long as
   the link layer disruption lasts.

   In this document we present an alternative approach to loss recovery
   and congestion control that "De-Correlates" Loss Recovery from
   congestion congestion and allows independent choice on using a
   particular TCP sequence number without compromising on the congestion
   control principles of [RFC2581][RFC2914][RFC2861].

   Although several drafts [LM02][LG03][SK03][BA02] have been presented
   on this topic, we believe that none of them fully considers all the
   problems associated with spurious timeouts. In the following section
   we first describe these problems in more detail and then describe the
   DCLOR mechanism in section-3.

2. Problem Description.

   Let us assume that a TCP sender has sent N packets, p(1) ...  p(N),
   into the network and it's waiting for the ACK of p(1) (Figure-1). Due
   to bad network conditions or some other problem, these packets are
   excessively delayed at some some intermediary node NDN. Unlike
   standard IP routers, the NDN keeps these packets buffered for a
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   relatively long period of time until these packets are forwarded to
   their intended recipient.  This excessive delay forces the TCP sender
   to timeout and enter slow start.

   Figure-1

       TCP-Sender         NDN      TCP-Receiver

     ..... |----p(1)------>|           |
       ^   |----p(2)------>|           |
       :   |      .        |           |
    RTT=D  |      .        |           |
       :   |      .        |           |
     ..... |----p(N)------>|           |
           |      ^        |           |
           |      :        |           |
           |     RTO       |           |
           |      :        |           |
           |      V        |----p(1)-->|
       ... |----p1(1)----->|<---a(1)---|...
        L  |               |           |
       ... |<----a(1)------|----p(2)-->|
           |->p1(2),p1(3)->|<---a(2)---|...
           |      .        |     .     |
           |      .        |     .     |
           |      .        |     .     |
           |               |<---a(N)---|
           |               |---p1(1)-->|
           |               |<---a(N)---|
           |               |           |

   As far as the sender is concerned, a timeout is always interpreted as
   heavy congestion. The TCP sender therefore makes the assumption that
   all packets between p(1) and p(N) were lost in the network. To
   recover from this misconstrued loss, the TCP sender retransmits P1(1)
   ( Px(k) represents the xth retransmission of packet with sequence
   number k), and waits for the ACK a(1).

   After some period of time when the network conditions at NDN improve,
   the queued in packets are finally dispatched to their intended
   recipient; in response the TCP receiver generates the ACK a(1). When
   the TCP sender receives a(1), it's fooled into believing that a(1)
   was generated in response to the retransmitted packet p1(1), while in
   reality a(1) was generated in response to the originally transmitted
   packet p(1). When the sender receives a(1), it increases its
   congestion window to two, and retransmits p1(2) and p1(3). As the
   sender receives more acknowledgments, it continues with
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   retransmissions and finally starts sending new data.

   The following two sub sections examine the problems associated with
   the above-mentioned TCP behavior.

2.1 Redundant Data Retransmission

   The obvious and relatively easy-to-solve inefficiency of the above
   algorithm is that the entire congestion window worth of data is
   unnecessarily retransmitted. Although such retransmissions are
   harmless to high-bandwidth, well-provisioned, backbone links (so long
   they are infrequent), it could severely degrade the performance of
   slow links.

   In cases where bandwidth is a commodity at a premium, (e.g., cellular
   networks), unnecessary retransmission can also be costly.

2.2 Congestion after Spurious Timeout

   To analyze network congestion after spurious timeout, we compute the
   worst case scenario packet loss in the system--assuming only TCP
   connections to be present.

   After the spurious timeout, the TCP sender sets its SS_THRESH to N/2.
   Therefore, for the first N/2 ACKs received (i.e., ACK a(1) to a(N/2)
   ), the TCP sender will grow its congestion window by one and reach
   the SS_THRESH value of N/2.  For each ACK received, the TCP sender
   sends 2 packets. Therefore, by the end of the slow start, the TCP
   sender would have sent 2*(N/2) packets into the network. For the
   remaining N/2 ACKs (i.e., ACKs between a(N/2+1) to a(N)) the TCP
   sender will remain in the congestion avoidance phase and send one
   packet for each ACK received--sending N/2 more data segments. The net
   amount of data sent is therefore N/2 + N = 3N/2.

   Please note that the entire 3N/2 packets are injected into the
   network within a time period less than or equal to RTT in most cases.
   The number of data segments that left the network during this time is
   only N. Therefore, N/2 packets out of 3N/2 packets will be lost with
   a very high probability. These N/2 lost packets, however, need not
   come from the same connection, and such a data-burst will
   unnecessarily penalize all the competing TCP connections that share
   the same bottleneck router.

   Going further ahead, let us assume there are M competing TCP
   connections that share the same bottleneck router(s) with
   C(0)(Figure-2). During the period of time while C(0) is stalled, the
   TCP sender of C(0) does not use its network resources--the buffer
   space--on the bottleneck router(s). The competing connections,
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   C(1)...  C(M), however see this lack of activity as resource
   availability and start growing their window by at least one segment
   per RTT during this time period (by virtue of linear window increase
   during congestion avoidance phase).  For simplicity reasons, we
   assume that each of these connections has the same round trip time of
   RTT, and the idle time for C(0) is k*RTT (where k > RTO/RTT). Under
   these assumptions, each of these competing connections will increase
   their congestion window by k segments. Therefore the amount of
   packets lost in the network due to slow start can be as high as:

                   N/2 + M*k       ... (4)

   the first term in the above equation is the packet loss due to slow
   start, while the second term is the loss due to window growth of
   completing connections (if the competing connections were in slow
   start the response could have been worse).

   Figure-2
                      C(1) C(2)... C(M)
                        |  |   ... |
                        |  |   ... |
                        |  |   ... |
                        V  V   ... V
                        \  \      /
                         \  \    /
                          \  \  /
                    +------X--X--X---+       +------------------+
        Defaulting  |                |       |                  |
   C(0) ----------->|   Bottleneck   |------>|Buffered packets  |--->
        connection  |   router       |       |                  |
                    +-----X--X----X--+       +------------------+
                          |  |    |
                          |  |    |
                        c(1)c(2) C(M)

   Based on the above equation, we note that the congestion state of the
   network depends upon the duration of spurious timeout. In our reponse
   algorithm we therefore take the time duration of spurious timeout
   into account reduce the data rate by half every RTO. Please note that
   this scheme works well only when the number of competing connections
   M does not vary too much while C(0) was stalled. A more conservative
   response algorithm should reduce the data rate to INIT_WINDOW if M is
   not bounded.

   In the following sections we describe an algorithm that solves the
   problem of both redundant retransmission and packet loss after a
   spurious timeout.
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3. De-correlated Loss Recovery (DCLOR)

   The basic idea behind DCLOR is to send a new data segment from
   outside the sender's retransmission queue and wait for the ACK or
   SACK of the new data before initiating the response algorithm. Unlike
   slow-start where the response algorithm starts immediately after
   receiving the first ACK, DCLOR waits for the ACK/SACK of the new data
   sent after timeout before initiating loss recovery. The SACK block
   for new data contains sufficient information to determine all the
   packets that were lost into the network. Once the sequence number of
   lost packets is determined, the TCP sender grows its congestion
   window as determined by the SS_THRESH and it's congestion window.

3.1  Probe phase after a timeout

   The following steps describe the response of a TCP sender on a
   timeout:

     1. If the timeout occurs before the 3 way handshake is complete,
         the TCP sender's behavior is unchanged,

     2. After each timeout, the TCP sender MUST set its congestion
        window to:

                      cwnd = max( cwnd >> 1, IINIT_WINDOW).

        The value of SS_THRESH MUST be left UNCHANGED at this point. The
        TCP sender should also count the number of packets in flight at
        this time, and keep it in a state variable stale_outstanding.

     3. The TCP sender SHOULD also reset all the SACK tag bits in its
        retransmission queue if this the first timeout.

     4. Instead of sending the first unacknowledged packet P1
        after a timeout, the TCP sender should *disregard* its
        congestion window and send ONE NEW MSS size data Pn+1.

        The TCP sender should also store the sequence number of the new
        segment in a new state variable called SS_PTR (for slow start
        pointer).

        If the sender does not have any new data outside its
        retransmission queue, or if the receiver's flow control window
        cannot sustain any new data, the TCP sender SHOULD send the
        highest sequence numbered MSS sized data chunk from its
        retransmission queue (i.e., it should send the last packet from
        its retransmission queue).

https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-01.txt


Expires: Oct 2003                                               [Page 6]



draft-swami-tsvwg-tcp-dclor-01.txt                              Apr 2003

     5. A TCP sender MUST repeat step-2 to step-4 until it
        enters the Timeout-Recovery state as described in step 6.

3.2 Congestion Control After the probe phase

     6. For each ACK received with the ACK-sequence number
        less than SS_PTR, regardless of the value of the SS_THRESH, the
        TCP sender SHOULD NOT grow it's congestion window. If the ACK
        contains a new SACK block, the SACK tag SHOULD be set in the
        corresponding data packet. If new segments were ACKed, and the
        congestion window allows, the TCP sender SHOULD send new data.
        (Note: the idea here is that the congestion window should not be
        grown in response to stale ACKs since these ACKs don't reflect
        the end to end state of the network).

        In addition, the TCP sender SHOULD NOT take any timer sample for
        the stale ACKs. (NOTE: We do not attempt to change the RTT
        calculation in an ad-hoc manner; we believe that this is a
        reaseach problem that needs better network modelling before an
        appropriate timer calculation can be found)

     7. Step-6 continues until the TCP sender receives an
        ACK acking a sequence number greater than SS_PTR, or it receives
        a SACK block covering the sequence number greater than SS_PTR.

        If the sender receives a SACK block containing SS_PTR, i.e., if
        there is a packet loss in the stalled window, it SHOULD go to
        step-8.

        If the sender receives an ACK that acknowledges SS_PTR, i.e., if
        no packets were lost from the stalled window, it SHOULD go to
        step-10.

NOTE: In our previous experiments we had set the congestion window
   to one MSS after a spurious timeout, however this algorithm prerforms
   better if there is moderate load on the routers and the number of
   competing connections do not vary a lot duing the stalling period. In
   case of heavy load, setting the congestion window to INIT_WINDOW
   still performs better. We believe that using the present congestion
   response make a fair compromise for different scenarios.

3.3 Timeout-Recovery: recovering lost packets after timeout

     8. The TCP sender traverses the retransmission queue and marks
        all the packets without any SACK tag as lost. The TCP sender
        also updates its packets-in-flight (pipe) based on the SACK tags
        and the lost segment information (the packets-in-flight (pipe)
        should be ZERO after the update).
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        Please note that unlike Fast-Retransmit and Fast-recovery, DCLOR
        uses only one SACK block containing SS_PTR to mark packets as
        lost.  This is because we do not expect packet reordering to
        exist over the period of RTO.

     9. The TCP sender should update its SS_THRESH, as:

               SS_THRESH= stale_outstanding >> 1       (step-2)

    10. The TCP sender SHOULD set its congestion window to cwnd+1.
        If packets were lost into the network (i.e., if a SACK for
        SS_PTR was received), the TCP sender should start by sending
        packets with lowest sequence number; else it should continue
        with new data. (Note: for each new SACK block received, the
        sender should send a segment--lost or new--and therefore the
        problem of duplicate ACKs is not of concern here.)

        The sender should follow the normal window growth strategy based
        on the value of SS_THRESH after this step.

   Please note that with a pure ACK acknowledging SS_PTR, the TCP sender
   does not update the SS_THRESH value (it directly enters step-10 from
   step-7). This prevents a TCP sender from setting its SS_THRESH to a
   very small values if the spurious timeout occurs at the start of the
   connection.

4. Data Delivery To Upper Layers

   If a TCP sender loses its entire congestion window worth of data,
   sending new data after timeout prevents a TCP receiver from
   forwarding the new data to the upper layers immediately.  However,
   once the SACK for this new data is received, the TCP sender will send
   the first lost segment. This essentially means that data delivery to
   the upper layers could be delayed by at most one RTT when all the
   packets are lost in the network.

   This, however, does not affect the throughput of the connection in
   any way. If a timeout has occurred, then the data delivery to the
   upper layers has already been excessively delayed.  Delaying it by
   another round trip is not a serious problem. Please note that
   reliability and timeliness are two conflicting issues and one cannot
   gain on one without sacrificing something else on the other.

5. Security Considerations

   The TCP SACK information is meant to be advisory, and a TCP receiver
   is allowed--though strongly discouraged--to discard data blocks the
   receiver has already SACKed [RFC2018]. Please note however that even
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   if the TCP sender discards the data block it received, it MUST still
   send the SACK block for at least the recent most data received.
   Therefore in spite of SACK reneging, DCLOR will work without any
   deadlocks.

   A SACK implementation is also allowed not to send a SACK block even
   though the TCP sender and receiver might have agreed to SACK-
   Permitted option at the start of the connection. In these cases,
   however, if the receiver sends one SACK block, it must send SACK
   blocks for the rest of the connection. Because of the above mentioned
   leniency in implementation, its possible that a TCP receiver may
   agree on SACK-Permitted option, and yet not send any SACK blocks. To
   make DCLOR robust under these circumstances, DCLOR SHOULD NOT be
   invoked unless the sender has seen at least one SACK block before
   timeout. We, however, believe that once the SACK-Permitted option is
   accepted, the TCP sender MUST send a SACK block--even though that
   block might finally be discarded.  Otherwise, the SACK-Permitted
   option is completely redundant and serves little purpose. To the best
   of our knowledge, almost all SACK implementations send a SACK block
   if they have accepted the SACK-Permitted option.
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