
HyBi Working Group J. Tamplin
Internet-Draft T. Yoshino
Intended status: Standards Track Google, Inc.
Expires: August 31, 2012 February 28, 2012

A Multiplexing Extension for WebSockets
draft-tamplin-hybi-google-mux-03

Abstract

 The WebSocket Protocol [RFC6455] requires a new transport connection
 for every WebSocket connection. This presents a scalability problem
 when many clients connect to the same server, and is made worse by
 having multiple clients running in different tabs of the same user
 agent. This extension provides a way for separate logical WebSocket
 connections to share an underlying transport connection.

 Please send feedback to the hybi@ietf.org mailing list.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 31, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Tamplin & Yoshino Expires August 31, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft A Multiplexing Extension for WebSockets February 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview . 3
1.1. Physical and Logical Channel 3

2. Conformance Requirements 4
3. Interaction with other Extensions / Framing Mechanisms 5
3.1. Choosing the point to apply an extension 6

4. Logical Channels . 7
5. Flow Control . 8
6. Framing . 9
7. Multiplex Control Frames 11
7.1. Multiplex Control Opcodes 12

8. Examples . 16
9. Client Behavior . 17
10. Buffering . 18
11. Fairness . 19
12. Proxies . 20
13. Nesting . 21
14. Timeout . 22
15. Close the Logical Channel 23
16. Fail the Logical Channel 24
17. Fail the Physical Channel 25
18. Handling Operations On Logical Channel 26
19. Security Considerations 27
20. IANA Considerations . 28
21. Normative References . 29

 Authors' Addresses . 30

Tamplin & Yoshino Expires August 31, 2012 [Page 2]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

1. Overview

 This document describes a multiplexing extension for the WebSocket
 Protocol. A client that supports this extension will advertise
 support for it in the client's opening handshake using the
 "Sec-WebSocket-Extensions" header. If the server supports this
 extension and supports parameters compatible with the client's
 request, it accepts the use of this extension by the
 "Sec-WebSocket-Extensions" header in the server's opening handshake.

1.1. Physical and Logical Channel

 Under this extension, one transport connection is shared by multiple
 application-level instances. The WebSocket connection which lies
 directly on the transport connection and negotiated this multiplexing
 extension is called "physical channel". Virtually established
 WebSocket connections for each WebSocket appplication instances are
 called "logical channels".

 Data for different logical channels are distinguished by the channel
 ID allocated in the "Extension data" portion of each frame.

Tamplin & Yoshino Expires August 31, 2012 [Page 3]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

2. Conformance Requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119. [RFC2119]

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("must", "should", "may", etc) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps MAY
 be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this
 specification are intended to be easy to follow, and not intended to
 be performant.)

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Tamplin & Yoshino Expires August 31, 2012 [Page 4]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

3. Interaction with other Extensions / Framing Mechanisms

 If WebSocket payload data is masked by a per-frame key, such masking
 is applied to frames for each logical channel separately.

 If any extension (e.g. compression) is placed before this extension
 in the "Sec-WebSocket-Extensions" header of the physical channel,
 that extension is applied to logical channels unless otherwise noted
 in the extension's spec.

 If such an extension define fields in the "Extension data", they come
 after this multiplexing extension's field.

 If any extension is placed after this extension in the
 "Sec-WebSocket-Extensions" header of the physical channel, that
 extension is applied to frames after multiplexing on the sender side,
 and before demultiplexing on the receiver side unless otherwise noted
 in the extension's spec.

 If such an extension define fields in the "Extension data", they come
 before this multiplexing extension's field.

 A client MAY request such an extension for both the physical channel
 and the logical channels by placing extension entries before and
 after this multiplexing extension. In this case, the server SHOULD
 reject at least either of them if it's useless to apply the same
 extension twice.

 For example, if we have a compression extension called foo-compress,
 the client sends

 Sec-WebSocket-Extensions: foo-compress, mux, foo-compress

 in the client's opening handshake of the physical channel to request
 use of the compression for both physical and logical channels. Then,
 the server would send back

 Sec-WebSocket-Extensions: mux, foo-compress

 to apply compression after multiplexing, or

 Sec-WebSocket-Extensions: foo-compress, mux

 to apply compression to logical channels.

Tamplin & Yoshino Expires August 31, 2012 [Page 5]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

3.1. Choosing the point to apply an extension

 Where to apply a compression extension makes difference to resource
 consumption and flexibility. Compression algorithms often use some
 memory to keep its context. Some of compression extensions may keep
 using the same context for all the frames on the same connection.

 If such an extension is applied to the physical channel,
 intermediaries that want to demultiplex or multiplex the connection
 need to decompress (before demultiplexing) and recompress (before
 multiplexing again) all the frames.

 If such an extension is applied to each logical channel, we can
 control to which channel we apply the compression, so we can avoid
 applying compression to channels transferring incompressible data.
 Intermediaries that want to demultiplex can forward Application data
 field leaving it untouched. However, compressing each logical
 channel is expensive in terms of memory consumption.

Tamplin & Yoshino Expires August 31, 2012 [Page 6]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

4. Logical Channels

 The multiplexing extension maintains separate logical channels, each
 of which is fully the logical equivalent of an independent WebSocket
 connection, including separate handshake headers. If the
 multiplexing extension is successfully negotiated, the headers on the
 opening handshake of the physical channel are automatically taken to
 mean one for the logical channel 1, which is implicitly opened by
 completing the handshake. New channels are added by the client
 issuing the AddChannel request (note that only the client may
 initiate new WebSocket connections), including any handshake headers
 which do not have the same value as the client's opening handshake of
 the physical channel. The server's AddChannel response likewise
 includes any handshake headers which are different from the server's
 opening handshake of the physical channel (the details of this are
 TBD, but a simple suggestion for a delta encoding is given below).
 Channel 0 (control channel) is reserved for multiplex control frames
 and does not contain payload data from any logical channel. In
 interpreting "Sec-WebSocket-Extensions" header for a logical channel,
 the entry for this multiplexing extension is ignored but is used to
 adjust parameters for the logical channel. A client which attempts
 to add a channel to an existing connection that is not accepted by
 the server SHOULD attempt to open a new WebSocket connection.

 If any inconsistency is found between the "Sec-WebSocket-Extensions"
 header for the physical channel and one for a logical channel (after
 decoding header compression), the server MUST reject the AddChannel
 request.

 Once the multiplexing extension is negotiated on a connection, all
 frames must be prefixed with a channel ID number in the "Extension
 data". Control frames with a channel ID 0 refer to the physical
 channel, other control frames MUST be delivered on the logical
 channel in order with data frames for that logical channel. Control
 frames SHOULD be sent only on channel 0 where possible, though
 control frames for other extensions in particular may need to apply
 to individual logical channels.

 A receiver MUST _Fail the Physical Channel_ if any of these rules are
 violated by the sender.

Tamplin & Yoshino Expires August 31, 2012 [Page 7]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

5. Flow Control

 Each logical channel, including the implicitly created channel 1, is
 initially given a quota of bytes that may be transmitted in each
 direction without acknowledgement. It is illegal to send more bytes
 than the remaining send quota, and the receiver MUST _Fail the
 Logical Channel_ for any sender that does so. This send quota is
 replenished via control frames as the receiver processes the data.

 The initial send quota is specified with the "quota" extension
 parameter, and defaults to 64k (TBD) if it is not specified. The
 client and server each may specify a "quota" parameter and these are
 unrelated -- each specifies how many bytes the other side may send
 without acknowledgement. The quota values in the opening handshakes
 of the physical channel apply to the implicitly opened channel 1.

Tamplin & Yoshino Expires August 31, 2012 [Page 8]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

6. Framing

 If the extension is successfully negotiated during the opening
 handshake, all frames have a channel ID in the "Extension data". The
 channel ID is encoded as a variable number of bytes, as follows:

 0 1 2 3 4 5 6 7
 +-+-------------+
 |0|Channel ID(7)|
 +-+-------------+

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+---------------------------+
 |1|0| Channel ID (14) |
 +-+-+---------------------------+

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+-+-+---+
 |1|1|0| Channel ID (21) |
 +-+-+-+---+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+---+
 |1|1|1| Channel ID (29) |
 +-+-+-+---+

 The base spec requires that a sequence of frames on the wire be a
 sequence of valid fragments (or one of valid unfragmented frames).
 The multiplexing extension relaxes this requirement to be for just
 frames of one logical channel, and that frames of other logical
 channels may be interleaved arbitrarily.

 All frames with a non-zero channel ID must be delivered to the
 specified logical channel in the order they are received, though
 fragmentation may be changed if appropriate. Control frames with a
 non-zero channel ID may also trigger additional processing by the
 multiplexing extension.

 Control frames with a channel ID of 0 refer to the physical
 connection, and may also trigger additional processing - for example,
 a close frame on the physical channel will close all logical channels
 as well (details TBD).

 If a frame doesn't contain valid channel ID, _Fail the Physical
 Channel_. The cases where it's considered that the channel ID is

Tamplin & Yoshino Expires August 31, 2012 [Page 9]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

 invalid are:

 o The "Payload data" portion doesn't contain a complete channel ID.

 o No channel has been opened for the channel ID.

 o The channel has been closed and not reopened.

Tamplin & Yoshino Expires August 31, 2012 [Page 10]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

7. Multiplex Control Frames

 Binary frames with a channel ID of 0 are multiplex control frames.
 Unless another negotiated extension defines a meaning for them, any
 data frames on channel 0 with an opcode other than "binary frame"
 MUST _Fail the Physical Channel_ "Payload data" of a multiplex
 control frames consists of a zero or more multiplex control blocks,
 each defined as follows:

 0 1 2 3 4 5 6 7
 +---------------+
 | Objective |
 + - - - - - - - +
 : channel ID :
 + - - - - - - - +
 | (8-32) |
 +-----+---------+
 | Opc | Opcdata |
 +-----+---------+
 | Additional |
 + - - - - - - - +
 : data :
 + - - - - - - - +
 | |
 +---------------+

 Objective channel ID

 The channel ID of the logical channel objective to this operation.
 Encoding is the same as that in the extension data (designated as
 control channel)

 opc

 A multiplex control opcode as defined in Section 7.1.

 opcdata

 Data interpreted according to that opcode

 Additional data

 Zero or more bytes defined by that opcode

 If any incomplete multiplex control block is found, _Fail the
 Physical Channel_.

Tamplin & Yoshino Expires August 31, 2012 [Page 11]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

7.1. Multiplex Control Opcodes

 0 - AddChannel request (only from client)

 Create a new logical channel, exactly as if a new connection were
 received on a separate transport connection, except for the
 encoding of the headers. opcdata is interpreted as follows:

 3 4 5 6 7
 +-+---+---+
 |R|Enc|Len|
 +-+---+---+

 R is reserved for future use.

 Len is the number of bytes used to represent the length of
 following handshake data minus 1.

 Enc is an encoding scheme type:

 0 - uncompressed

 The handshake data that follow are uncompressed, and constitute
 the complete set of a Request-Line and headers that would have
 been sent on a WebSocket opening handshake

 1 - delta-encoded

 The handshake data that follow are delta-encoded, where any
 header that is not given is assumed to have the same value as
 that given on the client's opening handshake of the physical
 connection. The only exceptions are the Request-Line and the
 "Sec-WebSocket-Extensions" header. The Request-Line MUST be
 sent even if it's the same as one in the client's opening
 handshake for the physical channel. If the
 "Sec-WebSocket-Extensions" header is not given, its value is
 assumed to be the extension entry for this multiplexing
 extension and ones following that in the client's opening
 handshake of the physical channel. A header with an empty
 value means that header is not inherited from the initial
 connection. (TBD: this means that valueless headers cannot be
 encoded with this scheme).

 2-3 - reserved

 Reserved for future use

Tamplin & Yoshino Expires August 31, 2012 [Page 12]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

 The following n bytes, where n is the value of len inside opcdata
 plus 1, are an 8-32 bit length of the client's opening handshake
 for the new logical channel that follows, in network byte order.
 It's encoded as defined by the enc value in opcdata.

 The initial quota for the new logical channel is 0, so the client
 may not send any data for this connection until the AddChannel
 response is received.

 The server always responds with an AddChannel response, described
 below.

 1 - AddChannel response (only from server)

 opcdata is defined as follows:

 3 4 5 6 7
 +-----+---+
 |F|Enc|Len|
 +-----+---+

 F is true if this response indicates a rejection of AddChannel
 request.

 Len is the number of bytes used to represent the length of
 following handshake data minus 1.

 Enc is an encoding scheme type defined as in the AddChannel
 request (but replacing Request-Line with Response-Line).

 If F is set, then the server has rejected the AddChannel request
 and this SHOULD be treated exactly the same as if a separate
 connection was attempted and the opening handshake failed. Enc is
 ignored in this case, and the following n bytes, where n is the
 value of len inside opcdata plus 1, are an 8-32 bit length of the
 server's opening handshake for this logical channel that follows,
 in network byte order. It SHOULD be treated as the response to an
 HTTP Upgrade request for the request made by the AddChannel
 request, For example:

 HTTP/1.1 404 Not found

 404 message body...

 If F is not set, then the server has accepted the AddChannel
 request.

 The following n bytes, where n is the value of len inside opcdata

Tamplin & Yoshino Expires August 31, 2012 [Page 13]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

 plus 1, are an 8-32 bit length of the server's opening handshake
 for this logical channel that follows, in network byte order.
 It's encoded according to enc as defined in the AddChannel
 request, and the complete set of a Response-Line and headers after
 decoding is treated exactly as if it was received in response to a
 client's opening handshake on a separate connection. If the
 server's opening handshake is validated, the client MUST take this
 as _The WebSocket Connection is Established_.

 2 - FlowControl

 opcdata is defined as follows:

 3 4 5 6 7
 +-----+---+
 | RSV |Len|
 +-----+---+

 RSV is reserved for future use.

 Len is the number of bytes used to represent the number of bytes
 to be added to the quota minus 1.

 The following n bytes, treated as an unsigned integer in network
 byte order, is added to the quota of the number of bytes the
 receiver can have outstanding towards the sender of the
 FlowControl message. (TBD: is it worth having some non-linear
 encoding to reduce the average bits required to represent these
 values?)

 3 - DropChannel

 DropChannel is used to close a logical channel for both error
 cases and normal cases.

 3 4 5 6 7
 +-+---+---+
 |R|RSV|Len|
 +-+---+---+

 If R is set, it means that this DropChannel control block was sent
 due to _Fail the Logical Channel_. If R is unset, it means that
 this DropChannel control block was sent due to _Close the Logical
 Channel_.

 RSV is reserved for future use.

Tamplin & Yoshino Expires August 31, 2012 [Page 14]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

 Len is the number of bytes used to represent the length of
 following reason data minus 1.

 The following n bytes, where n is the value of len inside opcdata
 plus 1, are an 8-32 bit length of the DropChannel reason string in
 network byte order.

 When an endpoint received DropChannel, the endpoint MUST remove
 the logical channel and the application instance that used the
 logical channel MUST treat this as closure of underlying
 transport.

 4-7 - reserved

 Reserved for future use (TBD: do we need some support for
 quiescence?)

Tamplin & Yoshino Expires August 31, 2012 [Page 15]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

8. Examples

 This section is non-normative.

 The examples below assume the handshake has already completed and the
 x-google-mux extension was negotiated.

 01 06 01 "Hello" 81 04 02 "bye" 80 07 01 " world"

 This is a fragmented text message of "Hello world" on channel 1
 interleaved with a text message of "bye" on channel 2. Note that
 the sequence of opcodes/FIN bits cannot be understood without
 considering the channel ID of each frame.

Tamplin & Yoshino Expires August 31, 2012 [Page 16]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

9. Client Behavior

 When a client is asked to _Establish a WebSocket Connection_ by some
 WebSocket application instance, it MAY choose to reuse an existing
 WebSocket connection if all of the following are true:

 o the multiplexing extension was successfully negotiated on that
 connection

 o the scheme portions of the URIs match exactly

 o the host portions of the URIs either match exactly or resolve to
 the same IP address (TBD: consider DNS rebind attacks)

 o the port portions of the URIs (either explicit or implied by the
 scheme) match exactly

 o the connection has an availablle logical channel ID

 If the client chooses to reuse an existing multiplexed connection, it
 sends an AddChannel request as described above. If the AddChannel
 request is accepted, WebSocket frames may be sent over that channel
 as normal. If the server rejects the AddChannel, the client SHOULD
 attempt to open a new physical WebSocket connection (for example, in
 a shared hosting environment a server may not be prepared to
 multiplex connections from different customers despite having a
 single IP address for them).

Tamplin & Yoshino Expires August 31, 2012 [Page 17]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

10. Buffering

 There will be lots of small frames sent in this protocol
 (particularly replenishing send quotas), so a sender SHOULD attempt
 to aggregate multiplex control blocks into larger WebSocket frames.
 For data frames, a sender also SHOULD attempt to aggregate fragments
 into one packet of the underlying transport. However, care must be
 taken to avoid introducing excessive latency - the exact heuristics
 for delaying in order to aggregate blocks is TBD.

Tamplin & Yoshino Expires August 31, 2012 [Page 18]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

11. Fairness

 A multiplexing implementation MUST ensure reasonable fairness among
 the logical channels. This is accomplished in several ways:

 Receiver side

 o The receiver MAY limit the other peer's send quota of a logical
 channel by not replenishing the send quota to make sure that any
 logical channel cannot dominate its buffer space on the sender.

 o Send quota for one logical channel SHOULD be determined
 considering the processing capacity (buffer size, processing
 power, throughput, etc.) of that logical channel. For example,
 when a logical channel with excess load cannot drain data from the
 connection smoothly, the other logical channels get stuck even
 when they have room of processing capacity. Unless there's
 special need to give such a big quota for the channel, such
 condition just makes overall performance low.

 Sender side

 o The sender MUST use a fair mechanism for selecting which logical
 channel's data to send in the next WebSocket frame. Simple
 implementations may choose a round-robin scheduler, while more
 advanced implementations may adjust priority based on the amount
 or frequency of data sent by each logical channel.

 o The sender MUST fragment a message into smaller frames when it's
 too big so that that logical channel will occupy the connection
 and the other logical channels get stuck for long time.

 o Logical channel frames that are sent SHOULD be limited in size
 (such as by refragmenting) when there is contention for the
 physical channel to minimize head-of-line blocking

Tamplin & Yoshino Expires August 31, 2012 [Page 19]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

12. Proxies

 Proxies which do not multiplex/demultiplex are not affected by the
 presence of this extension -- they simply process WebSocket frames as
 usual. Proxies which filter or monitor WebSocket traffic will need
 to understand the multiplexing extension in order to extract the data
 from logical connections or to terminate individual logical
 connections when policy is violated. Proxies which actively
 multiplex connections or demultiplex them (for example, a mobile
 network might have a proxy which aggregates WebSocket connections at
 a single cell to conserve bandwidth to the main gateway) will require
 additional configuration (perhaps including the client) that is
 outside the scope of this document.

Tamplin & Yoshino Expires August 31, 2012 [Page 20]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

13. Nesting

 TBD: Should we allow nesting of multiplexed channels, or should we
 require that an intermediary multiplexing channels flatten it? The
 advantage of nesting is it is conceptually cleaner and less work for
 an intermediary, while the disadvantage is that flow control messages
 will get amplified by nesting and the ultimate server's job is a bit
 more complicated to keep a tree of channel mappings.

Tamplin & Yoshino Expires August 31, 2012 [Page 21]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

14. Timeout

 When all the logical channels are closed, each endpoint MAY "Start
 the WebSocket Closing Handshake" on the physical connection. Such
 "Start the WebSocket Closing Handshake" operation SHOULD be delayed
 assuming the physical channel may be reused after some idle period.

Tamplin & Yoshino Expires August 31, 2012 [Page 22]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

15. Close the Logical Channel

 To _Close the Logical Channel_, an endpoint MUST send a DropChannel
 multiplex control block with R bit unset. The endpoint MAY provide
 the reason of closure in the DropChannel block.

Tamplin & Yoshino Expires August 31, 2012 [Page 23]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

16. Fail the Logical Channel

 To _Fail the Logical Channel_, an endpoint MUST send a DropChannel
 multiplex control block with R bit set. The endpoint MAY provide the
 reason of failure in the DropChannel block.

Tamplin & Yoshino Expires August 31, 2012 [Page 24]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

17. Fail the Physical Channel

 To _Fail the Physical Channel_, an endpoint MUST send a DropChannel
 multiplex control block with objective channel ID of 0, and then
 Fail the WebSocket Connection on the physical channel with status
 code of 1002 (TBD).

Tamplin & Yoshino Expires August 31, 2012 [Page 25]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

18. Handling Operations On Logical Channel

 When an endpoint is asked to perform any operation defined in the
 WebSocket Protocol except for _Close the WebSocket Connection_ by
 some application instance, it MUST perform it on the corresponding
 logical channel.

 Any event on a logical channel except for _The WebSocket Connection
 is Closed_, MUST be taken as one for the corresponding application
 instance.

 When an endpoint is asked to do _Close the WebSocket Connection_ by
 some application instance, it MUST perform _Close the Logical
 Channel_ on the corresponding logical channel.

 When a DropChannel is received and the logical channel hasn't yet
 received DropChannel before that, it MUST be taken as _The WebSocket
 Connection is Closed_ event for the corresponding application
 instance.

Tamplin & Yoshino Expires August 31, 2012 [Page 26]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

19. Security Considerations

 To protect a server from denial-of-service attack, implementation
 SHOULD have a way to limit the number of concurrent logical channels.

 TBD

Tamplin & Yoshino Expires August 31, 2012 [Page 27]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

20. IANA Considerations

 This specification is registering a value of the Sec-WebSocket-
 Extension header field in accordance with Section 11.4 of the
 WebSocket protocol [RFC6455] as follows:

 Extension Identifier

 mux

 Extension Common Name

 Mulplexing Extension for WebSockets

 Extension Definition

 This document [draft-tamplin-hybi-google-mux] defines the mux
 extension.

 Known Incompatible Extensions

 None

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/draft-tamplin-hybi-google-mux

Tamplin & Yoshino Expires August 31, 2012 [Page 28]

Internet-Draft A Multiplexing Extension for WebSockets February 2012

21. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

Tamplin & Yoshino Expires August 31, 2012 [Page 29]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455

Internet-Draft A Multiplexing Extension for WebSockets February 2012

Authors' Addresses

 John A. Tamplin
 Google, Inc.

 Email: jat@google.com

 Takeshi Yoshino
 Google, Inc.

 Email: tyoshino@google.com

Tamplin & Yoshino Expires August 31, 2012 [Page 30]

