
nwcrg I. Swett
Internet-Draft Google
Intended status: Informational M-J. Montpetit
Expires: September 10, 2020 Triangle Video
 V. Roca
 INRIA
 F. Michel
 UCLouvain
 March 9, 2020

Coding for QUIC
draft-swett-nwcrg-coding-for-quic-04

Abstract

 This document focuses on the integration of FEC coding in the QUIC
 transport protocol, in order to recover from packet losses. This
 document does not specify any FEC code but defines mechanisms to
 negotiate and integrate FEC Schemes in QUIC. By using proactive loss
 recovery, it is expected to improve QUIC performance in sessions
 impacted by packet losses. More precisely it is expected to improve
 QUIC performance with real-time sessions (since FEC coding makes
 packet loss recovery insensitive to the round trip time), with short
 sessions (since FEC coding can help recovering from tail losses more
 rapidely than through retransmissions), with multicast sessions
 (since the same repair packet can recover several different losses at
 several receivers), and with multipath sessions (since repair packets
 add diversity and flexibility).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2020.

Swett, et al. Expires September 10, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Coding for QUIC March 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Definitions and Abbreviations 3
3. General Design Considerations 4

 3.1. FEC Code versus FEC Scheme, Block Codes versus Sliding
 Window Codes . 4

3.2. FEC Scheme Negotiation 4
3.3. FEC Protection Within an Encrypted Channel 5
3.4. About Middleboxes . 5

4. FEC Protection Principles 5
4.1. Cross Packet Frames FEC Encoding 5
4.2. Source Symbol Definition 6
4.2.1. Packet Payload to Packet Chunk Mapping 6
4.2.2. Packet Chunk to Source Symbol Mapping 7

 4.2.2.1. Open questions: Content of Source Symbols
 Metadata? Removing certain frames from FEC
 protection? 9

4.2.3. Source Symbol Size (E) Considerations 10
4.3. Source Symbol Signaling 11
4.4. Repair Symbol Signaling 11
4.5. Signaling a Symbol Recovery 11

 4.6. About Gaps in the Set of Source Symbols Considered During
 Encoding . 12

5. FEC Scheme Negotiation in QUIC 12
5.1. FEC Scheme Negotiation 13

6. Security Considerations 15
7. IANA Considerations . 15
8. Acknowledgments . 15
9. References . 15
9.1. Normative References 16
9.2. Informative References 16

 Authors' Addresses . 16

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Swett, et al. Expires September 10, 2020 [Page 2]

Internet-Draft Coding for QUIC March 2020

1. Introduction

 QUIC is a new transport that aims at improving network performance by
 enabling out of order delivery, partial reliability, and methods of
 recovery besides retransmission, while also improving security. This
 document specifies a framework to enable FEC codes to be used to
 recover from lost packets within a single QUIC stream or across
 several QUIC streams.

 The ability to add FEC coding in QUIC may be beneficial in several
 situations:

 o for a robust transmission of latency sensitive traffic, for
 instance real-time flows, since it enables to recover packet
 losses independently of the round trip time;

 o for short sessions, in order to protect the last few packets sent,
 since it enables to recover from tail losses more rapidely than
 through retransmissions;

 o for the transmission of contents to a large set of QUIC reception
 endpoints, since the same repair frame may help recovering several
 different packet losses at different receivers;

 o for multipath communications, since repair traffic adds diversity
 and flexibility.

 This framework does not mandate the use of any specific FEC code
 (i.e., how to encode and decode) nor FEC Scheme (i.e., that specifies
 both a FEC code and how to use it, in particular in terms of
 signaling). Instead it allows to negotiate the FEC Scheme to use at
 session startup, assuming that more than one solution could
 potentially be offered concurrently. Without loss of generality, we
 assume that the encoding operations compute a linear combination of
 QUIC packets, regardless of whether these codes are of block type (as
 with Reed-Solomon codes [RFC5510]) or sliding window type (as with
 RLC codes [RFC8681]).

2. Definitions and Abbreviations

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Terms and definitions that apply to coding are available in
 [nc-taxonomy]. More specifically, this document uses the following
 definitions:

https://datatracker.ietf.org/doc/html/rfc5510
https://datatracker.ietf.org/doc/html/rfc8681
https://datatracker.ietf.org/doc/html/rfc2119

Swett, et al. Expires September 10, 2020 [Page 3]

Internet-Draft Coding for QUIC March 2020

 Packet versus Symbol: a Packet is the unit of data that is exchanged
 over the network while a Symbol is the unit of data that is
 manipulated during the encoding and decoding operations

 Source Symbol: a unit of data originating from the source that is
 used as input to encoding operations

 Repair Symbol: a unit of data that is the result of a coding
 operation

 This document uses the following abbreviations:

 E: size of an encoding symbol (i.e., source or repair symbol),
 assumed fixed (in bytes)

3. General Design Considerations

 This section lists a few general considerations that govern the
 framework for FEC coding support in QUIC.

3.1. FEC Code versus FEC Scheme, Block Codes versus Sliding Window
 Codes

 A FEC code specifies the details of encoding and decoding operations.
 In addition to that, a FEC Scheme defines the additional protocol
 aspects required to use a particular FEC code [nc-taxonomy]. In
 particular the FEC Scheme defines signaling (e.g., information
 contained in Source and Repair Packet header or trailers) needed to
 synchronize encoders and decoders.

 Block coding (e.g., Reed-Solomon [RFC5510]) and sliding window coding
 (e.g., RLC [RFC8681]) are two broad classes of FEC codes
 [nc-taxonomy]. In the first case, the input flow must be first
 segmented into a sequence of blocks, FEC encoding and decoding being
 performed independently on a per-block basis. In the second case
 rely, a sliding encoding window continuously slides over the input
 flow. It is envisioned that the two classes of codes could be used
 to bring FEC protection to QUIC, usually with an advantage for
 sliding window codes when it comes to low latency communications.

3.2. FEC Scheme Negotiation

 There are multiple FEC Scheme candidates. Therefore a negotiation
 step is needed to select one or more codes to be used over a QUIC
 session. This will be implemented using the one step negotiation of
 the new QUIC negotiation mechanism [QUIC-transport], during the QUIC
 handshake.

https://datatracker.ietf.org/doc/html/rfc5510
https://datatracker.ietf.org/doc/html/rfc8681

Swett, et al. Expires September 10, 2020 [Page 4]

Internet-Draft Coding for QUIC March 2020

 Editor's notes:

 * It is likely that FEC Scheme negotiation requires the use of a
 new dedicated Extension Frame Type. To Be Clarified and text
 updated.

 * It is not clear whether negotiation is meant to select a
 single FEC Scheme or **multiple** FEC Schemes. In the
 second case (multiple FEC) it is required to have a
 complementary mechanism to indicate which FEC Scheme is used
 in a given REPAIR frame (which could be done through as many
 REPAIR frame type values as potential FEC Scheme negotiated).
 Is it what we want to achieve? Not sure.

3.3. FEC Protection Within an Encrypted Channel

 FEC encoding is applied before any QUIC encryption and authentication
 processing. Source symbols, that constitute the data units used by
 the FEC codec, contain cleartext data (application and/or QUIC data).

3.4. About Middleboxes

 The coding approach described in this document does not allow on path
 elements (middleboxes) to take part in FEC protection. The traffic
 being encrypted end-to-end, the middleboxes are not in position to
 perform FEC decoding, nor to add any redundant traffic.

4. FEC Protection Principles

 The present section explains how FEC encoding can be applied to QUIC.
 It defines the general ideas for mapping QUIC packet frames to source
 symbols, as well as the associated signaling. This section does not
 define the FEC Scheme specific details that need to be specified in a
 companion document.

4.1. Cross Packet Frames FEC Encoding

 A QUIC packet payload consists in a set of QUIC frames. These frames
 either carry application data (e.g., in a STREAM or DATAGRAM frame)
 or control information (e.g., a MAX_DATA frame). Each packet is
 either entirely received or lost, and is uniquely identified by a
 monotonically increasing Packet Number.

 Through the use of FEC encoding, application data can be protected
 proactively against packet losses, without requiring to go through
 packet retransmission. In addition to application data, QUIC
 transfers might benefit from protecting control frames having a
 potential impact on the transmission throughput, such as MAX_DATA or

Swett, et al. Expires September 10, 2020 [Page 5]

Internet-Draft Coding for QUIC March 2020

 MAX_STREAM_DATA frames. Therefore this document introduces an FEC
 protection across all -- or a subset of -- the frames of a given QUIC
 packet. This design choice impacts the QUIC packet to source symbols
 mapping, as well as signaling aspects, both of them being discussed
 hereafter.

4.2. Source Symbol Definition

 The cross packet frames FEC encoding approach considers the sequence
 of frames (or a sub-sequence of them) transmitted within a given QUIC
 packet, seen as the QUIC packet payload. From this payload, it
 defines a mapping to source symbols (see Section 4.2.1 and

Section 4.2.2). Source symbols are then used for encoding purposes,
 producing one or more repair symbols, the details of which depend on
 the FEC Scheme considered. However source symbols are never sent per
 se on the network. Instead the original QUIC packet, plus a
 dedicated signaling header, are sent and therefore implicitely carry
 those source symbols. The QUIC packets, containing one or more
 repair symbols, are sent on the network.

 The only modification to the original QUIC packet is the addition of
 a dedicated FEC_SRC_FPI frame type, meant to carry source symbol
 signaling (known as Source FEC Payload Information, or FPI). On the
 opposite, frames that carry one or more repair symbols use a
 dedicated REPAIR frame type. In both cases, in order to facilitate
 experiments and enable backward compatibility, the FEC_SRC_FPI and
 REPAIR frame types are chosen within the type range dedicated to
 "Extension Frames". Thereby, a legacy receiver will automatically
 ignore these unknown frame types. As QUIC packets can be of
 different lengths, a special care must be taken to ensure having a
 fixed Source Symbol size to ease FEC Scheme implementations.

4.2.1. Packet Payload to Packet Chunk Mapping

 This section defines a mechanism to segment a QUIC packet payload,
 composed of several frames, into fixed-size payload chunks, of size
 E-1 bytes or E-1-4 bytes for the first chunk when the QUIC Packet
 Number needs to be added ((Section 4.2.2). Depending on the relative
 value of E-1 (or E-1-4) and the QUIC packet payload size, a packet
 can potentially contain more than one chunks. This is a first step
 into producing source symbols. Figure 1 illustrates this process.

Swett, et al. Expires September 10, 2020 [Page 6]

Internet-Draft Coding for QUIC March 2020

 |<E-1-4>|< E-1 >|< E-1 >|< E-1 >|
 | | | | |
 +------|-------|-------|-------|-------|
 QUIC pkt 0 |Header| Packet Payload | chunks 0, 1, 2, 3
 +------|-----+-|-------|-------|-------+
 QUIC pkt 1 |Header| 0 | Packet Payload | chunks 4, 5, 6
 +------|---+-+-|-------|-------|
 QUIC pkt 2 |Header| 0 | Packet Payload | chunks 7, 8, 9
 +------|---+---|-------|-------|

 Figure 1: Example of QUIC packet to chunk mapping, when the E-1 value
 is relatively small, with prepended zero padding when needed (here
 packets 1 and 2), and assuming the first chunk contains the QUIC
 Packet Number in 4 bytes compressed version.

4.2.2. Packet Chunk to Source Symbol Mapping

 The second step consists in producing the source symbols. A source
 symbols is the concatenation of a single byte of metadata,
 potentially followed by the Packet Number of the associated source,
 plus a packet chunk. Figure 2 illustrates the situation where a
 compressed QUIC packet number is added (in general for the first
 chunk of a QUIC packet). Figure 3 illustrates the situation where
 there is no QUIC packet number (in general for the following chunk(s)
 of a QUIC packet). When the QUIC packet number is present, this
 identifier can be recovered by a receiver after successful FEC
 decoding. It means that a RECOVERED frame can be generated to the
 sender to indicated that this packet (identified by the QUIC packet
 number) has been recovered. Each source symbol is of fixed-size E
 bytes. These source symbols are only used during encoding and
 decoding and are not sent as-is on the network.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | meta data |
 +-+
 | Packet Number (4 bytes) |
 +-+
 | Packet chunk (E-1-4 bytes) ...
 +-+

 Figure 2: Source symbol format with Packet Number information (e.g.,
 first packet chunk).

Swett, et al. Expires September 10, 2020 [Page 7]

Internet-Draft Coding for QUIC March 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | meta data |
 +-+
 | Packet chunk (E-1 bytes) ...
 +-+

 Figure 3: Source symbol format without Packet Number information
 (e.g., packet chunks except the first one).

 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+
 |Resvd (0)|N|S|E|
 +-+-+-+-+-+-+-+-+

 Figure 4: Source symbol metadata format.

 Figure 4 shows the format of the 1 byte metadata. The fields are the
 following:

 Reserved field (5 bits): for this specification, this field MUST be
 equal to zero.

 Packet Number (N) field (1 bit): this field indicates that the
 following 4 bytes contain the Packet Number (short 32-bit
 representation) of the associated QUIC packet ([QUIC-transport]

section 17.1., Packet Number Encoding and Decoding).

 Start (S) bit (1 bit): this field, when set to 1, indicates that
 this source symbol contains the first chunk of the packet
 payload.

 End bit (E) (1 bit): this field, when set to 1, indicates that this
 source symbol contains the last chunk of the packet payload.

 Note that with a QUIC packet containing a single chunk, the
 associated metadata will contain S=E=1. On the opposite, a source
 symbol containing a intermediate chunk (i.e., neither the first nor
 the last chunk of the QUIC packet), the associated metadata will
 contain S=E=0.

Swett, et al. Expires September 10, 2020 [Page 8]

Internet-Draft Coding for QUIC March 2020

 QUIC packet
 |<E-1-4>|< E-1 >|< E-1 >|< E-1 >|
 +------|----+--|-------|-------|-------|
 |Header| 0 | Packet Payload | 4 packet chunks
 +------|----+--|-------|-------|-------|
 / | | \
 v v v v
 +-+--+----+ +-+-------+ +-+-------+ +-+-------+
 |m|pn|chnk| |m| chunk| |m| chunk| |m| chunk| 4 source symbols
 +-+--+----+ +-+-------+ +-+-------+ +-+-------+
 | | | | | | | |
 |< --E-- >| |< --E-- >| |< --E-- >| |< --E-- >|

 Figure 5: Example of packet chunk to source symbol mapping, when the
 E value is relatively small, in presence of the QUIC Packet Number
 for the first chunk.

 Figure 5 shows an example where the 4 source symbols are created from
 the payload of a given QUIC packet. The first chunk may contain zero
 padding at the beginning in order to align the protected packet
 payload size to a multiple of E-1, and the first source symbol may
 contain the QUIC Packet Number.

 Each source symbol is uniquely identified allowing to determine
 unambiguously its position in the source symbol flow. What
 information to associate to a source symbol to uniquely identify it
 is FEC Scheme dependent. Section 4.3 gives insight on this topic.

4.2.2.1. Open questions: Content of Source Symbols Metadata? Removing
 certain frames from FEC protection?

 NB: section to remove once fixed.

 During the FEC encoding phase, additional data can be added to the
 source symbol. These data are only added during the encoding and
 MUST NOT be transmitted on the network. The encoder and decoder MUST
 agree on the addition of these data to the source symbol in order to
 avoid decoding errors. Here are some examples of data that can be
 added to a source symbol during encoding and that will be decoded
 upon a source symbol recovery:

 o The packet number: adding the packet number allows the decoder to
 know which packet has been recovered and potentially send a
 feedback of which packet has been recovered to the QUIC sender.

 o Additional QUIC frames: the FEC encoder can for example add
 PADDING frames to a source symbol before proceeding to encoding.
 Adding PADDING frames to source symbols before encoding allows

Swett, et al. Expires September 10, 2020 [Page 9]

Internet-Draft Coding for QUIC March 2020

 protecting packets of different sizes. The smaller packet payload
 will be added PADDING frames to reach a size that is a multiple of
 E-1.

 Note: Maybe the decision of adding data such as padding in the
 source symbols should be left to the underlying FEC Scheme.

 Besides adding data to source symbols before encoding, some frames
 can be removed from the source symbol if their protection is not
 crucial for the transmission in order to reduce the size of the
 source symbol. For example, ACK frames can be systematically
 stripped out of the source symbols. Stream frames of non-delay-
 sensitive streams could also be removed from the source symbol. The
 encoder and decoder MUST agree on which frames must be stripped out
 of packet payloads. This information might for example be encoded in
 the Source Symbol ID by the FEC encoder.

 Note: We might want to propose standard ways/algorithms to add/
 remove data before the encoding ?

 TODO: Add a mechanism to add QUIC packet identifier to the metadata.
 It's useful.

4.2.3. Source Symbol Size (E) Considerations

 The source symbol size, E, MUST be strictly greater than zero bytes
 and strictly smaller than the minimum PMTU value allowed by QUIC.
 The packet header is not part of the FEC-protected data. When the
 packet payload size is not a multiple of E-1, zero-padding MUST be
 added at the beginning of the first chunk of the packet payload.
 This is equivalent to inserting PADDING frames at the beginning of
 the payload. This zero-padding, only used for FEC encoding, SHOULD
 NOT be sent on the wire.

 The choice of an appropriate value for E may depends on the use case
 (in particular on the nature of application data). A reasonably
 small value reduces the expected value of the added padding needed to
 align the payload size with a multiple of E-1, which can be a good
 approach when dealing with QUIC packets whose size significantly
 vary. However an overly small value also increases processing
 complexity (FEC encoding and decoding are performed over a larger
 linear system since there are more source symbols), so there is an
 incentive to use a larger value. An appropriate balance should be
 found, and this choice is considered as out of scope for this
 document. Since a repair symbol will transit through a frame, the E
 value must take this into account to avoid having REPAIR frames that
 do not fit into a single QUIC packet.

Swett, et al. Expires September 10, 2020 [Page 10]

Internet-Draft Coding for QUIC March 2020

4.3. Source Symbol Signaling

 An explicit signaling is needed by a decoder to identify the source
 symbols and their position in the block (i.e., for block codes) or
 coding window (i.e., for sliding window codes). While the QUIC
 packet number increases monotonically, it cannot be used to identify
 the position of a packet in the coding window as the packet number is
 not needed to increase by 1 for each new packet. There is thus an
 ambiguity on the decoder-side between lost packets and packets that
 do not exist. Similarly to FECFRAME, we propose to assign a
 identifier to source symbols to avoid this ambiguity. This
 identifier is opaque to the protocol and will be defined by the
 underlying FEC schemes. This is out of the scope of this document.
 An example of identifier could be an integer increasing by 1 for each
 new source symbol

 In order to announce the source symbol identifier to the FEC decoder,
 we propose to add a new frame, the FEC_SRC_FPI frame to packets whose
 payload will contain one or more source symbols from the FEC decoder
 point of view. The FEC_SRC_FPI frame is part of the packet payload
 itself. Any packet containing a FEC_SRC_FPI frame MUST see its
 payload considered as one or more source symbol(s).

 The FEC_SRC_FPI frame format is FEC Scheme specific and MUST be
 specified in the associated document.

4.4. Repair Symbol Signaling

 An explicit signaling is needed by a decoder for each repair symbol
 received through a REPAIR frame. The goals are manyfold: identifying
 the repair symbols and their position in the block (i.e., for block
 codes) or coding window (i.e., for sliding window codes); carrying
 information on the way this repair symbol has been produced (e.g.,
 with sliding window codes, it can indicate the encoding window
 composition).

 One or more repair symbols can be present in a given QUIC packet.
 When there are multiple symbols, they SHOULD be concatenated in the
 same REPAIR frame. How to achieve this goal is FEC Scheme specific
 and therefore must be defined in the document describing this FEC
 Scheme.

4.5. Signaling a Symbol Recovery

 When all the source symbols of a given QUIC packet have been lost but
 are recovered during FEC decoding, a QUIC receiver SHOULD advertise
 it to the sender in order to avoid the retransmission of already
 available data. However, the QUIC receiver MUST NOT acknowledge this

Swett, et al. Expires September 10, 2020 [Page 11]

Internet-Draft Coding for QUIC March 2020

 recovered packet through a regular acknowledement, as it would
 interfere with the behaviour of loss-based congestion controls such
 as [Cubic]. Therefore this document introduces a dedicated RECOVERED
 frame, that enables a receiver to indicate that a specific QUIC
 packet has been recovered through FEC decoding.

 The RECOVERED frame works at the packet level. It is therefore
 required to be able to identify to which packet the recovered source
 symbols belong to. This is made possible by the QUIC packet
 identifier field added to the meta data prior to FEC encoding
 (Section 4.2.2).

4.6. About Gaps in the Set of Source Symbols Considered During Encoding

 A given FEC Scheme MAY support or not the presence of gaps in the set
 of source symbols that constitute a block (for Block codes) or an
 encoding window (for Sliding Window codes). A potential cause for
 non contiguous sets of source symbols is the acknowledgment of one of
 them. When this happens, the QUIC sending endpoint may want to
 remove this source symbol from further FEC encodings. This is
 particularly true with Sliding Window codes because of their
 flexibility during FEC encoding (i.e., the encoding window can change
 between two consecutive FEC encodings).

 Supporting gaps can be motivated by the desire to reduce encoding and
 decoding complexity since there are fewer variables. However this
 choice has major consequences in terms of signaling. Indeed each
 repair symbol transmitted MUST be accompanied by enough information
 for the QUIC decoding endpoint to unambiguously identify the exact
 composition of the block or encoding window. Without any gap, the
 identity of the first source symbol plus the number of symbols in the
 block or encoding window is sufficient. With gaps, a more complex
 encoding needs to be used, perhaps similar to the encoding used for
 selective acknowledgments.

 Whether gaps are supported MUST be clarified in each FEC Scheme.

5. FEC Scheme Negotiation in QUIC

 FEC Scheme negotiation has two goals:

 o Selecting a FEC Scheme (or FEC Schemes) that can be used by the
 QUIC transmission and reception endpoints. This process requires
 an exchange between them;

 o Communicating a certain number of parameters, the "Configuration
 Information", that are not expected to change over the session
 lifetime. For instance, this is the case of the symbol size

Swett, et al. Expires September 10, 2020 [Page 12]

Internet-Draft Coding for QUIC March 2020

 parameter, E (in bytes), that needs either to be agreed between
 the endpoints, or chosen by the sender and communicated to the
 receiver(s);

 Editor's notes:

 * It is likely that FEC Scheme negotiation requires the use of a
 new dedicated Extension Frame Type. The details remain TBD.

 * The Negotiation Frame Type format remains TBD.

 * How to communicate the parameters remains TBD.

 * The present document only provides high level principles, the
 details are of course the responsibility of the FEC Scheme.

 * In case negotiation is different when protecting a single
 versus several streams, this section may be moved to the
 respective sections.

 * How does it work in case of a multicast session?

 * Do we negotiate here a FEC Scheme on a per-Stream basis (or
 group of Streams to be protected jointly)? Or do we negotiate
 a FEC Scheme on a QUIC session basis, therefore to be used for
 all the Streams that need FEC protection?

5.1. FEC Scheme Negotiation

 Before defining the transport parameters, we define two structures,
 encoder_fec_scheme_t and decoder_fec_scheme_t, in Figure 6. The
 config field is an opaque field allowing the decoder to define
 supported configuration information for the associated FEC Scheme. A
 FEC Scheme specification MUST define the set of valid configurations
 for the FEC Scheme.

Swett, et al. Expires September 10, 2020 [Page 13]

Internet-Draft Coding for QUIC March 2020

 struct {
 varint fec_scheme_id;
 } encoder_fec_scheme_t

 struct {
 varint fec_scheme_id;
 uint16_t config_length;
 uint8_t config[config_length];
 } decoder_fec_scheme_t

 Figure 6: encoder_fec_scheme_t and decoder_fec_scheme_t structures.

 The following three transport parameters are used by the QUIC
 endpoints to negotiate the FEC Scheme used during the connection.

 o supported_encoder_fec_schemes: list of supported FEC schemes for
 the encoding part listed from the most to the least preferred.
 The value of this parameter consists in a list of
 encoder_fec_scheme_t. When announcing a FEC Scheme, the encoder
 MUST be able handle every FEC Scheme configuration considered
 valid.

 o supported_decoder_fec_schemes: list of supported FEC schemes for
 the decoding part listed from the most to the least preferred.
 The value of this parameter consists in a list of
 decoder_fec_scheme_t, each one representing the ID of a supported
 FEC Scheme.

 o receiving_symbol_size: the size in bytes of the symbols the peer
 is willing to receive and recover. The value is a 16-bits
 integer.

 Since communications can be bidirectional, each QUIC endpoint can
 provide the three parameters. Conversely, providing an empty list
 indicates this endpoint does not support FEC for the associated
 communication path (e.g., an empty supported_decoder_fec_schemes list
 indicates this endpoint cannot perform FEC decoding).

 The decoding FEC Scheme of a QUIC endpoint is set to the first FEC
 Scheme listed in its own supported_decoder_fec_schemes that also
 appears in the peer's supported_encoder_fec_schemes. The encoding
 FEC Scheme of a QUIC endpoint is set to the first FEC Scheme listed
 in the peer's supported_decoder_fec_schemes that also appears in its
 own supported_encoder_fec_schemes. The encoder-side symbol size (E)
 of a QUIC endpoint is set to the value announced by the peer's
 receiving_symbol_size transport parameter. The decoder-side symbol

Swett, et al. Expires September 10, 2020 [Page 14]

Internet-Draft Coding for QUIC March 2020

 size of a QUIC endpoint is set to the value announced in its own
 receiving_symbol_size transport parameter.

 Host 1 Host 2
 < -
 supported_encoder_fec_schemes{RLC_GF256,REED_SOLOMON,XOR}
 supported_decoder_fec_schemes{REED_SOLOMON,XOR}
 receiving_symbol_size{500}

 - >
 supported_encoder_fec_schemes{RLC_GF256,REED_SOLOMON,XOR}
 supported_decoder_fec_schemes{RLC_GF256,REED_SOLOMON}
 receiving_symbol_size{200}

 ENCODER_FEC_SCHEME = REED_SOLOMON
 DECODER_FEC_SCHEME = RLC_GF256
 ENCODER_SYMBOL_SIZE = 500
 DECODER_SYMBOL_SIZE = 200

 ENCODER_FEC_SCHEME = RLC_GF256
 DECODER_FEC_SCHEME = REED_SOLOMON
 ENCODER_SYMBOL_SIZE = 200
 DECODER_SYMBOL_SIZE = 500

 Figure 7: Example FEC Schemes negotiation during the QUIC handshake.

 It is possible that the QUIC endpoint that receives one or more FEC
 Scheme proposals from the initiator cannot select any of them. In
 that case the negotiation process fails and no FEC protection is
 used.

6. Security Considerations

 TBD

7. IANA Considerations

 TBD

8. Acknowledgments

 TBD

9. References

Swett, et al. Expires September 10, 2020 [Page 15]

Internet-Draft Coding for QUIC March 2020

9.1. Normative References

 [Cubic] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

RFC 8312, DOI 10.17487/RFC8312, February 2018,
 <https://www.rfc-editor.org/info/rfc8312>.

 [QUIC-transport]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport (Work in Progress) (work in progress), January
 2019, <https://datatracker.ietf.org/doc/draft-ietf-quic-

transport/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [nc-taxonomy]
 Roca (Ed.) et al., V., "Taxonomy of Coding Techniques for
 Efficient Network Communications", Request For
 Comments RFC 8406, June 2018,
 <https://datatracker.ietf.org/doc/draft-irtf-nwcrg-

network-coding-taxonomy/>.

 [RFC5510] Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo,
 "Reed-Solomon Forward Error Correction (FEC) Schemes",

RFC 5510, DOI 10.17487/RFC5510, April 2009,
 <https://www.rfc-editor.org/info/rfc5510>.

 [RFC8681] Roca, V. and B. Teibi, "Sliding Window Random Linear Code
 (RLC) Forward Erasure Correction (FEC) Schemes for
 FECFRAME", RFC 8681, DOI 10.17487/RFC8681, January 2020,
 <https://www.rfc-editor.org/info/rfc8681>.

Authors' Addresses

 Ian Swett
 Google
 Cambridge, MA
 US

 Email: ianswett@google.com

https://datatracker.ietf.org/doc/html/rfc8312
https://www.rfc-editor.org/info/rfc8312
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc8406
https://datatracker.ietf.org/doc/draft-irtf-nwcrg-network-coding-taxonomy/
https://datatracker.ietf.org/doc/draft-irtf-nwcrg-network-coding-taxonomy/
https://datatracker.ietf.org/doc/html/rfc5510
https://www.rfc-editor.org/info/rfc5510
https://datatracker.ietf.org/doc/html/rfc8681
https://www.rfc-editor.org/info/rfc8681

Swett, et al. Expires September 10, 2020 [Page 16]

Internet-Draft Coding for QUIC March 2020

 Marie-Jose Montpetit
 Triangle Video
 Boston, MA
 US

 Email: marie@mjmontpetit.com

 Vincent Roca
 INRIA
 Univ. Grenoble Alpes
 France

 Email: vincent.roca@inria.fr

 Francois Michel
 UCLouvain
 Louvain-la-Neuve
 Belgium

 Email: francois.michel@uclouvain.be

Swett, et al. Expires September 10, 2020 [Page 17]

