
Internet-Draft Tom Talpey
Expires: August 2004 Network Appliance, Inc.
 Spencer Shepler
 Sun Microsystems, Inc.

 February, 2004

NFSv4 RDMA and Session Extensions
draft-talpey-nfsv4-rdma-sess-01

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 Extensions are proposed to NFS version 4 which enable it to support
 sessions, connection management, and operation atop either TCP or
 RDMA-capable RPC. These extensions enable universal support for
 exactly-once semantics by NFSv4 servers, enhanced security,
 multipathing and trunking of transport connections. These
 extensions provide identical benefits over both TCP and RDMA
 connection types.

Talpey and Shepler Expires August 2004 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

Table Of Contents

1. Introduction . 3
1.1. Motivation . 4
1.2. Problem Statement 5
1.3. NFSv4 Session Extension Characteristics 6
2. Transport Issues . 7
2.1. Session Model . 7
2.1.1. Connection State 8
2.1.2. Channels . 9
2.1.3. Reconnection, Trunking, Failover 10
2.1.4. Server Duplicate Request Cache 11
2.2. RDMA . 12
2.2.1. RDMA Requirements 12
2.2.2. RDMA Negotiation 12
2.2.3. Connection Resources 14
2.2.4. Inline Transfer Model 14
2.2.5. Direct Transfer Model 17
2.3. Connection Models 20
2.3.1. TCP Connection Model 21
2.3.2. Negotiated RDMA Connection Model 21
2.3.3. Automatic RDMA Connection Model 22
2.4. Buffer Management, Transfer, Flow Control 23
2.5. Retry and Replay . 26
2.6. The Back Channel . 26
2.7. COMPOUND Sizing Issues 28
2.8. Data Alignment . 29
3. NFSv4 Integration . 30
3.1. Minor Versioning . 30
3.2. Stream Identifiers and Exactly-Once Semantics 31
3.3. COMPOUND and CB_COMPOUND 32
3.4. eXternal Data Representation Efficiency 33
3.5. Effect of Sessions on Existing Operations 34
3.6. Authentication Efficiencies 35
4. Security Considerations 36
5. IANA Considerations 37
6. NFSv4 Protocol Extensions 37
6.1. SESSION_CREATE . 38
6.2. SESSION_BIND . 39
6.3. SESSION_DESTROY . 41
6.4. OPERATION_CONTROL 42
6.5. CB_CREDITRECALL . 43
7. Acknowledgements . 43

 References . 43
 Authors' Addresses . 46
 Full Copyright Statement 46

Talpey and Shepler Expires August 2004 [Page 2]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

1. Introduction

 This draft proposes extensions to NFS version 4 enabling it to
 support sessions and connection management, and to support
 operation atop RDMA-capable RPC over transports such as iWARP.
 [RDMAP, DDP] These extensions enable universal support for exactly-
 once semantics by NFSv4 servers, multipathing and trunking of
 transport connections, and enhanced security. The ability to
 operate over RDMA enables greatly enhanced performance. Operation
 over existing TCP is enhanced as well.

 While discussed here with respect to IETF-chartered transports, the
 proposed protocol is intended to function over other standards,
 such as Infiniband. [IB]

 The following are the major aspects of this proposal:

 o Changes are proposed within the framework of NFSv4 minor
 versioning. RPC, XDR, and the NFSv4 procedures and operations
 are preserved. The proposed minor version functions equally
 well over existing transports and RDMA, and interoperates
 transparently with existing implementations, both at the local
 programmatic interface and over the wire.

 o An explicit session is introduced to NFSv4, and four new
 operations are added to support it. The session allows for
 enhanced trunking, failover and recovery, and authentication
 efficiency, along with necessary support for RDMA. The
 session is implemented as operations within NFSv4 COMPOUND and
 does not impact layering or interoperability with existing
 NFSv4 implementations. The NFSv4 callback channel is
 associated with a session, and is connected by the client and
 not the server, enhancing security and operation through
 firewalls. In fact, the callback channel will be enabled to
 share the same connection as the operations channel.

 o An enhanced RPC layer enables NFSv4 operation atop RDMA. The
 session is RDMA-aware, and additional facilities are provided
 for managing RDMA resources at both NFSv4 server and client.
 Existing NFSv4 operations continue to function as before,
 though certain size limits are negotiated. A companion draft
 to this document, "RDMA Transport for ONC RPC" [RPCRDMA] is to
 be referenced for details of RPC RDMA support.

 o Support for exactly-once semantics ("EOS") is enabled by the
 new session facilities, providing to the server a way to bound
 the size of the duplicate request cache for a single client,
 and to manage its persistent storage.

Talpey and Shepler Expires August 2004 [Page 3]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 Block Diagram

 +-------------------+------------------------------------+
 | NFSv4 | NFSv4 + extensions |
 +-------------------+-----+----------------+-------------+
 | Operations | Session | |
 +-------------------------+----------------+ |
 | RPC/XDR | |
 +---------------------------------+--------+ |
 | Stream Transport | RDMA Transport |
 +---------------------------------+----------------------+

1.1. Motivation

 NFS version 4 [RFC3530] has been granted "Proposed Standard"
 status. The NFSv4 protocol was developed along several design
 points, important among them: effective operation over wide-area
 networks, including the Internet itself; strong security
 integrated into the protocol; extensive cross-platform
 interoperability including integrated locking semantics compatible
 with multiple operating systems; and protocol extensibility.

 The NFS version 4 protocol, however, does not provide support for
 certain important transport aspects. For example, the protocol
 does not provide a way to implement exactly-once semantics for
 clients, nor an interoperable way to support trunking and
 multipathing of connections. This leads to inefficiencies,
 especially where trunking and multipathing are concerned, and
 presents additional difficulties in supporting RDMA fabrics, in
 which endpoints may require dedicated or specialized resources.

 Sessions can be employed to unify NFS-level constructs such as the
 clientid with transport-level constructs such as transport
 endpoints. The transport endpoint is abstracted to be a member of
 the session. Resource management can be more strictly maintained,
 leading to greater server efficiency in implementing the protocol.
 The enhanced operation over a session affords an opportunity to the
 server to implement highly reliable and exactly-once semantics.

 NFSv4 advances the state of high-performance local sharing, by
 virtue of its integrated security, locking, and delegation, and its
 excellent coverage of the sharing semantics of multiple operating
 systems. It is precisely this environment where exactly-once
 semantics become a fundamental requirement.

 Additionally, efforts to standardize a set of protocols for Remote
 Direct Memory Access, RDMA, over the Internet Protocol Suite have
 made significant progress. RDMA is a general solution to the

https://datatracker.ietf.org/doc/html/rfc3530

Talpey and Shepler Expires August 2004 [Page 4]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 problem of CPU overhead incurred due to data copies, primarily at
 the receiver. Substantial research has addressed this and has
 borne out the efficacy of the approach. An overview of this is the
 RDDP Problem Statement document, [RDDPPS].

 Numerous upper layer protocols achieve extremely high bandwidth and
 low overhead through the use of RDMA. Products from a wide variety
 of vendors employ RDMA to advantage, and prototypes have
 demonstrated the effectiveness of many more. Here, we are
 concerned specifically with NFS and NFS-style upper layer
 protocols; examples from Network Appliance [DAFS, DCK+03], Fujitsu
 Prime Software Technologies [FJNFS, FJDAFS] and Harvard University
 [KM02] are all relevant.

 By layering a session binding for NFS version 4 directly atop a
 standard RDMA transport, a greatly enhanced level of performance
 and transparency can be supported on a wide variety of operating
 system platforms. These combined capabilities alter the landscape
 between local filesystems and network attached storage, enable a
 new level of performance, and lead new classes of application to
 take advantage of NFS.

1.2. Problem Statement

 Two issues drive the current proposal: correctness, and
 performance. Both are instances of "raising the bar" for NFS,
 whereby the desire to use NFS in new classes applications can be
 accommodated by providing the basic features to make such use
 feasible. Such applications include tightly coupled sharing
 environments such as cluster computing, high performance computing
 (HPC) and information processing such as databases. These trends
 are explored in depth in [NFSPS].

 The first issue, correctness, exemplified among the attributes of
 local filesystems, is support for exactly-once semantics. Such
 semantics have not been reliably available with NFS. Server-based
 duplicate request caches [CJ89] help, but do not reliably provide
 strict correctness. For the type of application which is expected
 to make extensive use of the high-performance RDMA-enabled
 environment, the reliable provision of such semantics are a
 fundamental requirement.

 Introduction of a session to NFSv4 will address these issues. With
 higher performance and enhanced semantics comes the problem of
 enabling advanced endpoint management, for example high-speed
 trunking, multipathing and failover. These characteristics enable
 availability and performance. RFC3530 presents some issues in
 permitting a single clientid to access a server over multiple

https://datatracker.ietf.org/doc/html/rfc3530

Talpey and Shepler Expires August 2004 [Page 5]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 connections.

 A second issue encountered in common by NFS implementations is the
 CPU overhead required to implement the protocol. Primary among the
 sources of this overhead is the movement of data from NFS protocol
 messages to its eventual destination in user buffers or aligned
 kernel buffers. The data copies consume system bus bandwidth and
 CPU time, reducing the available system capacity for applications.
 [RDDPPS] Achieving zero-copy with NFS has to date required
 sophisticated, "header cracking" hardware and/or extensive
 platform-specific virtual memory mapping tricks.

 Combined in this way, NFSv4, RDMA and the emerging high-speed
 network fabrics will enable delivery of performance which matches
 that of the fastest local filesystems, while preserving the key
 existing local filesystem semantics.

 RDMA implementations generally have other interesting properties,
 such as hardware assisted protocol access, and support for user
 space access to I/O. RDMA is compelling here for another reason;
 hardware offloaded networking support in itself does not avoid data
 copies, without resorting to implementing part of the NFS protocol
 in the NIC. Support of RDMA by NFS enables the highest performance
 at the architecture level rather than by implementation; this
 enables ubiquitous and interoperable solutions.

 By providing file access performance equivalent to that of local
 file systems, NFSv4 over RDMA will enable applications running on a
 set of client machines to interact through an NFSv4 file system,
 just as applications running on a single machine might interact
 through a local file system.

 This raises the issue of whether additional protocol enhancements
 to enable such interaction would be desirable and what such
 enhancements would be. This is a complicated issue which the
 working group needs to address and will not be further discussed in
 this document.

1.3. NFSv4 Session Extension Characteristics

 This draft will present a solution based upon minor versioning of
 NFSv4. It will introduce a session to collect transport issues
 together, which in turn enables enhancements such as trunking,
 failover and recovery. It will describe use of RDMA by employing
 support within an underlying RPC layer [RPCRDMA]. Most
 importantly, it will focus on making the best possible use of an
 RDMA transport.

Talpey and Shepler Expires August 2004 [Page 6]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 These extensions are proposed as elements of a new minor revision
 of NFS version 4. In this draft, NFS version 4 will be referred to
 generically as "NFSv4", when describing properties common to all
 minor versions. When referring specifically to properties of the
 original, minor version 0 protocol, "NFSv4.0" will be used, and
 changes proposed here for minor version 1 will be referred to as
 "NFSv4.1".

 This draft proposes only changes which are strictly upward-
 compatible with existing RPC and NFS Application Programming
 Interfaces (APIs).

2. Transport Issues

 The Transport Issues section of the document explores the details
 of utilizing the various supported transports.

2.1. Session Model

 The first and most evident issue in supporting diverse transports
 is how to provide for their differences. This draft proposes
 introducing an explicit session.

 An initialized session will be required before processing requests
 contained within COMPOUND and CB_COMPOUND procedures of NFSv4.1. A
 session introduces minimal protocol requirements, and provides for
 a highly useful and convenient way to manage numerous endpoint-
 related issues. The session is a local construct; it represents a
 named, higher-layer object to which connections can refer, and
 encapsulates properties important to each transport layer endpoint.

 A session is a dynamically created, persistent object created by a
 client, used over time from one or more transport connections. Its
 function is to maintain the server's state relative to any single
 client instance. This state is entirely independent of the
 connection itself. The session in effect becomes the "top-level"
 object representing an active client.

 The session enables several things immediately. Clients may
 disconnect and reconnect (voluntarily or not) without loss of
 context at the server. (Of course, locks, delegations and related
 associations require special handling which generally expires
 without an open connection.) Clients may connect multiple
 transport endpoints to this common state. The endpoints may have
 all the same attributes, for instance when trunked on multiple
 physical network links for bandwidth aggregation or path failover.
 Or, the endpoints can have specific, special purpose attributes
 such as channels for callbacks.

Talpey and Shepler Expires August 2004 [Page 7]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 The NFSv4 specification does not provide for any form of flow
 control; instead it relies on the windowing provided by TCP to
 throttle requests. This unfortunately does not work with RDMA,
 which in general provides no operation flow control and will
 terminate a connection in error when limits are exceeded. Flow
 control limits are therefore exchanged when a connection is bound
 to a session; they are then managed within these limits as
 described in [RPCRDMA]. The bound state of a connection will be
 described in this document as a "channel".

 The presence of deterministic flow control on the channels
 belonging to a given session bounds the requirements of the
 duplicate request cache. This can be used to advantage by a
 server, which can accurately determine any storage needs and enable
 it to maintain persistence and to provide reliable exactly-once
 semantics.

 Finally, given adequate connection-oriented transport security
 semantics, authentication and authorization may be cached on a per-
 session basis, enabling greater efficiency in the issuing and
 processing of requests on both client and server. A proposal for
 transparent, server-driven implementation of this in NFSv4 has been
 made. [CCM] The existence of the session greatly adds to the
 convenience of this approach. This is discussed in detail in the
 Authentication Efficiencies section later in this draft.

2.1.1. Connection State

 In RFC3530, the combination of a connected transport endpoint and a
 clientid forms the basis of connection state. While provably
 workable, there are difficulties in correct and robust
 implementation. The NFSv4.0 protocol must provide a clientid
 negotiation (SETCLIENTID and SETCLIENTID_CONFIRM), must provide a
 server-initiated connection for the callback channel, and must
 carefully specify the persistence of client state at the server in
 the face of transport interruptions. In effect, each transport
 connection is used as the server's representation of client state.
 But, transport connections are potentially fragile and transitory.

 In this proposal, a session identifier is assigned by the server
 upon initial session negotiation on each connection. This
 identifier is used to associate additional connections, to
 renegotiate after a reconnect, and to provide an abstraction for
 the various session properties. The session identifier is unique
 within the server's scope and may be subject to certain server
 policies such as being bounded in time. A channel identifier is
 issued for each new connection as it binds to the session. The
 channel identifier is unique within the session, and may be unique

https://datatracker.ietf.org/doc/html/rfc3530

Talpey and Shepler Expires August 2004 [Page 8]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 within a wider scope, at the server's choosing.

 It is envisioned that the primary transport model will be
 connection oriented. Connection orientation brings with it certain
 potential optimizations, such as caching of per-connection
 properties, which are easily leveraged through the generality of
 the session. However, it is possible that in future, other
 transport models could be accommodated below the session and
 channel abstractions.

2.1.2. Channels

 As mentioned above, different NFSv4 operations can lead to
 different resource needs. For example, server callback operations
 (CB_RECALL) are specific, small messages which flow from server to
 client at arbitrary times, while data transfers such as read and
 write have very different sizes and asymmetric behaviors. It is
 impractical for the RDMA peers (NFSv4 client and NFSv4 server) to
 post buffers for these various operations on a single connection.
 Commingling of requests with responses at the client receive queue
 is particularly troublesome, due both to the need to manage both
 solicited and unsolicited completions, and to provision buffers for
 both purposes. Due to the lack of any ordering of callback
 requests versus response arrivals, without any other mechanisms,
 the client would be forced to allocate all buffers sized to the
 worst case.

 The callback requests are likely to be handled by a different task
 context from that handling the responses. Significant
 demultiplexing and thread management may be required if both are
 received on the same queue.

 If the client explicitly binds each new connection to an existing
 session, multiple connections may be conveniently used to separate
 traffic by channel identifier within a session. For example, reads
 and writes may be assigned to specific, optimized channels, or
 sorted and separated by any or all of size, idempotency, etc.

 To address the problems described above, this proposal defines a
 "channel" that is created by the act of binding a connection to a
 session for a specific purpose. A new connection may be created
 for each channel, or a single connection may be bound to more than
 one channel. There are at least two types of channels: the
 "operations" channel used for ordinary requests from client to
 server, and the "back" channel, used for callback requests from
 server to client. The protocol does not permit binding multiple
 duplicate operations channels to a single connection. There is no
 benefit in doing so; supporting this would require increased

Talpey and Shepler Expires August 2004 [Page 9]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 complexity in the server duplicate request cache.

 Single Connection model:

 NFSv4.1 client instance
 |
 Session
 / \
 Operations_Channel [Back_Channel]
 \ /
 Connection
 |

 Multi-connection model (2 operations channels shown):

 NFSv4.1 client instance
 |
 Session
 / \
 Operations_Channels [Back_Channel]
 | | |
 Connection Connection [Connection]
 | | |

 In this way, implementation as well as resource management may be
 optimized. Each channel (operations, back) will have its own
 credits and buffering. Clients which do not require certain
 behaviors may optimize such resources away completely, by not even
 creating the channels.

2.1.3. Reconnection, Trunking, Failover

 Reconnection after failure references potentially stored state on
 the server associated with lease recovery during the grace period.
 The session provides a convenient handle for storing and managing
 information regarding the client's previous state on a per-
 connection basis, e.g. to be used upon reconnection. Reconnection
 and rebinding to a previously existing session, and its stored
 resources, are covered in the "Connection Models" section below.

 For Reliability Availability and Serviceability (RAS) issues such
 as bandwidth aggregation and multipathing, clients frequently seek
 to make multiple connections through multiple logical or physical
 channels. The session is a convenient point to aggregate and
 manage these resources.

Talpey and Shepler Expires August 2004 [Page 10]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

2.1.4. Server Duplicate Request Cache

 Server duplicate request caches, while not a part of an NFS
 protocol, have become a standard, even required, part of any NFS
 implementation. First described in [CJ89], the duplicate request
 cache was initially found to reduce work at the server by avoiding
 duplicate processing for retransmitted requests. A second, and in
 the long run more important benefit, was improved correctness, as
 the cache avoided certain destructive non-idempotent requests from
 being reinvoked.

 However, such caches do not provide correctness guarantees; they
 cannot be managed in a reliable, persistent fashion. The reason is
 understandable - their storage requirement is unbounded due to the
 lack of any such bound in the NFS protocol.

 As proposed in this draft, the presence of message flow control
 credits and negotiated maximum sizes allows the size and duration
 of the cache to be bounded, and coupled with a persistent session
 identifier, enables its persistent storage on a per-session basis.

 This provides a single unified mechanism which provides the
 following guarantees required in the NFSv4 specification, while
 extending them to all requests, rather than limiting them only to a
 subset of state-related requests:

 "It is critical the server maintain the last response sent to
 the client to provide a more reliable cache of duplicate non-
 idempotent requests than that of the traditional cache
 described in [CJ89]..." [RFC3530]

 The credit limit is the count of active operations, which bounds
 the number of entries in the cache. Constraining the size of
 operations additionally serves to limit the required storage to the
 product of the current credit count and the maximum response size.
 This storage requirement enables server-side efficiencies.

 Session negotiation allows the server to maintain other state. An
 NFSv4.1 client invoking the session destroy operation will cause
 the server to denegotiate (close) the session, allowing the server
 to deallocate cache entries. Clients can potentially specify that
 such caches not be kept for appropriate types of sessions (for
 example, read-only sessions). This can enable more efficient
 server operation resulting in improved response times.

 Similarly, it is important for the client to explicitly learn
 whether the server is able to implement these semantics. Knowledge
 of whether exactly-once semantics are in force is critical for a

https://datatracker.ietf.org/doc/html/rfc3530

Talpey and Shepler Expires August 2004 [Page 11]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 highly reliable client, one which must provide transactional
 integrity guarantees. When clients request that the semantics be
 enabled for a given session, the session reply must inform the
 client if the mode is in fact enabled. In this way the client can
 confidently proceed with operations without having to implement
 consistency facilities of its own.

2.2. RDMA

2.2.1. RDMA Requirements

 A complete discussion of the operation of RPC-based protocols atop
 RDMA transports is in [RPCRDMA], and a general discussion of NFS
 RDMA requirements is in [RDMAREQ]. Where RDMA is considered, this
 proposal assumes the use of such a layering; it addresses only the
 upper layer issues relevant to making best use of RPC/RDMA.

 A connection oriented (reliable sequenced) RDMA transport will be
 required. There are several reasons for this. First, this model
 most closely reflects the general NFSv4 requirement of long-lived
 and congestion-controlled transports. Second, to operate correctly
 over either an unreliable or unsequenced RDMA transport, or both,
 would require significant complexity in the implementation and
 protocol not appropriate for a strict minor version. For example,
 retransmission on connected endpoints is explicitly disallowed in
 the current NFSv4 draft; it would again be required with these
 alternate transport characteristics. Third, the proposal assumes a
 specific RDMA ordering semantic, which presents the same set of
 ordering and reliability issues to the RDMA layer over such
 transports.

 The RDMA implementation provides for making connections to other
 RDMA-capable peers. In the case of the current proposals before
 the RDDP working group, these RDMA connections are preceded by a
 "streaming" phase, where ordinary TCP (or NFS) traffic might flow.
 However, this is not assumed here and sizes and other parameters
 are explicitly exchanges upon entering RDMA mode in all cases.

2.2.2. RDMA Negotiation

 It is proposed that session negotiation be the method to enable
 RDMA mode on an NFSv4 connection.

 On transport endpoints which support automatic RDMA mode, that is,
 endpoints which are created in the RDMA-enabled state, a single,
 preposted buffer must initially be provided by both peers, and the
 client session negotiation must be the first exchange.

Talpey and Shepler Expires August 2004 [Page 12]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 On transport endpoints supporting dynamic negotiation, a more
 sophisticated negotiation is possible. Clients may connect to the
 server in traditional NFSv4 mode and enter RDMA mode only after a
 successful NFSv4.1 channel binding negotiation returning the RDMA
 capability. If RDMA capability is not indicated, the negotiation
 still completes and the benefits of the session are available on
 the existing TCP stream connection.

 Some of the parameters to be exchanged at session binding time are
 as follows.

 Maximum Credits
 The client's desired maximum credits (number of concurrent
 requests) is passed, in order to allow the server to size its
 reply cache storage. The server may modify the client's
 requested limit downward (or upward) to match its local policy
 and/or resources. The maximum credits available on a single
 bound channel may also be limited by the maximum credits for
 the session. Over RDMA-capable RPC transports, the per-
 request management of message credits is handled within the
 RPC layer. [RPCRDMA]

 Maximum Request/Response Sizes
 The maximum request and response sizes are exchanged in order
 to permit allocation of appropriately sized buffers and
 request cache entries. The size must allow for certain
 protocol minima, allowing the receipt of maximally sized
 operations (e.g. RENAME requests which contains two name
 strings). The server may reduce the client's requested sizes.

 RDMA Read Resources
 RDMA implementations must explicitly provision resources to
 support RDMA Read requests from connected peers. These values
 must be explicitly specified, to provide adequate resources
 for matching the peer's expected needs and the connection's
 delay-bandwidth parameters. The values are asymmetric and
 should be set to zero at the server in order to conserve RDMA
 resources, since clients do not issue RDMA Read operations in
 this proposal. The result is communicated in the session
 response, to permit matching of values across the connection.
 The value may not be changed in the duration of the
 connection, although a new value may be requested as part of a
 reconnection.

 Inline Padding/Alignment
 The server can inform the client of any padding which can be
 used to deliver NFSv4 inline WRITE payloads into aligned
 buffers. Such alignment can be used to avoid data copy

Talpey and Shepler Expires August 2004 [Page 13]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 operations at the server, even when direct RDMA is not used.
 The client informs the server in each operation when padding
 has been applied [RPCRDMA].

 Transport Attributes
 A placeholder for transport-specific attributes is provided,
 with a format to be determined. Examples of information to be
 passed in this parameter include transport security attributes
 to be used on the connection, RDMA-specific attributes, legacy
 "private data" as used on existing RDMA fabrics, transport
 Quality of Service attributes, etc. This information is to be
 passed to the peer's transport layer by local means which is
 currently outside the scope of this draft.

2.2.3. Connection Resources

 RDMA imposes several requirements on upper layer consumers.
 Registration of memory and the need to post buffers of a specific
 size and number for receive operations are a primary consideration.

 Registration of memory can be a relatively high-overhead operation,
 since it requires pinning of buffers, assignment of attributes
 (e.g. readable/writable), and initialization of hardware
 translation. Preregistration is desirable to reduce overhead.
 These registrations are specific to hardware interfaces and even to
 RDMA connection endpoints, therefore negotiation of their limits is
 desirable to manage resources effectively.

 Following the basic registration, these buffers must be posted by
 the RPC layer to handle receives. These buffers remain in use by
 the RPC/NFSv4 implementation; the size and number of them must be
 known to the remote peer in order to avoid RDMA errors which would
 cause a fatal error on the RDMA connection.

 Each channel within a session will potentially have different
 requirements, negotiated per-connection but accounted for per-
 session. The session provides a natural way for the server to
 manage resource allocation to each client rather than to each
 transport connection itself. This enables considerable flexibility
 in the administration of transport endpoints.

2.2.4. Inline Transfer Model

 The RDMA Send transfer model is used for all NFS requests and
 replies. Use of Sends is required to ensure consistency of data
 and to deliver completion notifications.

Talpey and Shepler Expires August 2004 [Page 14]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 Sends may carry data as well as control. When a Send carries data
 associated with a request type, the data is referred to as
 "inline". This method is typically used where the data payload is
 small, or where for whatever reason target memory for RDMA is not
 available.

 Inline message exchange

 Client Server
 : Request :
 Send : ------------------------------> : untagged
 : : buffer
 : Response :
 untagged : <------------------------------ : Send
 buffer : :

 Client Server
 : Read request :
 Send : ------------------------------> : untagged
 : : buffer
 : Read response with data :
 untagged : <------------------------------ : Send
 buffer : :

 Client Server
 : Write request with data :
 Send : ------------------------------> : untagged
 : : buffer
 : Write response :
 untagged : <------------------------------ : Send
 buffer : :

 Responses must be sent to the client on the same channel that the
 request was sent. This is important to preserve ordering of
 operations, and especially RMDA consistency. Additionally, it
 ensures that the RPC RDMA layer makes no requirement of the RDMA
 provider to open its memory registration handles (Steering Tags)
 beyond the scope of a single RDMA connection. This is an important
 security consideration.

 Two values must be known to each peer prior to issuing Sends: the
 maximum number of sends which may be posted, and their maximum
 size. These values are referred to, respectively, as the message
 credits and the maximum message size. While the message credits
 might vary dynamically over the duration of the session, the

Talpey and Shepler Expires August 2004 [Page 15]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 maximum message size does not. The server must commit to posting a
 number of receive buffers equal to or greater than its currently
 advertised credit value, each of the advertised size. If fewer
 credits or smaller buffers are provided, the connection may fail
 with an RDMA transport error.

 While tempting to consider, it is not possible to use the TCP
 window as an RDMA operation flow control mechanism. First, to do
 so would violate layering, requiring both senders to be aware of
 the existing TCP outbound window at all times. Second, since
 requests are of variable size, the TCP window can hold a widely
 variable number of them, and since it cannot be reduced without
 actually receiving data, the receiver cannot limit the sender.
 Third, any middlebox interposing on the connection would wreck any
 possible scheme. [MIDTAX] In this proposal, credits, in the form of
 explicit operation counts, are exchanged to allow correct
 provisioning of receive buffers.

 When not operating over RDMA, credits and sizes are still employed
 in NFSv4.1, but instead of being required for correctness, they
 provide the basis for efficient server implementation of exactly-
 once semantics. The limits are chosen based upon the expected
 needs and capabilities of the client and server, and are in fact
 arbitrary. Sizes may be specified as zero (no specific size limit)
 and credits may be chosen in proportion to the client's
 capabilities. For example, a limit of 1000 allows 1000 requests to
 be in progress, which may generally be far more than adequate to
 keep local networks and servers fully utilized.

 Both client and server have independent sizes and buffering, but
 over RDMA fabrics client credits are easily managed by posting a
 receive buffer prior to sending each request. Each such buffer may
 not be completed with the corresponding reply, since responses from
 NFSv4 servers arrive in arbitrary order. When the operations
 channel is used for callbacks, the client must account for callback
 requests by posting additional buffers. Note that implementation-
 specific facilities such as a "shared receive queue" may allow
 optimization of these allocations.

 When a connection is bound to a session (creating a channel), the
 client requests a preferred buffer size, and the server provides
 its answer. The server posts all buffers of at least this size.
 The client must comply by not sending requests greater than this
 size. It is recommended that server implementations do all they
 can to accommodate a useful range of possible client requests.
 There is a provision in [RPCRDMA] to allow the sending of client
 requests which exceed the server's receive buffer size, but it
 requires the server to "pull" the client's request as a "read

Talpey and Shepler Expires August 2004 [Page 16]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 chunk" via RDMA Read. This introduces at least one additional
 network roundtrip, plus other overhead such as registering memory
 for RDMA Read at the client and additional RDMA operations at the
 server, and is to be avoided.

 An issue therefore arises when considering the NFSv4 COMPOUND
 procedures. Since an arbitrary number (total size) of operations
 can be specified in a single COMPOUND procedure, its size is
 effectively unbounded. This cannot be supported by RDMA Sends, and
 therefore this size negotiation places a restriction on the
 construction and maximum size of both COMPOUND requests and
 responses. If a COMPOUND results in a reply at the server that is
 larger than can be sent in an RDMA Send to the client, then the
 COMPOUND must terminate and the operation which causes the overflow
 will provide a TOOSMALL error status result. A chaining facility
 is provided to overcome some of the resulting limitations,
 described later in the draft.

2.2.5. Direct Transfer Model

 Placement of data by explicitly tagged RDMA operations is referred
 to as "direct" transfer. This method is typically used where the
 data payload is relatively large, that is, when RDMA setup has been
 performed prior to the operation, or when any overhead for setting
 up and performing the transfer is regained by avoiding the overhead
 of processing an ordinary receive.

 The client advertises RDMA buffers in this proposed model, and not
 the server. This means the "XDR Decoding with Read Chunks"
 described in [RPCRDMA] is not employed by NFSv4.1 replies, and
 instead all results transferred via RDMA to the client employ "XDR
 Decoding with Write Chunks". There are several reasons for this.

 First, it allows for a correct and secure mode of transfer. The
 client may advertise specific memory buffers only during specific
 times, and may revoke access when it pleases. The server is not
 required to expose copies of local file buffers for individual
 clients, or to lock or copy them for each client access.

 Second, client credits based on fixed-size request buffers are
 easily managed on the server, but for the server additional
 management of buffers for client RDMA Reads is not well-bounded.
 For example, the client may not perform these RDMA Read operations
 in a timely fashion, therefore the server would have to protect
 itself against denial-of-service on these resources.

 Third, it reduces network traffic, since buffer exposure outside
 the scope and duration of a single request/response exchange

Talpey and Shepler Expires August 2004 [Page 17]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 necessitates additional memory management exchanges.

 There are costs associated with this decision. Primary among them
 is the need for the server to employ RDMA Read for operations such
 as large WRITE. The RDMA Read operation is a two-way exchange at
 the RDMA layer, which incurs additional overhead relative to RDMA
 Write. Additionally, RDMA Read requires resources at the data
 source (the client in this proposal) to maintain state and to
 generate replies. These costs are overcome through use of
 pipelining with credits, with sufficient RDMA Read resources
 negotiated at session initiation, and appropriate use of RDMA for
 writes by the client - for example only for transfers above a
 certain size.

 A description of which NFSv4 operation results are eligible for
 data transfer via RDMA Write is in [NFSDDP]. There are only two
 such operations: READ and READLINK. When XDR encoding these
 requests on an RDMA transport, the NFSv4.1 client must insert the
 appropriate xdr_write_list entries to indicate to the server
 whether the results should be transferred via RDMA or inline with a
 Send. As described in [NFSDDP], a zero-length write chunk is used
 to indicate an inline result. In this way, it is unnecessary to
 create new operations for RDMA-mode versions of READ and READLINK.

 Another tool to avoid creation of new, RDMA-mode operations is the
 Reply Chunk [RPCRDMA], which is used by RPC in RDMA mode to return
 large replies via RDMA as if they were inline. Reply chunks are
 used for operations such as READDIR, which returns large amounts of
 information, but in many small XDR segments. Reply chunks are
 offered by the client and the server can use them in preference to
 inline. Reply chunks are transparent to upper layers such as
 NFSv4.

 In any very rare cases where another NFSv4.1 operation requires
 larger buffers than were negotiated when the channel was bound (for
 example extraordinarily large RENAMEs), the underlying RPC layer
 may support the use of "Message as an RDMA Read Chunk" and "RDMA
 Write of Long Replies" as described in [RPCRDMA]. No additional
 support is required in the NFSv4.1 client for this. The client
 should be certain that its requested buffer sizes are not so small
 as to make this a frequent occurrence, however.

 All operations are initiated by a Send, and are completed with a
 Send. This is exactly as in conventional NFSv4, but under RDMA has
 a significant purpose: RDMA operations are not complete, that is,
 guaranteed consistent, at the data sink until followed by a
 successful Send completion (i.e. a receive). These events provide
 a natural opportunity for the initiator (client) to enable and

Talpey and Shepler Expires August 2004 [Page 18]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 later disable RDMA access to the memory which is the target of each
 operation, in order to provide for consistent and secure operation.
 The RDMAP Send with Invalidate operation may be worth employing in
 this respect, as it relieves the client of certain overhead in this
 case.

 A "onetime" boolean advisory to each RDMA region might become a
 hint to the server that the client will use the three-tuple for
 only one NFSv4 operation. For a transport such as iWARP, the
 server can assist the client in invalidating the three-tuple by
 performing a Send with Solicited Event and Invalidate. The server
 may ignore this hint, in which case the client must perform a local
 invalidate after receiving the indication from the server that the
 NFSv4 operation is complete. This may be considered in a future
 version of this draft and [NFSDDP].

 In a trusted environment, it may be desirable for the client to
 persistently enable RDMA access by the server. Such a model is
 desirable for the highest level of efficiency and lowest overhead.

 RDMA message exchanges

 Client Server
 : Direct Read Request :
 Send : ------------------------------> : untagged
 : : buffer
 : Segment :
 tagged : <------------------------------ : RDMA Write
 buffer : : :
 : [Segment] :
 tagged : <------------------------------ : [RDMA Write]
 buffer : :
 : Direct Read Response :
 untagged : <------------------------------ : Send (w/Inv.)
 buffer : :

Talpey and Shepler Expires August 2004 [Page 19]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 Client Server
 : Direct Write Request :
 Send : ------------------------------> : untagged
 : : buffer
 : Segment :
 tagged : v------------------------------ : RDMA Read
 buffer : +-----------------------------> :
 : : :
 : [Segment] :
 tagged : v------------------------------ : [RDMA Read]
 buffer : +-----------------------------> :
 : :
 : Direct Write Response :
 untagged : <------------------------------ : Send (w/Inv.)
 buffer : :

2.3. Connection Models

 There are three scenarios in which to discuss the connection model.
 Each will be discussed individually, after describing the common
 case encountered at initial connection establishment.

 After a successful connection, the first request proceeds, in the
 case of a new client association, to initial session creation, and
 then to session binding, prior to regular operation. Session
 binding, which creates a channel, is a required first step for
 NFSv4.1 operation on each connection, and there is no change in
 binding permitted. The client previously asserted that it does or
 does not wish to negotiate RDMA mode in its session creation
 request, and the server responded, possibly negatively in which
 case all connections remain in traditional TCP mode. Special rules
 apply for the RDMA cases, as described below.

 In the case of a reconnect, the session creation step is not
 performed and a session binding is attempted to the previously
 established session only. If this rebinding is successful at the
 server, the server will have located the previous session's state,
 including any surviving locks, delegations, duplicate request cache
 entries, etc. The previous session will be reestablished with its
 previous state, ensuring exactly-once semantics of any previously
 issued NFSv4 requests. If the rebinding fails, then the server has
 restarted and does not support persistent state. This would have
 been noted in the server's original reply to the session creation,
 however.

 Since the session is explicitly created and destroyed by the
 client, and each client is uniquely identified, the server may be

Talpey and Shepler Expires August 2004 [Page 20]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 specifically instructed to discard unneeded presistent state. For
 this reason, it is possible that a server will retain any previous
 state indefinitely, and place its destruction under administrative
 control. Or, a server may choose to retain state for some
 configurable period, provided that the period meets other NFSv4
 requirements.

 After successful session establishment, the traditional (TCP
 stream) connection model used by NFSv4.0 and NFSv4.1 ensures the
 connection is ready to proceed with issuing requests and returning
 responses. This mode is arrived at when the client does not
 request that the connection be placed into RDMA mode.

2.3.1. TCP Connection Model

 The following is a schematic diagram of the NFSv4.1 protocol
 exchanges leading up to normal operation on a TCP stream.

 Client Server
 TCPmode : Session Create(nfs_client_id4, ...) : TCPmode
 : ------------------------------> :
 : :
 : Session reply(sessionid, ...) :
 : <------------------------------ :
 : :
 : Session bind(session id, size S, :
 : opchan, STREAM, credits N, ...):
 : ------------------------------> :
 : :
 : Bind reply(size S', credits N') :
 : <------------------------------ :
 : :
 : <normal operation> :
 : ------------------------------> :
 : <------------------------------ :
 : : :

 No net additional exchange is added to the initial negotiation by
 this proposal. In the NFSv4.1 exchange, the SETCLIENTID and
 SETCLIENTID_CONFIRM operations are not performed, as described
 later in the document.

2.3.2. Negotiated RDMA Connection Model

 The following is a schematic diagram of the NFSv4.1 protocol
 exchanges negotiating upgrade to RDMA mode on a TCP stream.

Talpey and Shepler Expires August 2004 [Page 21]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 Client Server
 TCPmode : Session Create(nfs_client_id4, ...) : TCPmode
 : ------------------------------> :
 : :
 : Session reply(sessionid, ...) :
 : <------------------------------ :
 : :
 : Session bind(session id, size S', :
 : opchan, RDMA, credits N, ...) :
 : ------------------------------> :
 : : Prepost N' receives
 : Bind reply(size S', credits N') : of size S'
 : <------------------------------ : RDMAMode
 RDMAmode : :
 : <normal operation> :
 : ------------------------------> :
 : <------------------------------ :
 : : :

 In iWARP, the Bind reply and RDMA mode entry are combined into a
 single, atomic operation within the Provider, where the Bind reply
 is sent in TCP streaming mode and RDMA mode is enabled immediately.
 There is no opportunity for a race between the client's first
 operation, the preposting of receive descriptors, and RDMA mode
 entry at the server.

2.3.3. Automatic RDMA Connection Model

 The following is a schematic diagram of the NFSv4.1 protocol
 exchanges performed on an RDMA connection.

Talpey and Shepler Expires August 2004 [Page 22]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 Client Server
 RDMAmode : : : RDMAmode
 : : :
 Prepost : : : Prepost
 receive : : : receive
 : :
 : Session Create(nfs_client_id4, ...) :
 : ------------------------------> :
 : : Prepost
 : Session reply(sessionid, ...) : receive
 : <------------------------------ :
 Prepost : :
 receive : Session bind(session id, size S, :
 : opchan, RDMA, credits N, ...) :
 : ------------------------------> :
 : : Prepost N' receives
 : Bind reply(size S', credits N') : of size S'
 : <------------------------------ :
 : :
 : <normal operation> :
 : ------------------------------> :
 : <------------------------------ :
 : : :

2.4. Buffer Management, Transfer, Flow Control

 Inline operations in NFSv4.1 behave effectively the same as TCP
 sends. Procedure results are passed in a single message, and its
 completion at the client signal the receiving process to inspect
 the message.

 RDMA operations are performed solely by the server in this
 proposal, as described in the previous "RDMA Direct Model" section.
 Since server RDMA operations do not result in a completion at the
 client, and due to ordering rules in RDMA transports, after all
 required RDMA operations are complete, a Send (Send with Solicited
 Event for iWARP) containing the procedure results is performed from
 server to client. This Send operation will result in a completion
 which will signal the client to inspect the message.

 In the case of client read-type NFSv4 operations, the server will
 have issued RDMA Writes to transfer the resulting data into client-
 advertised buffers. The subsequent Send operation performs two
 necessary functions: finalizing any active or pending DMA at the
 client, and signaling the client to inspect the message.

Talpey and Shepler Expires August 2004 [Page 23]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 In the case of client write-type NFSv4 operations, the server will
 have issued RDMA Reads to fetch the data from the client-advertised
 buffers. No data consistency issues arise at the client, but the
 completion of the transfer must be acknowledged, again by a Send
 from server to client.

 In either case, the client advertises buffers for direct (RDMA
 style) operations. The client may desire certain advertisement
 limits, and may wish the server to perform remote invalidation on
 its behalf when the server has completed its RDMA. This may be
 considered in a future version of this draft.

 Credit updates over RDMA transports are supported at the RPC layer
 as described in [RPCRDMA]. In each request, the client requests a
 desired number of credits to be made available to the channel on
 which it sends the request. The client must not send more requests
 than the number which the server has previously advertised, or in
 the case of the first request, only one. If the client exceeds its
 credit limit, the connection may close with a fatal RDMA error.

 The server then executes the request, and replies with an updated
 credit count accompanying its results. Since replies are sequenced
 by their RDMA Send order, the most recent results always reflect
 the server's limit. In this way the client will always know the
 maximum number of requests it may safely post.

 Because the client requests an arbitrary credit count in each
 request, it is relatively easy for the client to request more, or
 fewer, credits to match its expected need. A client that
 discovered itself frequently queuing outgoing requests due to lack
 of server credits might increase its requested credits
 proportionately in response. Or, a client might have a simple,
 configurable number.

 Occasionally, a server may wish to reduce the number of credits it
 offers a certain client channel. This could be encountered if a
 client were found to be consuming its credits slowly, or not at
 all. A client might notice this itself, and reduce its requested
 credits in advance, for instance requesting only the count of
 operations it currently has queued, plus a few as a base for
 starting up again. Such mechanism are, however, potentially
 complicated and are implementation-defined. The protocol does not
 require them.

 Because of the way in which RDMA fabrics function, it is not
 possible for the server (or client back channel) to cancel
 outstanding receive operations. Therefore, effectively only one
 credit can be withdrawn per receive completion. The server (or

Talpey and Shepler Expires August 2004 [Page 24]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 client back channel) would simply not replenish a receive operation
 when replying. The server can still reduce the available credit
 advertisement in its replies to the target value it desires, as a
 hint to the client that its credit target is lower and it should
 expect it to be reduced accordingly. Of course, even if the server
 could cancel outstanding receives, it cannot do so, since the
 client may have already sent requests in expectation of the
 previous limit.

 This brings out an interesting scenario similar to the client
 reconnect discussed earlier in "Connection Models". How does the
 server reduce the credits of an inactive client?

 One approach is for the server to simply close such a connection
 and require the client to reconnect at a new credit limit. This is
 acceptable, if inefficient, when the connection setup time is short
 and where the server supports persistent session semantics.

 A better approach is to provide a back channel request to return
 the operations channel credits. The server may request the client
 to return some number of credits, the client must comply by
 performing operations on the operations channel, provided of course
 that the request does not drop the client's credit count to zero
 (in which case the channel would deadlock). If the client finds
 that it has no requests with which to consume the credits it was
 previously granted, it must send zero-length Send RDMA operations,
 or NULL NFSv4 operations in order to return the channel resources
 to the server. If the client fails to comply in a timely fashion,
 the server can recover the resources by breaking the connection.

 While in principle, the back channel credits could be subject to a
 similar resource adjustment, in practice this is not an issue,
 since the back channel is used purely for control and is expected
 to be statically provisioned.

 It is important to note that in addition to credits, the sizes of
 buffers are negotiated per-channel. This permits the most
 efficient allocation of resources on both peers. There is an
 important requirement on reconnection: the sizes offered at
 reconnect (session bind) must be at least as large as previously
 used, to allow recovery. Any replies that are replayed from the
 server's duplicate request cache must be able to be received into
 client buffers. In the case where a client has received replies to
 all its retried requests (and therefore received all its expected
 responses), then the client may disconnect and reconnect with
 different buffers at will, since no cache replay will be required.

Talpey and Shepler Expires August 2004 [Page 25]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

2.5. Retry and Replay

 NFSv4.0 forbids retransmission on active connections over reliable
 transports; this includes connected-mode RDMA. This restriction
 must be maintained in NFSv4.1.

 If one peer were to retransmit a request (or reply), it would
 consume an additional credit on the other. If the server
 retransmitted a reply, it would certainly result in an RDMA
 connection loss, since the client would typically only post a
 single receive buffer for each request. If the client
 retransmitted a request, the additional credit consumed on the
 server might lead to RDMA connection failure unless the client
 accounted for it and decreased its available credit, leading to
 wasted resources.

 Credits present a new issue to the duplicate request cache in
 NFSv4.1. The request cache may be used when a connection within a
 session is lost, such as after the client reconnects and rebinds.
 Credit information is a dynamic property of the channel, and stale
 values must not be replayed from the cache. This may occur on
 another existing channel, or a new channel, with potentially new
 credits and buffers. This implies that the request cache contents
 must not be blindly used when replies are issued from it, and
 credit information appropriate to the channel must be refreshed by
 the RPC layer.

 Finally, RDMA fabrics do not guarantee that the memory handles
 (Steering Tags) within each rdma three-tuple are valid on a scope
 outside that of a single connection. Therefore, handles used by
 the direct operations become invalid after connection loss. The
 server must ensure that any RDMA operations which must be replayed
 from the request cache use the newly provided handle(s) from the
 most recent request.

2.6. The Back Channel

 The NFSv4 callback operations present a significant resource
 problem for the RDMA enabled client. Clearly, their number must be
 negotiated in the way credits are for the ordinary operations
 channel for requests flowing from client to server. But, for
 callbacks to arrive on the same RDMA endpoint as operation replies
 would require dedicating additional resources, and specialized
 demultiplexing and event handling. Or, callbacks may not require
 RDMA sevice at all (they do not normally carry substantial data
 payloads). It is highly desirable to streamline this critical path
 via a second communications channel.

Talpey and Shepler Expires August 2004 [Page 26]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 The session binding facility is designed for exactly such a
 situation, by dynamically associating a new connected endpoint with
 the session, and separately negotiating sizes and counts for active
 operations. The ChannelType designation in the session bind
 operation serves to identify the channel. The binding operation is
 firewall-friendly since it does not require the server to initiate
 the connection.

 This same method serves as well for ordinary TCP connection mode.
 It is expected that all NFSv4.1 clients may make use of the session
 binding facility to streamline their design.

 The back channel functions exactly the same as the operations
 channel except that no RDMA operations are required to perform
 transfers, instead the sizes are required to be sufficiently large
 to carry all data inline, and of course the client and server
 reverse their roles with respect to which is in control of credit
 management. The same rules apply for all transfers, with the
 server being required to flow control its callback requests.

 The back channel is optional. If not bound on a given session, the
 server must not issue callback operations to the client. This in
 turn implies that such a client must never put itself in the
 situation where the server will need to do so, lest the client lose
 its connection by force, or its operation be incorrect. For the
 same reason, if a back channel is bound, the client is subject to
 revocation of its delegations if the back channel is lost. Any
 connection loss should be corrected by the client as soon as
 possible.

 This can be convenient for the NFSv4.1 client; if the client
 expects to make no use of back channel facilities such as
 delegations, then there is no need to create it. This may save
 significant resources and complexity at the client.

 For these reasons, if the client wishes to use the back channel,
 that channel must be bound first, before the operations channel.
 In this way, the server will not find itself in a position where it
 will send callbacks on the operations channel when the client is
 not prepared for them.

 There is one special case, that where the back channel is bound in
 fact to the operations channel. This configuration would be used
 normally over a TCP stream connection to exactly implement the
 NFSv4.0 behavior, but over RDMA would require complex resource and
 event management at both sides of the connection. The server is
 not required to accept such a bind request on an RDMA connection
 for this reason, though it is recommended.

Talpey and Shepler Expires August 2004 [Page 27]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

2.7. COMPOUND Sizing Issues

 Very large responses may pose duplicate request cache issues.
 Since servers will want to bound the storage required for such a
 cache, the unlimited size of response data in COMPOUND may be
 troublesome. If COMPOUND is used in all its generality, then a
 non-idempotent request might include operations that return any
 amount of data via RDMA.

 It is not satisfactory for the server to reject COMPOUNDs at will
 with NFS4ERR_RESOURCE when they pose such difficulties for the
 server, as this results in serious interoperability problems.
 Instead, any such limits must be explicitly exposed as attributes
 of the session, ensuring that the server can explicitly support any
 duplicate request cache needs at all times.

 A need may therefore arise to handle requests of a size which is
 greater than this maximum. When COMPOUNDed requests would exceed
 the provided buffer, a chaining facility may be used.

 Chaining, when used, provides for executing requests on the channel
 in strict sequence at the server. At most a single chain may be in
 effect on a channel at any time, and the chain is broken when any
 request within the chain is incomplete, for example when an error
 is returned, or a incomplete result such as a short write. A new
 error is provided for flushing subsequent chained requests.

 Chained request sequences are subject to ordinary flow control
 since each request is a new, independent request on the channel.
 When a chain is in effect, the server executes requests strictly in
 the sequence as issued in the chain. When the chain is terminated
 by the client, server operation returns to normal, fully parallel
 mode.

 Chaining is implemented in the OPERATION_CONTROL operation within
 each compound. A ChainFlags word indicates the beginning,
 continuation and end of each chain. Requests which arrive in an
 unexpected state (for example, a "continuation" request without a
 "begin") result in a CHAIN_INVALID error. Requests which follow an
 incomplete result are not executed and result in a CHAIN_BROKEN
 error. The client terminates the chain by explicitly ending the
 chain with the "end" flag, or by transmitting any unchained
 request. The explicit "end" flag allows a chain to immediately
 follow another.

 When a chain is in effect, the current filehandle and saved
 filehandle are maintained across chained requests as for a single
 COMPOUND. This permits passing such results forward in the chain.

Talpey and Shepler Expires August 2004 [Page 28]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 The current and saved filehandles are not available outside the
 chain.

2.8. Data Alignment

 A negotiated data alignment enables certain scatter/gather
 optimizations. A facility for this is supported by [RPCRDMA].
 Where NFS file data is the payload, specific optimizations become
 highly attractive.

 Header padding is requested by each peer at session initiation, and
 may be zero (no padding). Padding leverages the useful property
 that RDMA receives preserve alignment of data, even when they are
 placed into anonymous (untagged) buffers. If requested, client
 inline writes will insert appropriate pad bytes within the request
 header to align the data payload on the specified boundary. The
 client is encouraged to be optimistic and simply pad all WRITEs
 within the RPC layer to the negotiated size, in the expectation
 that the server can use them efficiently.

 It is highly recommended that clients offer to pad headers to an
 appropriate size. Most servers can make good use of such padding,
 which allows them to chain receive buffers in such a way that any
 data carried by client requests will be placed into appropriate
 buffers at the server, ready for filesystem processing. The
 receiver's RPC layer encounters no overhead from skipping over pad
 bytes, and the RDMA layer's high performance makes the insertion
 and transmission of padding on the sender a significant
 optimization. In this way, the need for servers to perform RDMA
 Read to satisfy all but the largest client writes is obviated. An
 added benefit is the reduction of message roundtrips on the network
 - a potentially good trade, where latency is present.

 The value to choose for padding is subject to a number of criteria.
 A primary source of variable-length data in the RPC header is the
 authentication information, the form of which is client-determined,
 possibly in response to server specification. The contents of
 COMPOUNDs, sizes of strings such as those passed to RENAME, etc.
 all go into the determination of a maximal NFSv4 request size and
 therefore minimal buffer size. The client must select its offered
 value carefully, so as not to overburden the server, and vice-
 versa. The payoff of an appropriate padding value is higher
 performance.

Talpey and Shepler Expires August 2004 [Page 29]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 Sender gather:
 |RPC Request|Pad bytes|Length| -> |User data...|
 \------+---------------------/ \
 \ \
 \ Receiver scatter: \--------------+- ...
 /-----+----------------\ \ \
 |RPC Request|Pad|Length| -> |FS buffer| -> |FS buffer| -> ...

 In the above case, the server may recycle unused buffers to the
 next posted receive if unused by the actual received request, or
 may pass the now-complete buffers by reference for normal write
 processing. For a server which can make use of it, this removes
 any need for data copies of incoming data, without resorting to
 complicated end-to-end buffer advertisement and management. This
 includes most kernel-based and integrated server designs, among
 many others. The client may perform similar optimizations, if
 desired.

 Padding is negotiated by the session binding operation, and
 subsequently used by the RPC RDMA layer, as described in [RPCRDMA].

3. NFSv4 Integration

 The following section discusses the integration of the proposed
 RDMA extensions with NFSv4.0.

3.1. Minor Versioning

 Minor versioning is the existing facility to extend the NFSv4
 protocol, and this proposal takes that approach.

 Minor versioning of NFSv4 is relatively restrictive, and allows for
 tightly limited changes only. In particular, it does not permit
 adding new "procedures" (it permits adding only new "operations").
 Interoperability concerns make it impossible to consider additional
 layering to be a minor revision. This somewhat limits the changes
 that can be proposed when considering extensions.

 To support exactly-once semantics integrated with sessions and flow
 control, it is desirable to tag each request with an identifier to
 be called a Streamid. This identifier must be passed by NFSv4 when
 running atop any transport, including traditional TCP. Therefore
 it is not desirable to add the Streamid to a new RPC transport,
 even though such a transport is indicated for support of RDMA.
 This draft and [RPCRDMA] do not propose such an approach.

Talpey and Shepler Expires August 2004 [Page 30]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 Instead, this proposal follows these requirements faithfully,
 through the use of a new operation within NFSv4 COMPOUND procedures
 as detailed below.

3.2. Stream Identifiers and Exactly-Once Semantics

 The presence of deterministic flow control on a channel enables in-
 progress requests to be assigned unique values with useful
 properties.

 The RPC layer provides a transaction ID (xid), which, while
 required to be unique, is not especially convenient for tracking
 requests. The transaction ID is only meaningful to the issuer
 (client), it cannot be interpreted at the server except to test for
 equality with previously issued requests. Because RPC operations
 may be completed by the server in any order, many transaction IDs
 may be outstanding at any time. The client may therefore perform a
 computationally expensive lookup operation in the process of
 demultiplexing each reply.

 When flow control is in effect, there is a limit to the number of
 active requests. This immediately enables a convenient,
 computationally efficient index for each request which is
 designated as a Stream Identifier, or streamid.

 When the client issues a new request, it selects a streamid in the
 range 0..N-1, where N is the server's current "totalrequests" limit
 granted the client on the session over which the request is to be
 issued. The streamid must be unused by any of the requests which
 the client has already active on the session. "Unused" here means
 the client has no outstanding request for that streamid. Because
 the stream id is always an integer in the range 0..N-1, client
 implementations can use the streamid from a server response to
 efficiently match responses with outstanding requests, such as, for
 example, by using the streamid to index into a outstanding request
 array.

 The server in turn may use this streamid, in conjunction with the
 transaction id within the RPC portion of the request, to maintain
 its duplicate request cache (DRC) for the session, as opposed to
 the traditional approach of ONC RPC applications that use the XID
 to index into the DRC. Unlike the XID, the streamid is always
 within a specific range; this has two implications. The first
 implication is that for a given session, the server need only cache
 the results of a limited number of COMPOUND requests. The second
 implication derives from the first, which is unlike XID indexed
 DRCs, the streamid DRC by its nature cannot be overflowed. This
 makes it practical to maintain all the required entries for an

Talpey and Shepler Expires August 2004 [Page 31]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 effective, exactly-once semantics, DRC.

 It is required to encode the streamid information in such a way
 that does not violate the minor versioning rules of the NFSv4.0
 specification. This is accomplished here by encoding it in a
 control operation within each NFSv4.1 COMPOUND and CB_COMPOUND
 procedure. The operation easily piggybacks within existing
 messages. The implementation section of this document describes
 the specific proposal.

 Exactly-once semantics completely replace the functionality
 provided by NFSv4.0 sequence numbers. It is no longer necessary to
 employ NFS sequence numbers and their contents must be ignored by
 NFSv4.1 servers when a session is in effect for the connection. As
 previously discussed, such a server will never request open-
 confirmation response to OPEN requests, and a client must not issue
 an OPEN_CONFIRM operation.

 In the case where the server is actively adjusting its granted flow
 control credits to the client, it may not be able to use receipt of
 the streamid to retire a cache entry. The streamid used in an
 incoming request may not reflect the server's current idea of the
 client's credit limit, because the request may have been sent from
 the client before the update was received. Therefore, in the
 credit downward adjustment case, the server may have to retain a
 number of duplicate request cache entries at least as large as the
 old credit value, until operation sequencing rules allow it to
 infer that the client has seen its reply.

 Finally, note that the streamid is a guarantee of uniqueness only
 in the scope of an unbroken connection. A channel identifier,
 assigned at bind time and unique within the session, provides the
 means by which this is detected. If a request is received on a
 channel with a channel identifier which does not match the incoming
 request, then the request must be handled as a potential retry on
 the previous channel identifier. It is possible to receive
 requests up to the credit limit previously in effect for the old
 channel, but new requests outside this range should be rejected.
 As in the flow control downward adjustment case, the server may
 finally retire the old channel's request cache entries based on
 operation sequencing rules.

3.3. COMPOUND and CB_COMPOUND

 Support for per-operation control can be piggybacked onto NFSv4
 COMPOUNDs with full transparency, by placing such facilities into
 their own, new operation, and placing this operation first in each
 COMPOUND under the new NFSv4 minor protocol revision. The contents

Talpey and Shepler Expires August 2004 [Page 32]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 of the operation would then apply to the entire COMPOUND.

 Recall that the NFSv4 minor revision is contained within the
 COMPOUND header, encoded prior to the COMPOUNDed operations. By
 simply requiring that the new operation always be contained in
 NFSv4 minor COMPOUNDs, the control protocol can piggyback perfectly
 with each request and response.

 In this way, the NFSv4 RDMA Extensions may stay in compliance with
 the minor versioning requirements specified in section 10 of
 [RFC3530].

 Referring to section 13.1 of the same document, the proposed
 session-enabled COMPOUND and CB_COMPOUND have the form:

 +-----+--------------+-----------+------------+-----------+----
 | tag | minorversion | numops | control op | op + args | ...
 | | (== 1) | (limited) | + args | |
 +-----+--------------+-----------+------------+-----------+----

 and the reply's structure is:

 +------------+-----+--------+-------------------------------+--//
 |last status | tag | numres | status + control op + results | //
 +------------+-----+--------+-------------------------------+--//
 //-----------------------+----
 // status + op + results | ...
 //-----------------------+----

 The single control operation within each NFSv4.1 COMPOUND defines
 the context and operational session parameters which govern that
 COMPOUND request and reply. Placing it first in the COMPOUND
 encoding is required in order to allow its processing before other
 operations in the COMPOUND. This is especially important where
 chaining is in effect, as the chain must be checked for correctness
 prior to execution.

3.4. eXternal Data Representation Efficiency

 RDMA is a copy avoidance technology, and it is important to
 maintain this efficiency when decoding received messages.
 Traditional XDR implementations frequently use generated
 unmarshaling code to convert objects to local form, incurring a
 data copy in the process (in addition to subjecting the caller to
 recursive calls, etc). Often, such conversions are carried out
 even when no size or byte order conversion is necessary.

https://datatracker.ietf.org/doc/html/rfc3530#section-10
https://datatracker.ietf.org/doc/html/rfc3530#section-10

Talpey and Shepler Expires August 2004 [Page 33]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 It is recommended that implementations pay close attention to the
 details of memory referencing in such code. It is far more
 efficient to inspect data in place, using native facilities to deal
 with word size and byte order conversion into registers or local
 variables, rather than formally (and blindly) performing the
 operation via fetch, reallocate and store.

 Of particular concern is the result of the READDIR_DIRECT
 operation, in which such encoding abounds.

3.5. Effect of Sessions on Existing Operations

 The use of a session and associated message credits to provide
 exactly-once semantics allows considerable simplification of a
 number of mechanisms in the base protocol that are all devoted in
 some way to providing replay protection. In particular, the use of
 sequence id's on many operations becomes superfluous. Rather than
 replace existing operations with variants that delete the sequence
 id's, sequence id's will still be present but their value must not
 be checked for correctness, nor used for replay protection. In
 addition, when a session is in effect for the connection, OPENs
 will never require confirmation, the server must not require
 confirmation, and the OPEN_CONFIRM operation must not be issued by
 the client.

 Since each session will only be used by a single client, the use of
 a clientid in many operations will no longer be required. Rather
 than remove clientid parameters, the existing operations that use
 them will remain unchanged but a value of zero can be used. The
 determination of the client will follow from the session membership
 of the connection on which the request arrived.

 A similar situation to sequence numbers, described earlier, exists
 for NFSv4.0 clientid operations. There is no longer a need for
 SETCLIENTID and SETCLIENTID_CONFIRM, as clientid uniqueness is
 managed by the server through the session, and negotiation is both
 unnecessary and redundant. Additionally, the cb_program and
 cb_location which are obtained by the server in SETCLIENTID_CONFIRM
 must not be used by the server, because the NFSv4.1 client performs
 callback channel designation with SESSION_BIND. A server should
 return an error to NFSv4.1 clients which might issue either
 operation.

 Finally the RENEW operation is made unnecessary when a session is
 present, and the server should return an error to clients which
 might issue it.

Talpey and Shepler Expires August 2004 [Page 34]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 In summary, the

 o OPEN_CONFIRM

 o SETCLIENTID

 o SETCLIENTID_CONFIRM

 o RENEW

 operations must not be issued or handled by client nor server when
 a session is in effect.

 Since the session carries the client indication with it implicitly,
 any request on a session associated with a given client will renew
 that client's leases.

3.6. Authentication Efficiencies

 NFSv4 requires the use of the RPCSEC_GSS ONC RPC security flavor
 [RFC2203] to provide authentication, integrity, and privacy via
 cryptography. The server dictates to the client the use of
 RPCSEC_GSS, the service (authentication, integrity, or privacy),
 and the specific GSS-API security mechanism that each remote
 procedure call and result will use.

 If the connection's integrity is protected by an additional means
 than RPCSEC_GSS, such as via IPsec, then the use of RPCSEC_GSS's
 integrity service is nearly redundant (See the Security
 Considerations section for more explanation of why it is "nearly"
 and not completely redundant). Likewise, if the connection's
 privacy is protected by additional means, then the use of both
 RPCSEC_GSS's integrity and privacy services is nearly redundant.

 Connection protection schemes, such as IPsec, are more likely to be
 implemented in hardware than upper layer protocols like RPCSEC_GSS.
 Hardware-based cryptography at the IPsec layer will be more
 efficient than software-based cryptography at the RPCSEC_GSS layer.

 When transport integrity can be obtained, it is possible for server
 and client to downgrade their per-operation authentication, after
 an appropriate exchange. This downgrade can in fact be as complete
 as to establish security mechanisms that have zero cryptographic
 overhead, effectively using the underlying integrity and privacy
 services provided by transport.

 Based on the above observations, a new GSS-API mechanism, called
 the Channel Conjunction Mechanism [CCM], is being defined. The CCM

https://datatracker.ietf.org/doc/html/rfc2203

Talpey and Shepler Expires August 2004 [Page 35]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 works by creating a GSS-API security context using as input a
 cookie that the initiator and target have previously agreed to be a
 handle for GSS-API context created previously over another GSS-API
 mechanism.

 NFSv4.1 clients and servers should support CCM and they must use as
 the cookie the handle from a successful RPCSEC_GSS context creation
 over a non-CCM mechanism (such as Kerberos V5). The value of the
 cookie will be equal to the handle field of the rpc_gss_init_res
 structure from the RPCSEC_GSS specification.

 The [CCM] Draft provides further discussion and examples.

4. Security Considerations

 The NFSv4 minor version 1 retains all of existing NFSv4 security;
 all security considerations present in NFSv4.0 apply to it equally.

 Security considerations of any underlying RDMA transport are
 additionally important, all the more so due to the emerging nature
 of such transports. Examining these issues is outside the scope of
 this draft.

 When protecting a connection with RPCSEC_GSS, all data in each
 request and response (whether transferred inline or via RDMA)
 continues to receive this protection over RDMA fabrics [RPCRDMA].
 However when performing data transfers via RDMA, RPCSEC_GSS
 protection of the data transfer portion works against the
 efficiency which RDMA is typically employed to achieve. This is
 because such data is normally managed solely by the RDMA fabric,
 and intentionally is not touched by software. Therefore when
 employing RPCSEC_GSS under CCM, and where integrity protection has
 been "downgraded", the cooperation of the RDMA transport provider
 is critical to maintain any integrity and privacy otherwise in
 place for the session. The means by which the local RPCSEC_GSS
 implementation is integrated with the RDMA data protection
 facilities are outside the scope of this draft.

 It is logical to use the same GSS context on a session's callback
 channel as that used on its operations channel(s), but the issue
 warrants careful analysis.

 If the NFS client wishes to maintain full control over RPCSEC_GSS
 protection, it may still perform its transfer operations using
 either the inline or RDMA transfer model, or of course employ
 traditional TCP stream operation. In the RDMA inline case, header
 padding is recommended to optimize behavior at the server. At the
 client, close attention should be paid to the implementation of

Talpey and Shepler Expires August 2004 [Page 36]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 RPCSEC_GSS processing to minimize memory referencing and especially
 copying. These are well-advised in any case!

 Proper authentication of the session binding operation of the
 proposed NFSv4.1 exactly follows the similar requirement on client
 identifiers in NFSv4.0. It must not be possible for a client to
 bind to an existing session by guessing its session identifier. To
 protect against this, NFSv4.0 requires appropriate authentication
 and matching of the principal used. This is discussed in Section

16, Security Considerations of [RFC3530]. The same requirement
 before binding to a session identifier applies here.

 The proposed session binding improves security over that provided
 by NFSv4 for the callback channel. The connection is client-
 initiated, and subject to the same firewall and routing checks as
 the operations channel. The connection cannot be hijacked by an
 attacker who connects to the client port prior to the intended
 server. The connection is set up by the client with its desired
 attributes, such as optionally securing with IPsec or similar. The
 binding is fully authenticated before being activated.

 The server should take care to protect itself against denial of
 service attacks in the creation of sessions and clientids. Clients
 who connect and create sessions, only to disconnect and never bind
 to them may leave significant state behind. (The same issue
 applies to NFSv4.0 with clients who may perform SETCLIENTID, then
 never perform SETCLIENTID_CONFIRM.) Careful authentication coupled
 with resource checks is highly recommended.

5. IANA Considerations

 As a proposal based on minor protocol revision, any new minor
 number might be registered and reserved with the agreed-upon
 specification. Assigned operation numbers and any RPC constants
 might undergo the same process.

 There are no issues stemming from RDMA use itself regarding port
 number assignments not already specified by [RFC3530]. Initial
 connection is via ordinary TCP stream services, operating on the
 same ports and under the same set of naming services.

 In the Automatic RDMA connection model described above, it is
 possible that a new well-known port, or a new transport type
 assignment (netid) as described in [RFC3530], may be desirable.

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530

Talpey and Shepler Expires August 2004 [Page 37]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

6. NFSv4 Protocol Extensions

 This section specifies details of the five extensions to NFSv4
 proposed by this document. Existing NFSv4 operations (under minor
 version 0) continue to be fully supported, unmodified.

6.1. SESSION_CREATE

 SYNOPSIS

 sessionparams -> sessionresults

 ARGUMENT

 struct SESSIONCREATE4args {
 nfs_client_id4 clientid;
 bool persist;
 uint32 totalrequests;
 };

 RESULT

 struct SESSIONCREATE4resok {
 uint64 sessionid;
 bool persist;
 uint32 totalrequests;
 };

 union SESSIONCREATE4res switch (nfsstat4 status) {
 case NFS4_OK:
 SESSIONCREATE4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 The SESSION_CREATE operation creates a session to which client
 connections may be bound with SESSION_BIND.

 The "persist" argument indicates to the server whether the client
 requires strict response caching for the session. For example, a
 read-only session may set persist to FALSE. The server may choose
 to change the returned value of "persist" to match its
 implementation choice.

Talpey and Shepler Expires August 2004 [Page 38]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 The "totalrequests" argument allows the server to size any
 necessary response cache storage. It is the largest number of
 outstanding requests which the client will adhere to session-wide.

 Note that the SESSION_CREATE operation never appears with an
 associated streamid. Therefore the SESSION_CREATE operation may
 not receive the same level of exactly-once replay protection in the
 face of transport failure. However, because at most one
 SESSION_CREATE operation may be issued on a connection, servers can
 provide "special" caching of the result (the sessionid) to
 compensate for this.

 ...

 ERRORS

 <tbd>

6.2. SESSION_BIND

 SYNOPSIS

 sessionparams -> sessionresults

 ARGUMENT

 enum ChannelType {
 OPERATION = 0,
 BACK = 1
 };

 enum ConnectionMode {
 STREAM = 0,
 RDMA = 1
 };

 struct SESSIONBIND4args {
 uint64 sessionid;
 ChannelType channel;
 ConnectionMode mode;
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 headerpadsize;
 count4 maxrequests;
 count4 maxrdmareads;
 opaque transportattrs<>;
 };

Talpey and Shepler Expires August 2004 [Page 39]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 RESULT

 struct SESSIONBIND4resok {
 uint32 channelid;
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 headerpadsize;
 count4 maxrequests;
 count4 maxrdmareads;
 opaque transportattrs<>;
 };

 union SESSIONBIND4res switch (nfsstat4 status) {
 case NFS4_OK:
 SESSIONBIND4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 The SESSION_BIND operation causes the connection on which the
 operation is issued to be associated with the specified session,
 creating a new channel. The channel type may be specified to be
 for multiple purposes. Multiple channels may be bound to a single
 connection within a session. Normally, only one back channel is
 bound.

 Credits and sizes are interpreted relative to the initiator of each
 channel, that is, the operations channel specifies server credits
 and sizes for the operations channel, while the back channel
 specifies client credits and sizes for the back channel. Padding
 and also direct operations are generally not required on the back
 channel.

 The channelid is a unique session-wide indentifier for each newly
 bound connection. New requests must be issued on a channel with
 the matching identifier, while requests retried after connection
 failure must reissue the original identifier.

 When ConnectionMode is "RDMA", the channel may be promoted to RDMA
 mode by the server before replying, if supported.

 The "maxrequests" value is a hint which the client may use to
 communicate to the server its expected credit use on the channel.
 The client must always adhere to the "totalrequests" value,
 aggregated on all channels within the session, which it negotiated
 with the server at session creation.

Talpey and Shepler Expires August 2004 [Page 40]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 Note that the SESSION_BIND operation never appears with an
 associated streamid, but also never requires replay protection. A
 client which suffered a connection loss must immediately respond
 with new SESSION_BIND, and never a retransmit. Also, for this
 reason, it is recommended to use SESSION_BIND alone in its request.

 ...

 ERRORS

 <tbd>

6.3. SESSION_DESTROY

 SYNOPSIS

 void -> status

 ARGUMENT

 void;

 RESULT

 struct SESSION_DESTROYres {
 nfsstat status;
 };

 DESCRIPTION

 The SESSION_DESTROY operation closes the session and discards any
 active state such as locks, leases, and server duplicate request
 cache entries. Any remaining connections bound to the session are
 immediately unbound and may additionally be closed by the server.

 This operation must be the final, or only operation after the
 required OPERATION_CONTROL in any request. Because the operation
 results in destruction of the session, any duplicate request
 caching for this request, as well as previously completed rewuests,
 will be lost. For this reason, it is advisable to not place this
 operation in a request with other state-modifying operations.

 Note that because the operation will never be replayed by the
 server, a client that retransmits the request may receive an error
 in response, even though the session may have been successfully
 destroyed.

Talpey and Shepler Expires August 2004 [Page 41]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 ...

 ERRORS

 <tbd>

6.4. OPERATION_CONTROL

 SYNOPSIS

 control -> control

 ARGUMENT

 enum ChainFlags {
 NOCHAIN = 0,
 CHAINBEGIN = 1,
 CHAINCONTINUE = 2,
 CHAINEND = 3
 };

 struct OPERATIONCONTROL4args {
 uint32 channelid;
 uint32 streamid;
 enum ChainFlags chainflags;
 };

 RESULT

 union OPERATIONCONTROL4res switch (nfsstat4 status) {
 case NFS4_OK:
 uint32 streamid;
 default:
 void;
 };

 DESCRIPTION

 The OPERATION_CONTROL operation is used to manage operational
 accounting for the channel on which the operation is sent. The
 contents include the Streamid, used by the server to implement
 exactly-once semantics, and chaining flags to implement request
 chaining for the operations channel. This operation must appear
 once as the first operation in each COMPOUND and CB_COMPOUND sent
 after the channel is successfully bound, or a protocol error must
 result.

Talpey and Shepler Expires August 2004 [Page 42]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 The channelid and streamid are provided in the arguments in order
 to permit the server to implement duplicate request cache handling.
 The streamid is provided in the results in order to assist the
 client in efficiently demultiplexing the reply.

 ...

 ERRORS

 Streamid out of bounds
 CHAIN_INVALID and CHAIN_BROKEN

6.5. CB_CREDITRECALL

 SYNOPSIS

 targetcount -> status

 ARGUMENT

 count4 target;

 RESULT

 struct CB_CREDITRECALLres {
 nfsstat status;
 };

 DESCRIPTION

 The CB_CREDITRECALL operation requests the client to return credits
 at the server, by zero-length RDMA Sends or NULL NFSv4 operations.

 ...

 ERRORS

 <none>

7. Acknowledgements

 The authors wish to acknowledge the valuable contributions and
 review of Brent Callaghan, Mike Eisler, John Howard, Chet Juszczak,
 Dave Noveck and Mark Wittle.

Talpey and Shepler Expires August 2004 [Page 43]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

8. References

 [CCM]
 M. Eisler, N. Williams, "The Channel Conjunction Mechanism
 (CCM) for GSS", Internet-Draft Work in Progress,

http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-ccm-02

 [CJ89]
 C. Juszczak, "Improving the Performance and Correctness of an
 NFS Server," Winter 1989 USENIX Conference Proceedings, USENIX
 Association, Berkeley, CA, Februry 1989, pages 53-63.

 [DAFS]
 Direct Access File System, available from

http://www.dafscollaborative.org

 [DCK+03]
 M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck, T.
 Talpey, M. Wittle, "The Direct Access File System", in
 Proceedings of 2nd USENIX Conference on File and Storage
 Technologies (FAST '03), San Francisco, CA, March 31 - April
 2, 2003

 [DDP]
 H. Shah, J. Pinkerton, R. Recio, P. Culley, "Direct Data
 Placement over Reliable Transports",

http://www.ietf.org/internet-drafts/draft-ietf-rddp-ddp-01

 [FJDAFS]
 Fujitsu Prime Software Technologies, "Meet the DAFS
 Performance with DAFS/VI Kernel Implementation using cLAN",

http://www.pst.fujitsu.com/english/dafsdemo/index.html

 [FJNFS]
 Fujitsu Prime Software Technologies, "An Adaptation of VIA to
 NFS on Linux",

http://www.pst.fujitsu.com/english/nfs/index.html

 [IB] InfiniBand Architecture Specification, Volume 1, Release 1.1.
 available from http://www.infinibandta.org

 [KM02]
 K. Magoutis, "Design and Implementation of a Direct Access
 File System (DAFS) Kernel Server for FreeBSD", in Proceedings
 of USENIX BSDCon 2002 Conference, San Francisco, CA, February
 11-14, 2002.

http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-ccm-02
http://www.dafscollaborative.org
http://www.ietf.org/internet-drafts/draft-ietf-rddp-ddp-01
http://www.pst.fujitsu.com/english/dafsdemo/index.html
http://www.pst.fujitsu.com/english/nfs/index.html
http://www.infinibandta.org

Talpey and Shepler Expires August 2004 [Page 44]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 [MAF+02]
 K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, D.
 Gallatin, R. Kisley, R. Wickremesinghe, E. Gabber, "Structure
 and Performance of the Direct Access File System (DAFS)", in
 Proceedings of 2002 USENIX Annual Technical Conference,
 Monterey, CA, June 9-14, 2002.

 [MIDTAX]
 B. Carpenter, S. Brim, "Middleboxes: Taxonomy and Issues",
 Informational RFC, http://www.ietf.org/rfc/rfc3234

 [NFSDDP]
 B. Callaghan, T. Talpey, "NFS Direct Data Placement",
 Internet-Draft Work in Progress, http://www.ietf.org/internet-

drafts/draft-callaghan-nfsdirect-01

 [NFSPS]
 T. Talpey, C. Juszczak, "NFS RDMA Problem Statement",
 Internet-Draft Work in Progress, http://www.ietf.org/internet-

drafts/draft-talpey-nfs-rdma-problem-statement-01

 [RDMAREQ]
 B. Callaghan, M. Wittle, "NFS RDMA requirements", Internet-
 Draft Work in Progress, http://www.ietf.org/internet-

drafts/draft-callaghan-nfs-rdmareq-00

 [RFC3530]
 S. Shepler, et. al., "NFS Version 4 Protocol", Standards Track
 RFC, http://www.ietf.org/rfc/rfc3530

 [RDDP]
 Remote Direct Data Placement Working Group charter,

http://www.ietf.org/html.charters/rddp-charter.html

 [RDDPPS]
 Remote Direct Data Placement Working Group Problem Statement,
 A. Romanow, J. Mogul, T. Talpey, S. Bailey,

http://www.ietf.org/internet-drafts/draft-ietf-rddp-problem-
statement-03

 [RDMAP]
 R. Recio, P. Culley, D. Garcia, J. Hilland, "An RDMA Protocol
 Specification", http://www.ietf.org/internet-drafts/draft-

ietf-rddp-rdmap-01

 [RPCRDMA]
 B. Callaghan, T. Talpey, "RDMA Transport for ONC RPC"
 Internet-Draft Work in Progress, http://www.ietf.org/internet-

http://www.ietf.org/rfc/rfc3234
http://www.ietf.org/internet-drafts/draft-callaghan-nfsdirect-01
http://www.ietf.org/internet-drafts/draft-callaghan-nfsdirect-01
http://www.ietf.org/internet-drafts/draft-talpey-nfs-rdma-problem-statement-01
http://www.ietf.org/internet-drafts/draft-talpey-nfs-rdma-problem-statement-01
http://www.ietf.org/internet-drafts/draft-callaghan-nfs-rdmareq-00
http://www.ietf.org/internet-drafts/draft-callaghan-nfs-rdmareq-00
http://www.ietf.org/rfc/rfc3530
http://www.ietf.org/html.charters/rddp-charter.html
http://www.ietf.org/internet-drafts/draft-ietf-rddp-problem-statement-03
http://www.ietf.org/internet-drafts/draft-ietf-rddp-problem-statement-03
http://www.ietf.org/internet-drafts/draft-ietf-rddp-rdmap-01
http://www.ietf.org/internet-drafts/draft-ietf-rddp-rdmap-01
http://www.ietf.org/internet-

Talpey and Shepler Expires August 2004 [Page 45]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 drafts/draft-callaghan-rpc-rdma-01

 [RFC2203]
 M. Eisler, A. Chiu, L. Ling, "RPCSEC_GSS Protocol
 Specification", Standards Track RFC,

http://www.ietf.org/rfc/rfc2203

Authors' Addresses

Tom Talpey
Network Appliance, Inc.
375 Totten Pond Road
Waltham, MA 02451 USA

Phone: +1 781 768 5329
EMail: thomas.talpey@netapp.com

Spencer Shepler
Sun Microsystems, Inc.
7808 Moonflower Drive
Austin, TX 78750 USA

Phone: +1 512 349 9376
EMail: spencer.shepler@sun.com

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain
 it or assist in its implementation may be prepared, copied,
 published and distributed, in whole or in part, without restriction
 of any kind, provided that the above copyright notice and this
 paragraph are included on all such copies and derivative works.
 However, this document itself may not be modified in any way, such
 as by removing the copyright notice or references to the Internet
 Society or other Internet organizations, except as needed for the
 purpose of developing Internet standards in which case the
 procedures for copyrights defined in the Internet Standards process
 must be followed, or as required to translate it into languages
 other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

http://www.ietf.org/rfc/rfc2203

Talpey and Shepler Expires August 2004 [Page 46]

Internet-Draft NFSv4 RDMA and Session Extensions February 2004

 This document and the information contained herein is provided on
 an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Talpey and Shepler Expires August 2004 [Page 47]

