
HyBi Working Group J. Tamplin
Internet-Draft T. Yoshino
Intended status: Standards Track Google, Inc.
Expires: July 30, 2012 January 27, 2012

A Multiplexing Extension for WebSockets
draft-tamplin-hybi-google-mux-02

Abstract

 The WebSocket Protocol [RFC6455] requires a new transport connection
 for every WebSocket connection. This presents a scalability problem
 when many clients connect to the same server, and is made worse by
 having multiple clients running in different tabs of the same user
 agent. This extension provides a way for separate logical WebSocket
 connections to share an underlying transport connection.

 Please send feedback to the hybi@ietf.org mailing list.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 30, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Tamplin & Yoshino Expires July 30, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft A Multiplexing Extension for WebSockets January 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview . 3
2. Conformance Requirements 4
3. Interaction with other Extensions / Framing Mechanisms 5
4. Channels . 6
5. Flow Control . 7
6. Framing . 8
7. Multiplex Control Frames 9
8. Examples . 12
9. Client Behavior . 13
10. Buffering . 14
11. Fairness . 15
12. Proxies . 16
13. Nesting . 17
14. Security Considerations 18
15. IANA Considerations . 19
16. Normative References . 20

 Authors' Addresses . 21

Tamplin & Yoshino Expires July 30, 2012 [Page 2]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

1. Overview

 This document describes a MUX extension to the WebSocket protocol. A
 client that supports this extension will advertise support for it in
 the initial handshake using the "Sec-WebSocket-Extensions" header.
 If the server supports this extension and supports parameters
 compatible with the client's request, it accepts the use of this
 extension in the handshake response.

Tamplin & Yoshino Expires July 30, 2012 [Page 3]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

2. Conformance Requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119. [RFC2119]

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("must", "should", "may", etc) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps MAY
 be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this
 specification are intended to be easy to follow, and not intended to
 be performant.)

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Tamplin & Yoshino Expires July 30, 2012 [Page 4]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

3. Interaction with other Extensions / Framing Mechanisms

 Any compression extensions negotiated apply only to the channel they
 are negotiated on -- therefore, any compression extension in the
 initial handshake applies only to logical channel 1. If WebSocket
 payload data is masked by a per-frame key, such masking is applied to
 frames for each logical channel separately.

 If other negotiated extensions define extension data, the other
 extension defines whether it applies to just one logical channel (it
 is expected that most extensions will do so) or the physical channel.
 If the other extension applies to one logical channel, it always
 comes after the MUX extension data; otherwise the order depends on
 the order the extensions were listed during the handshake response.

Tamplin & Yoshino Expires July 30, 2012 [Page 5]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

4. Channels

 The MUX extension maintains separate logical channels, each of which
 is fully the logical equivalent of an independent WebSocket
 connection, including separate handshake headers. If the MUX
 extension is successfully negotiated, the headers on the initial
 handshake are automatically taken to mean channel 1, which is
 implicitly opened by completing the handshake. New channels are
 added by the client issuing the AddChannel command (note that only
 the client may initiate new WebSocket connections), including any
 request headers which do not have the same value as the initial
 handshake. The server's AddChannel response likewise includes any
 response headers which are different from the initial handshake (the
 details of this are TBD, but a simple suggestion for a delta encoding
 is given below). Channel 0 (control channel) is reserved for mux
 control messages and does not contain payload data from any logical
 channel. A client which attempts to add a channel to an existing
 connection that is not accepted by the server SHOULD attempt a new
 WebSocket connection.

 Once the MUX extension is negotiated on a connection, all frames must
 be prefixed with a channel number in the extension data field.
 Control frames with a channel id 0 refer to the physical connection,
 other control frames MUST be delivered on the logical channel in
 order with data frames for that logical channel. Control frames
 SHOULD be sent only on channel 0 where possible, though control
 frames for other extensions in particular may need to apply to
 individual logical channels.

 A receiver MUST fail the physical connection and all open logical
 channels if any of these rules are violated by the sender.

Tamplin & Yoshino Expires July 30, 2012 [Page 6]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

5. Flow Control

 Each logical channel, including the implicitly created channel 1, is
 initially given a quota of bytes that may be transmitted in each
 direction without acknowledgement. It is illegal to send more bytes
 than the remaining quota, and the receiver MUST fail the logical
 channel for any sender that does so. This quota is replenished via
 control messages as the receiver processes the data.

 The initial quota is specified with the "quota" extension parameter,
 and defaults to 64k (TBD) if it is not specified. The client and
 server each may specify a "quota" parameter and these are unrelated
 -- each specifies how many bytes the other side may send without
 acknowledgement. The quota values in the initial handshake apply to
 the implicitly opened channel 1.

Tamplin & Yoshino Expires July 30, 2012 [Page 7]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

6. Framing

 If the extension is successfully negotiated during the handshake, all
 frames have a channel id in the extension data. The channel ID is
 encoded as a variable number of bytes, as follows:

 0 1 2 3 4 5 6 7
 +-+-------------+
 |0|channel id(7)|
 +-+-------------+

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+---------------------------+
 |1|0| channel id (14) |
 +-+-+---------------------------+

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+-+-+---+
 |1|1|0| channel id (21) |
 +-+-+-+---+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+---+
 |1|1|1| channel id (29) |
 +-+-+-+---+

 The base spec requires that a sequence of frames on the wire be a
 frame with an opcode other than 0, zero or more frames with opcode 0
 and the FIN bit clear, and terminated by a frame with the FIN bit set
 (which may be the initial frame in the case of an unfragmented
 message). The MUX extension relaxes this requirement to be for just
 frames of one logical channel, and that frames of other logical
 channels may be interleaved arbitrarily.

 All frames with a non-zero channel id must be delivered to the
 specified logical channel in the order they are received, though
 fragmentation may be changed if appropriate. Control frames with a
 non-zero channel id may also trigger additional processing by the MUX
 extension.

 Control frames with a channel id of 0 refer to the physical
 connection, and may also trigger additional processing - for example,
 a close frame on the physical channel will close all logical channels
 as well (details TBD).

Tamplin & Yoshino Expires July 30, 2012 [Page 8]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

7. Multiplex Control Frames

 Data frames with a channel id of 0 are MUX control frames. Unless
 another negotiated extension defines a meaning for them, any frames
 on channel 0 with an opcode other than "binary" MUST trigger a
 failure of the physical connection. Binary frames on channel 0 are
 MUX control frames, and the payload consists of a zero or more MUX
 control blocks, each defined as follows:

 o a channel number encoded the same as that in the extension data
 (designated as control channel)

 o an opcode and data interpreted according to that opcode as
 follows:

 0 1 2 3 4 5 6 7
 +-----+---------+
 | opc | opcdata |
 +-----+---------+

 o zero or more bytes defined by the opcode

 The opcodes defined are:

 0 - AddChannel request (only from client)

 Create a new logical channel as control channel, exactly as if a
 new connection were received on a separate transport connection,
 except for the encoding of the headers. opcdata is interpreted as
 follows:

 3 4 5 6 7
 +-+---+---+
 |R|enc|len|
 +---------+

 R is reserved for future use, len is the number of bytes used to
 represent the length of following headers minus 1, and enc is an
 encoding type:

 0 - uncompressed The header bytes that follow are uncompressed,
 and constitute the complete set of headers that would have been
 sent on a WebSocket connection request

Tamplin & Yoshino Expires July 30, 2012 [Page 9]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

 1 - delta-encoded The header bytes that follow are delta-encoded,
 where any header that is not given is assumed to have the same
 value as that given on the initial request of the physical
 connection. A header with an empty value means that header is
 not inherited from the initial connection. (TBD: this means
 that valueless headers cannot be encoded with this scheme).

 2-3 - reserved Reserved for future use

 The following n bytes, where n is the value of len inside opcdata
 plus 1, are an 8-32 bit length of the request header data that
 follows, in network byte order. The request header data consists
 of a series of lines, separated by a CR-LF pair and terminated by
 an extra CR-LF pair. The first line is the full URI for the new
 connection, and the remaining lines are the request headers,
 encoded in UTF8 and as defined by the enc value in opcdata.

 The initial quota for the new connection is 0, so the client may
 not send any data for this connection until the AddChannel
 response is received.

 The server always responds with an AddChannel response message,
 described below.

 1 - AddChannel response (only from server)

 opcdata is defined as follows:

 3 4 5 6 7
 +-----+---+
 |F|enc|len|
 +-----+---+

 RSV is reserved for future use, F is true if this response
 indicates a failure to add the requested channel, len is the of
 bytes used to represent the length of following headers minus 1,
 and enc is an encoding scheme defined as in the AddChannel
 request.

 If F is set, then the server has rejected the request to add a new
 channel and this should be treated exactly the same as if a
 separate connection was attempted and the handshake failed. enc is
 ignored in this case, and the following n bytes, where n is the
 value of len inside opcdata plus 1, are an 8-32 bit length of the
 request header data that follows, in network byte order. The
 request header data consists of a series of lines, separated by a

Tamplin & Yoshino Expires July 30, 2012 [Page 10]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

 CR-LF pair and terminated by an extra CR-LF pair. These lines
 should be treated as the response to an HTTP Upgrade request for
 the WebSocket URI, For example:

 HTTP/1.1 404 Not found

 404 message body...

 If F is not set, then the server has accepted the request. The
 following n bytes, where n is the value of len inside opcdata plus
 1, are an 8-32 bit length of the request header data that follows,
 in network byte order. The request header data consists of a
 series of lines, separated by a CR-LF pair and terminated by an
 extra CR-LF pair. These are encoded according to enc as defined
 in the AddChannel request, and the complete set of headers after
 decoding is treated exactly as if it was received in response to a
 handshake on a separate connection.

 2 - FlowControl

 opcdata is defined as follows:

 3 4 5 6 7
 +-----+---+
 | RSV |len|
 +-----+---+

 RSV is reserved for future use, and len is the number of bytes in
 the quota minus 1.

 The following n bytes, treated as an unsigned integer in network
 byte order, is added to the quota of the number of bytes the
 receiver can have outstanding towards the sender of the
 FlowControl message. (TBD: is it worth having some non-linear
 encoding to reduce the average bits required to represent these
 values?)

 3-7 - reserved

 Reserved for future use (TBD: do we need some support for
 quiescence?)

Tamplin & Yoshino Expires July 30, 2012 [Page 11]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

8. Examples

 This section is non-normative.

 The examples below assume the handshake has already completed and the
 x-google-mux extension was negotiated.

 01 06 01 "Hello" 81 04 02 "bye" 80 07 01 " world"

 This is a fragmented text message of "Hello world" on channel 1
 interleaved with a text message of "bye" on channel 2. Note that
 the sequence of opcodes/FIN bits cannot be understood without
 considering the channel id of each frame.

Tamplin & Yoshino Expires July 30, 2012 [Page 12]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

9. Client Behavior

 When a client is asked to make a new WebSocket connection, it MAY
 choose to use an existing WebSocket connection if all of the
 following are true:

 o the MUX extension was successfully negotiated on that connection

 o the scheme portions of the URIs match exactly

 o the host portions of the URIs either match exactly or resolve to
 the same IP address (TBD: consider DNS rebind attacks)

 o the port portions of the URIs (either explicit or implied by the
 scheme) match exactly

 o the connection has an availablle logical stream id

 If the client chooses to reuse an existing MUXd connection, it sends
 an AddChannel message as described above. If the AddChannel is
 successful, WebSocket frames may be sent over that channel as normal.
 If the server rejects the AddChannel, the client SHOULD attempt to
 open a new physical WebSocket connection (for example, in a shared
 hosting environment a server may not be prepared to multiplex
 connections from different customers despite having a single IP
 address for them).

Tamplin & Yoshino Expires July 30, 2012 [Page 13]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

10. Buffering

 There will be lots of small frames sent in this protocol
 (particularly replenishing send quotas), so a sender SHOULD attempt
 to aggregate MUX blocks into larger WebSocket frames. However, care
 must be taken to avoid introducing excessive latency - the exact
 heuristics for delaying in order to aggregate blocks is TBD.

Tamplin & Yoshino Expires July 30, 2012 [Page 14]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

11. Fairness

 A MUX implementation MUST ensure reasonable fairness among the
 logical channels. This is accomplished in several ways:

 o by restricting the send quota of a logical channel, the receiver
 can make sure that sender cannot dominate its buffer space

 o when sending data, the sender MUST use a fair mechanism for
 selecting which logical channel's data to send in the next
 WebSocket frame. Simple implementations may choose a round-robin
 scheduler, while more advanced implementations may adjust priority
 based on the amount or frequency of data sent by each logical
 channel.

 o logical channel frames that are sent SHOULD be limited in size
 (such as by refragmenting) when there is contention for the
 physical channel to minimize head-of-line blocking

Tamplin & Yoshino Expires July 30, 2012 [Page 15]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

12. Proxies

 Proxies which do not mux/demux are not affected by the presence of
 this extension -- they simply process WebSocket frames as usual.
 Proxies which filter or monitor WebSocket traffic will need to
 understand the MUX extension in order to extract the data from
 logical connections or to terminate individual logical connections
 when policy is violated. Proxies which actively multiplex
 connections or demultiplex them (for example, a mobile network might
 have a proxy which aggregates WebSocket connections at a single cell
 to conserve bandwidth to the main gateway) will require additional
 configuration (perhaps including the client) that is outside the
 scope of this document.

Tamplin & Yoshino Expires July 30, 2012 [Page 16]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

13. Nesting

 TBD: Should we allow nesting of MUX'd channels, or should we require
 that an intermediary MUXing channels flatten it? The advantage of
 nesting is it is conceptually cleaner and less work for an
 intermediary, while the disadvantage is that flow control messages
 will get amplified by nesting and the ultimate server's job is a bit
 more complicated to keep a tree of channel mappings.

Tamplin & Yoshino Expires July 30, 2012 [Page 17]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

14. Security Considerations

 TBD

Tamplin & Yoshino Expires July 30, 2012 [Page 18]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

15. IANA Considerations

 This specification is registering a value of the Sec-WebSocket-
 Extension header field in accordance with Section 11.4 of the
 WebSocket protocol [RFC6455] as follows:

 Extension Identifier

 mux

 Extension Common Name

 Mulplexing Extension for WebSockets

 Extension Definition

 This document [draft-tamplin-hybi-google-mux] defines the mux
 extension.

 Known Incompatible Extensions

 None

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/draft-tamplin-hybi-google-mux

Tamplin & Yoshino Expires July 30, 2012 [Page 19]

Internet-Draft A Multiplexing Extension for WebSockets January 2012

16. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

Tamplin & Yoshino Expires July 30, 2012 [Page 20]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455

Internet-Draft A Multiplexing Extension for WebSockets January 2012

Authors' Addresses

 John A. Tamplin
 Google, Inc.

 Email: jat@google.com

 Takeshi Yoshino
 Google, Inc.

 Email: tyoshino@google.com

Tamplin & Yoshino Expires July 30, 2012 [Page 21]

