
Network Working Group W. Tarreau
Internet-Draft Exceliance
Expires: September 30, 2012 A. Jeffries
 Treehouse Networks Ltd.
 A. de Croy
 Qbik New Zealand Ltd.
 P-H. Kamp
 Varnish Cache Project
 March 29, 2012

 Proposal for a Network-Friendly HTTP Upgrade
 draft-tarreau-httpbis-network-friendly-00

Abstract

 This document proposes an upgrade to HTTP messaging which aims at
 being faster, more robust and more friendly to mobile networks than
 the current version, while retaining the same semantics and offering
 a high enough compatibility level to make it possible to implement
 highly efficient gateways between existing implementations and this
 presently described version, thus offering a smooth upgrade path for
 legacy applications.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 30, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/pdf/bcp78

Tarreau, et al. Expires September 30, 2012 [Page 1]

Internet-Draft Proposal for HTTP/2.0 March 2012

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Background . 3
 1.2. Improvements . 4
 2. Principles of operation 4
 2.1. Frame encoding . 5
 2.1.1. Request Frame (frame type = 2) 7
 2.1.2. Status Frame (frame type = 3) 8
 2.1.3. Entity Frame (frame types = 4..7) 9
 2.1.4. Abort Frame (frame type = 9) 12
 2.1.5. Header fields encoding 12
 2.2. Grouping headers . 13
 2.3. Sending Requests . 16
 3. Connection Setup . 16
 4. Improving the handshake to save bandwidth 17
 5. Improving the handshake to save time 18
 6. Directions for future work (TBD) 19
 7. IANA Considerations . 20
 8. Acknowledgements . 20
 9. Change log [RFC Editor: Please remove] 20
 10. References . 20
 10.1. Normative References 20
 10.2. Informative References 20
 Appendix A. Analysis of header field occurrences 21
 Appendix B. Analysis of header field length 22
 Authors' Addresses . 22

http://trustee.ietf.org/license-info

Tarreau, et al. Expires September 30, 2012 [Page 2]

Internet-Draft Proposal for HTTP/2.0 March 2012

1. Introduction

 HTTP/1.1 relies on a base designed 15 years ago for use in a context
 which has significantly evolved over the years. Applications have
 become mostly stateful with sessions spanning over multiple
 connections. Network intermediaries have been installed everywhere
 between clients and servers for various purposes ranging from caching
 and filtering to load-balancing and off-loading. Enterprise networks
 rely on HTTP for almost all inter-server communications. Mobile
 networks are becoming prevalent in HTTP traffic, and at the same time
 they suffer from important constraints imposed by the medium, such as
 a higher latency and a higher loss rate than wired networks. HTTP
 itself is a very verbose protocol which magnifies issues specific to
 these environments. Web usage has changed, with social networks
 connecting millions of people and resulting in some sites having to
 deal with hundreds of thousands of concurrent connections, and front
 end components having to forward incoming requests to the proper
 server as quickly as possible.

 Economics have changed too, making it attractive for some groups to
 attack business-critical sites. DDoS authors rely on the ratio
 between the cost of processing traffic for their victim versus the
 cost of building the attack. HTTP has inherited 15 years of
 improvements and total backwards compatibility with the original
 design, making it hard to parse and process, with a number of
 ambiguous situations left to the implementation's choice. Current
 model's corner cases with its moderately high parsing cost
 contributes to the success of these attacks by making it quite
 expensive for server-side components to ignore undesired requests.

1.1. Background

 Many internet users rely on asymmetric links to connect to the net
 (POTS, ADSL, HSPA, ...). Downstream to upstream ratios of 4:1 are
 quite common, sometimes reaching high figures like 20:1 or even more
 in ADSL2+ or HSDPA.

 HTTP relies on header-based messages in both directions, with bodies
 more often in the response messages than in request messages,
 resulting in the upstream traffic being mostly composed of headers.
 Most header field names and values are repeated unchanged over
 multiple requests or responses from the same sender.

 For historical reasons, request headers are much larger than response
 headers. The User-Agent and Referer header fields usually take a
 significant size, and cookies can be so large that some sites prefer
 to register a separate domain for statics to save the browser from
 sending them when fetching static objects.

Tarreau, et al. Expires September 30, 2012 [Page 3]

Internet-Draft Proposal for HTTP/2.0 March 2012

 The one-request-at-a-time model is not suited at all to high BDP
 links such as the ones used in mobile environments. The only way to
 fill at least one direction of the link bandwidth on high latency
 links such as HSDPA is to fetch many objects in parallel. Pipelining
 enables this but is not supported by all servers, so user agents are
 often configured to use a large number of concurrent connections
 instead in order to parallelize objects retrieval, wasting bandwidth
 with payload-less TCP packets, wasting server resources, and taking
 more time to converge to the optimal CWND.

 Many sites involve a large number of small objects to compose a page,
 typically smaller than 2 kB ([WebMetrics]), which make it hard to
 fill the downstream link before filling a smaller upstream even when
 pipelining is used.

 Still, the shortcomings above are probably transient. With HSPA+
 reaching 168 Mbps downstream and 20 Mbps upstream in 3GPP-Rel10
 ([4gamericas]), and with Google's advice of running TCP stacks with
 INITCWD=10, it seems reasonable to expect that request header size on
 the wire will not remain the limiting factor forever, which implies
 that reducing the number of round trips and header processing costs
 will become more important than optimizing the network usage
 reduction alone.

1.2. Improvements

 This proposal focuses on four improvements over HTTP/1.1 :
 - Binary encoding of headers fields : header field names are
 encoded and their sizes advertised to speed up lookup

 - Grouping of common headers fields : a section defines all header
 fields common to several subsequent messages, avoiding repetition
 - Request and response multiplexing : requests and responses may
 be delivered in parallel and out of order
 - Layering model : more friendly to intermediaries, saves header
 field lookups and memory copies

 Backwards compatibility is an absolute requirement so that gateways
 can be built to present HTTP/1.1 servers to the world with the new
 protocol version. This should become even more obvious at mobile
 operators where it is likely that gateways will present the whole
 HTTP/1.1 internet to mobile users in HTTP/2.0. Therefore, semantics
 must not be affected.

2. Principles of operation

 This draft proposes a mechanism to exchange messages in parallel over
 an established bidirectional connection with support for out of order

Tarreau, et al. Expires September 30, 2012 [Page 4]

Internet-Draft Proposal for HTTP/2.0 March 2012

 processing and delivery.

 In order for messages to flow in both directions out of order, some
 delimiters are needed. Thus, the protocol is a stream of frames
 which can be of the following types :
 - Transport Frame : this frame is only allowed once in each
 direction and advertises a set of header fields that the sender
 knows are invariant for this connection and that must be
 considered present for all messages passing over that connection
 - Common Frame : this frame may appear as often as needed and
 advertises sets of header fields that the sender thins will be
 common to several upcoming messages and are worth advertising only
 once
 - Message Frame : this frame holds a request or response message
 with message-specific header fields but without any message body
 - Entity frame : this frame carries all or part of a message body
 - Control frame : various control frames such as Ping/Pong/Pause/
 Abort/Close are planned but not described here yet (TBD)

 Frames which are part of the same message will generally include the
 reference to the request which initiated the frame, which simply
 corresponds to the request arrival order over the connection. This

 is particularly important since responses may appear in any order.

 If we note 'T', 'C', 'Mx' and 'Ex' the Transport Frame, Common Frame,
 Message Frame number 'x' and Entity Frame number 'x', the stream
 between a user agent (UA) and an origin server (O) could be
 represented like this :

 requests > E4 M4 C M3 M2 M1 C T
 UA ======================================= O
 T C M1 E1 M3 C M2 M4 E2 E3 E4 E3 E3 < responses

 In the diagram above, the client has sent 4 requests and the server
 has responded to all of them in a slightly different order and with
 some payload interleaved. In general, over a connection, there will
 be in each direction zero or one Transport Frame, zero or a few
 Common Frames, one or more Message Frames, and zero or more Entity
 Frames.

2.1. Frame encoding

 NOTE: the proposed encoding is a work in progress and subject to
 change

 Frames use reasonably low overhead. Some frames will need to
 indicate a request number, while others won't. All frames start with
 a frame type octet indicating the frame type and the HTTP version.

Tarreau, et al. Expires September 30, 2012 [Page 5]

Internet-Draft Proposal for HTTP/2.0 March 2012

 Frame types between 0 and 31 are standard frames and have their own
 format. Frames types 32 to 63 are extension frames which all follow
 the same unambiguous format. Such frames are not described here and
 are left for future work or may even be dropped if considered
 unneeded.

 In order to associate frames to a given request, response frames and
 Entity frames will include a 16-bit request number. The request
 number correspond to the arrival order of the request over the
 connection and automatically wraps past 2^16, meaning that no more
 than 65536 outstanding requests are supported over a single
 connection. In practice this should be more than enough considering
 that :
 1. current HTTP implementations only support one outstanding
 request;

 2. TCP congestion and losses affect all requests at the same
 time, so it is unlikely that browsers will push more than a few
 hundreds requests in parallel.

 The two higher bits of the frame type octet indicate the HTTP
 version, and the lower 6 bits indicate the frame type :

 0 1 2 3 4 5 6 7
 +---+------------+
 | V | frame-type |
 +---+------------+

 V stands for the HTTP version. Possible values for these 2 bits are:
 - 00: HTTP/1.0
 - 01: HTTP/1.1
 - 10: HTTP/2.0
 - 11: other version
 The frame type is defined below :

Tarreau, et al. Expires September 30, 2012 [Page 6]

Internet-Draft Proposal for HTTP/2.0 March 2012

 frame = frame-type frame-body
 = %x00 tra-frame ; Transport Frame
 / %x01 com-frame ; Common Frame
 / %x02 req-frame ; Request Frame
 / %x03 sts-frame ; Status Frame
 / %x04 sef-frame ; Small Entity Frame
 / %x05 mef-frame ; Medium Entity Frame
 / %x06 lef-frame ; Large Entity Frame

 / %x07 hef-frame ; Huge Entity Frame
 / %x08 trl-frame ; Trailers Frame
 / %x09 abt-frame ; Abort Frame
 / %x0A-1F ; reserved frame (control etc...)
 / %x20-3F ext-frame ; extension frame

 tra-frame = header-list ; Transport Frame
 com-frame = header-list ; Common Frame
 trl-frame = header-list ; Trailers Frame
 ext-frame = frame-len opaque ; extension frame
 frame-len = 4*OCTETS ; 32-bit frame length encoding

2.1.1. Request Frame (frame type = 2)

 The Request Frame is a Message Frame composed of a bit indicating if
 an Entity Frame is expected for this request, a method, a URI and an
 optional header list.

 0 1 2 3 4 5 6 7
 +-+-+---+-------+
 |E|M|0 0| METH |
 +-+-+---+-------+
 | optional-meth |
 | (0-16) |
 +---------------+
 | length-prefix |
 | (1-2) |
 +---------------+
 | URI (1-32767) |
 +---------------+
 | header-list |
 | (variable) |
 +---------------+

 - E : Entity is present. One or more Entity Frames are expected
 if this bit is 1, while 0 indicates no entity is attached to this
 request.
 - M :

Tarreau, et al. Expires September 30, 2012 [Page 7]

Internet-Draft Proposal for HTTP/2.0 March 2012

 0: METH contains the method length minus 1, between 1 and 16

 bytes, and the method follows in the optional-meth field
 1: METH contains a method number among the following values and
 no optional-meth field is provided :
 0: OPTIONS
 1: GET
 2: HEAD
 3: POST
 4: PUT
 5: DELETE
 6: TRACE
 7: CONNECT
 other: TBD
 - optional-meth: this is the method written in plain text then
 M=0.
 - length-prefix: this is the number of octets representing the
 request URI encoded as a 15-bit quantity between 0 and 32767 on
 either 1 or 2 octets, using the variable length encoding described
 in the header field encoding section.
 - URI: this is the request URI, it is of exactly length-prefix
 octets
 - header-list: this is the encoded list of headers specific to
 this request, see below.

 In many cases, this frame alone will be enough to send a complete
 request, which will then be as small as just a frame-type octet
 followed by 1 byte for the method, one byte for the URI length, the
 URI itself and the null byte to end the header list. This sums up to
 the URI length plus 4 bytes.

2.1.2. Status Frame (frame type = 3)

 The Status Frame is composed of a bit indicating if an Entity Frame
 is expected for this response, a bit indicating if this response is a
 final response or an interim response, a status and a request number.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-------+-------------------+
 |E|F|0 0 0 0| Status (10) |
 +-+-+-------+-------------------+
 | R (16) |
 +-------------------------------+
 | header-list (variable) |
 +-------------------------------+

Tarreau, et al. Expires September 30, 2012 [Page 8]

Internet-Draft Proposal for HTTP/2.0 March 2012

 - E : Entity present. One or more Entity Frames are expected if
 this bit is 1. 0 indicates no entity is attached to this response.
 - F : Final response. All responses except those with status 1xx
 are final and have this bit set. Responses 1xx are not final and
 have this bit cleared.
 - Status : This is the HTTP status encoded over 10 bits.
 - R : this is the associated request number encoded on 16 bits.
 - header-list: this is the encoded list of header fields specific
 to this response, see below

2.1.3. Entity Frame (frame types = 4..7)

 The Entity Frame is composed only of payload which in principle is
 very comparable chunked encoding. The payload length is encoded on a
 variable size so for this we have 4 types of Entity Frames which are
 totally similar except for the data length encoding :
 - Small frames : length is encoded on 6 bits (64 bytes max).
 These frames are useful for uploading small contents such as
 credentials, as well as to send an empty final frame.
 - Medium frames : the length is encoded on 22 bits (4 MB max).
 These will probably be the most common ones.
 - Large frames : the length is encoded on 32 bits (4 GB max).
 These ones might also be very common.
 - Huge frames : the length is encoded on 64 bits (18 EB max).
 These ones will probably only be used in CDN environments where
 use of sendfile() is desirable for very large files, when
 multiplexing is not involved.

 An entity length contains a bit indicating if more Entity Frames are
 expected, a bit indicating if a Trailers Frame is expected, a length,
 a request number, and data.

2.1.3.1. Small Entity Frame (frame type = 4)

 This is the smallest Entity Frame, which can be used to transfer
 between 0 and 63 bytes of payload and can be as small as one single
 byte (0).

 0 1 2 3 4 5 6 7
 +-+-+-----------+
 |E|T| Length (6)|
 +-+-+-----------+
 | R |
 | (16) |
 +---------------+
 | DATA |

 +---------------+

Tarreau, et al. Expires September 30, 2012 [Page 9]

Internet-Draft Proposal for HTTP/2.0 March 2012

 - E : More Entity Frames present. One or more Entity Frames are
 expected if this bit is 1, while 0 indicates this is the last
 Entity Frame for this request number.
 - T : 1 if a Trailers Frame is expected, otherwise zero.
 - Length : this is the length of the entity data in octets,
 encoded on 6 bits.
 - R : this is the associated request number encoded on 16 bits.
 - DATA (0..Length bytes) : entity payload.

2.1.3.2. Medium Entity Frame (frame type = 5)

 This frame type combines the small length field with 16 more bits to
 encode up to 22 bits of length.

 0 1 2 3 4 5 6 7
 +-+-+-----------+
 |E|T| Length ...|
 +-+-+-----------+
 | ... Length |
 | (22) |
 +---------------+
 | R |
 | (16) |
 +---------------+
 | DATA |
 +---------------+

 - E : More Entity Frames present. One or more Entity Frames are
 expected if this bit is 1, while 0 indicates this is the last
 Entity Frame for this request number.
 - T : 1 if a Trailers Frame is expected, otherwise zero.
 - Length : this is the length of the entity data in octets,
 encoded on 22 bits, with the 6 higher offset bits in the first
 octet.
 - R : this is the associated request number encoded on 16 bits.
 - DATA (0..Length bytes) : entity payload.

2.1.3.3. Large Entity Frame (frame type = 6)

 This frame type only uses a 32-bit length field.

Tarreau, et al. Expires September 30, 2012 [Page 10]

Internet-Draft Proposal for HTTP/2.0 March 2012

 0 1 2 3 4 5 6 7
 +-+-+-----------+
 |E|T| 000000 |
 +-+-+-----------+
 | Length |
 : (32) :
 +---------------+
 | R |
 | (16) |
 +---------------+
 | DATA |
 +---------------+

 - E : More Entity Frames present. One or more Entity Frames are
 expected if this bit is 1, while 0 indicates this is the last
 Entity Frame for this request number.
 - T : 1 if a Trailers Frame is expected, otherwise zero.
 - Length : this is the length of the entity data in octets, data
 encoded on 32 bits.
 - R : this is the associated request number encoded on 16 bits.
 - DATA (0..Length bytes) : entity payload.

2.1.3.4. Huge Entity Frame (frame type = 7)

 This is the largest Entity Frame, used to code up to 64-bit lengths.

 0 1 2 3 4 5 6 7
 +-+-+-----------+
 |E|T| 000000 |
 +-+-+-----------+
 | Length |
 : (64) :

 +---------------+
 | R |
 | (16) |
 +---------------+
 | DATA |
 +---------------+

 - E : More Entity Frames present. One or more Entity Frames are
 expected if this bit is 1, while 0 indicates this is the last
 Entity Frame for this request number.
 - T : 1 if a Trailers Frame is expected, otherwise zero.
 - Length : this is the length of the entity data in octets,
 encoded on 64 bits.
 - R : this is the associated request number encoded on 16 bits.

Tarreau, et al. Expires September 30, 2012 [Page 11]

Internet-Draft Proposal for HTTP/2.0 March 2012

 - DATA (0..Length bytes) : entity payload.

2.1.4. Abort Frame (frame type = 9)

 The Abort Frame is composed of a status and a request number. It is
 returned by a server if an error caused the request to be aborted in
 the middle of a transfer. It may also be emitted by a client which
 wishes to abort a transfer (either download or upload) without
 breaking the connection. The receiver of such a frame must
 immediately stop any communication with this request number and not
 expect any further data for this request number in the same
 direction. The connection is not affected and other requests
 continue their normal work.

 TBD: it seems to make sense to have an ACK frame (or maybe respond
 with an ABRT frame) for this frame in case of a client abort so that
 the client knows the server has really stopped sending anything for
 this request.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-----------+-------------------+
 |0 0 0 0 0 0| Status (10) |
 +-----------+-------------------+
 | R (16) |

 +-------------------------------+

 - Status : This is the HTTP status encoded over 10 bits in case of
 a server-initiated abort. TBD: would this be useful to let a
 client tell the server what it wants to abort ? Maybe
 intermediaries could tell servers the client is gone.
 - R : this is the associated request number encoded on 16 bits.

2.1.5. Header fields encoding

 Header fields have two parts, one which is the field-name and one
 which is the field-value. A header-list is defined as a sequence of
 header fields terminated by and end-of-headers tag (%x00).

 Based on the observations from Appendix A, the current proposal
 suggests to encode header field names either as a registered well-
 known field-name identifier, or as a 7-bit name length followed by
 the header's name. This operation will permit to reduce up to 127
 header names to one single byte each. For optimal efficiency, the
 assignment of header names to entries has to be done based on wider
 analysis. It is suggested that no more than half of the possible
 entries are assigned, in order to leave room for newer headers, or
 for dynamically assigned header fields.

Tarreau, et al. Expires September 30, 2012 [Page 12]

Internet-Draft Proposal for HTTP/2.0 March 2012

 In order to support larger field values, the field-value is encoded
 as a variable sized length-prefix followed by a value.

 header-list = *(header-field) end-of-hdr
 header-field = field-name field-value
 field-name = common-hdr / rare-hdr / rsvd-hdr
 field-value = length-prefix *(octet)
 rare-hdr = hdr-len token ; token is [hdr-len] octets
 hdr-len = %x01-7F ; header names may be up to 127 bytes long
 common-hdr = %x80-FE ; 127 possible header names
 rsvd-hdr = %xFF ; for future extensions if needed.
 end-of-hdr = %x00 ; this was the last header.

 The length-prefix is used to efficiently encode a length which most
 of the time is small but sometimes needs to be large. The principle
 is that small lengths between 0 and 127 are encoded on a single
 octet, and lengths between 128 and 32727 are encoded on two octets.
 (TBD: decide if we should encode 128 to 32895 instead). This is

 appropriate for field-values and for the request-URI :

 0 1 2 3 4 5 6 7
 +-+-------------+
 |0| LENGTH(7) |
 +-+-------------+

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-----------------------------+
 |1| LENGTH(15) |
 +-+-----------------------------+

2.2. Grouping headers

 Observations from Appendix B suggest that it is worth grouping
 headers for multiple consecutive messages over a single connection.
 Some of these headers will be connection-specific and should be
 common to all messages transported over the connection, while other
 ones will be common to a group of messages.

 This proposal thus introduces the notion of sections to communicate
 header fields. These sections have a different lifetime. They are
 only valid for a hop-by-hop connection, and have no end-to-end
 meaning. The header fields will be split into three sections :
 - Transport Header Fields
 - Common Header Fields
 - Message Header Fields

 The Transport Header Fields section holds all headers fields that are

Tarreau, et al. Expires September 30, 2012 [Page 13]

Internet-Draft Proposal for HTTP/2.0 March 2012

 specific to the connection and invariant over all the connection.
 These headers are transmitted in a Transport Frame only once at the
 beginning of the connection and never after that. The recipient of
 any message always considers the Transport Header Fields when parsing
 a message coming over that connection. While a user agent may use
 this section to present a number of invariant header fields such as
 the User-Agent, Accept or Host, intermediaries which are able to
 multiplex requests over a single connection will probably not use it
 much, maybe only for rare constant header fields such as Via, or even
 Host if the connection was opened for a specific Host field value.
 It is important to note that since this header field section only

 applies to a hop-by-hop connection, only context-specific header
 fields will be there so all header fields present there must be
 considered after those of all other sections in order to maintain
 ordering (eg: chaining multiple Via fields).

 The Common Header Fields section holds a number of headers which are
 common for a number of subsequent requests, and may be updated at any
 time. These header fields are transmitted in a Common Frame. All
 headers fields contained in the Common Header Fields section are
 implicitly present in any subsequent message until the next Common
 Header Fields section is encountered, which voids and replaces any
 previous Common Header Fields section. Header fields eligible to
 this section are all those which are expected to appear multiple
 times over a connection, without necessarily being invariant. A user
 agent will likely use this section to send Cookie, a Referer or even
 Authentication credentials. A multiplexing intermediary may use this
 section when forwarding multiple requests at once from the same user
 agent, or to store almost invariant headers fields such as Host. All
 header fields present in this section must be considered after the
 Message Header Fields section and before the Transport Header Fields
 section.

 The Message Header Fields section represents all header fields that
 are attached to a given message (request, response, trailers...).
 The recipient of a message will reconstruct the original message
 headers by concatenating the Message Header Fields section, the last
 Common Header Fields section and the Transport Header Fields section.
 Respecting this order is important so that some hop-by-hop header
 fields are correctly appended last (for instance, Via or X-Forwarded-
 For).

 All these sections are proper to a connection only. Each hop is free
 to rearrange them as it likes for the other side connection if it
 estimates it is appropriate, provided that the resulting set of
 header fields remains the same once reassembled.

 Doing this is not only interesting for the sender which saves

Tarreau, et al. Expires September 30, 2012 [Page 14]

Internet-Draft Proposal for HTTP/2.0 March 2012

 upstream bandwidth, but also for the recipient which has to process
 much less header fields for each message. If an intermediary has to
 rewrite, insert or delete a header field which is in either the
 Transport or Common section, it only does so once, and not for every

 request or response. Common rewriting practices include rewriting
 the Host header field in requests and removing the Server header
 field from responses. Another example of CPU savings if gained by
 not having to perform more layer7 inspection than necessary. For
 instance, a front load balancer which selects the target server based
 on the Host header field alone might simply splice the client and the
 server connection together when it receives a Host header field from
 the client in the Transport Frame.

 Example of request path with a client, a load balancer and two
 servers. All connections are fresh new, both from the client to the
 LB, and the LB to the servers. Hence, all request numbers start at 0
 on each connection. TF, CF and RF designate the Transport Frame, the
 Common Frame and the Request Message Frame respectively.

 +-----+
 | C |
 +-----+
 /_____/
 | TF: Host="foo.example.com", UA="foo browser"
 | CF: Cookie="user=123"
 | RF: R=0, METH=GET, URI="/"
 | RF: R=1, METH=GET, URI="/css/style.css"
 | RF: R=2, METH=GET, URI="/js/menu.js"
 +------+------+
 | LB |
 +-+---------+-+
 | |
 +------------+ +-----------+
 | TF: Host="foo.example.com" | TF: Host="foo.example.com", Via="LB"
 | Via="LB" | RF: R=0, METH=GET, URI="/css/style.css",
 | RF: R=0, METH=GET, URI="/", | Cookie="123", UA
 | Cookie="123", UA | RF: R=1, METH=GET, URI="/js/menu.js",
 | | Cookie="123", UA
 +---+---+ +---+---+
 |dynamic| |static |
 +-------+ +-------+

 Here, the LB maps the request numbers between the connections :
 - C: Req #0 <=> dynamic: req #0
 - C: Req #1 <=> static: req #0
 - C: Req #2 <=> static: req #1

Tarreau, et al. Expires September 30, 2012 [Page 15]

Internet-Draft Proposal for HTTP/2.0 March 2012

2.3. Sending Requests

 A client wishing to send requests does not need to verify that the
 recipient accepts enough requests. It simply writes a new request
 message to the stream, which implicitly gets a new request number.
 If the recipient is not reading, the request will just wait somewhere
 along the path as it does with usual HTTP pipelining.

 If a client wishes to send a request with a body, it must not send
 multiple interleaved bodies from different requests unless it has
 verified that the recipient is willing to process them. Otherwise,
 it would be possible to enter a deadlock with interleaved partial
 bodies sent to a server which supports only one outstanding request
 at a time. The proper way to proceed is to send the first request
 without prior check, but if other request bodies have to be
 interleaved before the first request is complete, then the client
 must first make use of the Expect: 100-Continue header field and wait
 for the server to send the non-final 100 response corresponding to
 the same request, thus proving it is able to read multiple requests
 at once. In practice this is not an issue since clients sending
 multiple POSTs at once are not common.

 Note that this restriction does not apply to response bodies from the
 servers, as the servers will always respond to requests that have
 been received, so for each response, it is certain that there is a
 client listening.

3. Connection Setup

 The protocol is designed to operate over various stream-based
 bidirectional connections, and to be upgradable from HTTP/1.1,
 offering a smooth upgrade path to existing applications.

 A client wishing to use this protocol to communicate with an origin
 server for which the protocol support is unknown will send the first
 request in HTTP/1.1 format, with an additional Upgrade: HTTP/2.0
 header :

 GET / HTTP/1.1
 Host: www.example.com
 Connection: Upgrade
 Upgrade: HTTP/2.0
 ...

 If the server does not support the new protocol, it will simply
 respond to the client using HTTP/1.1 :

Tarreau, et al. Expires September 30, 2012 [Page 16]

Internet-Draft Proposal for HTTP/2.0 March 2012

 HTTP/1.1 200 OK
 Content-length: 243
 Content-type: text/html
 ...

 However, if the server supports the new protocol, it will first emit
 an interim response then will immediately respond with the final
 response in HTTP/2.0, just as if it had received the first request in
 HTTP/2.0 :

 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Upgrade: HTTP/2.0

 [tra-frame] [com-frame] [sts-frame] ...

4. Improving the handshake to save bandwidth

 In order to save network exchanges, two new hop-by-hop header fields
 could be registered :
 - Http2-Th : list of the headers fields to keep in the Transport
 Header Fields section after the Upgrade
 - Http2-Ch : list of the headers fields to keep in the Common
 Header Fields section after the Upgrade
 This way, a client could make the server keep various information
 such as the Host and User-Agent in the Transport Header Fields
 section and the Referer as a Common Header Fields section for next
 requests, so that only the request-uri has to be sent after the
 upgrade :

 GET / HTTP/1.1
 Host: www.example.com
 User-Agent: Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.9.1.16) Gecko/20101210 SeaMo
 Accept: text/css,*/*;q=0.1
 Accept-Language: en-us,en;q=0.5
 Accept-Encoding: gzip,deflate
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
 Referer: http://www.ietf.org/meeting/83/index.html
 Cookie: styleSheet=1

http://www.ietf.org/meeting/83/index.html

 Connection: Upgrade, Http2-Th, Http2-Ch
 Upgrade: HTTP/2.0
 Http2-Th: Host, User-Agent, Accept, Accept-Language, Accept-Encoding, Accept-Charset
 Http2-Ch: Referer, Cookie
 ...

Tarreau, et al. Expires September 30, 2012 [Page 17]

Internet-Draft Proposal for HTTP/2.0 March 2012

5. Improving the handshake to save time

 Some minimum testing suggests that many consecutive requests will
 only vary by the request-uri. This is the case for instance, for
 requests for static objects fetched from a same host. In this
 situation, the sender would like to benefit from HTTP pipelining/
 multiplexing without knowing whether the whole chain supports the
 protocol upgrade. The solution consists in enumerating the expected
 upcoming requests in a specific header field, that the recipient will
 decide to consider as individual requests sharing the same Common
 Header Fields section and Transport Headers Fields section.

 These additional requests will take number 1 and onwards. The
 recipient will just have to indicate in a header field of the
 handshake response the highest number of the pending requests its is
 willing to process. If the client does not receive this header field
 in the response handshake, then it knows that the next hop to the
 server does not support this optimization and it is free to send
 these requests individually once the handshake completes.

 For this we would register two more hop-by-hop headers fields, one
 for the request and one for the response :
 - Http2-Reqs : comma-delimited list of request-uri represented as
 quoted-strings.
 - Http2-Accepted-Reqs : integer number representing the number of
 the last accepted request for which a response message will be
 delivered

 Example :

Tarreau, et al. Expires September 30, 2012 [Page 18]

Internet-Draft Proposal for HTTP/2.0 March 2012

 GET / HTTP/1.1
 Host: www.example.com
 User-Agent: Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.9.1.16) Gecko/20101210 SeaMo
 Accept: text/css,*/*;q=0.1
 Accept-Language: en-us,en;q=0.5
 Accept-Encoding: gzip,deflate
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
 Referer: http://www.ietf.org/meeting/83/index.html
 Cookie: styleSheet=1
 Connection: Upgrade, Http2-Th, Http2-Ch, Http2-Reqs
 Upgrade: HTTP/2.0
 Http2-Th: Host, User-Agent, Accept, Accept-Language, Accept-Encoding, Accept-Charset
 Http2-Ch: Referer, Cookie
 Http2-Reqs: "/css/ietf.js", "/css/ietf.css", "/css/ietf4.css", "/css/ietf3.css"
 ...

 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Upgrade: HTTP/2.0
 Http2-Accepted-Reqs: 4

 [tra-frame] [com-frame] [sts-frame] ...

6. Directions for future work (TBD)

http://www.ietf.org/meeting/83/index.html

 This draft in its state currently lacks a number of things :
 - the frame encoding could be much better with some specific
 fields always at the same position (for instance, the request
 number).
 - date formats have not been discussed but are expensive to parse
 at the moment and cause issues with header folding due to the
 comma. A binary encoding of a single scalar (eg: epoch in
 milliseconds) would be much more suited.
 - multiple header occurrences might be better handled by having a
 repetition of the header value than by keeping the comma inside
 the header field value. Several options will have to be explored.
 - watch out other working groups (eg: hybi) to see how extensions
 may be efficiently added at a low cost (eg: per-frame compression,
 ...)
 - determine if some sets of features are more suited to the
 current most common usage (loading a web page in a graphical
 browser) than to some other usages such as interactive use of XHR,
 displaying widgets on a TV, forwarding a request between a load
 balancer and an origin server, or making one's backups online ;
 some of the SPDY experience will probably be useful here.

Tarreau, et al. Expires September 30, 2012 [Page 19]

Internet-Draft Proposal for HTTP/2.0 March 2012

 - identify what is needed to operate over datagram-based transport
 protocols such as UDP and if it is worth having a single protocol
 for all transports.
 - protocol handshake if another port is to be used.
 - use delta encoding for header updates ? Would this void the
 need for Transport Header Fields ?
 - replace "Host" with "Base" which would include a scheme ?

7. IANA Considerations

 The Upgrade field header value "HTTP/2.0" might require a IANA
 assignment.

8. Acknowledgements

 This document was produced using the xml2rfc tool [RFC2629].

https://datatracker.ietf.org/doc/pdf/rfc2629

9. Change log [RFC Editor: Please remove]

 draft-tarreau-httpbis-network-friendly-00: original version,
 2012-03-29.

10. References

10.1. Normative References

10.2. Informative References

 [4gamericas]
 "4G Mobile Broadband Evolution - 3GPP Release 10 and
 Beyond", 2011, <http://www.4gamericas.org/documents/
 4G%20Americas_3GPP_Rel-10_Beyond_2.1.11%20.pdf>.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

 [RFC2991] Thaler, D. and C. Hopps, "Multipath Issues in Unicast and
 Multicast Next-Hop Selection", RFC 2991, November 2000.

 [RFC4864] Van de Velde, G., Hain, T., Droms, R., Carpenter, B., and
 E. Klein, "Local Network Protection for IPv6", RFC 4864,
 May 2007.

 [RFC6296] Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix

Tarreau, et al. Expires September 30, 2012 [Page 20]

Internet-Draft Proposal for HTTP/2.0 March 2012

 Translation", RFC 6296, June 2011.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, November 2011.

 [WebMetrics]
 Ramachandran, S., "Let's make the web faster - Web
 metrics: Size and number of resources", 2010,
 <http://code.google.com/speed/articles/web-metrics.html>.

https://datatracker.ietf.org/doc/pdf/draft-tarreau-httpbis-network-friendly-00
http://www.4gamericas.org/documents/4G%20Americas_3GPP_Rel-10_Beyond_2.1.11%20.pdf
http://www.4gamericas.org/documents/4G%20Americas_3GPP_Rel-10_Beyond_2.1.11%20.pdf
https://datatracker.ietf.org/doc/pdf/rfc2629
https://datatracker.ietf.org/doc/pdf/rfc2991
https://datatracker.ietf.org/doc/pdf/rfc4864
https://datatracker.ietf.org/doc/pdf/rfc6296
https://datatracker.ietf.org/doc/pdf/rfc6438
http://code.google.com/speed/articles/web-metrics.html

Appendix A. Analysis of header field occurrences

 An analysis of 30797 requests received by a server located behind a
 load balancer indicates that a small set of headers is very common :
 101 different header names were found in requests
 9.6 headers on average were present in each request
 headers total 648 bytes per request on average
 4 header names were present in 100% of the requests (Host, User-
 Agent, Accept, X-Forwarded-For)
 4 header names were present in 94% of the requests (Accept-
 Language, Connection, Accept-Encoding, Referer)
 1 header name was present in 75% of the requests (Cookie)
 4 header names were present in more than 10% of the requests
 (Accept-Charset, UA-CPU, Keep-Alive, Cache-Control)
 3 header names were present in more than 5% of the requests (Via,
 If-Modified-Since, If-None-Match)
 The analysis of the responses was even comparable, with only 22
 different header names (one single site) :
 8.6 headers on average were present in each request
 headers total 257 bytes per request on average
 3 header names were present in 100% of the requests
 (Server,Date,Connection)
 2 header names were present in 97% of the requests (Content-
 Type,Content-Length)
 1 header name was present in 67% of the requests (Last-Modified)
 9 header names were present in more than 10% of the requests
 (ETag, Accept-Ranges, Expires, Cache-Control, Pragma, P3P, Vary,
 Content-Encoding, X-Pad)
 2 header names were present in more than 5% of the requests
 (Cache-Control, Set-Cookie)

 It is also worth noting that 40 different header names represent
 562532 of the 564043 header occurrences (99.73%). These header names
 alone are responsible for 175 bytes per request on average.

Tarreau, et al. Expires September 30, 2012 [Page 21]

Internet-Draft Proposal for HTTP/2.0 March 2012

Appendix B. Analysis of header field length

 The analysis above shows that many request headers are almost always
 identical. Among the 648 bytes per request, we can see that :
 The User-Agent header is sent with every request yet does not

 change. This header alone was responsible for 145 bytes on
 average per request.
 The Referer header is sent with every request, while it remains
 unchanged for 9.75 requests on average, sometimes with up to 38
 requests using the same. This header accounts for 91 bytes per
 request on average.
 The Cookie header is sent with 75% of the requests and only
 changes on average once every 9.6 such requests. It accounts for
 184 bytes per request.
 The Accept-Language, Accept-Encoding, Accept-Charset and Accept
 headers are constant across all requests and account for 121 bytes
 per request.
 The transport-specific headers such as Connection, Host,
 X-Forwarded-For and Keep-alive did not change for a given client.
 Together they account for 84 bytes per request on average.
 In the end, only If-Modified-Since and If-None-Match were changed
 at almost very request. These ones are found in 11% of the
 requests where they account for 47 bytes on average.

 The analysis of the responses showed that header values were even
 more constant, with only the following ones changing with almost
 every request :
 Content-Length (found in 94% of the responses)
 Last-Modified (found in 67% of the responses)
 ETag (found in 61% of the responses)

Authors' Addresses

 Willy Tarreau
 Exceliance
 R&D Produits reseau
 3 rue du petit Robinson
 78350 Jouy-en-Josas
 France

 Email: w@1wt.eu
 URI: http://www.exceliance.fr/

Tarreau, et al. Expires September 30, 2012 [Page 22]

Internet-Draft Proposal for HTTP/2.0 March 2012

http://www.exceliance.fr/

 Amos Jeffries
 c/- 130 Fox St
 Hamilton East
 Hamilton, 3216
 New Zealand

 Phone: +64 21 293 4049
 Email: amos@treenet.co.nz
 URI: http://treenet.co.nz/

 Adrien de Croy
 Qbik New Zealand Ltd.
 28 York St
 Parnell
 Auckland 1052
 New Zealand

 Email: adrien@qbik.com
 URI: http://www.wingate.com/

 Poul-Henning Kamp
 Herluf Trollesvej 3
 Slagelse, DK-4200
 Denmark

 Phone: +45 21 72 05 25
 Email: phk@varnish.org
 URI: http://varnish.org/

http://treenet.co.nz/
http://www.wingate.com/
http://varnish.org/

Tarreau, et al. Expires September 30, 2012 [Page 23]

