
NFSv4 (provisionally) T. Talpey
Internet-Draft Microsoft
Updates: 5040 7306 (if approved) T. Hurson
Intended status: Standards Track Intel
Expires: September 10, 2020 G. Agarwal
 Marvell
 T. Reu
 Chelsio
 March 9, 2020

RDMA Extensions for Enhanced Memory Placement
draft-talpey-rdma-commit-01

Abstract

 This document specifies extensions to RDMA (Remote Direct Memory
 Access) protocols to provide capabilities in support of enhanced
 remotely-directed data placement on persistent memory-addressable
 devices. The extensions include new operations supporting remote
 commitment to persistence of remotely-managed buffers, which can
 provide enhanced guarantees and improve performance for low-latency
 storage applications. In addition to, and in support of these,
 extensions to local behaviors are described, which may be used to
 guide implementation, and to ease adoption. This document updates

RFC5040 (Remote Direct Memory Access Protocol (RDMAP)) and updates
RFC7306 (RDMA Protocol Extensions).

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Talpey, et al. Expires September 10, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc7306
https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc7306
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft RDMA Push Mode March 2020

 This Internet-Draft will expire on September 10, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 3
1.1. Glossary . 4

2. Problem Statement . 4
2.1. Requirements for RDMA Flush 10
2.1.1. Non-Requirements 12

2.2. Requirements for Atomic Write 14
2.3. Requirements for RDMA Verify 15
2.4. Local Semantics . 16

3. RDMA Protocol Extensions 17
3.1. RDMAP Extensions . 17
3.1.1. RDMA Flush . 20
3.1.2. RDMA Verify . 23
3.1.3. Atomic Write . 25
3.1.4. Discovery of RDMAP Extensions 27

3.2. Local Extensions . 28
3.2.1. Registration Semantics 28
3.2.2. Completion Semantics 28
3.2.3. Platform Semantics 29

4. Ordering and Completions Table 29
5. Error Processing . 30
5.1. Errors Detected at the Local Peer 30
5.2. Errors Detected at the Remote Peer 31

6. IANA Considerations . 31
7. Security Considerations 31
8. To Be Added or Considered 32
9. Acknowledgements . 33
10. References . 33
10.1. Normative References 33
10.2. Informative References 33
10.3. URIs . 35

Appendix A. DDP Segment Formats for RDMA Extensions 35
A.1. DDP Segment for RDMA Flush Request 35

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Talpey, et al. Expires September 10, 2020 [Page 2]

Internet-Draft RDMA Push Mode March 2020

A.2. DDP Segment for RDMA Flush Response 35
A.3. DDP Segment for RDMA Verify Request 36
A.4. DDP Segment for RDMA Verify Response 36
A.5. DDP Segment for Atomic Write Request 37
A.6. DDP Segment for Atomic Write Response 38

 Authors' Addresses . 38

1. Introduction

 The RDMA Protocol (RDMAP) [RFC5040] and RDMA Protocol Extensions
 (RDMAPEXT) [RFC7306] provide capabilities for secure, zero copy data
 communications that preserve memory protection semantics, enabling
 more efficient network protocol implementations. The RDMA Protocol
 is part of the iWARP family of specifications which also include the
 Direct Data Placement Protocol (DDP) [RFC5041], and others as
 described in the relevant documents. For additional background on
 RDMA Protocol applicability, see "Applicability of Remote Direct
 Memory Access Protocol (RDMA) and Direct Data Placement Protocol
 (DDP)" RFC5045 [RFC5045].

 RDMA protocols are enjoying good success in improving the performance
 of remote storage access, and have been well-suited to semantics and
 latencies of existing storage solutions. However, new storage
 solutions are emerging with much lower latencies, driving new
 workloads and new performance requirements. Also, storage
 programming paradigms SNIANVMP [SNIANVMP] are driving new
 requirements of the remote storage layers, in addition to driving
 down latency tolerances. Overcoming these latencies, and providing
 the means to achieve persistence and/or visibility without invoking
 upper layers and remote CPUs for each such request, are the
 motivators for the extensions in this document.

 This document specifies the following extensions to the RDMA Protocol
 (RDMAP) and its local memory ecosystem:

 o Flush - support for RDMA requests and responses with enhanced
 placement semantics.

 o Atomic Write - support for writing certain data elements into
 memory in an atomically visible fashion.

 o Verify - support for validating the contents of remote memory,
 through use of integrity signatures.

 o Enhanced memory registration semantics in support of persistence
 and visibility.

https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc7306
https://datatracker.ietf.org/doc/html/rfc5041
https://datatracker.ietf.org/doc/html/rfc5045
https://datatracker.ietf.org/doc/html/rfc5045

Talpey, et al. Expires September 10, 2020 [Page 3]

Internet-Draft RDMA Push Mode March 2020

 The extensions defined in this document do not require the RDMAP
 version to change.

1.1. Glossary

 This document is an extension of RFC 5040 and RFC7306, and key words
 are additionally defined in the glossaries of the referenced
 documents.

 The following additional terms are used in this document as defined.

 Flush: The submitting of previously written data from volatile
 intermediate locations for subsequent placement, in a persistent
 and/or globally visible fashion.

 Invalidate: The removal of data from volatile intermediate
 locations.

 Commit: Obsolescent previous synonym for Flush. Term to be deleted.

 Persistent: The property that data is present, readable and remains
 stable after recovery from a power failure or other fatal error in
 an upper layer or hardware. <https://en.wikipedia.org/wiki/
 Durability_(database_systems)>, <https://en.wikipedia.org/wiki/

Disk_buffer#Cache_control_from_the_host>, [SCSI].

 Globally Visible: The property of data being available for reading
 consistently by all processing elements on a system. Global
 visibility and persistence are not necessarily causally related;
 either one may precede the other, or they may take effect
 simultaneously, depending on the architecture of the platform.

2. Problem Statement

 RDMA is widely deployed in support of storage and shared memory over
 increasingly low-latency and high-bandwidth networks. The state of
 the art today yields end-to-end network latencies on the order of one
 to two microseconds for message transfer, and bandwidths exceeding
 100 gigabit/s. These bandwidths are expected to increase over time,
 with latencies decreasing as a direct result.

 In storage, another trend is emerging - greatly reduced latency of
 persistently storing data blocks. While best-of-class Hard Disk
 Drives (HDDs) have delivered average latencies of several
 milliseconds for many years, Solid State Disks (SSDs) have improved
 this by one to two orders of magnitude. Technologies such as NVM
 Express NVMe [1] yield even higher-performing results by eliminating
 the traditional storage interconnect. The latest technologies

https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc7306
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/Disk_buffer#Cache_control_from_the_host
https://en.wikipedia.org/wiki/Disk_buffer#Cache_control_from_the_host

Talpey, et al. Expires September 10, 2020 [Page 4]

Internet-Draft RDMA Push Mode March 2020

 providing memory-based persistence, such as Nonvolatile Memory DIMM
 NVDIMM [2], places storage-like semantics directly on the memory bus,
 reducing latency to less than a microsecond and increasing bandwidth
 to potentially many tens of gigabyte/s. [supporting data to be added]

 RDMA protocols, in turn, are used for many storage protocols,
 including NFS/RDMA RFC5661 [RFC5661] RFC8166 [RFC8166] RFC8267
 [RFC8267], SMB Direct MS-SMB2 [SMB3] MS-SMBD [SMBDirect] and iSER

RFC7145 [RFC7145], to name just a few. These protocols allow storage
 and computing peers to take full advantage of these highly performant
 networks and storage technologies to achieve remarkable throughput,
 while minimizing the CPU overhead needed to drive their workloads.
 This leaves more computing resources available for the applications,
 which in turn can scale to even greater levels. Within the context
 of Cloud-based environments, and through scale-out approaches, this
 can directly reduce the number of servers that need to be deployed,
 making such attributes highly compelling.

 However, limiting factors come into play when deploying ultra-low
 latency storage in such environments:

 o The latency of the fabric, and of the necessary RDMA message
 exchanges to ensure reliable transfer is now higher than that of
 the storage itself.

 o The requirement that storage be resilient to failure requires that
 multiple copies be committed in multiple locations across the
 fabric, adding extra hops which increase the latency and computing
 demand placed on implementing the resiliency.

 o Processing is required at the receiver in order to ensure that the
 storage data has reached a persistent state, and acknowledge the
 transfer so that the sender can proceed.

 o Typical latency optimizations, such as polling a receive memory
 location for a key that determines when the data arrives, can
 create both correctness and security issues because this approach
 requires the memory remain open to writes and therefore the buffer
 may not remain stable after the application determines that the IO
 has completed. This is of particular concern in security
 conscious environments.

 The first issue is fundamental, and due to the nature of serial,
 shared communication channels, presents challenges that are not
 easily bypassed. Communication cannot exceed the speed of light, for
 example, and serialization/deserialization plus packet processing
 adds further delay. Therefore, an RDMA solution which offloads and

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc8166
https://datatracker.ietf.org/doc/html/rfc8166
https://datatracker.ietf.org/doc/html/rfc8267
https://datatracker.ietf.org/doc/html/rfc8267
https://datatracker.ietf.org/doc/html/rfc7145
https://datatracker.ietf.org/doc/html/rfc7145

Talpey, et al. Expires September 10, 2020 [Page 5]

Internet-Draft RDMA Push Mode March 2020

 reduces the overhead of exchanges which encounter such latencies is
 highly desirable.

 The second issue requires that outbound transfers be made as
 efficient as possible, so that replication of data can be done with
 minimal overhead and delay (latency). A reliable "push" RDMA
 transfer method is highly suited to this.

 The third issue requires that the transfer be performed without an
 upper-layer exchange required. Within security contraints, RDMA
 transfers, arbitrated only by lower layers into well-defined and pre-
 advertised buffers, present an ideal solution.

 The fourth issue requires significant CPU activity, consuming power
 and valuable resources, and may not be guaranteed by the RDMA
 protocols, which make no requirement of the order in which certain
 received data is placed or becomes visible; such guarantees are made
 only after signaling a completion to upper layers.

 The RDMAP and DDP protocols, together, provide data transfer
 semantics with certain consistency guarantees to both the sender and
 receiver. Delivery of data transferred by these protocols is said to
 have been Placed in destination buffers upon Completion of specific
 operations. In general, these guarantees are limited to the
 visibility of the transferred data within the hardware domain of the
 receiver (data sink). Significantly, the guarantees do not
 necessarily extend to the actual storage of the data in memory cells,
 nor do they convey any guarantee that the data integrity is intact,
 nor that it remains present after a catastrophic failure. These
 guarantees may be provided by upper layers, such as the ones
 mentioned, after processing the Completions, and performing the
 necessary operations.

 The NFSv4.1, SMB3 and iSER protocols are, respectively, file and
 block oriented, and have been used extensively for providing access
 to hard disk and solid state flash drive media. Such devices incur
 certain latencies in their operation, from the millisecond-order
 rotational and seek delays of rotating disk hardware, or the 100-
 microsecond-order erase/write and translation layers of solid state
 flash. These file and block protocols have benefited from the
 increased bandwidth, lower latency, and markedly lower CPU overhead
 of RDMA to provide excellent performance for such media,
 approximately 30-50 microseconds for 4KB writes in leading
 implementations.

 These protocols employ a "pull" model for write: the client, or
 initiator, sends an upper layer write request which contains an RDMA
 reference to the data to be written. The upper layer protocols

Talpey, et al. Expires September 10, 2020 [Page 6]

Internet-Draft RDMA Push Mode March 2020

 encode this as one or more memory regions. The server, or target,
 then prepares the request for local write execution, and "pulls" the
 data with an RDMA Read. After processing the write, a response is
 returned. There are therefore two or more roundtrips on the RDMA
 network in processing the request. This is desirable for several
 reasons, as described in the relevant specifications, but it incurs
 latency. However, since as mentioned the network latency has been so
 much less than the storage processing, this has been a sound
 approach.

 Today, a new class of Storage Class Memory is emerging, in the form
 of Non-Volatile DIMM and NVM Express devices, among others. These
 devices are characterized by further reduced latencies, in the 10-
 microsecond-order range for NVMe, and sub-microsecond for NVDIMM.
 The 30-50 microsecond write latencies of the above file and block
 protocols are therefore from one to two orders of magnitude larger
 than the storage media! The client/server processing model of
 traditional storage protocols are no longer amortizable at an
 acceptable level into the overall latency of storage access, due to
 their requiring request/response communication, CPU processing by the
 both server and client (or target and initiator), and the interrupts
 to signal such requests.

 Another important property of certain such devices is the requirement
 for explicitly requesting that the data written to them be made
 persistent. Because persistence requires that data be committed to
 memory cells, it is a relatively expensive operation in time (and
 power), and in order to maintain the highest device throughput and
 most efficient operation, the device "commit" operation is explicit.
 When the data is written by an application on the local platform,
 this responsibility naturally falls to that application (and the CPU
 on which it runs). However, when data is written by current RDMA
 protocols, no such semantic is provided. As a result, upper layer
 stacks, and the target CPU, must be invoked to perform it, adding
 overhead and latency that is now highly undesirable.

 When such devices are deployed as the remote server, or target,
 storage, and when such a persistence can be requested and guaranteed
 remotely, a new transfer model can be considered. Instead of relying
 on the server, or target, to perform requested processing and to
 reply after the data is persistently stored, it becomes desirable for
 the client, or initiator, to perform these operations itself. By
 altering the transfer models to support a "push mode", that is, by
 allowing the requestor to push data with RDMA Write and subsequently
 make it persistent, a full round trip can be eliminated from the
 operation. Additionally, the signaling, and processing overheads at
 the remote peer (server or target) can be eliminated. This becomes
 an extremely compelling latency advantage.

Talpey, et al. Expires September 10, 2020 [Page 7]

Internet-Draft RDMA Push Mode March 2020

 In DDP (RFC5041), data is considered "placed" when it is submitted by
 the RNIC to the system. This operation is commonly an i/o bus write,
 e.g. via PCI. The submission is ordered, but there is no
 confirmation or necessary guarantee that the data has yet reached its
 destination, nor become visible to other devices in the system. The
 data will eventually do so, but possibly at a later time. The act of
 "delivery", on the other hand, offers a stronger semantic,
 guaranteeing that not only have prior operations been executed, but
 also guaranteeing any data is in a consistent and visible state.
 Generally however, such "delivery" requires raising a completion
 event, necessarily involving the host CPU. This is a relatively
 expensive, and latency-bound operation. Some systems perform "DMA
 snooping" to provide a somewhat higher guarantee of visibility after
 delivery and without CPU intervention, but others do not. The RDMA
 requirements remain the same, therefore, upper layers may make no
 broad assumption. Such platform behaviors, in any case, do not
 address persistence.

 The extensions in this document primarily address a new "flush to
 persistence" RDMA operation. This operation, when invoked by a
 connected remote RDMA peer, can be used to request that previously-
 written data be moved into the persistent storage domain. This may
 be a simple flush to a memory cell, or it may require movement across
 one or more busses within the target platform, followed by an
 explicit persistence operation. Such matters are beyond the scope of
 this specification, which provides only the mechanism to request the
 operation, and to signal its successful completion.

 In a similar vein, many applications desire to achieve visibility of
 remotely-provided data, and to do so with minimum latency. One
 example of such applications is "network shared memory", where
 publish-subscribe access to network-accessible buffers is shared by
 multiple peers, possibly from applications on the platform hosting
 the buffers, and others via network connection. There may therefore
 be multiple local devices accessing the buffer - for example, CPUs,
 and other RNICs. The topology of the hosting platform may be
 complex, with multiple i/o, memory, and interconnect busses,
 requiring multiple intervening steps to process arriving data.

 To address this, the extension additionally provides a "flush to
 global visibility", which requires the RNIC to perform platform-
 dependent processing in order to guarantee that the contents of a
 specific range are visible for all devices that access them. On
 certain highly-consistent platforms, this may be provided natively.
 On others, it may require platform-specific processing, to flush data
 from volatile caches, invalidate stale cached data from others, and
 to empty queued pending operations. Ideally, but not universally,
 this processing will take place without CPU intervention. With a

https://datatracker.ietf.org/doc/html/rfc5041

Talpey, et al. Expires September 10, 2020 [Page 8]

Internet-Draft RDMA Push Mode March 2020

 global visibility guarantee, network shared memory and similar
 applications will be assured of broader compatibility and lower
 latency across all hardware platforms.

 Subsequently, many applications will seek to obtain a guarantee that
 the integrity of the data has been preserved after it has been
 flushed to a persistent or globally visible state. This may be
 enforced at any time. Unlike traditional block-based storage, the
 data provided by RDMA is neither structured nor segmented, and is
 therefore not self-describing with respect to integrity. Only the
 originator of the data, or an upper layer, is in possession of that.
 Applications requiring such guarantees may include filesystem or
 database logwriters, replication agents, etc.

 To provide an additional integrity guarantee, a new operation is
 provided by the extension, which will calculate, and optionally
 compare an integrity value for an arbitrary region. The operation is
 ordered with respect to preceding and subsequent operations, allowing
 for a request pipeline without "bubbles" - roundtrip delays to
 ascertain success or failure.

 Finally, once data has been transmitted and directly placed by RDMA,
 flushed to its final state, and its integrity verified, applications
 will seek to commit the result with a transaction semantic. The
 previous application examples apply here, logwriters and replication
 are key, and both are highly latency- and integrity-sensitive. They
 desire a pipelined transaction marker which is placed atomically to
 indicate the validity of the preceding operations. They may require
 that the data be in a persistent and/or globally visibile state,
 before placing this marker.

 Together the above discussion argues for a new "one sided" transfer
 model supporting extended remote placement guarantees, provided by
 the RDMA transport, and used directly by upper layers on a data
 source, to control persistent storage of data on a remote data sink
 without requiring its remote interaction. Existing, or new, upper
 layers can use such a model in several ways, and evolutionary steps
 to support persistence guarantees without required protocol changes
 are explored in the remainder of this document.

 Note that is intended that the requirements and concept of these
 extensions can be applied to any similar RDMA protocol, and that a
 compatible model can be applied broadly.

Talpey, et al. Expires September 10, 2020 [Page 9]

Internet-Draft RDMA Push Mode March 2020

2.1. Requirements for RDMA Flush

 The fundamental new requirement for extending RDMA protocols is to
 define the property of _persistence_. This new property is to be
 expressed by new operations to extend Placement as defined in
 existing RDMA protocols. The RFC5040 protocols specify that
 Placement means that the data is visible consistently within a
 platform-defined domain on which the buffer resides, and to remote
 peers across the network via RDMA to an adapter within the domain.
 In modern hardware designs, this buffer can reside in memory, or also
 in cache, if that cache is part of the hardware consistency domain.
 Many designs use such caches extensively to improve performance of
 local access.

 Persistence, by contrast, requires that the buffer contents be
 preserved across catastrophic failures. While it is possible for
 caches to be persistent, they are typically not, or they provide the
 persistence guarantee for a limited period of time, for example,
 while backup power is applied. Efficient designs, in fact, lead most
 implementations to simply make them volatile. In these designs, an
 explicit flush operation (writing dirty data from caches), often
 followed by an explicit commit (ensuring the data has reached its
 destination and is in a persistent state), is required to provide
 this guarantee. In some platforms, these operations may be combined.

 For the RDMA protocol to remotely provide such guarantees, an
 extension is required. Note that this does not imply support for
 persistence or global visibility by the RDMA hardware implementation
 itself; it is entirely acceptable for the RDMA implementation to
 request these from another subsystem, for example, by requesting that
 the CPU perform the flush and commit, or that the destination memory
 device do so. But, in an ideal implementation, the RDMA
 implementation will be able to act as a master and provide these
 services without further work requests local to the data sink. Note,
 it is possible that different buffers will require different
 processing, for example one buffer may reside in persistent memory,
 while another may place its blocks in a storage device. Many such
 memory-addressable designs are entering the market, from NVDIMM to
 NVMe and even to SSDs and hard drives.

 Therefore, additionally any local memory registration primitive will
 be enhanced to specify new optional placement attributes, along with
 any local information required to achieve them. These attributes do
 not explicitly traverse the network - like existing local memory
 registration, the region is fully described by a { STag, Tagged
 offset, length } descriptor, and such aspects of the local physical
 address, memory type, protection (remote read, remote write,
 protection key), etc are not instantiated in the protocol. Indeed,

https://datatracker.ietf.org/doc/html/rfc5040

Talpey, et al. Expires September 10, 2020 [Page 10]

Internet-Draft RDMA Push Mode March 2020

 each local RDMA implementation maintains these, and strictly performs
 processing based on them, and they are not exposed to the peer. Such
 considerations are discussed in the security model [RDMAP Security
 [RFC5042]].

 Note, additionally, that by describing such attributes only through
 the presence of an optional property of each region, it is possible
 to describe regions referring to the same physical segment as a
 combination of attributes, in order to enable efficient processing.
 Processing of writes to regions marked as persistent, globally
 visible, or neither ("ordinary" memory) may be optimized
 appropriately. For example, such memory can be registered multiple
 times, yielding multiple different Steering Tags which nonetheless
 merge data in the underlying memory. This can be used by upper
 layers to enable bulk-type processing with low overhead, by assigning
 specific attributes through use of the Steering Tag.

 When the underlying region is marked as persistent, that the
 placement of data into persistence is guaranteed only after a
 successful RDMA Flush directed to the Steering Tag which holds the
 persistent attribute (i.e. any volatile buffering between the network
 and the underlying storage has been flushed, and the appropriate
 platform- and device-specific steps have been performed).

 To enable the maximum generality, the RDMA Flush operation is
 specified to act on a set of bytes in a region, specified by a
 standard RDMA { STag, Tagged offset, length } descriptor. It is
 required that each byte of the specified segment be in the requested
 state before the response to the Flush is generated. However,
 depending on the implementation, other bytes in the region, or in
 other regions, may be acted upon as part of processing any RDMA
 Flush. In fact, any data in any buffer destined for persistent
 storage, may become persistent at any time, even if not requested
 explicitly. For example, the host system may flush cache entries due
 to cache pressure, or as part of platform housekeeping activities.
 Or, a simple and stateless approach to flushing a specific range
 might be for all data be flushed and made persistent, system-wide. A
 possibly more efficient implementation might track previously written
 bytes, or blocks with "dirty" bytes, and flush only those to
 persistence. Either result provides the required guarantee.

 The RDMA Flush operation provides a response but does not return a
 status, or can result in an RDMA Terminate event upon failure. A
 region permission check is performed first, and may fail prior to any
 attempt to process data. The RDMA Flush operation may fail to make
 the data persistent, perhaps due to a hardware failure, or a change
 in device capability (device read-only, device wear, etc). The
 device itself may support an integrity check, similar to modern error

https://datatracker.ietf.org/doc/html/rfc5042

Talpey, et al. Expires September 10, 2020 [Page 11]

Internet-Draft RDMA Push Mode March 2020

 checking and corection (ECC) memory or media error detection on hard
 drive surfaces, which may signal failure. Or, the request may exceed
 device limits in size or even transient attribute such as temporary
 media failure. The behavior of the device itself is beyond the scope
 of this specification.

 Because the RDMA Flush involves processing on the local platform and
 the actual storage device, in addition to being ordered with certain
 other RDMA operations, it is expected to take a certain time to be
 performed. For this reason, the operation is required to be defined
 as a "queued" operation on the RDMA device, and therefore also the
 protocol. The RDMA protocol supports RDMA Read (RFC5040) and Atomic
 (RFC7306) in such a fashion. The iWARP family defines a "queue
 number" with queue-specific processing that is naturally suited for
 this. Queuing provides a convenient means for supporting ordering
 among other operations, and for flow control. Flow control for RDMA
 Reads and Atomics on any given Queue Pair share incoming and outgoing
 crediting depths ("IRD/ORD"); operations in this specification share
 these values and do not define their own separate values.

2.1.1. Non-Requirements

 The extension does not include a "RDMA Write to persistence", that
 is, a modifier on the existing RDMA Write operation. While it might
 seem a logical approach, several issues become apparent:

 The existing RDMA Write operation is a tagged DDP request which is
 unacknowledged at the DDP layer (RFC5042). Requiring it to
 provide an indication of remote persistence would require it to
 have an acknowledgement, which would be an undesirable extension
 to the existing defined operation.

 Such an operation would require flow control and therefore also
 buffering on the responding peer. Existing RDMA Write semantics
 are not flow controlled and as tagged transfers are by design
 zero-copy i.e. unbuffered. Requiring these would introduce
 potential pipeline stalls and increase implementation complexity
 in a critical performance path.

 The operation at the requesting peer would stall until the
 acknowledgement of completion, significantly changing the semantic
 of the existing operation, and complicating software by blocking
 the send work queue, a significant new semantic for RDMA Write
 work requests. As each operation would be self-describing with
 respect to persistence, individual operations would therefore
 block with differing semantics and complicate the situation even
 further.

https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc7306
https://datatracker.ietf.org/doc/html/rfc5042

Talpey, et al. Expires September 10, 2020 [Page 12]

Internet-Draft RDMA Push Mode March 2020

 Even for the possibly-common case of flushing after every write,
 it is highly undesirable to impose new optional semantics on an
 existing operation, and therefore also on the upper layer protocol
 implementation. And, the same result can be achieved by sending
 the Flush merged in the same network packet, and since the RDMA
 Write is unacknowledged while the RDMA Flush is always replied-to,
 no additional overhead is imposed on the combined exchange.

 For these reasons, it is deemed a non-requirement to extend the
 existing RDMA Write operation.

 Similarly, the extension does not consider the use of RDMA Read to
 implement Flush. Historically, an RDMA Read has been used by
 applications to ensure that previously written data has been
 processed by the responding RNIC and has been submitted for ordered
 Placement. However, this is inadequate for implementing the required
 RDMA Flush:

 RDMA Read guarantees only that previously written data has been
 Placed, it provides no such guarantee that the data has reached
 its destination buffer. In practice, an RNIC satisfies the RDMA
 Read requirement by simply issuing all PCIe Writes prior to
 issuing any PCIe Reads.

 Such PCIe Reads must be issued by the RNIC after all such PCIe
 Writes, therefore flushing a large region requires the RNIC and
 its attached bus to strictly order (and not cache) its writes, to
 "scoreboard" its writes, or to perform PCIe Reads to the entire
 region. The former approach is significantly complex and
 expensive, and the latter approach requires a large amount of PCIe
 and network read bandwidth, which are often unnecessary and
 expensive. The Reads, in any event, may be satisfied by platform-
 specfic caches, never actually reaching the destination memory or
 other device.

 The RDMA Read may begin execution at any time once the request is
 fully received, queued, and the prior RDMA Write requirement has
 been satisfied. This means that the RDMA Read operation may not
 be ordered with respect to other queued operations, such as Verify
 and Atomic Write, in addition to other RDMA Flush operations.

 The RDMA Read has no specific error semantic to detect failure,
 and the response may be generated from any cached data in a
 consistently Placed state, regardless of where it may reside. For
 this reason, an RDMA Read may proceed without necessarily
 verifying that a previously ordered "flush" has succeeded or
 failed.

Talpey, et al. Expires September 10, 2020 [Page 13]

Internet-Draft RDMA Push Mode March 2020

 RDMA Read is heavily used by existing RDMA consumers, and the
 semantics are therefore implemented by the existing specification.
 For new applications to further expect an extended RDMA Read
 behavior would require an upper layer negotiation to determine if
 the data sink platform and RNIC appropriately implemented them, or
 to silently ignore the requirement, with the resulting failure to
 meet the requirement. An explicit extension, rather than
 depending on an overloaded side effect, ensures this will not
 occur.

 Again, for these reasons, it is deemed a non-requirement to reuse or
 extend the existing RDMA Read operation.

 Therefore, no changes to existing specified RDMA operations are
 proposed, and the protocol is unchanged if the extensions are not
 invoked.

2.2. Requirements for Atomic Write

 The persistence of data is a key property by which applications
 implement transactional behavior. Transactional applications, such
 as databases and log-based filesystems, among many others, implement
 a "two phase commit" wherein a write is made durable, and *only upon
 success*, a validity indicator for the written data is set. Such
 semantics are challenging to provide over an RDMA fabric, as it
 exists today. The RDMA Write operation does not generate an
 acknowledgement at the RDMA layers. And, even when an RDMA Write is
 delivered, if the destination region is persistent, its data can be
 made persistent at any time, even before a Flush is requested. Out-
 of-order DDP processing, packet fragmentation, and other matters of
 scheduling transfers can introduce partial delivery and ordering
 differences. If a region is made persistent, or even globally
 visible, before such sequences are complete, significant application-
 layer inconsistencies can result. Therefore, applications may
 require fine-grained control over the placement of bytes. In current
 RDMA storage solutions, these semantics are implemented in upper
 layers, potentially with additional upper layer message signaling,
 and corresponding roundtrips and blocking behaviors.

 In addition to controlling placement of bytes, the ordering of such
 placement can be important. By providing an ordered relationship
 among write and flush operations, a basic transaction scenario can be
 constructed, in a way which can function with equal semantics both
 locally and remotely. In a "log-based" scenario, for example, a
 relatively large segment (log "record") is placed, and made durable.
 Once persistence of the segment is assured, a second small segment
 (log "pointer") is written, and optionally also made persistent. The
 visibility of the second segment is used to imply the validity, and

Talpey, et al. Expires September 10, 2020 [Page 14]

Internet-Draft RDMA Push Mode March 2020

 persistence, of the first. Any sequence of such log-operation pairs
 can thereby always have a single valid state. In case of failure,
 the resulting string (log) of transactions can therefore be recovered
 up to and including the final state.

 Such semantics are typically a challenge to implement on general
 purpose hardware platforms, and a variety of application approaches
 have become common. Generally, they employ a small, well-aligned
 atom of storage for the second segment (the one used for validity).
 For example, an integer or pointer, aligned to natural memory address
 boundaries and CPU and other cache attributes, is stored using
 instructions which provide for atomic placement. Existing RDMA
 protocols, however, provide no such capability.

 This document specifies an Atomic Write extension, which,
 appropriately constrained, can serve to provide similar semantics. A
 small (64 bit) payload, sent in a request which is ordered with
 respect to prior RDMA Flush operations on the same stream and
 targeted at a segment which is aligned such that it can be placed in
 a single hardware operation, can be used to satisfy the previously
 described scenario. Note that the visibility of this payload can
 also serve as an indication that all prior operations have succeeded,
 enabling a highly efficient application-visible memory semaphore.

2.3. Requirements for RDMA Verify

 An additional matter remains with persistence - the integrity of the
 persistent data. Typically, storage stacks such as filesystems and
 media approches such as SCSI T10 DIF or filesystem integrity checks
 such as ZFS provide for block- oir file-level protection of data at
 rest on storage devices. With RDMA protocols and physical memory, no
 such stacks are present. And, to add such support would introduce
 CPU processing and its inherent latency, counter to the goals of the
 remote storage approach. Requiring the peer to verify by remotely
 reading the data is prohibitive in both bandwidth and latency, and
 without additional mechanisms to ensure the actual stored data is
 read (and not a copy in some volatile cache), can not provide the
 necessary result.

 To address this, an integrity operation is required. The integrity
 check is initiated by the upper layer or application, which
 optionally computes the expected hash of a given segment of arbitrary
 size, sending the hash via an RDMA Verify operation targeting the
 RDMA segment on the responder, and the responder calculating and
 optionally verifying the hash on the indicated data, bypassing any
 volatile copies remaining in caches. The responder responds with its
 computed hash value, or optionally, terminates the connection with an
 appropriate error status upon mismatch. Specifying this optional

Talpey, et al. Expires September 10, 2020 [Page 15]

Internet-Draft RDMA Push Mode March 2020

 termination behavior enables a transaction to be sent as WRITE-FLUSH-
 VERIFY-ATOMICWRITE, without any pipeline bubble. The result (carried
 by the subsequently ordered ATOMIC_WRITE) will not not be committed
 as valid if any prior operation is terminated, and in this case,
 recovery can be initiated by the requestor immediately from the point
 of failure. On the other hand, an errorless "scrub" can be
 implemented without the optional termination behavior, by providing
 no value for the expected hash. The responder will return the
 computed hash of the contents.

 The hash algorithm is not specified by the RDMA protocol, instead it
 is left to the upper layer to select an appropriate choice based upon
 the strength, security, length, support by the RNIC, and other
 criteria. The size of the resulting hash is therefore also not
 specified by the RDMA protocol, but is dictated by the hash
 algorithm. The RDMA protocol becomes simply a transport for
 exchanging the values.

 It should be noted that the design of the operation, passing of the
 hash value from requestor to responder (instead of, for example,
 computing it at the responder and simply returning it), allows both
 peers to determine immediately whether the segment is considered
 valid, permitting local processing by both peers if that is not the
 case. For example, a known-bad segment can be immediately marked as
 such ("poisoned") by the responder platform, requiring recovery
 before permitting access. [cf ACPI, JEDEC, SNIA NVMP specifications]

2.4. Local Semantics

 The new operations imply new access methods ("verbs") to local
 persistent memory which backs registrations. Registrations of memory
 which support persistence will follow all existing practices to
 ensure permission-based remote access. The RDMA protocols do not
 expose these permissions on the wire, instead they are contained in
 local memory registration semantics. Existing attributes are Remote
 Read and Remote Write, which are granted individually through local
 registration on the machine. If an RDMA Read or RDMA Write operation
 arrives which targets a segment without the appropriate attribute,
 the connection is terminated.

 In support of the new operations, new memory attributes are needed.
 For RDMA Flush, two "Flushable" attributes provide permission to
 invoke the operation on memory in the region for persistence and/or
 global visibility. When registering, along with the attribute,
 additional local information can be provided to the RDMA layer such
 as the type of memory, the necessary processing to make its contents
 persistent, etc. If the attribute is requested for memory which
 cannot be persisted, it also allows the local provider to return an

Talpey, et al. Expires September 10, 2020 [Page 16]

Internet-Draft RDMA Push Mode March 2020

 error to the upper layer, obviating the upper layer from providing
 the region to the remote peer.

 For RDMA Verify, the "Verifiable" attribute provides permission to
 compute the hash of memory in the region. Again, along with the
 attribute, additional information such as the hash algorithm for the
 region is provided to the local operation. If the attribute is
 requested for non-persistent memory, or if the hash algorithm is not
 available, the local provider can return an error to the upper layer.
 In the case of success, the upper layer can exchange the necessary
 information with the remote peer. Note that the algorithm is not
 identified by the on-the-wire operation as a result. Establishing
 the choice of hash for each region is done by the local consumer, and
 each hash result is merely transported by the RDMA protocol. Memory
 can be registered under multiple regions, if differing hashes are
 required, for example unique keys may be provisoned to implement
 secure hashing. Also note that, for certain "reversible" hash
 algorithms, this may allow peers to effectively read the memory,
 therefore, the local platform may require additional read permissions
 to be associated with the Verifiable permission, when such algorithms
 are selected.

 The Atomic Write operation requires no new attributes, however it
 does require the "Remote Write" attribute on the target region, as is
 true for any remotely requested write. If the Atomic Write
 additionally targets a Flushable region, the RDMA Flush is performed
 separately. It is never generally possible to achieve persistence
 atomically with placement, even locally.

3. RDMA Protocol Extensions

 The extensions in this document fall into two categories:

 o Protocol extensions

 o Local behavior extensions

 These categories are described, and may be implemented, separately.

3.1. RDMAP Extensions

 The wire-related aspects of the extensions are discussed in this
 section.This document defines the following new RDMA operations.

 For reference, Figure 1 depicts the format of the DDP Control and
 RDMAP Control Fields, in the style and convention of RFC5040 and

RFC7306:

https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc7306

Talpey, et al. Expires September 10, 2020 [Page 17]

Internet-Draft RDMA Push Mode March 2020

 The DDP Control Field consists of the T (Tagged), L (Last), Resrv,
 and DV (DDP protocol Version) fields are defined in RFC5041. The
 RDMAP Control Field consists of the RV (RDMA Version), Rsv, and
 Opcode fields are defined in RFC5040. No change or extension is made
 to these fields by this specification.

 This specification adds values for the RDMA Opcode field to those
 specified in RFC5040. Table 1 defines the new values of the RDMA
 Opcode field that are used for the RDMA Messages defined in this
 specification.

 As shown in Table 1, STag (Steering Tag) and Tagged Offset are valid
 only for certain RDMA Messages defined in this specification.
 Table 1 also shows the appropriate Queue Number for each Opcode.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |T|L| Resrv | DV| RV|R| Opcode |
 | | | | | |s| |
 | | | | | |v| |
 +-+
 | Invalidate STag |
 +-+

 DDP Control and RDMAP Control Fields

 All RDMA Messages defined in this specification MUST carry the
 following values:

 o The RDMA Version (RV) field: 01b.

 o Opcode field: Set to one of the values in Table 2.

 o Invalidate STag: Set to zero, or optionally to non-zero by the
 sender, processed by the receiver.

 Note: N/A in the table below means Not Applicable

https://datatracker.ietf.org/doc/html/rfc5041
https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc5040

Talpey, et al. Expires September 10, 2020 [Page 18]

Internet-Draft RDMA Push Mode March 2020

 -------+------------+-------+------+-------+-----------+-------------
 RDMA | Message | Tagged| STag | Queue | Invalidate| Message
 Opcode | Type | Flag | and | Number| STag | Length
 | | | TO | | | Communicated
 | | | | | | between DDP
 | | | | | | and RDMAP
 -------+------------+-------+------+-------+-----------+-------------
 -------+------------+--
 01100b | RDMA Flush | 0 | N/A | 1 | opt | Yes
 | Request | | | | |
 -------+------------+--
 01101b | RDMA Flush | 0 | N/A | 3 | N/A | No
 | Response | | | | |
 -------+------------+--
 01110b | RDMA Verify| 0 | N/A | 1 | opt | Yes
 | Request | | | | |
 -------+------------+--
 01111b | RDMA Verify| 0 | N/A | 3 | N/A | Yes
 | Response | | | | |
 -------+------------+--
 10000b | Atomic | 0 | N/A | 1 | opt | Yes
 | Write | | | | |
 | Request | | | | |
 -------+------------+--
 10001b | Atomic | 0 | N/A | 3 | N/A | No
 | Write | | | | |
 | Response | | | | |
 -------+------------+--

 Additional RDMA Usage of DDP Fields

 This extension adds RDMAP use of Queue Number 1 for Untagged Buffers
 for issuing RDMA Flush, RDMA Verify and Atomic Write Requests, and
 use of Queue Number 3 for Untagged Buffers for tracking the
 respective Responses.

 All other DDP and RDMAP Control Fields are set as described in
RFC5040 and RFC7306.

 Table 3 defines which RDMA Headers are used on each new RDMA Message
 and which new RDMA Messages are allowed to carry ULP payload.

https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc7306

Talpey, et al. Expires September 10, 2020 [Page 19]

Internet-Draft RDMA Push Mode March 2020

 -------+------------+-------------------+-------------------------
 RDMA | Message | RDMA Header Used | ULP Message allowed in
 Message| Type | | the RDMA Message
 OpCode | | |
 -------+------------+-------------------+-------------------------
 -------+------------+-------------------+-------------------------
 01100b | RDMA Flush | None | No
 | Request | |
 -------+------------+-------------------+-------------------------
 01101b | RDMA Flush | None | No
 | Response | |
 -------+------------+---
 01110b | RDMA Verify| None | No
 | Request | |
 -------+------------+-------------------+-------------------------
 01111b | RDMA Verify| None | No
 | Response | |
 -------+------------+---
 10000b | Atomic | None | No
 | Write | |
 | Request | |
 -------+------------+---
 10000b | Atomic | None | No
 | Write | |
 | Response | |
 -------+------------+---

 RDMA Message Definitions

3.1.1. RDMA Flush

 The RDMA Flush operation requests that all bytes in a specified
 region are to be made persistent and/or globally visible, under
 control of specified flags. As specified in section 4 its operation
 is ordered after the successful completion of any previous requested
 RDMA Write or certain other operations. The response is generated
 after the region has reached its specified state. The implementation
 MUST fail the operation and send a terminate message if the RDMA
 Flush cannot be performed, or has encountered an error.

 The RDMA Flush operation MUST NOT be completed by the data sink until
 all data has attained the requested state. Achieving persistence may
 require programming and/or flushing of device buffers, while
 achieving global visibility may require flushing of cached buffers
 across the entire platform interconnect. In no event are persistence
 and global visibility achieved atomically, one may precede the other
 and either may complete at any time.The Atomic Write operation may be
 used by an upper layer consumer to indicate that either or both

Talpey, et al. Expires September 10, 2020 [Page 20]

Internet-Draft RDMA Push Mode March 2020

 dispositions are available after completion of the RDMA Flush, in
 addition to other approaches.

3.1.1.1. RDMA Flush Request Format

 The RDMA Flush Request Message makes use of the DDP Untagged Buffer
 Model. RDMA Flush Request messages MUST use the same Queue Number as
 RDMA Read Requests and RDMA Extensions Atomic Operation Requests
 (QN=1). Reusing the same queue number for RDMA Flush Requests allows
 the operations to reuse the same RDMA infrastructure (e.g. Outbound
 and Inbound RDMA Read Queue Depth (ORD/IRD) flow control) as that
 defined for RDMA Read Requests.

 The RDMA Flush Request Message carries a payload that describes the
 ULP Buffer address in the Responder's memory. The following figure
 depicts the Flush Request that is used for all RDMA Flush Request
 Messages:

 +-+
 | Data Sink STag |
 +-+
 | Data Sink Length |
 +-+
 | Data Sink Tagged Offset |
 + +
 | |
 +-+
 | Flush Disposition Flags +G+P|
 +-+

 Flush Request

 Data Sink STag: 32 bits The Data Sink STag identifies the Remote
 Peer's Tagged Buffer targeted by the RDMA Flush Request. The Data
 Sink STag is associated with the RDMAP Stream through a mechanism
 that is outside the scope of the RDMAP specification.

 Data Sink Length: The Data Sink Length is the length, in octets, of
 the bytes targeted by the RDMA Flush Request.

 Data Sink Tagged Offset: 64 bits The Data Sink Tagged Offset
 specifies the starting offset, in octets, from the base of the
 Remote Peer's Tagged Buffer targeted by the RDMA Flush Request.

 Flags: Flags specifying the disposition of the flushed data: 0x01
 Flush to Persistence, 0x02 Flush to Global Visibility.

Talpey, et al. Expires September 10, 2020 [Page 21]

Internet-Draft RDMA Push Mode March 2020

3.1.1.2. RDMA Flush Response

 The RDMA Flush Response Message makes use of the DDP Untagged Buffer
 Model. RDMA Flush Response messages MUST use the same Queue Number
 as RDMA Extensions Atomic Operation Responses (QN=3). No payload is
 passed to the DDP layer on Queue Number 3.

 Upon successful completion of RDMA Flush processing, an RDMA Flush
 Response MUST be generated.

 If during RDMA Flush processing on the Responder, an error is
 detected which would result in the requested region to not achieve
 the requested disposition, the Responder MUST generate a Terminate
 message. The contents of the Terminate message are defined in

Section 5.2.

3.1.1.3. RDMA Flush Ordering and Atomicity

 Ordering and completion rules for RDMA Flush Request are similar to
 those for an Atomic operation as described in section 5 of RFC7306.
 The queue number field of the RDMA Flush Request for the DDP layer
 MUST be 1, and the RDMA Flush Response for the DDP layer MUST be 3.

 There are no ordering requirements for the placement of the data, nor
 are there any requirements for the order in which the data is made
 globally visible and/or persistent. Data received by prior
 operations (e.g. RDMA Write) MAY be submitted for placement at any
 time, and persistence or global visibility MAY occur before the flush
 is requested. After placement, data MAY become persistent or
 globally visible at any time, in the course of operation of the
 persistency management of the storage device, or by other actions
 resulting in persistence or global visibility.

 Any region segment specified by the RDMA Flush operation MUST be made
 persistent and/or globally visible before successful return of the
 operation. If RDMA Flush processing is successful on the Responder,
 meaning the requested bytes of the region are, or have been made
 persistent and/or globally visible, as requested, the RDMA Flush
 Response MUST be generated.

 There are no atomicity guarantees provided on the Responder's node by
 the RDMA Flush Operation with respect to any other operations. While
 the Completion of the RDMA Flush Operation ensures that the requested
 data was placed into, and flushed from the target Tagged Buffer,
 other operations might have also placed or fetched overlapping data.
 The upper layer is responsible for arbitrating any shared access.

https://datatracker.ietf.org/doc/html/rfc7306#section-5

Talpey, et al. Expires September 10, 2020 [Page 22]

Internet-Draft RDMA Push Mode March 2020

 (Sidebar) It would be useful to make a statement about other RDMA
 Flush to the target buffer and RDMA Read from the target buffer on
 the same connection. Use of QN 1 for these operations provides
 ordering possibilities which imply that they will "work" (see #7
 below). NOTE: this does not, however, extend to RDMA Write, which is
 not queued nor sequenced and therefore does not employ a DDP QN.

3.1.2. RDMA Verify

 The RDMA Verify operation requests that all bytes in a specified
 region are to be read from the underlying storage and that an
 integrity hash be calculated. As specified in section 4 its
 operation is ordered after the successful completion of any previous
 requested RDMA Write and RDMA Flush, or certain other operations.
 The implementation MUST fail the operation and send a terminate
 message if the RDMA Verify cannot be performed, has encountered an
 error, or if a hash value was provided in the request and the
 calculated hash does not match. If no condition for a Terminate
 message is encountered, the response is generated containing the
 result calculated hash value.

3.1.2.1. RDMA Verify Request Format

 The RDMA Verify Request Message makes use of the DDP Untagged Buffer
 Model. RDMA Verify Request messages MUST use the same Queue Number
 as RDMA Read Requests and RDMA Extensions Atomic Operation Requests
 (QN=1). Reusing the same queue number for RDMA Read and RDMA Flush
 Requests allows the operations to reuse the same RDMA infrastructure
 (e.g. Outbound and Inbound RDMA Read Queue Depth (ORD/IRD) flow
 control) as that defined for those requests.

 The RDMA Verify Request Message carries a payload that describes the
 ULP Buffer address in the Responder's memory. The following figure
 depicts the Verify Request that is used for all RDMA Verify Request
 Messages:

Talpey, et al. Expires September 10, 2020 [Page 23]

Internet-Draft RDMA Push Mode March 2020

 +-+
 | Data Sink STag |
 +-+
 | Data Sink Length |
 +-+
 | Data Sink Tagged Offset |
 + +
 | |
 +-+
 | Hash Value (optional, variable) |
 | ... |
 +-+

 Verify Request

 Data Sink STag: 32 bits The Data Sink STag identifies the Remote
 Peer's Tagged Buffer targeted by the Verify Request. The Data
 Sink STag is associated with the RDMAP Stream through a mechanism
 that is outside the scope of the RDMAP specification.

 Data Sink Length: The Data Sink Length is the length, in octets, of
 the bytes targeted by the Verify Request.

 Data Sink Tagged Offset: 64 bits The Data Sink Tagged Offset
 specifies the starting offset, in octets, from the base of the
 Remote Peer's Tagged Buffer targeted by the Verify Request.

 Hash Value: The Hash Value is optionally an octet string
 representing the expected result, if any, of the hash algorithm on
 the Remote Peer's Tagged Buffer. The length of the Hash Value is
 variable, and dependent on the selected algorithm. When provided,
 any mismatch with the calculated value causes the Responder to
 generate a Terminate message, and close the connection. The
 contents of the Terminate message are defined in section 5.2.

3.1.2.2. Verify Response Format

 The Verify Response Message makes use of the DDP Untagged Buffer
 Model. Verify Response messages MUST use the same Queue Number as
 RDMA Flush Responses (QN=3). The RDMAP layer passes the following
 payload to the DDP layer on Queue Number 3. The RDMA Verify Response
 is not sent when a Terminate message is generated through specifying
 the Compare Flag as 1, and a mismatch occurs.

Talpey, et al. Expires September 10, 2020 [Page 24]

Internet-Draft RDMA Push Mode March 2020

 +-+
 | Hash Value (variable) |
 | ... |
 +-+

 Verify Response

 Hash Value: The Hash Value is an octet string representing the
 result of the hash algorithm on the Remote Peer's Tagged Buffer.
 The length of the Hash Value is variable, and dependent on the
 algorithm selected by the upper layer consumer, among those
 supported by the RNIC.

3.1.2.3. RDMA Verify Ordering

 Ordering and completion rules for RDMA Verify Request are similar to
 those for an Atomic operation as described in section 5 of RFC7306.
 The queue number field of the RDMA Verify Request for the DDP layer
 MUST be 1, and the RDMA Verify Response for the DDP layer MUST be 3.

 As specified in section 4, RDMA Verify and RDMA Flush are executed by
 the Data Sink in strict order. When an RDMA Verify follows an RDMA
 Flush, and because the RDMA Flush MUST ensure that all bytes are in
 the specified state before responding, any RDMA Verify that follows
 can be assured that it is operating on flushed data. If unflushed
 data has been sent to the region segment between the operations, and
 since data may be made persistent and/or globally visible by the Data
 Sink at any time, the result of any such RDMA Verify is undefined.

3.1.3. Atomic Write

 The Atomic Write operation provides a block of data which is placed
 to a specified region atomically, and as specified in section 4 its
 placement is ordered after the successful completion of any previous
 requested RDMA Flush or RDMA Verify. This specified region is
 constrained in size and alignment to 64-bits at 64-bit alignment, and
 the implementation MUST fail the operation and send a terminate
 message if the placement cannot be performed atomically.

 The Atomic Write Operation requires the Responder to write a 64-bit
 value at a ULP Buffer address that is 64-bit aligned in the
 Responder's memory, in a manner which is Placed in the responder's
 memory atomically.

https://datatracker.ietf.org/doc/html/rfc7306#section-5

Talpey, et al. Expires September 10, 2020 [Page 25]

Internet-Draft RDMA Push Mode March 2020

3.1.3.1. Atomic Write Request

 The Atomic Write Request Message makes use of the DDP Untagged Buffer
 Model. Atomic Write Request messages MUST use the same Queue Number
 as RDMA Read Requests and RDMA Extensions Atomic Operation Requests
 (QN=1). Reusing the same queue number for RDMA Flush and RDMA Verify
 Requests allows the operations to reuse the same RDMA infrastructure
 (e.g. Outbound and Inbound RDMA Read Queue Depth (ORD/IRD) flow
 control) as that defined for those Requests.

 The Atomic Write Request Message carries an Atomic Write Request
 payload that describes the ULP Buffer address in the Responder's
 memory, as well as the data to be written. The following figure
 depicts the Atomic Write Request that is used for all Atomic Write
 Request Messages:

 +-+
 | Data Sink STag |
 +-+
 | Data Sink Length |
 +-+
 | Data Sink Tagged Offset |
 + +
 | |
 +-+
 | Data |
 + +
 | |
 +-+

 Atomic Write Request

 Data Sink STag: 32 bits The Data Sink STag identifies the Remote
 Peer's Tagged Buffer targeted by the Atomic Write Request. The
 Data Sink STag is associated with the RDMAP Stream through a
 mechanism that is outside the scope of the RDMAP specification.

 Data Sink Length: The Data Sink Length is the length of data to be
 placed, and MUST be 8.

 Data Sink Tagged Offset: 64 bits The Data Sink Tagged Offset
 specifies the starting offset, in octets, from the base of the
 Remote Peer's Tagged Buffer targeted by the Atomic Write Request.
 This offset can be any value, but the destination ULP buffer
 address MUST be aligned as specified above. Ensuring that the
 STag and Data Sink Tagged Offset values appropriately meet such a
 requirement is an upper layer consumer responsibility, and is out
 of scope for this specification.

Talpey, et al. Expires September 10, 2020 [Page 26]

Internet-Draft RDMA Push Mode March 2020

 Data: The 64-bit data value to be written, in big-endian format.

 Atomic Write Operations MUST target ULP Buffer addresses that are
 64-bit aligned, and conform to any other platform restrictions on the
 Responder system. The write MUST NOT be Placed prior to all prior
 RDMA Flush operations, and therefore all other prior operations,
 completing successfully.

 If an Atomic Write Operation is attempted on a target ULP Buffer
 address that is not 64-bit aligned, or due to alignment, size, or
 other platform restrictions cannot be performed atomically:

 The operation MUST NOT be performed

 The Responder's memory MUST NOT be modified

 A terminate message MUST be generated. (See Section 5.2 for the
 contents of the terminate message.)

3.1.3.2. Atomic Write Response

 The Atomic Write Response Message makes use of the DDP Untagged
 Buffer Model. Atomic Write Response Response messages MUST use the
 same Queue Number as RDMA Flush Responses (QN=3). The RDMAP layer
 passes no payload to the DDP layer on Queue Number 3.

3.1.4. Discovery of RDMAP Extensions

 As for RFC7306, explicit negotiation by the RDMAP peers of the
 extensions covered by this document is not required. Instead, it is
 RECOMMENDED that RDMA applications and/or ULPs negotiate any use of
 these extensions at the application or ULP level. The definition of
 such application-specific mechanisms is outside the scope of this
 specification. For backward compatibility, existing applications
 and/or ULPs should not assume that these extensions are supported.

 In the absence of application-specific negotiation of the features
 defined within this specification, the new operations can be
 attempted, and reported errors can be used to determine a remote
 peer's capabilities. In the case of RDMA Flush and Atomic Write, an
 operation to a previously Advertised buffer with remote write
 permission can be used to determine the peer's support. A Remote
 Operation Error or Unexpected OpCode error will be reported by the
 remote peer if the Operation is not supported by the remote peer.
 For RDMA Verify, such an operation may target a buffer with remote
 read permission.

https://datatracker.ietf.org/doc/html/rfc7306

Talpey, et al. Expires September 10, 2020 [Page 27]

Internet-Draft RDMA Push Mode March 2020

3.2. Local Extensions

 This section discusses memory registration, new memory and protection
 attributes, and applicability to both remote and "local" (receives).
 Because this section does not specify any wire-visible semantic, it
 is entirely informative.

3.2.1. Registration Semantics

 New platform-specific attributes to RDMA registration, allows them to
 be processed at the server *only* without client knowledge, or
 protocol exposure. No client knowledge - robust design ensuring
 future interop

 New local PMEM memory registration example:

 Register(region[], MemPerm, MemType, MemMode) -> STag

 Region describes the memory segment[s] to be registered by the
 returned STag. The local RNIC may limit the size and number of
 these segments.

 MemPerm to indicate permitted operations in addition to remote
 read and remote werite: "remote flush to persistence", "remote
 flush to global visibility", selectivity, etc.

 MemType includes type of storage described by the Region, i.e.
 plain RAM, "flush required" (flushable), or PCIe-resident via
 peer-to-peer, or any other local platform-specific processing

 MemMode includes disposition of data Read and/or written e.g.
 Cacheable after operation (indicate if needed by CPU on data
 sink, to allow or avoid writethrough as optimization)

 None of the above attributes are at all relevant, or exposed,
 by the protocol

 STag is processed in receiving RNIC during RDMA operation to
 specified region, under control of original Perm, Type and Mode.

3.2.2. Completion Semantics

 Discuss the interactions with new operations when upper layer
 provides Completions to responder (e.g. messages via receive or
 immediate data via RDMA Write). Natural conclusion of ordering
 rules, but made explicit.

Talpey, et al. Expires September 10, 2020 [Page 28]

Internet-Draft RDMA Push Mode March 2020

 Ordering of operations is critical: Such RDMA Writes cannot be
 allowed to "pass" persistence or global visibility, and RDMA Flush
 may not begin until prior RDMA Writes to flush region are accounted
 for. Therefore, ULP protocol implications may also exist.

3.2.3. Platform Semantics

 Writethrough behavior on persistent regions and reasons for same.
 Consider recommending a local writethrough behavior on any persistent
 region, to support a nonblocking hurry-up to avoid future stalls on a
 subsequent cache flush, prior to a flush. Also, it would enhance
 storage integrity. Drive selection of this behavior from memory
 registration, so RNIC may "look up" the desired behavior in its TPT.

 PCI extension to support Flush would allow RNIC to provide
 persistence and/or global visibility directly and efficiently To
 Memory, CPU, PCI Root, PM device, PCIe device, ... Avoids CPU
 interaction Supports strong data consistency model. Performs
 equivalent of: CLFLUSHOPT (region list) or some other flow tag. Or
 if RNIC participates in platform consistency domain on memory bus or
 within CPU complex... other possibilities exist!

 Also consider additional "integrity check" behavior (hash algorithm)
 specified per-region. If so, providing it as a registration
 parameter enables fine-graned control, and enables storing it in per-
 region RNIC state, making its processing optional and
 straightforward.

 A similar approach applicable to providing security key for
 encrypting/decrypting access on per-region basius, without protocol
 exposure. [SDC2017 presentation]

 Any other per-region processing to be explored.

4. Ordering and Completions Table

 The table in this section specifies the ordering relationships for
 the operations in this specification and in those it extends, from
 the standpoint of the Requester. Note that in the table, Send
 Operation includes Send, Send with Invalidate, Send with Solicited
 Event, and Send with Solicited Event and Invalidate. Also note that
 Immediate Operation includes Immediate Data and Immediate Data with
 Solicited Event.

 Note: N/A in the table below means Not Applicable

Talpey, et al. Expires September 10, 2020 [Page 29]

Internet-Draft RDMA Push Mode March 2020

 ----------+------------+-------------+-------------+-----------------
 First | Second | Placement | Placement | Ordering
 Operation | Operation | Guarantee at| Guarantee at| Guarantee at
 | | Remote Peer | Local Peer | Remote Peer
 ----------+------------+-------------+-------------+-----------------
 RDMA Flush| TODO | No Placement| N/A | Completed in
 | | Guarantee | | Order
 | | between Foo | |
 | | and Bar | |
 ----------+------------+-------------+-------------+-----------------
 TODO | RDMA Flush | Placement | N/A | TODO
 | | Guarantee | |
 | | between Foo | |
 | | and Bar | |
 ----------+------------+-------------+-------------+-----------------
 TODO | TODO | Etc | Etc | Etc
 ----------+------------+-------------+-------------+-----------------
 ----------+------------+-------------+-------------+-----------------

 Ordering of Operations

5. Error Processing

 In addition to error processing described in section 7 of RFC5040 and
section 8 of RFC7306, the following rules apply for the new RDMA

 Messages defined in this specification.

5.1. Errors Detected at the Local Peer

 The Local Peer MUST send a Terminate Message for each of the
 following cases:

 1. For errors detected while creating an RDMA Flush, RDMA Verify or
 Atomic Write Request, or other reasons not directly associated
 with an incoming Message, the Terminate Message and Error code
 are sent instead of the Message. In this case, the Error Type
 and Error Code fields are included in the Terminate Message, but
 the Terminated DDP Header and Terminated RDMA Header fields are
 set to zero.

 2. For errors detected on an incoming RDMA Flush, RDMA Verify or
 Atomic Write Request or Response, the Terminate Message is sent
 at the earliest possible opportunity, preferably in the next
 outgoing RDMA Message. In this case, the Error Type, Error Code,
 and Terminated DDP Header fields are included in the Terminate
 Message, but the Terminated RDMA Header field is set to zero.

https://datatracker.ietf.org/doc/html/rfc5040#section-7
https://datatracker.ietf.org/doc/html/rfc7306#section-8

Talpey, et al. Expires September 10, 2020 [Page 30]

Internet-Draft RDMA Push Mode March 2020

 3. For errors detected in the processing of the RDMA Flush or RDMA
 Verify itself, that is, the act of flushing or verifying the
 data, the Terminate Message is generated as per the referenced
 specifications. Even though data is not lost, the upper layer
 MUST be notified of the failure by informing the requester of the
 status, terminating any queued operations, and allow the
 requester to perform further action, for instance, recovery.

5.2. Errors Detected at the Remote Peer

 On incoming RDMA Flush and RDMA Verify Requests, the following MUST
 be validated:

 o The DDP layer MUST validate all DDP Segment fields.

 The following additional validation MUST be performed:

 o If the RDMA Flush, RDMA Verify or Atomic Write operation cannot be
 satisfied, due to transient or permanent errors detected in the
 processing by the Responder, a Terminate message MUST be returned
 to the Requestor.

6. IANA Considerations

 This document requests that IANA assign the following new operation
 codes in the "RDMAP Message Operation Codes" registry defined in

section 3.4 of [RFC6580].

 0xC RDMA Flush Request, this specification

 0xD RDMA Flush Response, this specification

 0xE RDMA Verify Request, this specification

 0xF RDMA Verify Response, this specification

 0x10 Atomic Write Request, this specification

 0x11 Atomic Write Response, this specification

 Note to RFC Editor: this section may be edited and updated prior to
 publication as an RFC.

7. Security Considerations

 This document specifies extensions to the RDMA Protocol specification
 in RFC5040 and RDMA Protocol Extensions in RFC7306, and as such the
 Security Considerations discussed in Section 8 of RFC5040 and

https://datatracker.ietf.org/doc/html/rfc6580#section-3.4
https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc7306
https://datatracker.ietf.org/doc/html/rfc5040#section-8

Talpey, et al. Expires September 10, 2020 [Page 31]

Internet-Draft RDMA Push Mode March 2020

Section 9 of RFC7306 apply. In particular, all operations use ULP
 Buffer addresses for the Remote Peer Buffer addressing used in

RFC5040 as required by the security model described in [RDMAP
 Security [RFC5042]].

 If the "push mode" transfer model discussed in section 2 is
 implemented by upper layers, new security considerations will be
 potentially introduced in those protocols, particularly on the
 server, or target, if the new memory regions are not carefully
 protected. Therefore, for them to take full advantage of the
 extension defined in this document, additional security design is
 required in the implementation of those upper layers. The facilities
 of RFC5042 [RFC5042] can provide the basis for any such design.

 In addition to protection, in "push mode" the server or target will
 expose memory resources to the peer for potentially extended periods,
 and will allow the peer to perform remote requests which will
 necessarily consume shared resources, e.g. memory bandwidth, power,
 and memory itself. It is recommended that the upper layers provide a
 means to gracefully adjust such resources, for example using upper
 layer callbacks, without resorting to revoking RDMA permissions,
 which would summarily close connections. With the initiator
 applications relying on the protocol extension itself for managing
 their required persistence and/or global visibility, the lack of such
 an approach would lead to frequent recovery in low-resource
 situations, potentially opening a new threat to such applications.

8. To Be Added or Considered

 This section will be deleted in a future document revision.

 Complete the discussion in section 3.2 and its subsections, Local
 Extension semantics.

 Complete the Ordering table in section 4. Carefully include
 discussion of the order of "start of execution" as well as
 completion, which are somewhat more involved than prior RDMA
 operation ordering.

 RDMA Flush "selectivity", to provide default flush semantics with
 broader scope than region-based. If specified, a flag to request
 that all prior write operations on the issuing Queue Pair be flushed
 with the requested disposition(s). This flag may simplify upper
 layer processing, and would allow regions larger than 4GB-1 byte to
 be flushed in a single operation. The STag, Offset and Length will
 be ignored in this case. It is to-be-determined how to extend the
 RDMA security model to protect other regions associated with this
 Queue Pair from unintentional or unauthorized flush.

https://datatracker.ietf.org/doc/html/rfc7306#section-9
https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc5042
https://datatracker.ietf.org/doc/html/rfc5042
https://datatracker.ietf.org/doc/html/rfc5042

Talpey, et al. Expires September 10, 2020 [Page 32]

Internet-Draft RDMA Push Mode March 2020

9. Acknowledgements

 The authors wish to thank Jim Pinkerton, who contributed to an
 earlier version of the specification, and Brian Hausauer and Kobby
 Carmona, who have provided significant review and valuable comments.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5040] Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
 Garcia, "A Remote Direct Memory Access Protocol
 Specification", RFC 5040, DOI 10.17487/RFC5040, October
 2007, <https://www.rfc-editor.org/info/rfc5040>.

 [RFC5041] Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct
 Data Placement over Reliable Transports", RFC 5041,
 DOI 10.17487/RFC5041, October 2007,
 <https://www.rfc-editor.org/info/rfc5041>.

 [RFC5042] Pinkerton, J. and E. Deleganes, "Direct Data Placement
 Protocol (DDP) / Remote Direct Memory Access Protocol
 (RDMAP) Security", RFC 5042, DOI 10.17487/RFC5042, October
 2007, <https://www.rfc-editor.org/info/rfc5042>.

 [RFC6580] Ko, M. and D. Black, "IANA Registries for the Remote
 Direct Data Placement (RDDP) Protocols", RFC 6580,
 DOI 10.17487/RFC6580, April 2012,
 <https://www.rfc-editor.org/info/rfc6580>.

 [RFC7306] Shah, H., Marti, F., Noureddine, W., Eiriksson, A., and R.
 Sharp, "Remote Direct Memory Access (RDMA) Protocol
 Extensions", RFC 7306, DOI 10.17487/RFC7306, June 2014,
 <https://www.rfc-editor.org/info/rfc7306>.

10.2. Informative References

 [RFC5045] Bestler, C., Ed. and L. Coene, "Applicability of Remote
 Direct Memory Access Protocol (RDMA) and Direct Data
 Placement (DDP)", RFC 5045, DOI 10.17487/RFC5045, October
 2007, <https://www.rfc-editor.org/info/rfc5045>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5040
https://www.rfc-editor.org/info/rfc5040
https://datatracker.ietf.org/doc/html/rfc5041
https://www.rfc-editor.org/info/rfc5041
https://datatracker.ietf.org/doc/html/rfc5042
https://www.rfc-editor.org/info/rfc5042
https://datatracker.ietf.org/doc/html/rfc6580
https://www.rfc-editor.org/info/rfc6580
https://datatracker.ietf.org/doc/html/rfc7306
https://www.rfc-editor.org/info/rfc7306
https://datatracker.ietf.org/doc/html/rfc5045
https://www.rfc-editor.org/info/rfc5045

Talpey, et al. Expires September 10, 2020 [Page 33]

Internet-Draft RDMA Push Mode March 2020

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <https://www.rfc-editor.org/info/rfc5661>.

 [RFC7145] Ko, M. and A. Nezhinsky, "Internet Small Computer System
 Interface (iSCSI) Extensions for the Remote Direct Memory
 Access (RDMA) Specification", RFC 7145,
 DOI 10.17487/RFC7145, April 2014,
 <https://www.rfc-editor.org/info/rfc7145>.

 [RFC8166] Lever, C., Ed., Simpson, W., and T. Talpey, "Remote Direct
 Memory Access Transport for Remote Procedure Call Version
 1", RFC 8166, DOI 10.17487/RFC8166, June 2017,
 <https://www.rfc-editor.org/info/rfc8166>.

 [RFC8267] Lever, C., "Network File System (NFS) Upper-Layer Binding
 to RPC-over-RDMA Version 1", RFC 8267,
 DOI 10.17487/RFC8267, October 2017,
 <https://www.rfc-editor.org/info/rfc8267>.

 [SCSI] ANSI, "SCSI Primary Commands - 3 (SPC-3) (INCITS
 408-2005)", May 2005.

 [SMB3] Microsoft Corporation, "Server Message Block (SMB)
 Protocol Versions 2 and 3 (MS-SMB2)", March 2020.

https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-

 817e-70c366052962

 [SMBDirect]
 Microsoft Corporation, "SMB2 Remote Direct Memory Access
 (RDMA) Transport Protocol (MS-SMBD)", September 2018.

https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-smbd/1ca5f4ae-e5b1-493d-

 b87d-f4464325e6e3

 [SNIANVMP]
 SNIA NVM Programming TWG, "SNIA NVM Programming Model
 v1.2", June 2017.

https://www.snia.org/sites/default/files/technical_work/
final/NVMProgrammingModel_v1.2.pdf

https://datatracker.ietf.org/doc/html/rfc5661
https://www.rfc-editor.org/info/rfc5661
https://datatracker.ietf.org/doc/html/rfc7145
https://www.rfc-editor.org/info/rfc7145
https://datatracker.ietf.org/doc/html/rfc8166
https://www.rfc-editor.org/info/rfc8166
https://datatracker.ietf.org/doc/html/rfc8267
https://www.rfc-editor.org/info/rfc8267
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smbd/1ca5f4ae-e5b1-493d-
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smbd/1ca5f4ae-e5b1-493d-
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

Talpey, et al. Expires September 10, 2020 [Page 34]

Internet-Draft RDMA Push Mode March 2020

10.3. URIs

 [1] http://www.nvmexpress.org

 [2] http://www.jedec.org

Appendix A. DDP Segment Formats for RDMA Extensions

 This appendix is for information only and is NOT part of the
 standard. It simply depicts the DDP Segment format for each of the
 RDMA Messages defined in this specification.

A.1. DDP Segment for RDMA Flush Request

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | DDP Control | RDMA Control |
 +-+
 | Reserved (Not Used) |
 +-+
 | DDP (Flush Request) Queue Number (1) |
 +-+
 | DDP (Flush Request) Message Sequence Number |
 +-+
 | Data Sink STag |
 +-+
 | Data Sink Length |
 +-+
 | Data Sink Tagged Offset |
 + +
 | |
 +-+
 | Disposition Flags +G+P|
 +-+

 RDMA Flush Request, DDP Segment

A.2. DDP Segment for RDMA Flush Response

http://www.nvmexpress.org
http://www.jedec.org

Talpey, et al. Expires September 10, 2020 [Page 35]

Internet-Draft RDMA Push Mode March 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | DDP Control | RDMA Control |
 +-+
 | Reserved (Not Used) |
 +-+
 | DDP (Flush Response) Queue Number (3) |
 +-+
 | DDP (Flush Response) Message Sequence Number |
 +-+

 RDMA Flush Response, DDP Segment

A.3. DDP Segment for RDMA Verify Request

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | DDP Control | RDMA Control |
 +-+
 | Reserved (Not Used) |
 +-+
 | DDP (Verify Request) Queue Number (1) |
 +-+
 | DDP (Verify Request) Message Sequence Number |
 +-+
 | Data Sink STag |
 +-+
 | Data Sink Length |
 +-+
 | Data Sink Tagged Offset |
 + +
 | |
 +-+
 | Hash Value (optional, variable) |
 | ... |
 +-+

 RDMA Verify Request, DDP Segment

A.4. DDP Segment for RDMA Verify Response

Talpey, et al. Expires September 10, 2020 [Page 36]

Internet-Draft RDMA Push Mode March 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | DDP Control | RDMA Control |
 +-+
 | Reserved (Not Used) |
 +-+
 | DDP (Verify Response) Queue Number (3) |
 +-+
 | DDP (Verify Response) Message Sequence Number |
 +-+
 | Hash Value (variable) |
 | ... |
 +-+

 RDMA Verify Response, DDP Segment

A.5. DDP Segment for Atomic Write Request

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | DDP Control | RDMA Control |
 +-+
 | Reserved (Not Used) |
 +-+
 | DDP (Atomic Write Request) Queue Number (1) |
 +-+
 | DDP (Atomic Write Request) Message Sequence Number |
 +-+
 | Data Sink STag |
 +-+
 | Data Sink Length (value=8) |
 +-+
 | Data Sink Tagged Offset |
 + +
 | |
 +-+
 | Data (64 bits) |
 + +
 | |
 +-+

 Atomic Write Request, DDP Segment

Talpey, et al. Expires September 10, 2020 [Page 37]

Internet-Draft RDMA Push Mode March 2020

A.6. DDP Segment for Atomic Write Response

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | DDP Control | RDMA Control |
 +-+
 | Reserved (Not Used) |
 +-+
 | DDP (Atomic Write Response) Queue Number (3) |
 +-+
 | DDP (Atomic Write Response) Message Sequence Number |
 +-+

 Atomic Write Response, DDP Segment

Authors' Addresses

 Tom Talpey
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: ttalpey@microsoft.com

 Tony Hurson
 Intel
 Austin, TX
 US

 Email: tony.hurson@intel.com

 Gaurav Agarwal
 Marvell
 CA
 US

 Email: gagarwal@marvell.com

Talpey, et al. Expires September 10, 2020 [Page 38]

Internet-Draft RDMA Push Mode March 2020

 Tom Reu
 Chelsio
 NJ
 US

 Email: tomreu@chelsio.com

Talpey, et al. Expires September 10, 2020 [Page 39]

