
Network Working Group S. Whyte
Internet-Draft Google Inc.
Intended status: Informational M. Hines
Expires: April 24, 2014 W. Kumari
 Google, Inc.
 October 21, 2013

Bulk Network Data Collection System
draft-swhyte-i2rs-data-collection-system-00

Abstract

 Collecting large amounts of data from network infrastructure devices
 has never been very easy. Existing methods generate CPU and memory
 loads that may be unacceptable, the output varies across
 implementations and can be difficult to parse, and these methods are
 often difficult to scale. I2RS programmatic interfacing with the
 routing system may exacerbate this problem: state needs to be
 collected from nodes and fed to consumers participating in the
 control plane that may not be physically close to the nodes. This
 state includes not only control plane information, but elements of
 the data plane that have a direct impact on control plane behavior,
 like traffic engineering.

 This document outlines a set of use cases requiring a flexible
 framework to collect routing system data, and the features and
 functionality needed to make such a framework useful for these use
 cases.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Whyte, et al. Expires April 24, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Bulk Data Collection October 2013

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Desired functionality . 3
2.1. Database Model . 4
2.2. Pub-Sub . 4
2.3. Capability Negotiation 5
2.4. Format Agnostic . 5
2.5. Transport Options . 5
2.6. Filtering . 5
2.7. Timestamps . 6
2.8. Introspection . 6
2.9. Registration . 6

3. Use cases . 6
3.1. Push . 7
3.1.1. Interface counters 7
3.1.2. Thresholds . 7
3.1.3. Streaming . 7

3.2. Pull . 7
3.2.1. Interface counters 8
3.2.2. RIB Dump . 8
3.2.3. Arbitrary data collection 8

3.3. Dynamic subscriptions 8
4. Subscriber versus consumer 8
4.1. Remapping . 8

5. Errors . 9
6. IANA Considerations . 9
7. Security Considerations 9

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Whyte, et al. Expires April 24, 2014 [Page 2]

Internet-Draft Bulk Data Collection October 2013

8. Acknowledgements . 9
9. References . 10
9.1. Normative References 10
9.2. Informative References 10

 Authors' Addresses . 10

1. Introduction

 Managing and monitoring a network requires getting state out of it.
 You can't manage what you don't measure, as the saying goes.
 Currently there are a limited set of tools to get data off of network
 nodes, and they do not lend themselves to programmatic access.

 The primary tool today is SNMP. SNMP can be used to both push data
 off a node (via traps/notifications) and pull data off the box (via
 queries). SNMP queries have a variety of issues, not the least of
 which is the fact that the protocol specification requires data
 structures to be created on demand on network nodes that do not match
 how the device's operating system data structures store the same
 data. Fixing this problem has the immediate benefit of reducing CPU
 and memory consumption of the monitored network devices, greatly
 increasing the deployability and relevance of a solution. SNMP traps
 /notifications suffer from a lack of introspection; the network
 management system (NMS) must be preconfigured to understand what
 information is being reported.

 Other tools include CLI scraping and Syslog. CLI scraping is a low-
 level pull mechanism and essentially the opposite of programmatic
 access. Any change in CLI implementation, whether its a simple
 whitespace correction, re-ordering of configuration stanzas,
 typographical errors, or even unit changes, can require a rewriting
 of monitoring software. This is compounded by the fact there is no
 standardized CLI specification, such that a network with multiple
 vendors in it requires these rewrites per vendor CLI change.

 Syslog is another way to push data off of a network node. Syslog has
 been around a long time, and while current standards provide
 structured data output, very few implementations exist on network
 nodes currently. For the most part NMSes must be trained how to
 consume and interpret different implementations of syslog.

2. Desired functionality

 Collecting large data sets with high frequency and resolution, with
 minimal impact to a device's CPU and memory, is the primary
 objective. Aspects of the over-all data collection system, such as
 availability or reliability or scaling, are outside of scope as they
 deal with the data once it has left the network node.

Whyte, et al. Expires April 24, 2014 [Page 3]

Internet-Draft Bulk Data Collection October 2013

 We are only focusing on getting data off the node in an easily
 machine parsable format.

2.1. Database Model

 A database model is desired, whereby a network node can describe the
 data it has available, and the structure of that data. This gives
 the implementor the ability to present a database model that can be
 optimal with the node's internal data structure implementations. The
 NMS consumes and understands the database model only after it has
 been trained to do so by incorporating a published version of the
 database model from the vendor.

 It should be noted that all existing data collection methods outlined
 earlier require explicit knowledge of the method's implementation for
 integration into a NMS. We do not propose a solution that eliminates
 this, because heterogeneity of the data is not required, as we can
 see from existing implementations. Rather, capability negotiation
 and flexible formats and transports, outlined below, are desired
 enabling the primary objective of getting large data sets off the
 nodes with as little impact as possible.

2.2. Pub-Sub

 An underlying pub-sub model is desired for a variety of features. It
 provides a security model for authorization, it supports
 intermediaries allowing the system to scale as needed, and it
 provides both push and pull methods of data distribution.

 In the context of this draft, a pub-sub model is a general concept
 indicating information flow. Specific system details are obviously
 critical yet belong in a data model document. The high level desire
 is to have network nodes as publishers, with an NMS implementing
 subscribers. Conceptually, they are connected by a message bus, a
 layer of indirection between the publishers and subscribers. Having
 a message bus allows publisher fan-in, subscriber fan-out, and a
 number of other useful features outside the scope of this document.
 The message bus is frequently referred to as a broker inside pub-sub
 models.

 Having a message bus abstraction allows for considerable flexibility
 in NMS design as well. Placement of brokers in the network, their
 redundancy, availablility, scaling per publisher or subscriber, can
 all be tailored to suit an individual network's needs, from extremely
 simple (flat) to extremely complex with multiple layers of hierarchy.
 Many implementations of pub-sub models exist, scaling both in number
 of subscriptions and in number of messages, both of which should be
 considered carefully in the I2RS context.

Whyte, et al. Expires April 24, 2014 [Page 4]

Internet-Draft Bulk Data Collection October 2013

2.3. Capability Negotiation

 Capability negotiation allows a node to inform a subscriber of a
 number of options. Two extremely important options would be
 transport protocols and formats supported. Other aspects such as
 security options and error handling would also be negotiated during
 this phase.

 The capability negotiation phase is done via a control channel opened
 for the purpose of registering subscriptions with the node. This
 control channel should be TCP.

2.4. Format Agnostic

 From the I2RS perspective, this framework should be format agnostic.
 If a node advertises the ability to present data in XML and the
 subscriber agrees, then XML can be used. Other formats that have
 interest are JSON, HTML, and protobufs. Even interest for /proc/net
 formatted output exists, and would help a NMS based on this framework
 integrate into existing server configuration management systems.

 [Editor note: even ASN.1 should be an acceptable format. This would
 potentially allow an extremely easy deployment into an existing SNMP
 based NMS.]

2.5. Transport Options

 Because the focus of this framework ends at getting data off the box
 as quickly as possible, implementations should have the freedom to
 choose a transport that meets their system design needs and not be
 restricted by a specific format.

 During the negotiation phase a node should advertise all the
 transport options it provides and allow the subscriber to select what
 it needs.

 Given the time-value of different data elements coming off the node
 can be quite different, it should be possible to request multiple
 transports and associate a subscription with the transport protocol
 of choice.

2.6. Filtering

 Once a network node has provided its database model to a subscriber,
 the subscriber needs a way to select parts of the model for
 subscription, and it needs to be able to request multiple
 subscriptions at a time.

Whyte, et al. Expires April 24, 2014 [Page 5]

Internet-Draft Bulk Data Collection October 2013

 This framework should provide a standard filtering mechanism so that,
 independent of the database model structure and contents, a
 subscriber can select interesting items to collect and bucket them
 based on standard parameters such as frequency of collection,
 underlying transport required, whether the data is to be pushed or
 pulled, or even streaming or one-shot.

2.7. Timestamps

 Every piece of data collected by this framework needs a timestamp
 associated with it indicating when the node made it available for
 collection. This is not required on a per-variable basis, for
 example data organized into a table only requires a timestamp
 associated with the table.

 This is not to say additional timestamps are not useful for certain
 data sets nor that other timestamps with other semantics, for example
 collection time versus advertisement time, can not be used, but
 rather those additional timestamps are better placed in the database
 model supported by the device.

2.8. Introspection

 This framework should support introspection of the database model.
 Introspection provides support for data verification, easier
 inclusion of legacy data, and easier merging of data stream.

2.9. Registration

 After capabilities and a database model have been exchanged, and a
 filter used to select elements of the model to subscribe to, the
 framework should support a standard way to register for all the data
 desired, using whatever capabilities were advertised by the node.

 Once registration is complete, the control channel can be closed.
 Ensuring subscriptions are correct, complete, and replicated or not,
 is up to the overall system and not the network node.

3. Use cases

 Following are example use cases outlining the utility of subscribing
 to data with different parameters.

Whyte, et al. Expires April 24, 2014 [Page 6]

Internet-Draft Bulk Data Collection October 2013

3.1. Push

 Pushing data off the box can be done synchronously at fixed
 intervals, or asynchronously in an ad-hoc fashion. All data pushed
 is set up via registered subscriptions.

3.1.1. Interface counters

 Interface counters provide a use case demonstrating the need to push
 data off of a network node at specific intervals. In this proposed
 framework, a node would advertise its database model including all
 the interfaces it has to offer and what it can count on each. A
 subscriber would select the interfaces and counters of each it is
 interested in via a filter, use the filter to group them according to
 available parameters, and register with the node to have them
 published at agreed upon intervals.

3.1.2. Thresholds

 Another use case demonstrating a push capability is thresholding.
 Assuming a node advertises the capability to record and track a
 threshold for a particular data type, it would use the registered
 subscription to push relevant data to the subscriber whenever the
 threshold was crossed. As an example, a subscriber may want to set a
 threshold for memory consumed - if the available device memory falls
 below a threshold the subscriber should be informed so that the
 operator can investigate the issue manually or programatically.

3.1.3. Streaming

 Streaming data, such as RIB information, will be critical to
 supporting I2RS functionality. In this use case, a subscriber may
 desire to have all updates to a RIB streamed into the collection
 system, in as close to real-time as possible.

3.2. Pull

 Pulling data off the node will always be a one-shot function. As
 such it is probably the most heavy-handed way to get data into the
 collection system, as it requires all the overhead of setting up and
 tearing down the control channel, exchanging the database model,
 creating a filter, and receiving the data. Nevertheless, it can be a
 valuable option and should be supported.

 n.b. it is certainly possible to cache requests on publishers, and
 have them "replayed" via a subscription identifier. However the
 capability to track the state required to do so may not be available
 on a node, and this is somewhat counter to the overall goal of

Whyte, et al. Expires April 24, 2014 [Page 7]

Internet-Draft Bulk Data Collection October 2013

 minimizing impact to the node. Having this capability as an optional
 parameter of a database model, is worth exploring.

3.2.1. Interface counters

 Similar to the interface counter example above, except in this case
 the registration includes a parameter indicating the data should be
 collected immediately and sent only once.

3.2.2. RIB Dump

 Getting a snapshot of the node's current RIB can be useful for a
 variety of reasons. Similar to collecting RIB information above, in
 this example the subscriber would register for a one-shot dump of the
 RIB, collected and sent immediately.

3.2.3. Arbitrary data collection

 Once the NMS understands a node's database model, it should be able
 to register for one-shot collection of any subset of that database
 model. Given the overheads involved, this would best be restricted
 to one-off collection needs, such as troubleshooting, but the use
 case need is solid.

3.3. Dynamic subscriptions

 This framework should support dynamic subscription capabilities with
 pre-existing monitoring protocols that currently require static
 configuration. For example, if a node's database model indicates it
 support IPFIX, using the standard registration process outlined above
 a subscriber should be able to set up a streaming IPFIX feed. BMP
 and the like should also be available via this mechanism.

4. Subscriber versus consumer

 It should be noted that because overall data collection system
 architecture is out of scope, it is opaque to this framework whether
 a subscriber is also the consumer of data. In order to maximize
 design options, including scalability of the overall system, both
 options should be supported.

4.1. Remapping

 Remapping in this context is the ability to modify a node's database
 model and request the modified model be used in subscriptions. While
 this has interesting properties, it strays far from the primary
 objective of getting data off of nodes as fast was with as little
 impact as possible, and thus should be considered out of scope.

Whyte, et al. Expires April 24, 2014 [Page 8]

Internet-Draft Bulk Data Collection October 2013

5. Errors

 Errors happen. Many classes of errors and their handling are already
 well-understood and don't need to be re-iterated here. There are
 certainly failure modes that may be unique to I2RS or this framework,
 however, and we should be prepared to incorporate solutions for
 those.

 For example,providing a method for a node and a subscriber to agree
 on resolution steps after defined error events would be very useful.
 A subscriber may want certain subscriptions to be available for
 pulling, if the push mechanism failed.

 There may also be value in defining how a subscriber can probe the
 transport layer, such that publisher responses can assist in
 troubleshooting protocol-specific failures.

 The framework needs to support standardized handling of stale data.
 This class of error will largely be related to handling changes and
 exceptions in the database models exchanged. For example what
 happens when a node's physical configuration changes and part of an
 existing subscription becomes invalid. Similar thought to logical
 changes, such as the disappearance of a BGP speaker, needs to be
 give.

6. IANA Considerations

 This documents makes no request of the IANA.

7. Security Considerations

 I2RS provides security requirements, any security requirements raised
 by this framework should be encompassed there.

 [TODO(WK, SW): This section needs more work / text]

8. Acknowledgements

 The author wishes to acknowledge the contributions of a number of
 folk, including

 {TODO(WK, SW): Remember to add folk!]

Whyte, et al. Expires April 24, 2014 [Page 9]

Internet-Draft Bulk Data Collection October 2013

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [DeBoer] De Boer, M. and J. Bosma, "Discovering Path MTU black
 holes on the Internet using RIPE Atlas", July 2012, <http:
 //www.nlnetlabs.nl/downloads/publications/pmtu-black-
 holes-msc-thesis.pdf>.

Authors' Addresses

 Scott Whyte
 Google Inc.
 1600 Amphitheatre Parkway
 Mountain view, California 94043
 USA

 Email: swhyte@google.com

 Marcus Hines
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain view, California 94043
 USA

 Email: hines@google.com

 Warren Kumari
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain view, California 94043
 USA

 Email: warren@kumari.net

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Whyte, et al. Expires April 24, 2014 [Page 10]

