
Network Working Group Y. Swami
Internet-Draft K. Le
Expires: August 31, 2006 Nokia Research Center, Dallas
 February 27, 2006

Decorrelated Loss Recovery (DCLOR) Using SACK Option for Spurious
Timeouts

draft-swami-tsvwg-tcp-dclor-07

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 31, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 A spurious timeout in TCP forces the sender to unnecessarily
 retransmit one complete congestion window of data into the network.
 In addition, the congestion state of the network could change
 substantially after a spurious timeout. In this draft we propose a
 conservative congestion response algorithm afert spurious timeout
 that takes network state into account.

Swami & Le Expires August 31, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TCP DCLOR February 2006

1. Introduction

 The response of a TCP sender after a retransmission timeout is
 governed by the underlying assumption that a mid-stream timeout can
 occur only if there is heavy congestion--manifested as packet
 loss--in the network. TCP therefore assumes that a timeout is a
 sufficient indication to a) recover all the packets in flight, and b)
 to initiate a congestion response (slow start in this case) suited
 for heavy congestion scenarios.

 Although the assumption that a timeout can occur only if there is
 severe congestion is valid for traditional wireline networks, it does
 not hold good for some other types of networks--networks where
 packets can be stalled "in the network" for a significant duration
 without being discarded. In cellular networks, for example, the link
 layer can experience a relatively long disruption due to errors, and
 the link layer protocol can keep all packets buffered as long as the
 link layer disruption lasts.

 In this document we present an alternative approach to loss recovery
 and congestion control that "De-Correlates" Loss Recovery from
 congestion after a spurious. The algorithm described here follows
 the congestion control principle of [1] [3] and [5], but unlike the
 present go-back-N loss recovery algorithm after timeout, DCLOR only
 sends those segments that were actually lost in the network.

Swami & Le Expires August 31, 2006 [Page 2]

Internet-Draft TCP DCLOR February 2006

2. Terminology

 The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT,"
 "SHOULD," "SHOULD NOT," "RECOMMENDED," "MAY," "OPTIONAL," and
 "silently ignore" in this document are to be interpreted as described
 in RFC 2119.

Swami & Le Expires August 31, 2006 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft TCP DCLOR February 2006

3. Problem Description

 Let us assume that a TCP sender has sent N packets, p(1) ... p(N),
 into the network and it's waiting for the ACK of p(1). Due to bad
 network conditions or some other problem, these packets are
 excessively delayed at some intermediary node RTR-1. This excessive
 delay forces the TCP sender to timeout and enter slow start.

 As far as the sender is concerned, a timeout is always interpreted as
 heavy congestion. The TCP sender therefore makes the assumption that
 all packets between p(1) and p(N) were lost in the network. To
 recover from this misconstrued loss, the sender retransmits P1(1) and
 waits for the ACK a(1) (where Px(k) represents the xth
 retransmission of packet with sequence number k).

 After some period of time when the network conditions at RTR-1
 improve, the queued in packets are finally dispatched to their
 intended recipient. In response, TCP receiver generates the ACK
 a(1). When the TCP sender receives a(1), it's fooled into believing
 that a(1) was generated in response to the retransmitted packet
 p1(1), while in reality a(1) was generated in response to the
 originally transmitted packet p(1). When the sender receives a(1),
 it increases its congestion window to two, and retransmits p1(2) and
 p1(3). As the sender receives more acknowledgments, it continues
 with retransmissions and finally starts sending new data. Here we
 only analyze the congestion control behavior after a spurious
 timeout. Our scheme can be used in conjunction with the detection
 schemes in [6] and [9].

 To analyze network congestion after spurious timeout, we compute the
 worst case scenario packet loss in the system--assuming only TCP
 connections to be present. After the timeout (real or spurious), the
 TCP sender sets its SS_THRESH to N/2. Therefore, for the first N/2
 ACKs received (i.e., ACK a(1) to a(N/2)), the TCP sender will grow
 its congestion window by one and reach the SS_THRESH value of N/2.
 For each ACK received, the TCP sender sends 2 packets. Therefore, by
 the end of the slow start, the TCP sender would have sent 2*(N/2)
 packets into the network. For the remaining N/2 ACKs (i.e., ACKs
 between a(N/2+1) to a(N)) the TCP sender will remain in the
 congestion avoidance phase and send one packet for each ACK
 received--sending N/2 more data segments. The net amount of data
 sent is therefore N/2 + N = 3N/2.

 Please note that the entire 3N/2 packets are injected into the
 network within a time period less than or equal to RTT in most cases.
 The number of data segments that left the network during this time is
 only N. Therefore, the conservation of packet principle has been
 compromised, and of the 3N/2 packets injected in the network, N/2

Swami & Le Expires August 31, 2006 [Page 4]

Internet-Draft TCP DCLOR February 2006

 packets will be lost with a very high probability. These N/2 lost
 packets, however, need not come from the same connection, and such a
 data-burst will unnecessarily penalize all the competing TCP
 connections that share the same bottleneck router.

 Now let's assume there are M competing TCP connections that share the
 same bottleneck router(s) with C(0) (each connection is numbered C(0)
 ... C(M-1)). During the period of time while C(0) is stalled, the
 TCP sender does not use its network resources--the buffer space--on
 the bottleneck router(s). The competing connections, C(1)... C(M),
 however see this lack of activity as resource availability and start
 growing their window by at least one segment per RTT during this time
 period (by virtue of linear window increase during congestion
 avoidance phase). For simplicity reasons, we assume that each of
 these connections has the same round trip time of RTT, and the idle
 time for C(0) is k*RTT (where k > RTO/RTT). Under these assumptions,
 each of these competing connections will increase their congestion
 window by k segments. Therefore the amount of packets lost in the
 network due to slow start following a spurious timeout can be as high
 as: N/2 + M*k.

 The Eifel response algorithm [7] solves the problem of N/2 packet
 loss, by restoring the congestion window to an old value immediately
 before the spurious timeout. Based on the above equation, however,
 we note that the congestion state of the network not only depends
 upon the old window size, but also upon the duration of spurious
 timeout. In our response algorithm, we therefore take the time
 duration of spurious timeout into account by reducing the data rate
 by half every RTO. Please note that this scheme works well only when
 the number of competing connections M does not vary too much while
 C(0) was stalled. A more conservative response algorithm should
 reduce the data rate to INIT_WINDOW if M is not bounded.

 In addition to the above congestion and packet loss issues, the
 current response after spurious timeouts is inefficient, in the sense
 that it unnecessarily retransmits data that is not lost, but simply
 stalled. Such unnecessary retransmission is an issue when bandwidth
 resources are at a premium, like over a cellular link, where spectrum
 is scarce and expensive.

Swami & Le Expires August 31, 2006 [Page 5]

Internet-Draft TCP DCLOR February 2006

4. DCLOR Response Algorithm

 A TCP sender should follow [6] or [9] (or any other algorithm) to
 detect a spurious timeout. If the spurious timeout is confirmed and
 the TCP SACK option [4] is enabled, only then it SHOULD follow the
 DCLOR algorithm.

 The basic idea of this algorithm is that the ACKs received for the
 stalled packets don't provide sufficient information about the end-
 to-end congestion state of the network. Therefore, the sender
 reduces the congestion window by 1/2 every RTO, and waits for the ACK
 or SACK of a new data packet before increasing it's congestion
 window. Additionally, while the sender is waiting for the ACK/SACK
 of new data, it's allowed to send cwnd (the updated cwnd) worth of
 new data into the network.

 1. The TCP sender MUST record the time when the first timeout took
 place, and when the first ACK after the timeout was received.
 Based on these times (or through some other means) it should
 compute the number of unbacked-off timeouts that must have taken
 place during this time period. Let's call this number N-RTO.
 The sender should also keep the highest sequence number of data
 packet that was sent in a variable called SS_PTR. The sender
 should also keep a counter called dclor_cntr, which allows the
 sender to send new data while it's waiting for the ACK or SACK of
 SS_PTR. Additionally, the sender MUST NOT update the SS_TRHESH
 value due to spurious timeouts (i.e., the spurious timeout
 algorithm should leave SS_THRESH values unaltered).

 2. Once the Spurious Timeout is confirmed, the TCP sender should set
 cwnd = max(2, pipe-size/2^N-RTO). (where pipe-size is the
 packets in flight at the time when spurious timeout was
 confirmed.) Additionally, it should set dclor_cntr = 0.

 3. For each ACK or SACK < SS_PTR (i.e., a SACK block whose left edge
 is < SS_PTR), the sender SHOULD send one *new* data packet if it
 is present and if dclor_cntr < cwnd and (rwnd < SND.NXT -
 SND.UNA). If (rwnd >= SND.NXT - SND.UNA) or if there is no new
 data to send, then the sender MUST retransmit no more than one
 packet per RTO from the tail of the retransmission queue
 regardless of the value of dclor_cntr. Moreover, for each *new*
 packet sent, dclor_cntr should be incremented by one. For ACK/
 SACK < SS_PTR, the sender MUST not initiate any loss recovery
 algorithm nor should it update cwnd value. Additionally, the
 SS_THRESH should be left unchanged for all these ACKs.

Swami & Le Expires August 31, 2006 [Page 6]

Internet-Draft TCP DCLOR February 2006

 4. If the sender receives a pure ACK > SS_PTR, it should update cwnd
 = cwnd+1, and follow normal TCP behavior. (Note that this means
 that none of the stalled packets were lost so we don't need to
 change SS_THRESH value).

 5. If the sender receives a SACK block whose left edge is greater
 than SS_PTR, then it should traverse the retransmission queue
 from SND.UNA to the left edge of SACK block, and mark all
 unsacked packets as lost. Additionally, it should set cwnd =
 cwnd + 1 and reset SS_THRESH to 1/2 the pipe-size. Beyond this
 point, the sender MUST recover lost packets based on [2].

Swami & Le Expires August 31, 2006 [Page 7]

Internet-Draft TCP DCLOR February 2006

5. Data Delivery To Upper Layers

 If a TCP sender loses its entire congestion window worth of data,
 sending new data after timeout prevents a TCP receiver from
 forwarding the new data to the upper layers immediately. However,
 once the SACK for this new data is received, the TCP sender will send
 the first lost segment. This essentially means that data delivery to
 the upper layers could be delayed by at most one RTT when all the
 packets are lost in the network.

 This, however, does not affect the throughput of the connection in
 any way. If a timeout has occurred, then the data delivery to the
 upper layers has already been excessively delayed. Delaying it by
 another round trip is not a serious problem. Please note that
 reliability and timeliness are two conflicting issues and one cannot
 gain on one without sacrificing something else on the other.

Swami & Le Expires August 31, 2006 [Page 8]

Internet-Draft TCP DCLOR February 2006

6. SACK reneging

 The TCP SACK information is meant to be advisory, and a TCP receiver
 is allowed--though strongly discouraged--to discard data blocks the
 receiver has already SACKed [4]. Please note however that even if
 the TCP receiver discards the data block it received, it MUST still
 send the SACK block for at least the recent most data received.
 Therefore in spite of SACK reneging, DCLOR will work without any
 deadlocks.

 A SACK implementation is also allowed not to send a SACK block even
 though the TCP sender and receiver might have agreed to SACK-
 Permitted option at the start of the connection. In these cases,
 however, if the receiver sends one SACK block, it must send SACK
 blocks for the rest of the connection. Because of the above
 mentioned leniency in implementation, its possible that a TCP
 receiver may agree on SACK-Permitted option, and yet not send any
 SACK blocks. To make DCLOR robust under these circumstances, DCLOR
 SHOULD NOT be invoked unless the sender has seen at least one SACK
 block before timeout. We, however, believe that once the SACK-
 Permitted option is accepted, the TCP receiver MUST send a SACK
 block--even though that block might finally be discarded. Otherwise,
 the SACK-Permitted option is completely redundant and serves little
 purpose. To the best of our knowledge, almost all SACK
 implementations send a SACK block if they have accepted the SACK-
 Permitted option.

Swami & Le Expires August 31, 2006 [Page 9]

Internet-Draft TCP DCLOR February 2006

7. Security Consideration

 DCLOR does not open TCP to new attacks.

Swami & Le Expires August 31, 2006 [Page 10]

Internet-Draft TCP DCLOR February 2006

8. Acknowledgments

 We would like to thank Shashikant Maheshwari, Pasi Sarolahti, and
 Mika Liljeberg for their comments and suggestions on a previous
 version of this draft. Special thanks to Jani Hirsimaki for
 thoroughly reviewing the document and providing feedback on the
 algorithm.

9. References

 [1] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [2] Blanton, E., Allman, M., Fall, K., and L. Wang, "Conservative
 SACK-based Loss Recovery Algorithm for TCP", RFC 3517,
 April 2003.

 [3] Floyd, S., "Congestion Control Principles", RFC 2914,
 September 2002.

 [4] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "TCP
 Selective Acknowledgement Options", RFC 2018, July 2000.

 [5] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion Window
 Validation", RFC 2861, June 2000.

 [6] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm",
RFC 3522, April 2003.

 [7] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm for
 TCP.", Internet draft; work in progress, draft-ietf-tsvwg- tcp-
 eifel-response-05.txt, March 2004.

 [8] Paxson, V. and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

 [9] Sarolahti, P. and M. Kojo, "F-RTO: A TCP RTO Recovery Algorithm
 for Avoiding Unnecessary Retransmissions.", Internet draft; work
 in progress, July 2004.

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg
https://datatracker.ietf.org/doc/html/rfc2988

Swami & Le Expires August 31, 2006 [Page 11]

Internet-Draft TCP DCLOR February 2006

Authors' Addresses

 Yogesh Prem Swami
 Nokia Research Center, Dallas
 6000 Connection Drive
 Irving, TX 75039
 USA

 Phone: +1 972 374 0669
 Email: yogesh.swami@nokia.com

 Khiem Le
 Nokia Research Center, Dallas
 6000 Connection Drive
 Irving, TX 75039
 USA

 Phone: +1 972 894 4882
 Email: khiem.le@nokia.com

Swami & Le Expires August 31, 2006 [Page 12]

Internet-Draft TCP DCLOR February 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Swami & Le Expires August 31, 2006 [Page 13]

