
Workgroup: Network Working Group

Internet-Draft: draft-templin-6man-omni-67

Published: 28 June 2022

Intended Status: Informational

Expires: 30 December 2022

Authors: F. L. Templin, Ed.

The Boeing Company

Transmission of IP Packets over Overlay Multilink Network (OMNI)

Interfaces

Abstract

Mobile nodes (e.g., aircraft of various configurations, terrestrial

vehicles, seagoing vessels, space systems, enterprise wireless

devices, pedestrians with cell phones, etc.) communicate with

networked correspondents over multiple access network data links and

configure mobile routers to connect end user networks. A multilink

virtual interface specification is presented that enables mobile

nodes to coordinate with a network-based mobility service and/or

with other mobile node peers. The virtual interface provides an

adaptation layer service that also applies for more static

deployments such as enterprise and home networks. This document

specifies the transmission of IP packets over Overlay Multilink

Network (OMNI) Interfaces.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Requirements

4. Overlay Multilink Network (OMNI) Interface Model

5. OMNI Interface Maximum Transmission Unit (MTU)

5.1. Jumbograms

5.2. IPv6 Parcels

6. The OMNI Adaptation Layer (OAL)

6.1. OAL Source Encapsulation and Fragmentation

6.2. OAL L2 Encapsulation and Re-Encapsulation

6.3. OAL L2 Decapsulation and Reassembly

6.4. OAL Header Compression

6.5. OAL-in-OAL Encapsulation

6.6. OAL Identification Window Maintenance

6.7. OAL Fragment Retransmission

6.8. OAL MTU Feedback Messaging

6.9. OAL Super-Packets

6.10. OAL Bubbles

6.11. OAL Requirements

6.12. OAL Fragmentation Security Implications

6.13. OMNI Hosts

6.14. IP Parcels

7. Frame Format

8. Link-Local Addresses (LLAs)

9. Unique-Local Addresses (ULAs)

10. Global Unicast Addresses (GUAs)

11. Node Identification

12. Address Mapping - Unicast

12.1. The OMNI Option

12.2. OMNI Sub-Options

12.2.1. Pad1

12.2.2. PadN

12.2.3. Neighbor Coordination

12.2.4. Interface Attributes

12.2.5. AERO Forwarding Parameters

12.2.6. Traffic Selector

12.2.7. Geo Coordinates

12.2.8. Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

Message

¶

https://trustee.ietf.org/license-info

12.2.9. Host Identity Protocol (HIP) Message

12.2.10. PIM-SM Message

12.2.11. Fragmentation Report (FRAGREP)

12.2.12. Node Identification

12.2.13. ICMPv6 Error

12.2.14. QUIC-TLS Message

12.2.15. Proxy/Server Departure

12.2.16. Sub-Type Extension

13. Address Mapping - Multicast

14. Multilink Conceptual Sending Algorithm

14.1. Multiple OMNI Interfaces

14.2. Client-Proxy/Server Loop Prevention

15. Router Discovery and Prefix Registration

15.1. Window Synchronization

15.2. Router Discovery in IP Multihop and IPv4-Only Networks

15.3. DHCPv6-based Prefix Registration

15.4. OMNI Link Extension

16. Secure Redirection

17. Proxy/Server Resilience

18. Detecting and Responding to Proxy/Server Failures

19. Transition Considerations

20. OMNI Interfaces on Open Internetworks

21. Time-Varying MNPs

22. (H)HITs and Temporary ULA (TLA)s

23. Address Selection

24. Error Messages

25. IANA Considerations

25.1. "Protocol Numbers" Registry

25.2. "IEEE 802 Numbers" Registry

25.3. "IPv4 Special-Purpose Address" Registry

25.4. "IPv6 Neighbor Discovery Option Formats" Registry

25.5. "Ethernet Numbers" Registry

25.6. "ICMPv6 Code Fields: Type 2 - Packet Too Big" Registry

25.7. "OMNI Option Sub-Type Values" (New Registry)

25.8. "OMNI Geo Coordinates Type Values" (New Registry)

25.9. "OMNI Node Identification ID-Type Values" (New Registry)

25.10. "OMNI Option Sub-Type Extension Values" (New Registry)

25.11. "OMNI RFC4380 UDP/IP Header Option" (New Registry)

25.12. "OMNI RFC6081 UDP/IP Trailer Option" (New Registry)

25.13. Additional Considerations

26. Security Considerations

27. Implementation Status

28. Document Updates

29. Acknowledgements

30. References

30.1. Normative References

30.2. Informative References

Appendix A. OAL Checksum Algorithm

Appendix B. IPv6 ND Message Authentication and Integrity

Appendix C. VDL Mode 2 Considerations

Appendix D. Client-Proxy/Server Isolation Through Link-Layer

Address Mapping

Appendix E. Change Log

Author's Address

1. Introduction

Mobile nodes (e.g., aircraft of various configurations, terrestrial

vehicles, seagoing vessels, space systems, enterprise wireless

devices, pedestrians with cellphones, etc.) configure mobile routers

with multiple interface connections to wireless and/or wired-line

data links. These data links may have diverse performance, cost and

availability properties that can change dynamically according to

mobility patterns, flight phases, proximity to infrastructure, etc.

The mobile router acts as a Client of a network-based Mobility

Service (MS) by configuring a virtual interface over its underlay

interface data link connections.

Each Client configures a virtual interface (termed the "Overlay

Multilink Network Interface (OMNI)") as a thin layer over its

underlay network interfaces (which may themselves connect to virtual

or physical links). The OMNI interface is therefore the only

interface abstraction exposed to the IP layer and behaves according

to the Non-Broadcast, Multiple Access (NBMA) interface principle,

while underlay interfaces appear as link layer communication

channels in the architecture. The OMNI interface internally employs

the "OMNI Adaptation Layer (OAL)" to ensure that original IP packets

are adapted to diverse underlay interfaces with heterogeneous

properties.

The OMNI interface connects to a virtual overlay known as the "OMNI

link". The OMNI link multinet service spans one or more

Internetworks that may include private-use infrastructures (e.g.,

enterprise networks) and/or the global public Internet itself.

Together, OMNI and the OAL provide the foundational elements

required to support the "6 M's of modern Internetworking",

including:

Multilink - a Client's ability to coordinate multiple diverse

underlay interfaces as a single logical unit (i.e., the OMNI

interface) to achieve the required communications performance

and reliability objectives.

Multinet - the ability to span the OMNI link over a segment

routing topology with multiple diverse administrative domain

network segments while maintaining seamless end-to-end

communications between mobile Clients and correspondents such

as air traffic controllers, fleet administrators, etc.

¶

¶

¶

1.

¶

2.

¶

Mobility - a Client's ability to change network points of

attachment (e.g., moving between wireless base stations) which

may result in an underlay interface address change, but without

disruptions to ongoing communication sessions with peers over

the OMNI link.

Multicast - the ability to send a single network transmission

that reaches multiple Clients belonging to the same interest

group, but without disturbing other Clients not subscribed to

the interest group.

Multihop - a mobile Client vehicle-to-vehicle relaying

capability useful when multiple forwarding hops between

vehicles may be necessary to "reach back" to an infrastructure

access point connection to the OMNI link.

MTU assurance - the ability to deliver packets of various

robust sizes between peers without loss due to a link size

restriction, and to dynamically adjust packets sizes to achieve

the optimal performance for each independent traffic flow.

Client OMNI interfaces interact with the MS and/or other OMNI nodes

through IPv6 Neighbor Discovery (ND) control message exchanges

[RFC4861]. The MS consists of a distributed set of service nodes

(including Proxy/Servers and other infrastructure elements) that

also configure OMNI interfaces. Automatic Extended Route

Optimization (AERO) in particular provides a companion MS compatible

with the OMNI architecture [I-D.templin-6man-aero]. AERO discusses

details of ND message based route optimization, mobility management,

and multinet traversal while the fundamental aspects of OMNI link

operation are discussed in this document.

Each OMNI interface provides a multilink nexus for exchanging

inbound and outbound traffic via selected underlay interface(s). The

IP layer sees the OMNI interface as a point of connection to the

OMNI link. Each OMNI link has one or more associated Mobility

Service Prefixes (MSPs), which are typically IP Global Unicast

Address (GUA) prefixes assigned to the link and from which Mobile

Network Prefixes (MNPs) are derived. If there are multiple OMNI

links, the IP layer will see multiple OMNI interfaces.

Each Client receives an MNP through IPv6 ND control message

exchanges with Proxy/Servers over Access Networks (ANETs) and/or

open Internetworks (INETs). The Client sub-delegates the MNP to

downstream-attached End-user Networks (ENETs) independently of the

underlay interfaces selected for data transport. The Client acts as

a fixed or mobile router on behalf of peers on its ENETs, and uses

OMNI interface control messaging to coordinate with Hosts, Proxy/

Servers and/or other Clients. The Client iterates its control

3.

¶

4.

¶

5.

¶

6.

¶

¶

¶

messaging over each of the OMNI interface's ANET/INET underlay

interfaces in order to register each interface with the MS (see

Section 15). The Client can also provide Proxy/Server-like services

for a recursively nested chain of other Clients located in

downstream-attached ENETs.

Clients may connect to multiple distinct OMNI links within the same

OMNI domain by configuring multiple OMNI interfaces, e.g., omni0,

omni1, omni2, etc. Each OMNI interface is configured over a set of

underlay interfaces and provides a nexus for Safety-Based Multilink

(SBM) operation. The IP layer applies SBM routing to select a

specific OMNI interface, then the selected OMNI interface applies

Performance-Based Multilink (PBM) internally to select appropriate

underlay interfaces. Applications select SBM topologies based on IP

layer Segment Routing [RFC8402], while each OMNI interface

orchestrates PBM internally based on OMNI layer Segment Routing.

OMNI provides a link model suitable for a wide range of use cases.

For example, the International Civil Aviation Organization (ICAO)

Working Group-I Mobility Subgroup is developing a future

Aeronautical Telecommunications Network with Internet Protocol

Services (ATN/IPS) and has issued a liaison statement requesting

IETF adoption [ATN] in support of ICAO Document 9896 [ATN-IPS]. The

IETF IP Wireless Access in Vehicular Environments (ipwave) working

group has further included problem statement and use case analysis

for OMNI in a document now in AD evaluation for RFC publication [I-

D.ietf-ipwave-vehicular-networking]. Still other communities of

interest include AEEC, RTCA Special Committee 228 (SC-228) and NASA

programs that examine commercial aviation, Urban Air Mobility (UAM)

and Unmanned Air Systems (UAS). Pedestrians with handheld devices

represent another large class of potential OMNI users.

This document specifies the transmission of IP packets and control

messages over OMNI interfaces. The operation of both IP protocol

versions (i.e., IPv4 [RFC0791] and IPv6 [RFC8200]) is specified as

the network layer data plane, while OMNI interfaces use IPv6 ND

messaging in the control plane independently of the data plane

protocol(s). OMNI interfaces also provide an OAL based on

encapsulation and fragmentation over heterogeneous underlay

interfaces as an adaptation sublayer between L3 and L2. Both OMNI

and the OAL are specified in detail throughout the remainder of this

document.

2. Terminology

The terminology in the normative references applies; especially, the

terms "link" and "interface" are the same as defined in the IPv6

[RFC8200] and IPv6 Neighbor Discovery (ND) [RFC4861] specifications.

Additionally, this document assumes the following IPv6 ND message

¶

¶

¶

¶

L2

L3

Adaptation layer

Access Network (ANET)

types: Router Solicitation (RS), Router Advertisement (RA), Neighbor

Solicitation (NS), Neighbor Advertisement (NA) and Redirect. Hosts,

Clients and Proxy/Servers that implement IPv6 ND maintain per-

neighbor state in Neighbor Cache Entries (NCEs). Each NCE is indexed

by the neighbor's network layer address(es) while the neighbor's OAL

encapsulation address provides context for Identification

verification.

The Protocol Constants defined in Section 10 of [RFC4861] are used

in their same format and meaning in this document. The terms "All-

Routers multicast", "All-Nodes multicast" and "Subnet-Router

anycast" are the same as defined in [RFC4291] (with Link-Local scope

assumed).

The term "IP" is used to refer collectively to either Internet

Protocol version (i.e., IPv4 [RFC0791] or IPv6 [RFC8200]) when a

specification at the layer in question applies equally to either

version.

The terms Host, Client and Proxy/Server are intentionally

capitalized to denote a node of that particular node type that also

configures an OMNI interface and engages the OMNI Adaptation Layer.

The following terms are defined within the scope of this document:

The Data Link layer in the OSI network model. Also known as

"layer-2", "link-layer", "sub-IP layer", etc.

The Network layer in the OSI network model. Also known as

"layer-3", "IP layer", etc.

A mid-layer that adapts L3 to a diverse collection of L2 underlay

interfaces and their encapsulations. (No layer number is

assigned, since numbering was an artifact of the legacy reference

model that need not carry forward in the modern architecture.)

The adaptation layer sees the upper layer as "L3" and sees all

lower layer encapsulations as "L2 encapsulations", which may

include UDP, IP and true link-layer (e.g., Ethernet, etc.)

headers.

a connected network region (e.g., an aviation radio access

network, satellite service provider network, cellular operator

network, WiFi network, etc.) that connects Clients to the

Mobility Service. Physical and/or data link level security is

assumed, and sometimes referred to as "protected spectrum".

Private enterprise networks and ground domain aviation service

¶

¶

¶

¶

¶

¶

¶

¶

Internetwork (INET)

End-user Network (ENET)

{A,I,E}NET interface

*NET

underlay interface

OMNI link

networks may provide multiple secured IP hops between the

Client's point of connection and the nearest Proxy/Server.

a connected network region with a coherent IP addressing plan

that provides transit forwarding services between ANETs and/or

OMNI nodes that coordinate with the Mobility Service over

unprotected media. Since physical and/or data link level security

cannot always be assumed, security must be applied by upper

layers if necessary. The global public Internet itself is an

example.

a simple or complex "downstream" network that travels with the

Client as a single logical unit. The ENET could be as simple as a

single link connecting a single Host, or as complex as a large

network with many links, routers, bridges and Hosts. The ENET

could also provide an "upstream" link in a recursively-descending

chain of additional Clients and ENETs. In this way, an ENET of an

upstream Client is seen as the ANET of a downstream Client.

a Client's attachment to a link in an {A,I,E}NET.

a "wildcard" term used when a given specification applies equally

to both ANET/INET cases. From the Client's perspective, *NET

interfaces are "upstream" interfaces that connect the Client to

the Mobility Service, while ENET interfaces are "downstream"

interfaces that the Client uses to connect downstream ENETs,

Hosts and/or other Clients.

an ANET/INET/ENET interface over which an OMNI interface is

configured. The OMNI interface is seen as a L3 interface by the

IP layer, and each underlay interface is seen as a L2 interface

by the OMNI interface. The underlay interface either connects

directly to the physical communications media or coordinates with

another node where the physical media is hosted.

a Non-Broadcast, Multiple Access (NBMA) virtual overlay

configured over one or more INETs and their connected ANETs/

ENETs. An OMNI link may comprise multiple distinct "segments"

joined by L2 forwarding devices the same as for any link; the

addressing plans in each segment may be mutually exclusive and

managed by different administrative entities. Proxy/Servers and

other infrastructure elements extend the link to support

communications between Clients as single-hop neighbors.

¶

¶

¶

¶

¶

¶

¶

OMNI interface

OMNI Adaptation Layer (OAL)

Host

Client

Proxy/Server

a node's attachment to an OMNI link, and configured over one or

more underlay interfaces. If there are multiple OMNI links in an

OMNI domain, a separate OMNI interface is configured for each

link. The OMNI interface configures a Maximum Transmission Unit

(MTU) and a Maximum Reassembly Unit (MRU) the same as any

interface.

an OMNI interface sublayer service that encapsulates original IP

packets admitted into the interface in an IPv6 header and/or

subjects them to fragmentation and reassembly. The OAL is also

responsible for generating MTU-related control messages as

necessary, and for providing addressing context for OMNI link SRT

traversal. The OAL presents a new layer in the Internet

architecture known simply as the "adaptation layer".

an end user device that extends the OMNI link over an ENET

interface serviced by a Client. (As an implementation matter, the

Host either assigns the same IP address from the ENET (underlay)

interface to an (overlay) OMNI interface, or configures an OMNI-

like function as a virtual sublayer of the ENET interface

itself.) The IP addresses assigned to each Host ENET interface

remain stable even if the Client's upstream *NET interface

connections change.

a network platform/device mobile router that configures one or

more OMNI interfaces over distinct sets of underlay interfaces

grouped as logical OMNI link units. The Client coordinates with

the Mobility Service via upstream networks over *NET interfaces,

and provides Proxy/Server services for Hosts and other Clients on

ENET interface downstream networks. The Client's *NET interface

addresses and performance characteristics may change over time

(e.g., due to node mobility, link quality, etc.) while

downstream-attached Hosts and other Clients see the ENET as a

stable ANET.

a segment routing topology edge node that configures an OMNI

interface and connects Clients to the Mobility Service. As a

server, the Proxy/Server responds directly to some Client IPv6 ND

messages. As a proxy, the Proxy/Server forwards other Client IPv6

ND messages to other Proxy/Servers and Clients. As a router, the

Proxy/Server provides a forwarding service for ordinary data

packets that may be essential in some environments and a last

resort in others. Proxy/Servers at ANET boundaries configure both

¶

¶

¶

¶

First-Hop Segment (FHS) Proxy/Server

Last-Hop Segment (LHS) Proxy/Server

Hub Proxy/Server

Segment Routing Topology (SRT)

Mobility Service (MS)

Mobility Service Prefix (MSP)

an ANET downstream interface and *NET upstream interface, while

INET-based Proxy/Servers configure only an INET interface.

a Proxy/Server connected to the source Client's *NET that

forwards packets sent by the source into the segment routing

topology. FHS Proxy/Servers also act as intermediate forwarding

nodes to facilitate RS/RA exchanges between Clients and Hub

Proxy/Servers.

a Proxy/Server connected to the target Client's *NET that

forwards packets received from the segment routing topology to

the target.

a single Proxy/Server selected by the Client that provides a

designated router service for all of the Client's*NET underlay

networks. Since all Proxy/Servers provide equivalent services,

Clients normally select the first FHS Proxy/Server they

coordinate with to serve as the Hub. However, the Hub can also be

any available Proxy/Server for the OMNI link, i.e., and not

necessarily one of the Client's FHS Proxy/Servers.

a multinet forwarding region configured over one or more INETs

between the FHS Proxy/Server and LHS Proxy/Server. The SRT spans

the OMNI link on behalf of source/target Client pairs using

segment routing in a manner outside the scope of this document

(see: [I-D.templin-6man-aero]).

a mobile routing service that tracks Client movements and ensures

that Clients remain continuously reachable even across mobility

events. The MS consists of the set of all Proxy/Servers and any

other OMNI link supporting infrastructure nodes. Specific MS

details are out of scope for this document, with an example found

in [I-D.templin-6man-aero].

an aggregated IP Global Unicast Address (GUA) prefix (e.g.,

2001:db8::/32, 192.0.2.0/24, etc.) assigned to the OMNI link and

from which more-specific Mobile Network Prefixes (MNPs) are

delegated. OMNI link administrators typically obtain MSPs from an

Internet address registry, however private-use prefixes can also

be used subject to certain limitations (see: Section 10). OMNI

links that connect to the global Internet advertise their MSPs to

their interdomain routing peers.

¶

¶

¶

¶

¶

¶

¶

Mobile Network Prefix (MNP)

original IP packet

OAL packet

OAL fragment

(OAL) atomic fragment

(OAL) carrier packet

OAL source

OAL destination

OAL intermediate node

a longer IP prefix delegated from an MSP (e.g.,

2001:db8:1000:2000::/56, 192.0.2.8/30, etc.) and assigned to a

Client. Clients receive MNPs from Proxy/Servers and sub-delegate

them to routers, Hosts and other Clients located in ENETs.

a whole IP packet or fragment admitted into the OMNI interface by

the network layer prior to OAL encapsulation and fragmentation,

or an IP packet delivered to the network layer by the OMNI

interface following OAL decapsulation and reassembly.

an original IP packet encapsulated in an IPv6 header (i.e., the

OAL header) then submitted for OAL fragmentation and reassembly.

a portion of an OAL packet following fragmentation but prior to

encapsulation, or following encapsulation but prior to OAL

reassembly.

an OAL packet that does not require fragmentation is always

encapsulated as an "atomic fragment" with a Fragment Header with

Fragment Offset and More Fragments both set to 0, but with a

valid Identification value.

an encapsulated OAL fragment following L2 encapsulation or prior

to L2 decapsulation. OAL sources and destinations exchange

carrier packets over underlay interfaces, and may be separated by

one or more OAL intermediate nodes. OAL intermediate nodes may

perform re-encapsulation on carrier packets by removing the L2

headers of the first hop network and replacing them with new L2

headers for the next hop network. (The term "carrier" honors

agents of the service postulated by [RFC1149] and [RFC6214].)

an OMNI interface acts as an OAL source when it encapsulates

original IP packets to form OAL packets, then performs OAL

fragmentation and encapsulation to create carrier packets.

an OMNI interface acts as an OAL destination when it decapsulates

carrier packets, then performs OAL reassembly and decapsulation

to derive the original IP packet.

an OMNI interface acts as an OAL intermediate node when it

removes the L2 encapsulation headers of carrier packets received

¶

¶

¶

¶

¶

¶

¶

¶

OMNI Option

Interface Identifier (IID)

Link Local Address (LLA)

Unique Local Address (ULA)

Temporary Local Address (TLA)

eXtended Local Address (XLA)

from a first segment, then re-encapsulates the carrier packets in

new L2 headers and forwards them into the next segment. OAL

intermediate nodes decrement the OAL Hop Limit during forwarding,

and discard the packet if the Hop Limit reaches 0. OAL

intermediate nodes do not decrement the TTL/Hop Limit of the

original IP packet.

an IPv6 Neighbor Discovery option providing multilink parameters

for the OMNI interface as specified in Section 12.

the least significant 64 bits of an IPv6 address, as specified in

the IPv6 addressing architecture [RFC4291].

an IPv6 address beginning with fe80::/64 per the IPv6 addressing

architecture [RFC4291] and with either a 64-bit MNP (LLA-MNP) or

a 56-bit random value (LLA-RND) encoded in the IID as specified

in Section 8.

an IPv6 address beginning with fd00::/8 followed by a 40-bit

Global ID followed by a 16-bit Subnet ID per [RFC4193] and with

either a 64-bit MNP (ULA-MNP) or a 56-bit random value (ULA-RND)

encoded in the IID as specified in Section 9. (Note that

[RFC4193] specifies a second form of ULAs based on the prefix

fc00::/8, which are referred to as "ULA-C" throughout this

document to distinguish them from the ULAs defined here.)

a ULA beginning with fd00::/16 followed by a 48-bit randomly-

initialized value followed by an MNP-based (TLA-MNP) or random

(TLA-RND) IID as specified in Section 9. Clients use TLAs to

bootstrap autoconfiguration in the presence of OMNI link

infrastructure or for sustained communications in the absence of

infrastructure. (Note that in some environments Clients can

instead use a (Hierarchical) Host Identity Tag ((H)HIT) instead

of a TLA - see: Section 22.)

a TLA beginning with fd00::/64 followed by an MNP-based (XLA-MNP)

or random (XLA-RND) IID as specified in Section 9. An XLA is

simply a TLA with an all-0 48-bit value following fd00::/16, and

can be used to supply a "wildcard match" for IPv6 ND cache

entries, a routing table entry for the OMNI link routing system,

etc. (Note that XLAs can also be statelessly formed from LLAs

(and vice-versa) simply by inverting prefix bits 7 and 8.)

¶

¶

¶

¶

¶

¶

¶

Multilink

Multinet

Multihop

Mobility

Safety-Based Multilink (SBM)

a Client OMNI interface's manner of managing multiple diverse

*NET underlay interfaces as a single logical unit. The OMNI

interface provides a single unified interface to upper layers,

while underlay interface selections are performed on a per-packet

basis considering traffic selectors such as DSCP, flow label,

application policy, signal quality, cost, etc. Multilink

selections are coordinated in both the outbound and inbound

directions based on source/target underlay interface pairs.

an intermediate node's manner of spanning multiple diverse IP

Internetwork and/or private enterprise network "segments" at the

OAL layer below IP. Through intermediate node concatenation of

SRT network segments, multiple diverse Internetworks (such as the

global public IPv4 and IPv6 Internets) can serve as transit

segments in an end-to-end L2 forwarding path. This OAL

concatenation capability provides benefits such as supporting

IPv4/IPv6 transition and coexistence, joining multiple diverse

operator networks into a cooperative single service network, etc.

See: [I-D.templin-6man-aero] for further information.

an iterative relaying of IP packets between Client's over an OMNI

underlay interface technology (such as omnidirectional wireless)

without support of fixed infrastructure. Multihop services entail

Client-to-Client relaying within a Mobile/Vehicular Ad-hoc

Network (MANET/VANET) for Vehicle-to-Vehicle (V2V) communications

and/or for Vehicle-to-Infrastructure (V2I) "range extension"

where Clients within range of communications infrastructure

elements provide forwarding services for other Clients.

any action that results in a change to a Client underlay

interface address. The change could be due to, e.g., a handover

to a new wireless base station, loss of link due to signal

fading, an actual physical node movement, etc.

A means for ensuring fault tolerance through redundancy by

connecting multiple OMNI interfaces within the same domain to

¶

¶

¶

¶

Performance Based Multilink (PBM)

OMNI Domain

AERO Forwarding Information Base (AFIB)

AERO Forwarding Vector (AFV)

AERO Forwarding Vector Index (AVFI)

IP Jumbogram

IP Parcel

independent routing topologies (i.e., multiple independent OMNI

links).

A means for selecting one or more underlay interface(s) for

packet transmission and reception within a single OMNI interface.

The set of all SBM/PBM OMNI links that collectively provides

services for a common set of MSPs. All OMNI links within the same

domain configure, advertise and respond to the same OMNI IPv6

Anycast address(es).

A multilink forwarding table on each OAL source, destination and

intermediate node that includes AERO Forwarding Vectors (AFV)

with both next hop forwarding instructions and context for

reconstructing compressed headers for specific underlay interface

pairs used to communicate with peers. See: [I-D.templin-6man-

aero] for further discussion.

An AFIB entry that includes soft state for each underlay

interface pairwise communication session between peers. AFVs are

identified by both a next-hop and previous-hop AFV Index (AFVI),

with the next-hop established based on an IPv6 ND solicitation

and the previous hop established based on the solicited IPv6 ND

advertisement response. See: [I-D.templin-6man-aero] for further

discussion.

A locally-unique 4 octet value that an OAL node generates when it

creates an AFV, then advertises to either next-hop or previous-

hop nodes. OAL intermediate nodes assign two distinct AFVIs for

each AFV and advertise one to next-hops and the other to

previous-hops. OAL end systems assign and advertise a single

AFVI. See: [I-D.templin-6man-aero] for further discussion.

an IPv4 or IPv6 packet with a Jumbo Payload option that includes

a 32-bit length field to be used instead of the 16-bit {Total,

Payload} Length field (see: Section 5.1). For IPv4, the Total

Length field must be set to the length of the IPv4 header only.

For IPv6, the Payload Length must be set to 0.

a special form of an IP Jumbogram with a segment length value

included in the {Total, Payload} Length field and also with a

Jumbo Payload option (see: Section 5.2).

¶

¶

¶

¶

¶

¶

¶

¶

L2 encapsulation

L2 address (L2ADDR)

the OAL encapsulation of a packet in an outer header or headers

that can be routed within the scope of the local {A,I,E}NET

underlay network partition. Common L2 encapsulation combinations

include UDP/IP/Ethernet, etc.

an address that appears in the OAL L2 encapsulation for an

underlay interface and also in IPv6 ND message OMNI options.

L2ADDR can be either an IP address for IP encapsulations or an

IEEE EUI address [EUI] for direct data link encapsulation. (When

UDP/IP encapsulation is used, the UDP port number is considered

an ancillary extension of the IP L2ADDR.)

3. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

An implementation is not required to internally use the

architectural constructs described here so long as its external

behavior is consistent with that described in this document.

4. Overlay Multilink Network (OMNI) Interface Model

An OMNI interface is a virtual interface configured over one or more

underlay interfaces, which may be physical (e.g., an aeronautical

radio link, etc.) or virtual (e.g., an Internet or higher-layer

"tunnel"). The OMNI interface architectural layering model is the

same as in [RFC5558][RFC7847], and augmented as shown in Figure 1.

The IP layer therefore sees the OMNI interface as a single L3

interface nexus for multiple underlay interfaces that appear as L2

communication channels in the architecture.

¶

¶

¶

¶

¶

Figure 1: OMNI Interface Architectural Layering Model

Each underlay interface provides an L2/L1 abstraction according to

one of the following models:

ANET interfaces connect to a protected and secured ANET that is

separated from the open INET by Proxy/Servers. The ANET interface

may be either on the same L2 link segment as a Proxy/Server, or

separated from a Proxy/Server by multiple IP hops. (Note that

NATs may appear internally within an ANET or on the Proxy/Server

itself and may require NAT traversal the same as for the INET

case.)

INET interfaces connect to an INET either natively or through one

or several IPv4 Network Address Translators (NATs). Native INET

interfaces have global IP addresses that are reachable from any

INET correspondent. NATed INET interfaces typically configure

private IP addresses and connect to a private network behind one

or more NATs with the outermost NAT providing INET access.

ENET interfaces connect a Client's downstream-attached networks,

where the Client provides forwarding services for ENET Host and

Client communications to remote peers. An ENET may be as simple

as a small stub network that travels with a mobile Client (e.g.,

an Internet-of-Things) to as complex as a large private

enterprise network that the Client connects to a larger ANET or

INET. Downstream-attached Hosts and Clients see the ENET as an

ANET and see the (upstream) Client as a Proxy/Server.

VPNed interfaces use security encapsulation over an underlay

network to a Client or Proxy/Server acting as a Virtual Private

Network (VPN) gateway. Other than the link-layer encapsulation

 +----------------------------+

 | Upper Layer Protocol |

 Session-to-IP +---->| |

 Address Binding | +----------------------------+

 +---->| IP (L3) |

 IP Address +---->| |

 Binding | +----------------------------+

 +---->| OMNI Interface |

 Logical-to- +---->| (OMNI Adaptation Layer) |

 Physical | +----------------------------+

 Interface +---->| L2 | L2 | | L2 |

 Binding |(IF#1)|(IF#2)| |(IF#n)|

 +------+------+ +------+

 | L1 | L1 | | L1 |

 | | | | |

 +------+------+ +------+

¶

*

¶

*

¶

*

¶

*

format, VPNed interfaces behave the same as for Direct

interfaces.

Direct (aka "point-to-point") interfaces connect directly to a

Client or Proxy/Server without crossing any networked paths. An

example is a line-of-sight link between a remote pilot and an

unmanned aircraft.

The OMNI interface forwards original IP packets from the network

layer (L3) using the OMNI Adaptation Layer (OAL) (see: Section 5) as

an encapsulation and fragmentation sublayer service. This "OAL

source" then further encapsulates the resulting OAL packets/

fragments in underlay network headers (e.g., UDP/IP, IP-only,

Ethernet-only, etc.) to create L2-encapsulated "carrier packets" for

transmission over underlay interfaces. The target OMNI interface

receives the carrier packets from underlay interfaces and discards

the L2 encapsulation headers. If the resulting OAL packets/fragments

are addressed to itself, the OMNI interface acts as an "OAL

destination" and performs reassembly if necessary, discards the OAL

encapsulation, and delivers the original IP packet to the network

layer. If the OAL fragments are addressed to another node, the OMNI

interface instead acts as an "OAL intermediate node" by re-

encapsulating the carrier packets in new underlay network L2 headers

and forwarding them over an underlay interface without reassembling

or discarding the OAL encapsulation. The OAL source and OAL

destination are seen as "neighbors" on the OMNI link, while OAL

intermediate nodes provide a virtual bridging service that joins the

segments of a (multinet) Segment Routing Topology (SRT).

The OMNI interface can forward original IP packets over underlay

interfaces while including/omitting various lower layer

encapsulations including OAL, UDP, IP and Ethernet (ETH) or other

link-layer header. The network layer can also access the underlay

interfaces directly while bypassing the OMNI interface entirely when

necessary. This architectural flexibility may be beneficial for

underlay interfaces (e.g., some aviation data links) for which

encapsulation overhead may be a primary consideration. OMNI

interfaces that send original IP packets directly over underlay

interfaces without invoking the OAL can only reach peers located on

the same OMNI link segment. Source Clients can instead use the OAL

to coordinate with target Clients in the same or different OMNI link

segments by sending initial carrier packets to a First-Hop Segment

(FHS) Proxy/Server. The FHS Proxy/Sever then forwards the packets

into the SRT spanning tree, which transports them to a Last-Hop

Segment (LHS) Proxy/Server for the target Client.

Original IP packets sent directly over underlay interfaces are

subject to the same path MTU related issues as for any

Internetworking path, and do not include per-packet identifications

¶

*

¶

¶

¶

that can be used for data origin verification and/or link-layer

retransmissions. Original IP packets presented directly to an

underlay interface that exceed the underlay network path MTU are

dropped with an ordinary ICMPv6 Packet Too Big (PTB) message

returned. These PTB messages are subject to loss [RFC2923] the same

as for any non-OMNI IP interface.

The OMNI interface encapsulation/decapsulation layering

possibilities are shown in Figure 2 below. Imaginary vertical lines

drawn between the Network Layer and Underlay interfaces in the

figure denote the encapsulation/decapsulation layering combinations

possible. Common combinations include IP-only (i.e., direct access

to underlay interfaces with or without using the OMNI interface),

IP/IP, IP/UDP/IP, IP/UDP/IP/ETH(ERNET), IP/OAL/UDP/IP, IP/OAL/UDP/

ETH, etc.

Figure 2: OMNI Interface Layering

The OMNI/OAL model gives rise to a number of opportunities:

Clients receive MNPs from the MS, and coordinate with the MS

through IPv6 ND message exchanges with Proxy/Servers. Clients use

the MNP to construct a unique Link-Local Address (LLA-MNP)

through the algorithmic derivation specified in Section 8 and

assign the LLA to the OMNI interface. Since LLA-MNPs are uniquely

derived from an MNP, no Duplicate Address Detection (DAD) or

Multicast Listener Discovery (MLD) messaging is necessary.

¶

¶

 +--+ ^

 | Network Layer (Original IP packets) | |

 +--+---+ L3

 | OMNI Interface (virtual sublayer nexus) | |

 +--------------------------+------------------------------+ -

 | OAL Encaps/Decaps | |

 +------------------------------+ OAL

 | OAL Frag/Reass | |

 +------------+---------------+--------------+ -

 | UDP Encaps/Decaps/Compress | |

 +----+---+------------+--------+--+ +--------+ |

 | IP E/D | | IP E/D | | IP E/D | L2

 +----+-----+--+----+ +--+----+---+ +---+----+--+ |

 |ETH E/D| |ETH E/D| |ETH E/D| |ETH E/D| |

 +------+-------+--+-------+----+-------+-------------+-------+ v

 | Underlay Interfaces |

 +--+

¶

*

¶

since Temporary ULAs with random IIDs (TLA-RNDs) are

statistically unique, they can be used without DAD until an MNP

is obtained.

underlay interfaces on the same L2 link segment as a Proxy/Server

do not require any L3 addresses (i.e., not even link-local) in

environments where communications are coordinated entirely over

the OMNI interface.

as underlay interface properties change (e.g., link quality,

cost, availability, etc.), any active interface can be used to

update the profiles of multiple additional interfaces in a single

message. This allows for timely adaptation and service continuity

under dynamically changing conditions.

coordinating underlay interfaces in this way allows them to be

represented in a unified MS profile with provisions for mobility

and multilink operations.

exposing a single virtual interface abstraction to the IPv6 layer

allows for multilink operation (including QoS based link

selection, packet replication, load balancing, etc.) at L2 while

still permitting L3 traffic shaping based on, e.g., DSCP, flow

label, etc.

the OMNI interface allows multinet traversal over the SRT when

communications across different administrative domain network

segments are necessary. This mode of operation would not be

possible via direct communications over the underlay interfaces

themselves.

the OAL supports lossless and adaptive path MTU mitigations not

available for communications directly over the underlay

interfaces themselves. The OAL supports "packing" of multiple IP

payload packets within a single OAL "super-packet" and also

supports transmission of IP packets and parcels of all sizes up

to and including Jumbograms.

the OAL applies per-packet identification values that allow for

link-layer reliability and data origin authentication.

L3 sees the OMNI interface as a point of connection to the OMNI

link; if there are multiple OMNI links, L3 will see multiple OMNI

interfaces.

Multiple independent OMNI interfaces can be used for increased

fault tolerance through Safety-Based Multilink (SBM), with

Performance-Based Multilink (PBM) applied within each interface.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Multiple independent OMNI links can be joined together into a

single link without requiring renumbering of infrastructure

elements, since the ULAs assigned to the different links will be

mutually exclusive.

the OMNI/OAL model supports transmission of a new form of IP

packets known as "IP Parcels" that improve performance and

efficiency for both upper layer protocols and networked paths.

Note that even when the OMNI virtual interface is present,

applications can still access underlay interfaces either through the

network protocol stack using an Internet socket or directly using a

raw socket. This allows for intra-network (or point-to-point)

communications without invoking the OMNI interface and/or OAL. For

example, when an OMNI interface is configured over an underlay IP

interface, applications can still invoke intra-network IP

communications directly over the underlay interface as long as the

communicating endpoints are not subject to mobility dynamics.

Figure 3 depicts the architectural model for a source Client with an

attached ENET connecting to the OMNI link via multiple independent

ANETs/INETs (i.e., *NETs). The Client's OMNI interface sends IPv6 ND

solicitation messages over available *NET underlay interfaces using

any necessary L2 encapsulations. The IPv6 ND messages traverse the

*NETs until they reach an FHS Proxy/Server (FHS#1, FHS#2, ...,

FHS#n), which returns an IPv6 ND advertisement message and/or

forwards a proxyed version of the message over the SRT to an LHS

Proxy/Server near the target Client (LHS#1, LHS#2, ..., LHS#m). The

Hop Limit in IPv6 ND messages is not decremented due to

encapsulation; hence, the source and target Client OMNI interfaces

appear to be attached to a common link.

*

¶

*

¶

¶

¶

Figure 3: Source/Target Client Coordination over the OMNI Link

After the initial IPv6 ND message exchange, the source Client (as

well as any nodes on its attached ENETs) can send packets to the

target Client over the OMNI interface. OMNI interface multilink

services will forward the packets via FHS Proxy/Servers for the

correct underlay *NETs. The FHS Proxy/Server then forwards the

packets over the SRT which delivers them to an LHS Proxy/Server, and

the LHS Proxy/Server in turn forwards them to the target Client.

(Note that when the source and target Client are on the same SRT

segment, the FHS and LHS Proxy/Servers may be one and the same.)

Clients select a Hub Proxy/Server (not shown in the figure), which

will often be one of their FHS Proxy/Servers but could also be any

 +--------------+

 |Source Client |

 +--------------+ (:::)-.

 |OMNI interface|<-->.-(::ENET::)

 +----+----+----+ `-(::::)-'

 +--------|IF#1|IF#2|IF#n|------ +

 / +----+----+----+ \

 / | \

 / | \

 v v v

 (:::)-. (:::)-. (:::)-.

 .-(::*NET:::) .-(::*NET:::) .-(::*NET:::)

 `-(::::)-' `-(::::)-' `-(::::)-'

 +-----+ +-----+ +-----+

 ... |FHS#1| |FHS#2| |FHS#n| ...

. +--|--+ +--|--+ +--|--+ .

. | | |

. \ v / .

. \ / .

. v (:::)-. v .

. .-(::::::::) .

. .-(::: Segment :::)-. .

. (::::: Routing ::::) .

. `-(:: Topology ::)-' .

. `-(:::::::-' .

. / | \ .

. / | \ .

. v v v

. +-----+ +-----+ +-----+ .

 ... |LHS#1| |LHS#2| |LHS#m| ...

 +--|--+ +--|--+ +--|--+

 \ | /

 v v v

 <-- Target Clients -->

¶

Proxy/Server on the OMNI link. Clients then register all of their

*NET underlay interfaces with the Hub Proxy/Server via the FHS

Proxy/Server in a pure proxy role. The Hub Proxy/Server then

provides a designated router service for the Client, and the Client

can quickly migrate to a new Hub Proxy/Server if the first becomes

unresponsive.

Clients therefore use Proxy/Servers as gateways into the SRT to

reach OMNI link correspondents via a spanning tree established in a

manner outside the scope of this document. Proxy/Servers forward

critical MS control messages via the secured spanning tree and

forward other messages via the unsecured spanning tree (see Security

Considerations). When route optimization is applied as discussed in

[I-D.templin-6man-aero], Clients can instead forward directly to SRT

intermediate nodes (or directly to correspondents in the same SRT

segment) to reduce Proxy/Server load.

Note: while not shown in the figure, a Client's ENET may connect

many additional Hosts and even other Clients in a recursive

extension of the OMNI link. This OMNI virtual link extension will be

discussed more fully throughout the document.

5. OMNI Interface Maximum Transmission Unit (MTU)

The OMNI interface observes the link nature of tunnels, including

the Maximum Transmission Unit (MTU), Maximum Reassembly Unit (MRU)

and the role of fragmentation and reassembly [I-D.ietf-intarea-

tunnels]. The OMNI interface is configured over one or more underlay

interfaces as discussed in Section 4, where the interfaces (and

their associated underlay network paths) may have diverse MTUs. OMNI

interface considerations for accommodating original IP packets of

various sizes are discussed in the following sections.

IPv6 underlay interfaces are REQUIRED to configure a minimum MTU of

1280 octets and a minimum MRU of 1500 octets [RFC8200]. Therefore,

the minimum IPv6 path MTU is 1280 octets since routers on the path

are not permitted to perform network fragmentation even though the

destination is required to reassemble more. The network therefore

MUST forward original IP packets of at least 1280 octets without

generating an IPv6 Path MTU Discovery (PMTUD) Packet Too Big (PTB)

message [RFC8201]. (While the source can apply "source

fragmentation" for locally-generated IPv6 packets up to 1500 octets

and larger still if it knows the destination configures a larger

MRU, this does not affect the minimum IPv6 path MTU.)

IPv4 underlay interfaces are REQUIRED to configure a minimum MTU of

68 octets [RFC0791] and a minimum MRU of 576 octets [RFC0791]

[RFC1122]. Therefore, when the Don't Fragment (DF) bit in the IPv4

header is set to 0 the minimum IPv4 path MTU is 576 octets since

¶

¶

¶

¶

¶

routers on the path support network fragmentation and the

destination is required to reassemble at least that much. The OMNI

interface therefore MUST set DF to 0 in the IPv4 encapsulation

headers of carrier packets that are no larger than 576 octets, and

SHOULD set DF to 1 in larger carrier packets unless it has a way to

determine the encapsulation destination MRU and has carefully

considered the issues discussed in Section 6.12.

When the network layer admits an original IP packet into the OMNI

interface the OAL prepends an IPv6 encapsulation header (see:

Section 6) where the 16-bit Payload Length field limits the maximum-

sized original IP packet to (2**16 -1) = 65535 octets; this is also

the maximum size that the OAL can accommodate with IPv6

fragmentation. The OMNI interface therefore sets an MTU and MRU of

65535 octets to support assured delivery of original packets no

larger than this size even if IPv6 fragmentation is required. (The

OMNI interface MAY set a larger MTU to support best-effort delivery

for larger packets; see below.) The OMNI interface then employs the

OAL as an encapsulation sublayer service to transform original IP

packets into OAL packets/fragments, and the OAL in turn uses

underlay network encapsulation to forward carrier packets over

underlay interfaces (see: Section 6).

5.1. Jumbograms

While the maximum-sized original IP packet that the OAL can

accommodate using IPv6 fragmentation is 65535 octets, OMNI

interfaces can forward still larger IPv6 packets as OAL "atomic

fragments" through the application of IPv6 Jumbograms [RFC2675]. For

such larger packets, the OMNI interface performs OAL encapsulation

by appending an IPv6 header followed by an 8-octet Hop-By-Hop header

with Jumbo Payload option followed by a Routing Header of no more

than 40-octets (if necessary) and finally followed by an 8-octet

Fragment Header.

Since the Jumbo Payload option includes a 32-bit length field, OMNI

interfaces can therefore configure a larger IP MTU up to a maximum

of ((2**32 - 1) - 8 - 40 - 8) = 4294967239 octets. In that case, the

OAL will still provide original IP packets no larger than 65535 with

an IPv6 fragmentation-based assured delivery service while larger IP

packets will receive a best-effort delivery service as atomic

fragments (note that the OAL destination is permitted to accept

atomic fragments that exceed the OMNI interface MRU).

The OAL source forwards jumbo atomic fragments under the assumption

that upper and lower layers will employ sufficient integrity

assurance, noting that commonly-used 32-bit CRCs may be inadequate

for these larger sizes [CRC]. If the packet is dropped along the

¶

¶

¶

¶

path to the OAL destination, the OAL source must arrange to return a

PTB "hard error" to the original source Section 6.8.

This document notes that a Jumbogram service for IPv4 is also

specified in [I-D.templin-intarea-parcels], where all OMNI link

aspects of the service are conducted in a similar fashion as for

IPv6 above.

5.2. IPv6 Parcels

As specified in [I-D.templin-intarea-parcels], an IP Parcel is a

variation of the IP Jumbogram construction beginning with an IP

header with the length of the first upper layer protocol segment in

the {Total, Payload} Length field, but with a Jumbo Payload option

with a length that may be the same as or larger than the length in

the IP header. The differences in these lengths determines the size

and number of upper layer protocol segments within the parcel.

The IP Parcel format and transmission/reception procedures for OMNI

interfaces are specified in Section 6.14. End systems that implement

either the full OMNI interface (i.e., Clients) or enough of the OAL

to process parcels (i.e., Hosts) are permitted to exchange parcels

with consenting peers.

6. The OMNI Adaptation Layer (OAL)

When an OMNI interface forwards an original IP packet from the

network layer for transmission over one or more underlay interfaces,

the OMNI Adaptation Layer (OAL) acting as the OAL source applies

encapsulation to form OAL packets subject to fragmentation producing

OAL fragments suitable for L2 encapsulation and transmission as

carrier packets over underlay interfaces as described in Section

6.1.

These carrier packets travel over one or more underlay networks

spanned by OAL intermediate nodes in the SRT, which re-encapsulate

by removing the L2 headers of the first underlay network and

appending L2 headers appropriate for the next underlay network in

succession. (This process supports the multinet concatenation

capability needed for joining multiple diverse networks.) After re-

encapsulation by zero or more OAL intermediate nodes, the carrier

packets arrive at the OAL destination.

When the OAL destination receives the carrier packets, it discards

the L2 headers and reassembles the resulting OAL fragments (if

necessary) into an OAL packet as described in Section 6.3. The OAL

destination next decapsulates the OAL packet to obtain the original

IP packet then delivers the original IP packet to the network layer.

The OAL source may be either the source Client or its FHS Proxy/

Server, while the OAL destination may be either the LHS Proxy/Server

¶

¶

¶

¶

¶

¶

or the target Client. Proxy/Servers (and SRT Gateways as discussed

in [I-D.templin-6man-aero]) may also serve as OAL intermediate

nodes.

The OAL presents an OMNI sublayer abstraction similar to ATM

Adaptation Layer 5 (AAL5). Unlike AAL5 which performs segmentation

and reassembly with fixed-length 53 octet cells over ATM networks,

however, the OAL uses IPv6 encapsulation, fragmentation and

reassembly with larger variable-length cells over heterogeneous

underlay networks. Detailed operations of the OAL are specified in

the following sections.

6.1. OAL Source Encapsulation and Fragmentation

When the network layer forwards an original IP packet into the OMNI

interface, the OAL source creates an "OAL packet" by prepending an

IPv6 OAL encapsulation header per [RFC2473] but does not decrement

the Hop Limit/TTL of the original IP packet since encapsulation

occurs at a layer below IP forwarding. The OAL source copies the

"Type of Service/Traffic Class" [RFC2983] and "Explicit Congestion

Notification (ECN)" [RFC3168] values in the original packet's IP

header into the corresponding fields in the OAL header, then sets

the OAL header "Flow Label" as specified in [RFC6438]. The OAL

source finally sets the OAL header IPv6 Payload Length to the length

of the original IP packet and sets Hop Limit to a value that MUST

NOT be larger than 63 yet is still sufficiently large to enable

loop-free forwarding over multiple concatenated OMNI link

intermediate hops.

The OAL next selects OAL packet source and destination addresses.

Client OMNI interfaces set the OAL source address to a Unique Local

Address (ULA) based on the Mobile Network Prefix (ULA-MNP). When a

Client OMNI interface does not (yet) have a ULA prefix and/or an MNP

suffix, it can instead use a Temporary ULA (TLA) (or a

(Hierarchical) Host Identity Tag ((H)HIT - see: Section 22) as an

OAL address. Finally, when the Client needs to express its MNP

outside the context of a specific ULA prefix, it can use an eXtended

ULA (XLA). Proxy/Server OMNI interfaces instead set the source

address to a Random ULA (ULA-RND) (see: Section 9), but also process

packets with anycast and/or multicast OAL addresses that they are

configured to recognize.)

The OAL source next selects a 32-bit OAL packet Identification value

as specified in Section 6.6. The OAL then calculates a 2-octet OAL

checksum using the algorithm specified in Appendix A. The OAL source

calculates the checksum over the OAL packet beginning with a pseudo-

header of the OAL header similar to that found in Section 8.1 of

[RFC8200], then extending over the entire length of the original IP

packet. The OAL pseudo-header is formed as shown in Figure 4:

¶

¶

¶

¶

¶

Figure 4: OAL Pseudo-Header

After calculating the checksum, the OAL source next fragments the

OAL packet if necessary while assuming the IPv4 minimum path MTU

(i.e., 576 octets) as the worst case for OAL fragmentation

regardless of the underlay interface IP protocol version since IPv6/

IPv4 protocol translation and/or IPv6-in-IPv4 encapsulation may

occur in any underlay network path. By initially assuming the IPv4

minimum even for IPv6 underlay interfaces, the OAL source may

produce smaller fragments with additional encapsulation overhead but

avoids loss due to presenting an underlay interface with a carrier

packet that exceeds its MRU. Additionally, the OAL path could

traverse multiple SRT segments with intermediate OAL forwarding

nodes performing re-encapsulation where the L2 encapsulation of the

previous segment is replaced by the L2 encapsulation of the next

segment which may be based on a different IP protocol version and/or

encapsulation sizes.

The OAL source therefore assumes a default minimum path MTU of 576

octets at each SRT segment for the purpose of generating OAL

fragments for L2 encapsulation and transmission as carrier packets.

Each successive SRT intermediate node may include either a 20 octet

IPv4 or 40 octet IPv6 header, an 8 octet UDP header and in some

cases an IP security encapsulation (40 octets maximum assumed)

during re-encapsulation. Intermediate nodes at any SRT segment may

also insert or modify the Routing Header (40 octets maximum)

 +-+

 | |

 + +

 | |

 + OAL Source Address +

 | |

 + +

 | |

 +-+

 | |

 + +

 | |

 + OAL Destination Address +

 | |

 + +

 | |

 +-+

 | OAL Payload Length | zero | Next Header |

 +-+

 | Identification |

 +-+

¶

following the 40 octet OAL IPv6 header and preceding the 8 octet

Fragment Header. Therefore, assuming a worst case of (40 + 40 + 8) =

88 octets for L2 encapsulations plus (40 + 40 + 8) = 88 octets for

OAL encapsulation leaves no less than (576 - 88 - 88) = 400 octets

remaining to accommodate a portion of the original IP packet/

fragment. The OAL source therefore sets a minimum Maximum Payload

Size (MPS) of 400 octets as the basis for the minimum-sized OAL

fragment that can be assured of traversing all SRT segments without

loss due to an MTU/MRU restriction. The Maximum Fragment Size (MFS)

for OAL fragmentation is therefore determined by the MPS plus the

size of the OAL encapsulation headers.

The OAL source SHOULD maintain "path MPS" values for individual OAL

destinations initialized to the minimum MPS and increased to larger

values if better information is known or discovered. For example,

when peers share a common underlay network link or a fixed path with

a known larger MTU, the OAL source can set path MPS to a larger size

(i.e., greater than 400 octets) as long as the peer reassembles

before re-encapsulating and forwarding (while re-fragmenting if

necessary). Also, if the OAL source has a way of knowing the maximum

L2 encapsulation size for all SRT segments along the path it may be

able to increase path MPS to reserve additional room for payload

data. Even when OAL header compression is used, the OAL source must

include the uncompressed OAL header size in its path MPS calculation

since it may need to include a full header at any time.

The OAL source can also optimistically set a larger path MPS and/or

actively probe individual OAL destinations to discover larger sizes

using packetization layer probes in a similar fashion as [RFC4821]

[RFC8899], but care must be taken to avoid setting static values for

dynamically changing paths leading to black holes. The probe

involves sending an OAL packet larger than the current path MPS and

receiving a small acknowledgement response (with the possible

receipt of link-layer error message when a probe is lost). For this

purpose, the OAL source can send an NS message with one or more OMNI

options with large PadN sub-options (see: Section 12) and/or with a

trailing large NULL packet in a super-packet (see: Section 6.9) in

order to receive a small NA response from the OAL destination. While

observing the minimum MPS will always result in robust and secure

behavior, the OAL source should optimize path MPS values when more

efficient utilization may result in better performance (e.g. for

wireless aviation data links). The OAL source should maintain

separate path MPS values for each (source, target) underlay

interface pair for the same OAL destination, since different

underlay interface pairs may support differing path MPS values.

When the OAL source performs fragmentation, it SHOULD produce the

minimum number of non-overlapping fragments under current MPS

constraints, where each non-final fragment MUST be at least as large

¶

¶

¶

as the minimum MPS, while the final fragment MAY be smaller. The OAL

source also converts all original IP packets no larger than the

current MPS (or larger than 65535 octets) into atomic fragments by

including a Fragment Header with Fragment Offset and More Fragments

both set to 0. The OAL source then inserts a Routing Header (if

necessary) following the IPv6 encapsulation header and before the

Fragment Header. If the original IP packet is larger than 65535, the

OAL source also inserts a Hop-By-Hop header with Jumbo Payload

option immediately following the IPv6 encapsulation header and

before the Routing Header (if necessary), then includes an (atomic)

Fragment Header. The header extension order for each fragment

therefore appears as the OAL IPv6 header followed by Hop-By-Hop

header followed by Routing Header followed by Fragment Header.

The OAL source next appends the OAL checksum as the final two octets

of the final fragment while increasing its (Jumbo) Payload Length by

2. If appending the checksum would cause the final fragment to

exceed the current MPS, the OAL source instead reduces this "former"

final fragment's Payload Length (PL) by (N*8 + (PL mod 8)) octets,

where N is an integer that would result in a non-zero reduction but

without causing the former final fragment to become smaller than the

minimum MPS. The OAL source then creates a "new" final fragment by

copying the OAL IPv6 header and extension headers from the former

final fragment, then copying the (N*8 + (PL mod 8)) octets from the

end of the former final fragment immediately following the new final

fragment extension headers. The OAL source then sets the former

final fragment's More Fragments flag to 1, increments the new final

fragment's fragment offset by the former final fragment's new (PL /

8) and finally appends the checksum the same as discussed above.

Next, the OAL source replaces the IPv6 Fragment Header 1-octet

"Reserved" field (and for first fragments also the 2-bit "Reserved

Flags" field) with OMNI-specific encodings as shown in:

¶

¶

¶

 +-+

 | Next Header | Parcel ID |A| Fragment Offset |P|S|M|

 +-+

 | Identification |

 +-+

 a) First fragment

 +-+

 | Next Header | Ordinal |A| Fragment Offset |Res|M|

 +-+

 | Identification |

 +-+

 a) Non-first fragment

Figure 5: IPv6 Fragment Header Reserved Fields Redefined

For the first fragment, the OAL source sets the "(A)RQ" flag then

sets "Parcel ID", "(P)arcel" and "(S)ub-Parcels" as specified in

Section 6.14. For each non-first fragment, the OAL source instead

sets the "(A)RQ" flag and writes a monotonically-increasing

"Ordinal" value between 1 and 127. Specifically, the OAL source

writes the ordinal number '1' for the first non-first fragment, '2'

for the second, '3' for the third, etc. up to the final fragment or

the ordinal value '127', whichever comes first. (For any additional

non-first fragments beyond ordinal '127', the OAL source instead

writes the value '0' in the Ordinal field and clears the "(A)RQ"

flag. The first fragment is implicitly always considered ordinal

number '0' even though the header does not include an explicit

Ordinal field.)

The OAL source finally encapsulates the fragments in L2 headers to

form carrier packets and forwards them over an underlay interface,

while retaining the fragments and their ordinal numbers (i.e., #0,

#1, #2, etc. up to #127) for a brief period to support link-layer

retransmissions (see: Section 6.7). OAL fragment and carrier packet

formats are shown in Figure 6.

¶

¶

 +----------+----------------+

 |OAL Header| Frag #0 |

 +----------+----------------+

 +----------+----------------+

 |OAL Header| Frag #1 |

 +----------+----------------+

 +----------+----------------+

 |OAL Header| Frag #2 |

 +----------+----------------+

 +----------+----------------+----+

 |OAL Header| Frag #(N-1) |Csum|

 +----------+----------------+----+

 a) OAL fragmentation (Csum in final fragment)

 +----------+-----+-----+-----+-----+-----+----+

 |OAL Header| Original IP packet |Csum|

 +----------+-----+-----+-----+-----+-----+----+

 b) An OAL atomic fragment

 +--------+----------+----------------+

 |L2 Hdrs |OAL Header| Frag #i |

 +--------+----------+----------------+

 c) OAL carrier packet after L2 encapsulation

Figure 6: OAL Fragments and Carrier Packets

Note: the minimum MPS assumes that any middleboxes (e.g. IPv4 NATs)

that connect private networks with path MTUs smaller than 576 octets

must reassemble any fragmented (outbound) IPv4 carrier packets sent

by OAL sources before forwarding them to external Internetworks

since middleboxes that connect OAL destinations often

unconditionally drop (inbound) IPv4 fragments. However, when the

path MTU in the destination private network is small, the OAL

destination itself will be able to reassemble any IPv4 fragmentation

that occurs in the inbound path.

6.2. OAL L2 Encapsulation and Re-Encapsulation

The OAL source or intermediate node next encapsulates each OAL

fragment (with either full or compressed headers) in L2

encapsulation headers to create a carrier packet. The OAL source or

intermediate node (i.e., the L2 source) includes a UDP header as the

innermost sublayer if NAT traversal and/or packet filtering

middlebox traversal are required; otherwise, the L2 source includes

a full/compressed IP header and/or an actual link-layer header

(e.g., such as for Ethernet-compatible links). The L2 source then

appends any additional encapsulation sublayer headers necessary and

presents the resulting carrier packet to an underlay interface,

where the underlay network conveys it to a next-hop OAL intermediate

node or destination (i.e., the L2 destination).

The L2 source encapsulates the OAL information immediately following

the innermost L2 sublayer header. If the first four bits of the

encapsulated OAL information following the innermost sublayer header

encode the value '6', the information must include an uncompressed

IPv6 header (plus extensions) followed by upper layer protocol

headers and data. If the first four bits encode the value '4', an

uncompressed IPv4 header (plus extensions) followed by upper layer

protocol headers and data follows. Otherwise, the first four bits

include a "Type" value, and the OAL information appears in an

alternate format as specified in Section 6.4 (Types '0' and '1' are

currently specified while all other values are reserved for future

use). Carrier packets that contain an unrecognized Type value are

unconditionally dropped.

The OAL node prepares the innermost L2 encapsulation header for OAL

packets as follows:

For UDP encapsulation, the L2 source sets the UDP source port to

8060 (i.e., the port number reserved for AERO/OMNI). When the L2

destination is a Proxy/Server or Gateway, the L2 source sets the

UDP destination port to 8060; otherwise, the L2 source sets the

UDP destination port to its cached port number value for the

¶

¶

¶

¶

*

peer. The L2 source finally sets the UDP Length the same as

specified in [RFC0768]. (If the OAL packet includes an IP

Jumbogram, the L2 source instead sets the UDP length to 0 and

includes a Jumbo Payload option in the L2 IP header.)

For IP encapsulation, the L2 source sets the IP {Protocol, Next-

Header} to TBD1 (see: IANA Considerations) and sets the {Total,

Payload} Length the same as specified in [RFC0791] or [RFC8200].

(If the OAL packet includes a true Jumbogram, the L2 source

includes a Jumbo Payload option and sets {Total, Payload} Length

plus the Jumbo Payload length according to the OAL length

information.)

For direct encapsulations over Ethernet-compatible links, the L2

source sets EtherType to TBD2 (see: IANA Considerations). Since

the Ethernet header does not include a length field, for the OMNI

EtherType the Ethernet header is followed by a four-octet Payload

Length field followed immediately by the encapsulated OAL

information. The Payload Length field encodes the length in

octets (in network byte order) of the OAL information exclusive

of the lengths of the Ethernet header and trailer.

When an L2 source includes a UDP header, it SHOULD calculate and

include a UDP checksum in carrier packets with full OAL headers to

prevent mis-delivery, and MAY disable UDP checksums in carrier

packets with compressed OAL headers (see: Section 6.4). If the L2

source discovers that a path is dropping carrier packets with UDP

checksums disabled, it should enable UDP checksums in future carrier

packets sent to the same L2 destination. If the L2 source discovers

that a path is dropping carrier packets that do not include a UDP

header, it should include a UDP header in future carrier packets.

When an L2 source sends carrier packets with compressed OAL headers

and with UDP checksums disabled, mis-delivery due to corruption of

the 4-octet AERO Forwarding Vector Index (AFVI) is possible but

unlikely since the corrupted index would somehow have to match valid

state in the (sparsely-populated) AERO Forwarding Information Based

(AFIB). In the unlikely event that a match occurs, an OAL

destination may receive a mis-delivered carrier packet but can

immediately reject packets with an incorrect Identification. If the

Identification value is somehow accepted, the OAL destination may

submit the mis-delivered carrier packet to the reassembly cache

where it will most likely be rejected due to incorrect reassembly

parameters. If a reassembly that includes the mis-delivered carrier

packets somehow succeeds (or, for atomic fragments) the OAL

destination will verify the OAL checksum to detect corruption.

Finally, any spurious data that somehow eludes all prior checks will

be detected and rejected by end-to-end upper layer integrity checks.

See: [RFC6935][RFC6936] for further discussion.

¶

*

¶

*

¶

¶

¶

For L2 encapsulations over IP, when the L2 source is also the OAL

source it next copies the "Type of Service/Traffic Class" [RFC2983]

and "Explicit Congestion Notification (ECN)" [RFC3168] values in the

OAL header into the corresponding fields in the L2 IP header, then

(for IPv6) set the L2 IPv6 header "Flow Label" as specified in

[RFC6438]. The L2 source then sets the L2 IP TTL/Hop Limit the same

as for any host (i.e., it does not copy the Hop Limit value from the

OAL header) and finally sets the source and destination IP addresses

to direct the carrier packet to the next hop. For carrier packets

undergoing re-encapsulation, the OAL intermediate node L2 source

decrements the OAL header Hop Limit and discards the carrier packet

if the value reaches 0. The L2 source then copies the "Type of

Service/Traffic Class" and "Explicit Congestion Notification (ECN)"

values from the previous hop L2 encapsulation header into the OAL

header (if present), then finally sets the source and destination IP

addresses the same as above.

Following L2 encapsulation/re-encapsulation, the L2 source forwards

the resulting carrier packets over one or more underlay interfaces.

The underlay interfaces often connect directly to physical media on

the local platform (e.g., a laptop computer with WiFi, etc.), but in

some configurations the physical media may be hosted on a separate

Local Area Network (LAN) node. In that case, the OMNI interface can

establish a Layer-2 VLAN or a point-to-point tunnel (at a layer

below the underlay interface) to the node hosting the physical

media. The OMNI interface may also apply encapsulation at the

underlay interface layer (e.g., as for a tunnel virtual interface)

such that carrier packets would appear "double-encapsulated" on the

LAN; the node hosting the physical media in turn removes the LAN

encapsulation prior to transmission or inserts it following

reception. Finally, the underlay interface must monitor the node

hosting the physical media (e.g., through periodic keepalives) so

that it can convey up/down/status information to the OMNI interface.

6.3. OAL L2 Decapsulation and Reassembly

When an OMNI interface receives a carrier packet from an underlay

interface, it copies the ECN value from the L2 encapsulation headers

into the OAL header if the carrier packet contains a first-fragment.

The OMNI interface next discards the L2 encapsulation headers and

examines the OAL header of the enclosed OAL fragment. If the OAL

fragment is addressed to a different node, the OMNI interface

(acting as an OAL intermediate node) re-encapsulates and forwards

while decrementing the OAL Hop Limit as discussed in Section 6.2. If

the OAL fragment is addressed to itself, the OMNI interface (acting

as an OAL destination) accepts or drops the fragment based on the

(Source, Destination, Identification)-tuple and/or integrity checks.

¶

¶

¶

The OAL destination next drops all non-final OAL fragments smaller

than the minimum MPS and all fragments that would overlap or leave

"holes" smaller than the minimum MPS with respect to other fragments

already received. The OAL destination updates a checklist of

accepted fragments of the same OAL packet that include an Ordinal

number (i.e., Ordinals 0 through 127), but admits all accepted

fragments into the reassembly cache after first removing any

extension headers except for the fragment header itself. When the

OAL destination receives the final fragment (i.e., the one with More

Fragments set to 0), it caches the trailing checksum and reduces the

Payload Length by 2. When reassembly is complete, the OAL

destination verifies the OAL packet checksum and discards the packet

if the checksum is incorrect. If the OAL packet was accepted, the

OAL destination finally removes the OAL headers and delivers the

original IP packet to the network layer.

Carrier packets often travel over paths where all links in the path

include CRC-32 integrity checks for effective hop-by-hop error

detection for payload sizes up to 9180 octets [CRC], but other paths

may traverse links (such as tunnels over IPv4) that do not include

adequate integrity protection. The OAL checksum therefore allows OAL

destinations to detect reassembly misassociation splicing errors

and/or carrier packet corruption caused by unprotected links

[CKSUM].

The OAL checksum also provides algorithmic diversity with respect to

both lower layer CRCs and upper layer Internet checksums as part of

a complimentary multi-layer integrity assurance architecture. Any

corruption not detected by lower layer integrity checks is therefore

very likely to be detected by upper layer integrity checks that use

diverse algorithms.

6.4. OAL Header Compression

OAL sources that send carrier packets with full OAL headers include

a CRH-32 extension for segment-by-segment forwarding based on an

AERO Forwarding Information Base (AFIB) in each OAL intermediate

node. OAL source, intermediate and destination nodes can instead

establish header compression state through IPv6 ND NS/NA message

exchanges. After an initial NS/NA exchange, OAL nodes can apply OAL

Header Compression to significantly reduce encapsulation overhead.

Each OAL node establishes AFIB soft state entries known as AERO

Forwarding Vectors (AFVs) which support both carrier packet

forwarding and OAL header compression/decompression. For FHS OAL

sources, each AFV is referenced by a single AERO Forwarding Vector

Index (AFVI) that provides compression/decompression and forwarding

context for the next hop. For LHS OAL destinations, the AFV is

referenced by a single AFVI that provides context for the previous

¶

¶

¶

¶

hop. For OAL intermediate nodes, the AFV is referenced by two AFVIs

- one for the previous hop and one for the next hop.

When an OAL node forwards carrier packets to a next hop, it can

include a full OAL header with a CRH-32 extension containing one or

more AFVIs. Whenever possible, however, the OAL node should instead

omit significant portions of the OAL header (including the CRH-32)

while applying OAL header compression. The full or compressed OAL

header follows immediately after the innermost L2 encapsulation

(i.e., UDP, IP or L2) as discussed in Section 6.2. Two OAL

compressed header types (Types '0' and '1') are currently specified

below (note that the (A)RQ flag is always considered set and

therefore omitted from the compressed headers themselves).

For OAL first-fragments (including atomic fragments), the OAL node

uses OMNI Compressed Header - Type 0 (OCH-0) format as shown in

Figure 7:

Figure 7: OMNI Compressed Header - Type 0 (OCH-0)

The format begins with a 4-bit Type, a 6-bit Hop Limit, a 2-bit

Explicit Congestion Notification (ECN) field, a 7-bit Parcel ID and

5 flag bits. The format concludes with a 4-octet Identification

field followed (optionally) by a 4-octet AFVI field. The OAL node

sets Type to the value 0, sets Hop Limit to the minimum of the

uncompressed OAL header Hop Limit and 63, sets ECN the same as for

an uncompressed OAL header, and sets (Parcel ID, (P)arcel, (S)ub-

parcels, (M)ore Fragments, Identification) the same as for an

uncompressed fragment header. The OAL node finally sets Inde(X) and

includes an AFVI if necessary; otherwise, it clears Inde(X) and

omits the AFVI. (The (R)eserved flag is set to 0 on transmission and

ignored on reception.)

The OAL first fragment (beginning with the original IP header) is

then included immediately following the OCH-0 header, and the L2

header length field is reduced by the difference in length between

the compressed headers and full-length OAL IPv6 and Fragment

headers. The OAL destination can therefore determine the Payload

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Hop Limit |ECN| Parcel ID |R|X|P|S|M| Ident. (0) |

 +-+

 | Identification (1-3) | AFVI (0) |

 +-+

 | AFVI (1-3) |

 +-+

¶

Length by examining the L2 header length field and/or the length

field(s) in the original IP header. The OCH-0 format applies for

first fragments only, which are always regarded as ordinal fragment

0 even though no explicit Ordinal field is included. The (A)RQ flag

is always implicitly set, and therefore omitted from the OCH-0

header.

For OAL non-first fragments (i.e., those with non-zero Fragment

Offsets), the OAL uses OMNI Compressed Header - Type 1 (OCH-1)

format as shown in Figure 8:

Figure 8: OMNI Compressed Header - Type 1 (OCH-1)

The format begins with a 4-bit Type, a 6-bit Hop Limit, a 7-bit

Ordinal, a 13-bit Fragment Offset and 2 flag bits. The format

concludes with a 4-octet Identification field followed (optionally)

by a 4-octet AFVI field. The OAL node sets Type to the value 1, sets

Hop Limit to the minimum of the uncompressed OAL header Hop Limit

and 63, and sets (Ordinal, Fragment Offset, (M)ore Fragments,

Identification) the same as for an uncompressed fragment header. If

an AFVI is needed, the OAL node finally sets Inde(X) and includes an

AFVI; otherwise, the node clears Inde(X) and omits the AFVI.

The OAL non-first fragment body is then included immediately

following the OCH-1 header, and the L2 header length field is

reduced by the difference in length between the compressed headers

and full-length OAL IPv6 and Fragment headers. The OAL destination

will then be able to determine the Payload Length by examining the

L2 header length field. The OCH-1 format applies for non-first

fragments only; therefore, the OAL source sets Ordinal to a

monotonically increasing value beginning with 1 for the first non-

first fragment, 2 for the second non-first fragment, etc., up to and

including the final fragment. If more than 127 non-first fragments

are included, these additional fragments instead set Ordinal to 0.

The (A)RQ flag is always implicitly set, and therefore omitted from

the OCH-1 header.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Hop Limit | Ordinal | Fragment Offset |X|M|

 +-+

 | Identification |

 +-+

 | AFVI |

 +-+

¶

¶

When an OAL destination or intermediate node receives a carrier

packet, it determines the length of the encapsulated OAL information

by examining the length field of the innermost L2 header, verifies

that the innermost next header field indicates OMNI (see: Section

6.2), then examines the first four bits immediately following the

innermost header. If the bits contain the value 4 or 6, the OAL node

processes the remainder as an uncompressed OAL/IP header. If the

bits contain a value 0 or 1, the OAL node instead processes the

remainder of the header as an OCH-0/1 as specified above.

For carrier packets with OCH or full OAL headers addressed to itself

and with CRH-32 extensions, the OAL node then uses the AFVI to

locate the cached AFV which determines the next hop. During

forwarding, the OAL node changes the AFVI to the cached value for

the AFV next hop. If the OAL node is the destination, it instead

reconstructs the full OAL headers then adds the resulting OAL

fragment to the reassembly cache if the Identification is

acceptable. (Note that for carrier packets that include an OCH-0

with both the X and M flags set to 0, the OAL node can instead

locate forwarding state by examining the original IP packet header

information that appears immediately after the OCH-0 header.)

Note: OAL header compression does not interfere with checksum

calculation and verification, which must be applied according to the

full OAL pseudo-header per Section 6.1 even when compression is

used.

Note: The OCH-0/1 formats do not include the Traffic Class and Flow

Label information that appears in uncompressed OAL IPv6 headers.

Therefore, when OAL header compression state is initialized the

Traffic Class and Flow Label are considered fixed for as long as the

flow uses OCH-0/1 headers. If the flow requires frequent changes to

Traffic Class and/or Flow Label information, it can include

uncompressed OAL headers either continuously or periodically to

update header compression state.

6.5. OAL-in-OAL Encapsulation

When an OAL source is unable to forward carrier packets directly to

an OAL destination without "tunneling" through a pair of OAL

intermediate nodes, the OAL source must regard the intermediate

nodes as ingress and egress tunnel endpoints. This will result in

nested OAL-in-OAL encapsulation in which the OAL source performs

fragmentation on the inner OAL packet then forwards the fragments to

the ingress tunnel endpoint which encapsulates each resulting OAL

fragment in an additional OAL header before performing fragmentation

following encapsulation.

¶

¶

¶

¶

¶

For example, if the OAL source has an NCE for the OAL destination

with AFVI 0x2376a7b5 and Identification 0x12345678 and the OAL

ingress tunnel endpoint has an NCE for the OAL egress tunnel

endpoint with AFVI 0xacdebf12 and Identification 0x98765432, the OAL

source prepares the carrier packets using compressed/uncompressed

OAL headers that include the AFVI and Identification corresponding

to the OAL destination and with L2 header information addressed to

the next hop toward the ingress tunnel endpoint. When the ingress

tunnel endpoint receives the carrier packet, it recognizes the

current AFVI included by the OAL source and determines the correct

next hop AFVI.

The ingress tunnel endpoint then discards the L2 headers from the

previous hop and encapsulates the original compressed/uncompressed

OAL header within a second compressed/uncompressed OAL header while

including the next-hop AFVI in the outer OAL encapsulation header

and omitting the AFVI in the inner header. The ingress tunnel

endpoint then includes L2 encapsulation headers with destinations

appropriate for the next hop on the path to the egress tunnel

endpoint. The encapsulation appears as shown in Figure 9:

Figure 9: Carrier Packet in Carrier Packet Encapsulation

¶

¶

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | L2 headers (previous hop) | | L2 headers (next hop) |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Original OAL/OCH Hdr | | Encapsulation OAL/OCH Hdr |

 | Id=0x12345678 | | Id=0x98765432 |

 | AFVI=0x2376a7b5 | | AFVI=0xacdebf12 |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | | | Original OAL/OCH Hdr |

 | | | Id=0x12345678 |

 | Carrier packet data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | | | |

 | | | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Carrier packet data |

 | Original OAL Checksum | | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |

 Original Carrier packet +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 from OAL source | Original OAL Checksum |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Encapsulation OAL Checksum |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Carrier packet following OAL ingress

 (re)encapsulation before fragmentation

Note that only a single OAL-in-OAL encapsulation layer is supported,

and that AFVIs appear only in the outer OAL header (i.e., either

within a CRH-32 routing header when a full OAL header is used or

within an OCH header with X set to 0). The inner OAL header should

omit the CRH-32 header or use an OCH header with X set to 1,

respectively.

Note that OAL/OCH encapsulation may cause the payloads of OAL

packets produced by the ingress tunnel endpoint to exceed the

minimum MPS by a small amount. If the ingress has assurance that the

path to the egress will include only links capable of transiting the

resulting (slightly larger) carrier packets it should forward

without further fragmentation. Otherwise, the ingress must perform

fragmentation following encapsulation to produce two fragments such

that the size of the first fragment matches the size of the original

OAL packet, and with the remainder in a second fragment. The egress

tunnel endpoint must then reassemble then decapsulate to arrive at

the original OAL packet which is then subject to further forwarding.

6.6. OAL Identification Window Maintenance

The OAL encapsulates each original IP packet as an OAL packet then

performs fragmentation to produce one or more carrier packets with

the same 32-bit Identification value. In environments where spoofing

is not considered a threat, OMNI interfaces send OAL packets with

Identifications beginning with an unpredictable Initial Send

Sequence (ISS) value [RFC7739] monotonically incremented (modulo

2**32) for each successive OAL packet sent to either a specific

neighbor or to any neighbor. (The OMNI interface may later change to

a new unpredictable ISS value as long as the Identifications are

assured unique within a timeframe that would prevent the fragments

of a first OAL packet from becoming associated with the reassembly

of a second OAL packet.) In other environments, OMNI interfaces

should maintain explicit per-neighbor send and receive windows to

detect and exclude spurious carrier packets that might clutter the

reassembly cache as discussed below.

OMNI interface neighbors use TCP-like synchronization to maintain

windows with unpredictable ISS values incremented (modulo 2**32) for

each successive OAL packet and re-negotiate windows often enough to

maintain an unpredictable profile. OMNI interface neighbors exchange

IPv6 ND messages with OMNI options that include TCP-like information

fields to manage streams of OAL packets instead of streams of

octets. As a link-layer service, the OAL provides low-persistence

best-effort retransmission with no mitigations for duplication,

reordering or deterministic delivery. Since the service model is

best-effort and only control message sequence numbers are

acknowledged, OAL nodes can select unpredictable new initial

¶

¶

¶

sequence numbers outside of the current window without delaying for

the Maximum Segment Lifetime (MSL).

OMNI interface neighbors maintain current and previous window state

in IPv6 ND NCEs to support dynamic rollover to a new window while

still sending OAL packets and accepting carrier packets from the

previous windows. Each NCE is indexed by the neighbor's ULA, while

the OAL encapsulation ULA (which may be different) provides context

for Identification verification. OMNI interface neighbors

synchronize windows through asymmetric and/or symmetric IPv6 ND

message exchanges. When a node receives an IPv6 ND message with new

window information, it resets the previous window state based on the

current window then resets the current window based on new and/or

pending information.

The IPv6 ND message OMNI option header extension sub-option includes

TCP-like information fields including Sequence Number,

Acknowledgement Number, Window and flags (see: Section 12). OMNI

interface neighbors maintain the following TCP-like state variables

in the NCE:

OMNI interface neighbors "OAL A" and "OAL B" exchange IPv6 ND

messages per [RFC4861] with OMNI options that include TCP-like

information fields. When OAL A synchronizes with OAL B, it maintains

both a current and previous SND.WND beginning with a new

unpredictable ISS and monotonically increments SND.NXT for each

successive OAL packet transmission. OAL A initiates synchronization

by including the new ISS in the Sequence Number of an authentic IPv6

ND message with the SYN flag set and with Window set to M (up to

2**24) as a tentative receive window size while creating a NCE in

the INCOMPLETE state if necessary. OAL A caches the new ISS as

pending, uses the new ISS as the Identification for OAL

encapsulation, then sends the resulting OAL packet to OAL B and

waits up to RetransTimer milliseconds to receive an IPv6 ND message

response with the ACK flag set (retransmitting up to

MAX_UNICAST_SOLICIT times if necessary).

¶

¶

¶

 Send Sequence Variables (current, previous and pending)

 SND.NXT - send next

 SND.WND - send window

 ISS - initial send sequence number

 Receive Sequence Variables (current and previous)

 RCV.NXT - receive next

 RCV.WND - receive window

 IRS - initial receive sequence number

¶

¶

When OAL B receives the SYN, it creates a NCE in the STALE state if

necessary, resets its RCV variables, caches the tentative (send)

window size M, and selects a (receive) window size N (up to 2**24)

to indicate the number of OAL packets it is willing to accept under

the current RCV.WND. (The RCV.WND should be large enough to minimize

control message overhead yet small enough to provide an effective

filter for spurious carrier packets.) OAL B then prepares an IPv6 ND

message with the ACK flag set, with the Acknowledgement Number set

to OAL A's next sequence number, and with Window set to N. Since OAL

B does not assert an ISS of its own, it uses the IRS it has cached

for OAL A as the Identification for OAL encapsulation then sends the

ACK to OAL A.

When OAL A receives the ACK, it notes that the Identification in the

OAL header matches its pending ISS. OAL A then sets the NCE state to

REACHABLE and resets its SND variables based on the Window size and

Acknowledgement Number (which must include the sequence number

following the pending ISS). OAL A can then begin sending OAL packets

to OAL B with Identification values within the (new) current SND.WND

for up to ReachableTime milliseconds or until the NCE is updated by

a new IPv6 ND message exchange. This implies that OAL A must send a

new SYN before sending more than N OAL packets within the current

SND.WND, i.e., even if ReachableTime is not nearing expiration.

After OAL B returns the ACK, it accepts carrier packets received

from OAL A within either the current or previous RCV.WND as well as

any new authentic NS/RS SYN messages received from OAL A even if

outside the windows.

OMNI interface neighbors can employ asymmetric window

synchronization as described above using two independent (SYN ->

ACK) exchanges (i.e., a four-message exchange), or they can employ

symmetric window synchronization using a modified version of the TCP

three-way handshake as follows:

OAL A prepares a SYN with an unpredictable ISS not within the

current SND.WND and with Window set to M as a tentative receive

window size. OAL A caches the new ISS and Window size as pending

information, uses the pending ISS as the Identification for OAL

encapsulation, then sends the resulting OAL packet to OAL B and

waits up to RetransTimer milliseconds to receive an ACK response

(retransmitting up to MAX_UNICAST_SOLICIT times if necessary).

OAL B receives the SYN, then resets its RCV variables based on

the Sequence Number while caching OAL A's tentative receive

Window size M and a new unpredictable ISS outside of its current

window as pending information. OAL B then prepares a response

with Sequence Number set to the pending ISS and Acknowledgement

Number set to OAL A's next sequence number. OAL B then sets both

the SYN and ACK flags, sets Window to N and sets the OPT flag

¶

¶

¶

*

¶

*

according to whether an explicit concluding ACK is optional or

mandatory. OAL B then uses the pending ISS as the Identification

for OAL encapsulation, sends the resulting OAL packet to OAL A

and waits up to RetransTimer milliseconds to receive an

acknowledgement (retransmitting up to MAX_UNICAST_SOLICIT times

if necessary).

OAL A receives the SYN/ACK, then resets its SND variables based

on the Acknowledgement Number (which must include the sequence

number following the pending ISS) and OAL B's advertised Window

N. OAL A then resets its RCV variables based on the Sequence

Number and marks the NCE as REACHABLE. If the OPT flag is clear,

OAL A next prepares an immediate solicited NA message with the

ACK flag set, the Acknowledgement Number set to OAL B's next

sequence number, with Window set a value that may be the same as

or different than M, and with the OAL encapsulation

Identification to SND.NXT, then sends the resulting OAL packet to

OAL B. If the OPT flag is set and OAL A has OAL packets queued to

send to OAL B, it can optionally begin sending their carrier

packets under the (new) current SND.WND as implicit

acknowledgements instead of returning an explicit ACK. In that

case, the tentative Window size M becomes the current receive

window size.

OAL B receives the implicit/explicit acknowledgement(s) then

resets its SND state based on the pending/advertised values and

marks the NCE as REACHABLE. If OAL B receives an explicit

acknowledgement, it uses the advertised Window size and abandons

the tentative size. (Note that OAL B sets the OPT flag in the

SYN/ACK to assert that it will interpret timely receipt of

carrier packets within the (new) current window as an implicit

acknowledgement. Potential benefits include reduced delays and

control message overhead, but use case analysis is outside the

scope of this specification.)

Following synchronization, OAL A and OAL B hold updated NCEs and can

exchange OAL packets with Identifications set to SND.NXT while the

state remains REACHABLE and there is available window capacity.

Either neighbor may at any time send a new SYN to assert a new ISS.

For example, if OAL A's current SND.WND for OAL B is nearing

exhaustion and/or ReachableTime is nearing expiration, OAL A

continues to send OAL packets under the current SND.WND while also

sending a SYN with a new unpredictable ISS. When OAL B receives the

SYN, it resets its RCV variables and may optionally return either an

asymmetric ACK or a symmetric SYN/ACK to also assert a new ISS.

While sending SYNs, both neighbors continue to send OAL packets with

Identifications set to the current SND.NXT then reset the SND

variables after an acknowledgement is received.

¶

*

¶

*

¶

¶

While the optimal symmetric exchange is efficient, anomalous

conditions such as receipt of old duplicate SYNs can cause confusion

for the algorithm as discussed in Section 3.4 of [RFC0793]. For this

reason, the OMNI option header includes an RST flag which OAL nodes

set in solicited NA responses to ACKs received with incorrect

acknowledgement numbers. The RST procedures (and subsequent

synchronization recovery) are conducted exactly as specified in

[RFC0793].

OMNI interfaces may set the PNG ("ping") flag when a reachability

confirmation outside the context of the IPv6 ND protocol is needed

(OMNI interfaces therefore most often set the PNG flag in

advertisement messages and ignore it in solicitation messages). When

an OMNI interface receives a PNG, it returns an unsolicited NA (uNA)

ACK with the PNG message Identification in the Acknowledgment, but

without updating RCV state variables. OMNI interfaces return unicast

uNA ACKs even for multicast PNG destination addresses, since OMNI

link multicast is based on unicast emulation.

OMNI interfaces that employ the window synchronization procedures

described above observe the following requirements:

OMNI interfaces MUST select new unpredictable ISS values that are

at least a full window outside of the current SND.WND.

OMNI interfaces MUST set the initial SYN message Window field to

a tentative value to be used only if no concluding NA ACK is

sent.

OMNI interfaces that receive advertisements with the PNG and/or

SYN flag set MUST NOT set the PNG and/or SYN flag in uNA

responses.

OMNI interfaces that send advertisements with the PNG and/or SYN

flag set MUST ignore uNA responses with the PNG and/or SYN flag

set.

OMNI interfaces MUST send IPv6 ND messages used for window

synchronization securely while using unpredictable initial

Identification values until synchronization is complete.

Note: Although OMNI interfaces employ TCP-like window

synchronization and support uNA ACK responses to SYNs and PNGs, all

other aspects of the IPv6 ND protocol (e.g., control message

exchanges, NCE state management, timers, retransmission limits,

etc.) are honored exactly per [RFC4861].

Note: Recipients of OAL-encapsulated IPv6 ND messages index the NCE

based on the message source address, which also determines the

carrier packet Identification window. However, IPv6 ND messages may

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

contain a message source address that does not match the OMNI

encapsulation source address when the recipient acts as a proxy.

Note: OMNI interface neighbors apply the same send and receive

windows for all of their (multilink) underlay interface pairs that

exchange carrier packets. Each interface pair represents a distinct

underlay network path, and the set of paths traversed may be highly

diverse when multiple interface pairs are used. OMNI intermediate

nodes therefore SHOULD NOT cache window synchronization parameters

in IPv6 ND messages they forward since there is no way to ensure

network-wide middlebox state consistency.

6.7. OAL Fragment Retransmission

When the OAL source sends carrier packets to an OAL destination, it

should cache recently sent packets in case timely best-effort

selective retransmission is requested. The OAL destination in turn

maintains a checklist for the (Source, Destination, Identification)-

tuple of recently received carrier packets and notes the ordinal

numbers of OAL packet fragments already received (i.e., as Frag #0,

Frag #1, Frag #2, etc.). The timeframe for maintaining the OAL

source and destination caches determines the link persistence (see:

[RFC3366]).

If the OAL destination notices some fragments missing after most

other fragments within the same link persistence timeframe have

already arrived, it may issue an Automatic Repeat Request (ARQ) with

Selective Repeat (SR) by sending a uNA message to the OAL source.

The OAL destination creates a uNA message with an OMNI option with

one or more Fragmentation Report (FRAGREP) sub-options that include

a list of (Identification, Bitmap)-tuples for fragments received and

missing from this OAL source (see: Section 12 and [I-D.templin-6man-

fragrep]). The OAL destination includes an authentication signature

if necessary, performs OAL encapsulation (with the its own address

as the OAL source and the source address of the message that

prompted the uNA as the OAL destination) and sends the message to

the OAL source.

When the OAL source receives the uNA message, it authenticates the

message then examines the FRAGREP. For each (Source, Destination,

Identification)-tuple, the OAL source determines whether it still

holds the corresponding carrier packets in its cache and retransmits

any for which the Bitmap indicates a loss event. For example, if the

Bitmap indicates that ordinal fragments #3, #7, #10 and #13 from the

OAL packet with Identification 0x12345678 are missing the OAL source

only retransmits carrier packets containing those fragments. When

the OAL destination receives the retransmitted carrier packets, it

admits the enclosed fragments into the reassembly cache and updates

its checklist. If some fragments are still missing, the OAL

¶

¶

¶

¶

destination may send a small number of additional uNA ARQ/SRs within

the link persistence timeframe.

The OAL therefore provides a link-layer low-to-medium persistence

ARQ/SR service consistent with [RFC3366] and Section 8.1 of

[RFC3819]. The service provides the benefit of timely best-effort

link-layer retransmissions which may reduce packet loss and avoid

some unnecessary end-to-end delays. This best-effort network-based

service therefore compliments higher layer end-to-end protocols

responsible for true reliability.

6.8. OAL MTU Feedback Messaging

When the OMNI interface forwards original IP packets from the

network layer, it invokes the OAL and returns internally-generated

ICMPv4 Fragmentation Needed [RFC1191] or ICMPv6 Path MTU Discovery

(PMTUD) Packet Too Big (PTB) [RFC8201] messages as necessary. This

document refers to both of these ICMPv4/ICMPv6 message types simply

as "PTBs", and introduces a distinction between PTB "hard" and

"soft" errors as discussed below and also in [I-D.templin-6man-

fragrep].

Ordinary PTB messages with ICMPv4 header "unused" field or ICMPv6

header Code field value 0 are hard errors that always indicate that

a packet has been dropped due to a real MTU restriction. However,

the OMNI interface can also forward large original IP packets via

OAL encapsulation and fragmentation while at the same time returning

PTB soft error messages (subject to rate limiting) if it deems the

original IP packet too large according to factors such as link

performance characteristics, number of fragments needed, reassembly

congestion, etc. This ensures that the path MTU is adaptive and

reflects the current path used for a given data flow. The OMNI

interface can therefore continuously forward packets without loss

while returning PTB soft error messages recommending a smaller size

if necessary. Original sources that receive the soft errors in turn

reduce the size of the packets they send (i.e., the same as for hard

errors), but can soon resume sending larger packets if the soft

errors subside.

An OAL source sends PTB soft error messages by setting the ICMPv4

header "unused" field or ICMPv6 header Code field to the value 1 if

the packet was dropped or 2 if the packet was forwarded

successfully. The OAL source sets the PTB destination address to the

original IP packet source, and sets the source address to one of its

OMNI interface addresses that is routable from the perspective of

the original source. The OAL source then sets the MTU field to a

value smaller than the original packet size but no smaller than 576

for ICMPv4 or 1280 for ICMPv6, writes the leading portion of the

original IP packet first fragment into the "packet in error" field,

¶

¶

¶

¶

and returns the PTB soft error to the original source. When the

original source receives the PTB soft error, it temporarily reduces

the size of the packets it sends the same as for hard errors but may

seek to increase future packet sizes dynamically while no further

soft errors are arriving. (If the original source does not recognize

the soft error code, it regards the PTB the same as a hard error but

should heed the retransmission advice given in [RFC8201] suggesting

retransmission based on normal packetization layer retransmission

timers.)

An OAL destination may experience reassembly cache congestion, and

can return uNA messages to the OAL source that originated the

fragments (subject to rate limiting) that include OMNI encapsulated

PTB messages with code 1 or 2. The OAL destination creates a uNA

message with an OMNI option containing an authentication message

sub-option if necessary followed optionally by a ICMPv6 Error sub-

option that encodes a PTB message with a reduced value and with the

leading portion an OAL first fragment containing the header of an

original IP packet whose source must be notified (see: Section 12).

The OAL destination encapsulates the leading portion of the OAL

first fragment (beginning with the OAL header) in the PTB "packet in

error" field, signs the message if an authentication sub-option is

included, performs OAL encapsulation (with the its own address as

the OAL source and the source address of the message that prompted

the uNA as the OAL destination) and sends the message to the OAL

source.

When the OAL source receives the uNA message, it sends a

corresponding network layer PTB soft error to the original source to

recommend a smaller size. The OAL source crafts the PTB by

extracting the leading portion of the original IP packet from the

OMNI encapsulated PTB message (i.e., not including the OAL header)

and writes it in the "packet in error" field of a network layer PTB

with destination set to the original IP packet source and source set

to one of its OMNI interface addresses that is routable from the

perspective of the original source.

Original sources that receive PTB soft errors can dynamically tune

the size of the original IP packets they to send to produce the best

possible throughput and latency, with the understanding that these

parameters may change over time due to factors such as congestion,

mobility, network path changes, etc. The receipt or absence of soft

errors should be seen as hints of when increasing or decreasing

packet sizes may be beneficial. The OMNI interface supports

continuous transmission and reception of packets of various sizes in

the face of dynamically changing network conditions. Moreover, since

PTB soft errors do not indicate a hard limit, original sources that

receive soft errors can resume sending larger packets without

waiting for the recommended 10 minutes specified for PTB hard errors

¶

¶

¶

[RFC1191][RFC8201]. The OMNI interface therefore provides an

adaptive service that accommodates MTU diversity especially well-

suited for dynamic multilink environments.

6.9. OAL Super-Packets

By default, the OAL source includes a 40-octet IPv6 encapsulation

header for each original IP packet during OAL encapsulation. The OAL

source also calculates then performs fragmentation such that a copy

of the 40-octet IPv6 header plus an 8-octet IPv6 Fragment Header is

included in each OAL fragment (when a Routing Header is added, the

OAL encapsulation headers become larger still). However, these

encapsulations may represent excessive overhead in some

environments. OAL header compression can dramatically reduce the

amount of encapsulation overhead, however a complimentary technique

known as "packing" (see: [I-D.ietf-intarea-tunnels]) supports

encapsulation of multiple original IP packets and/or control

messages within a single OAL "super-packet".

When the OAL source has multiple original IP packets to send to the

same OAL destination with total length no larger than the OAL

destination MRU, it can concatenate them into a super-packet

encapsulated in a single OAL header. Within the OAL super-packet,

the IP header of the first original IP packet (iHa) followed by its

data (iDa) is concatenated immediately following the OAL header,

then the IP header of the next original packet (iHb) followed by its

data (iDb) is concatenated immediately following the first original

packet, etc. with a trailing checksum field included in the final

fragment. The OAL super-packet format is transposed from [I-D.ietf-

intarea-tunnels] and shown in Figure 10:

¶

¶

¶

Figure 10: OAL Super-Packet Format

When the OAL source prepares a super-packet, it applies OAL

fragmentation, includes a trailing checksum in the final fragment,

applies L2 encapsulation to each fragment then sends the resulting

carrier packets to the OAL destination. When the OAL destination

receives the super-packet it sets aside the trailing checksum,

reassembles if necessary, then verifies the checksum while regarding

the remaining OAL header Payload Length as the sum of the lengths of

all payload packets. The OAL destination then selectively extracts

each original IP packet (e.g., by setting pointers into the super-

packet buffer and maintaining a reference count, by copying each

packet into a separate buffer, etc.) and forwards each packet to the

network layer. During extraction, the OAL determines the IP protocol

version of each successive original IP packet 'j' by examining the

four most-significant bits of iH(j), and determines the length of

the packet by examining the rest of iH(j) according to the IP

protocol version.

When an OAL source prepares a super-packet that includes an IPv6 ND

message with an authentication signature or ICMPv6 message checksum

as the first original IP packet (i.e., iHa/iDa), it calculates the

authentication signature or checksum over the remainder of super-

packet. Security and integrity for forwarding initial protocol data

packets in conjunction with IPv6 ND messages used to establish NCE

state are therefore supported. (A common use case entails a path MPS

probe beginning with a signed IPv6 ND message followed by a NULL

IPv6 packet with a suitably large (Jumbo) Payload Length but with

Next Header set to 59 for "No Next Header".)

 <------- Original IP packets ------->

 +-----+-----+

 | iHa | iDa |

 +-----+-----+

 |

 | +-----+-----+

 | | iHb | iDb |

 | +-----+-----+

 | |

 | | +-----+-----+

 | | | iHc | iDc |

 | | +-----+-----+

 | | |

 v v v

 +----------+-----+-----+-----+-----+-----+-----+----+

 | OAL Hdr | iHa | iDa | iHb | iDb | iHc | iDc |Csum|

 +----------+-----+-----+-----+-----+-----+-----+----+

 <--- OAL "Super-Packet" with single OAL Hdr/Csum --->

¶

¶

6.10. OAL Bubbles

OAL sources may send NULL OAL packets known as "bubbles" for the

purpose of establishing Network Address Translator (NAT) state on

the path to the OAL destination. The OAL source prepares a bubble by

crafting an OAL header with appropriate IPv6 source and destination

ULAs, with the IPv6 Next Header field set to the value 59 ("No Next

Header" - see [RFC8200]) and with only the trailing OAL Checksum

field (i.e., and no protocol data) immediately following the IPv6

header.

The OAL source includes a random Identification value then

encapsulates the OAL packet in L2 headers destined to either the

mapped address of the OAL destination's first-hop ingress NAT or the

L2 address of the OAL destination itself. When the OAL source sends

the resulting carrier packet, any egress NATs in the path toward the

L2 destination will establish state based on the activity but the

bubble will be harmlessly discarded by either an ingress NAT on the

path to the OAL destination or by the OAL destination itself.

The bubble concept for establishing NAT state originated in

[RFC4380] and was later updated by [RFC6081]. OAL bubbles may be

employed by mobility services such as [I-D.templin-6man-aero].

6.11. OAL Requirements

In light of the above, OAL sources, destinations and intermediate

nodes observe the following normative requirements:

OAL sources MUST forward original IP packets either larger than

the OMNI interface MRU or smaller than the minimum MPS minus the

trailing checksum size as atomic fragments (i.e., and not as

multiple fragments).

OAL sources MUST produce non-final fragments with payloads no

smaller than the minimum MPS during fragmentation.

OAL intermediate nodes SHOULD and OAL destinations MUST

unconditionally drop any non-final OAL fragments with payloads

smaller than the minimum MPS.

OAL destinations MUST drop any new OAL fragments with offset and

length that would overlap with other fragments and/or leave holes

smaller than the minimum MPS between fragments that have already

been received.

Note: Under the minimum MPS, ordinary 1500 octet original IP packets

would require at most 4 OAL fragments, with each non-final fragment

containing 400 payload octets and the final fragment containing 302

payload octets (i.e., the final 300 octets of the original IP packet

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

plus the 2 octet trailing checksum). For all packet sizes, the

likelihood of successful reassembly may improve when the OMNI

interface sends all fragments of the same fragmented OAL packet

consecutively over the same underlay interface pair instead of

spread across multiple underlay interface pairs. Finally, an assured

minimum/path MPS allows continuous operation over all paths

including those that traverse bridged L2 media with dissimilar MTUs.

Note: Certain legacy network hardware of the past millennium was

unable to accept packet "bursts" resulting from an IP fragmentation

event - even to the point that the hardware would reset itself when

presented with a burst. This does not seem to be a common problem in

the modern era, where fragmentation and reassembly can be readily

demonstrated at line rate (e.g., using tools such as 'iperf3') even

over fast links on ordinary hardware platforms. Even so, while the

OAL destination is reporting reassembly congestion (see: Section

6.8) the OAL source could impose "pacing" by inserting an inter-

fragment delay and increasing or decreasing the delay according to

congestion indications.

6.12. OAL Fragmentation Security Implications

As discussed in Section 3.7 of [RFC8900], there are four basic

threats concerning IPv6 fragmentation; each of which is addressed by

effective mitigations as follows:

Overlapping fragment attacks - reassembly of overlapping

fragments is forbidden by [RFC8200]; therefore, this threat

does not apply to the OAL.

Resource exhaustion attacks - this threat is mitigated by

providing a sufficiently large OAL reassembly cache and

instituting "fast discard" of incomplete reassemblies that may

be part of a buffer exhaustion attack. The reassembly cache

should be sufficiently large so that a sustained attack does

not cause excessive loss of good reassemblies but not so large

that (timer-based) data structure management becomes

computationally expensive. The cache should also be indexed

based on the arrival underlay interface such that congestion

experienced over a first underlay interface does not cause

discard of incomplete reassemblies for uncongested underlay

interfaces.

Attacks based on predictable fragment identification values -

in environments where spoofing is possible, this threat is

mitigated through the use of Identification windows beginning

with unpredictable values per Section 6.6. By maintaining

windows of acceptable Identifications, OAL neighbors can

quickly discard spurious carrier packets that might otherwise

¶

¶

¶

1.

¶

2.

¶

3.

clutter the reassembly cache. The OAL additionally provides an

integrity check to detect corruption that may be caused by

spurious fragments received with in-window Identification

values.

Evasion of Network Intrusion Detection Systems (NIDS) - since

the OAL source employs a robust MPS, network-based firewalls

can inspect and drop OAL fragments containing malicious data

thereby disabling reassembly by the OAL destination. However,

since OAL fragments may take different paths through the

network (some of which may not employ a firewall) each OAL

destination must also employ a firewall.

IPv4 includes a 16-bit Identification (IP ID) field with only 65535

unique values such that at high data rates the field could wrap and

apply to new carrier packets while the fragments of old packets

using the same IP ID are still alive in the network [RFC4963]. Since

carrier packets sent via an IPv4 path with DF=0 are normally no

larger than 576 octets, IPv4 fragmentation is possible only at

small-MTU links in the path which should support data rates low

enough for safe reassembly [RFC3819]. (IPv4 carrier packets larger

than 576 octets with DF=0 may incur high data rate reassembly errors

in the path, but the OAL checksum provides OAL destination integrity

assurance.) Since IPv6 provides a 32-bit Identification value, IP ID

wraparound at high data rates is not a concern for IPv6

fragmentation.

Fragmentation security concerns for large IPv6 ND messages are

documented in [RFC6980]. These concerns are addressed when the OMNI

interface employs the OAL instead of directly fragmenting the IPv6

ND message itself. For this reason, OMNI interfaces MUST NOT send

IPv6 ND messages larger than the OMNI interface MTU, and MUST employ

OAL encapsulation and fragmentation for IPv6 ND messages larger than

the minimum/path MPS for this OAL destination.

Unless the path is secured at the network-layer or below (i.e., in

environments where spoofing is possible), OMNI interfaces MUST NOT

send ordinary carrier packets with Identification values outside the

current window and MUST secure IPv6 ND messages used for address

resolution or window state synchronization. OAL destinations SHOULD

therefore discard without reassembling any out-of-window OAL

fragments received over an unsecured path.

6.13. OMNI Hosts

OMNI Hosts are end systems that extend the OMNI link over ENET

underlay interfaces (i.e., either as an OMNI interface or as a

sublayer of the ENET interface itself). Each ENET is connected to

the rest of the OMNI link by a Client that receives an MNP

¶

4.

¶

¶

¶

¶

delegation. Clients delegate MNP addresses and/or sub-prefixes to

ENET nodes (i.e., Hosts, other Clients, routers and non-OMNI hosts)

using standard mechanisms such as DHCP [RFC8415][RFC2131] and IPv6

Stateless Address AutoConfiguration (SLAAC) [RFC4862]. Clients

forward packets between their ENET Hosts and peers on external

networks acting as routers and/or OAL intermediate nodes.

OMNI Hosts coordinate with Clients and/or other Hosts connected to

the same ENET using IP-encapsulated IPv6 ND messages. The IP

encapsulation headers and ND messages both use the MNP-based

addresses assigned to ENET underlay interfaces as source and

destination addresses (i.e., instead of ULAs). For IPv4 MNPs, the ND

messages use IPv4-Compatible IPv6 addresses [RFC4291] in place of

the IPv4 addresses. (Note that IPv4-Compatible IPv6 addresses are

deprecated for all other uses by the aforementioned standard.)

Hosts discover Clients by sending encapsulated RS messages using an

OMNI link IP anycast address (or the unicast address of the Client)

as the RS L2 encapsulation destination as specified in Section 15.

The Client configures the IPv4 and/or IPv6 anycast addresses for the

OMNI link on its ENET interface and advertises the address(es) into

the ENET routing system. The Client then responds to the

encapsulated RS messages by sending an encapsulated RA message that

uses its ENET unicast address as the source. (To differentiate

itself from an INET border Proxy/Server, the Client sets the RA

message OMNI Interface Attributes sub-option LHS field to 0 for the

Host's interface index. When the RS message includes an L2 anycast

destination address, the Client also includes an Interface

Attributes sub-option for interface index 0 to inform the Host of

its L2 unicast address - see: Section 15 for full details on the RS

and RA message contents.)

Hosts coordinate with peer Hosts on the same ENET by sending

encapsulated NS messages to receive an NA reply. (Hosts determine

whether a peer is on the same ENET by matching the peer's IP address

with the MNP (sub)-prefix for the ENET advertised in the Client's RA

message [RFC8028].) Each ENET peer then creates a NCE and

synchronizes Identification windows the same as for OMNI link

neighbors, and the Host can then engage in OMNI link transactions

with the Client and/or other ENET Hosts. By coordinating with the

Client in this way, the Host treats the Client as if it were an ANET

Proxy/Server, and the Client provides the same services that a

Proxy/Server would provide. By coordinating with other Hosts, the

peer hosts can exchange large IP packets or parcels over the ENET

using IPv6 fragmentation if necessary.

When a Host prepares an IP packet or parcel, it uses the IP address

of its native ENET interface as the source and the IP address of the

(remote) peer as the destination. The Host next performs parcel

¶

¶

¶

¶

segmentation if necessary (see: Section 6.14) then encapsulates the

packet/parcel in an IP header of the version supported by the ENET

while setting the source to the same address and destination to

either the same address if the peer is on the local ENET, or to the

IP address of the Client otherwise. The Host can then proceed to

exchange packets/parcels with the destination, either directly or

via the Client as an intermediate node.

The encapsulation procedures are coordinated per Section 6.1, except

that the IP encapsulation header version matches the native ENET IP

protocol version and uses IPv6 GUA or public/private IPv4 addresses

instead of ULAs. The Host sets the encapsulation IP header

{Protocol, Next-Header} field to TBD1 to indicate that this is an

OAL encapsulation and not an ordinary IP-in-IP encapsulation. When

the inner header is IPv4-based, the Host next translates the

encapsulation header into an IPv6 header with IPv4-Compatible

addresses while setting the [IPv6 Traffic Class, Payload Length,

Next Header, Hop Limit] fields according to the IPv4 {Type of

Service, Total Length, Protocol, TTL} fields, respectively, while

setting Flow Label to 0. The Host then calculates an OAL checksum,

writes the value as the final two octets of the encapsulated packet

then applies IPv6 fragmentation to the encapsulated packet to

produce IPv6 fragments no smaller than the MPS the same as described

in Section 6.1. If the original encapsulation IP header was IPv4,

the Host next translates the IPv6 encapsulation headers back to IPv4

headers with Protocol value set to 44 since the immediately next

header is the IPv6 Fragment Header. The Host finally sends the IP

encapsulated fragments to the ENET peer.

When the ENET peer receives IP encapsulated fragments, for IPv4 it

first translates the encapsulation headers back to IPv6 headers with

IPv4-Compatible addresses the same as above. The peer then

reassembles and verifies the OAL checksum. If the checksum is

correct, the peer next removes the encapsulation headers and applies

parcel reassembly if necessary. The peer then either delivers the

encapsulated packet/parcel to upper layers if the peer is the

destination or forwards the packet/parcel toward the final

destination if the peer is a Client acting as an intermediate node.

Hosts and Clients that initiate OMNI-based packet/parcel

transactions should first test the path toward the final destination

using the parcel path qualification procedure specified in [I-

D.templin-intarea-parcels]. An OMNI Host that sends and receives

parcels need not implement the full OMNI interface abstraction but

MUST implement enough of the OAL to be capable of fragmenting and

reassembling maximum-length encapsulated IP packets/parcels and sub-

parcels as discussed above and in the following section.

¶

¶

¶

¶

6.14. IP Parcels

IP parcels are specified in [I-D.templin-intarea-parcels], while

details for their application over OMNI interfaces is specified

here. IP parcels are formed by an OMNI Host or Client upper layer

protocol entity (identified by the "5-tuple" source IP address/port

number, destination IP address/port number and protocol number) when

it produces a protocol data unit containing the concatenation of up

to 64 upper layer protocol segments. All non-final segments MUST be

equal in length while the final segment MUST NOT be larger but MAY

be smaller. Each non-final segment MUST be no larger than 65535

minus the length of the IP header plus extensions, minus the length

of the OAL encapsulation header and trailer. The upper layer

protocol then presents the buffer and non-final segment size to the

IP layer which appends a single IP header (plus any extension

headers) before presenting the parcel to the OMNI Interface.

For IPv4, the IP layer prepares the parcel by appending an IPv4

header with a Jumbo Payload option (see: Section 5.1) where "Jumbo

Payload Length" is a 32-bit unsigned integer value (in network byte

order) set to the lengths of the IPv4 header plus all concatenated

segments. The IP layer next sets the IPv4 header DF bit to 1, then

sets the IPv4 header Total Length field to the length of the IPv4

header plus the length of the first segment only. (Note: the IP

layer can form true IPv4 jumbograms (as opposed to parcels) by

instead setting the Total Length field to the length of the IPv4

header only.)

For IPv6, the IP layer forms a parcel by appending an IPv6 header

with a Jumbo Payload option the same as for IPv4 above where "Jumbo

Payload Length" is set to the lengths of the IPv6 Hop-by-Hop Options

header and any other extension headers present plus all concatenated

segments. The IP layer next sets the IPv6 header Payload Length

field to the lengths of the IPv6 Hop-by-Hop Options header and any

other extension headers present plus the length of the first segment

only. (Note: the IP layer can form true IPv6 jumbograms (as opposed

to parcels) by instead setting the Payload Length field to 0.)

An IP parcel therefore has the following structure:

¶

¶

¶

¶

Figure 11: OMNI Interface IP Parcels

where J is the total number of segments (between 1 and 64), L is the

length of each non-final segment which MUST NOT be larger than 65535

(minus headers as above) and K is the length of the final segment

which MUST NOT be larger than L. The values M and N are then set to

the length of the IP header plus extensions for IPv4 or to the

length of the extensions only for IPv6, then further calculated as

follows:

M = M + ((J-1) ? L : K)

N = N + (((J-1) * L) + K)

Note: a "singleton" parcel is one that includes only the IP header

plus extensions with a single segment of length K, while a "null"

parcel is a singleton with K=0, i.e., a parcel consisting of only

the IP header plus extensions with no octets beyond.

When the IP layer forwards a parcel, the OMNI interface invokes the

OAL which forwards it to either a Client as an intermediate node or

the final destination itself. The OAL source first assigns a

monotonically-incrementing (modulo 127) "Parcel ID" and subdivides

the parcel into sub-parcels no larger than the maximum of the path

+--------+--------+--------+--------+

| |

~ Segment J (K octets) ~

| |

+--------+--------+--------+--------+

~ ~

~ ~

+--------+--------+--------+--------+

| |

~ Segment 3 (L octets) ~

| |

+--------+--------+--------+--------+

| |

~ Segment 2 (L octets) ~

| |

+--------+--------+--------+--------+

| |

~ Segment 1 (L octets) ~

| |

+--------+--------+--------+--------+

| IP Header Plus Extensions |

~ {Total, Payload} Length = M ~

| Jumbo Payload Length = N |

+--------+--------+--------+--------+

¶

¶

¶

¶

MTU to the next hop or 64KB (minus the length of encapsulation

headers). The OAL source determines the number of segments of length

L that can fit into each sub-parcel under these size constraints,

e.g. if the OAL source determines that a sub-parcel can contain 3

segments of length L, it creates sub-parcels with the first

containing segments 1-3, the second containing segments 4-6, etc.

and with the final containing any remaining segments. The OAL source

then appends an identical IP header plus extensions to each sub-

parcel while resetting M and N in each according to the above

equations with J set to 3 and K set to L for each non-final sub-

parcel and with J set to the remaining number of segments for the

final sub-parcel.

The OAL source next performs encapsulation on each sub-parcel with

destination set to the next hop address. If the next hop is reached

via an ANET/INET interface, the OAL source inserts an OAL header the

same as discussed in Section 6.1 and sets the destination to the

ULA-MNP of the target Client. If the next hop is reached via an ENET

interface, the OAL source instead inserts an IP header of the

appropriate protocol version for the underlay ENET (i.e., even if

the encapsulation header is IPv4) and sets the destination to the

ENET IP address of the next hop. The OAL source inserts the

encapsulation header even if no actual fragmentation is needed and/

or even if the Jumbo Payload option is present.

The OAL source next assigns an Identification number that is

monotonically-incremented for each consecutive sub-parcel,

calculates and appends the OAL checksum, then performs IPv6

fragmentation over the sub-parcel if necessary to create fragments

small enough to traverse the path to the next hop. (If the

encapsulation header is IPv4, the OAL source first translates the

encapsulation header into an IPv6 header with IPv4-Compatible IPv6

addresses before performing the fragmentation/reassembly operation

while inserting an IPv6 Fragment Header.) The OAL source then writes

the "Parcel ID" and sets/clears the "(P)arcel" and "(More) (S)ub-

Parcels" bits in the Fragment Header of the first fragment (see:

Figure 5). (The OAL source sets P to 1 for a parcel or to 0 for a

non-parcel. When P is 1, the OAL next sets S to 1 for non-final sub-

parcels or to 0 if the sub-parcel contains the final segment.) The

OAL source then forwards each IP encapsulated packet/fragment to the

next hop (i.e., after first translating the IPv6 encapsulation

header back to IPv4 if necessary).

When the next hop receives the encapsulated IP fragments or whole

packets, it acts as an OAL destination and reassembles if necessary

(i.e., after first translating the IPv4 encapsulation header to IPv6

if necessary). If the P flag in the first fragment is 0, the OAL

destination then processes the reassembled entity as an ordinary IP

packet; otherwise it continues processing as a sub-parcel. If the

¶

¶

¶

OAL destination is not the final destination, it retains the sub-

parcels along with their Parcel ID and Identification values for a

brief time in hopes of re-combining with peer sub-parcels of the

same original parcel identified by the 4-tuple consisting of the IP

encapsulation source and destination, Identification and Parcel ID.

The OAL destination re-combines peers by concatenating the segments

included in sub-parcels with the same Parcel ID and with

Identification values within 64 of one another to create a larger

sub-parcel possibly even as large as the entire original parcel.

Order of concatenation is not important, with the exception that the

final sub-parcel (i.e., the one with S set to 0) must occur as the

final concatenation before transmission. The OAL destination then

appends a common IP header plus extensions to each re-combined sub-

parcel while resetting M and N in each according to the above

equations with J, K and L set accordingly.

When the current OAL destination is an intermediate node, it next

becomes an OAL source to forward the re-combined (sub-)parcel(s) to

the next hop toward the final destination using encapsulation/

translation the same as specified above. (Each such intermediate

node MUST ensure that the S flag remains set to 0 in the sub-parcel

that contains the final segment.) When the parcel or sub-parcels

arrive at the final OAL destination, it re-combines them into the

largest possible (sub)-parcels while honoring the S flag then

delivers them to upper layers which act on the enclosed 5-tuple

information supplied by the original source.

Note: while the final destination may be tempted to re-combine the

sub-parcels of multiple different parcels with identical upper layer

protocol 5-tuples and with non-final segments of identical length,

this process could become complicated when the different parcels

each have final segments of diverse lengths. Since this could

possibly defeat any perceived performance advantages, the decision

of whether and how to perform inter-parcel concatenation is an

implementation matter.

7. Frame Format

When the OMNI interface forwards original IP packets from the

network layer it first invokes the OAL to create OAL packets/

fragments if necessary, then includes any L2 encapsulations and

finally engages the native frame format of the underlay interface.

For example, for Ethernet-compatible interfaces the frame format is

specified in [RFC2464], for aeronautical radio interfaces the frame

format is specified in standards such as ICAO Doc 9776 (VDL Mode 2

Technical Manual), for various forms of tunnels the frame format is

found in the appropriate tunneling specification, etc.

¶

¶

¶

¶

See Figure 2 for a map of the various L2 layering combinations

possible. For any layering combination, the final layer (e.g., UDP,

IP, Ethernet, etc.) must have an assigned number and frame format

representation that is compatible with the selected underlay

interface.

8. Link-Local Addresses (LLAs)

[RFC4861] requires that nodes assign Link-Local Addresses (LLAs) to

all interfaces, and that routers use their LLAs as the source

address for RA and Redirect messages. OMNI interfaces honor the

first requirement, but do not honor the second since the OMNI link

could consist of the concatenation of multiple links with diverse

ULA prefixes (see Section 9) but for which multiple nodes might

configure identical interface identifiers (IIDs). OMNI interface

LLAs are therefore considered only as context for IID formation as

discussed below and have no other operational role.

OMNI interfaces assign IPv6 LLAs through pre-service administrative

actions. Clients assign "LLA-MNPs" with IIDs that embed the Client's

unique MNP, while Proxy/Servers assign "LLA-RNDs" that include a

randomly-generated IIDs generated as specified in [RFC7217]. LLAs

are configured as follows:

IPv6 LLA-MNPs encode the most-significant 64 bits of an MNP

within the least-significant 64 bits of the IPv6 link-local

prefix fe80::/64, i.e., in the IID portion of the LLA. The LLA

prefix length is determined by adding 64 to the MNP prefix

length. e.g., for the MNP 2001:db8:1000:2000::/56 the

corresponding LLA-MNP prefix is fe80::2001:db8:1000:2000/120.

(The base LLA-MNP for each "/N" prefix sets the final 128-N bits

to 0, but all LLA-MNPs that match the prefix are also accepted.)

Non-MNP IPv6 prefix-based LLAs are also represented the same as

for LLA-MNPs, but include a GUA prefix that is not properly

covered by the MSP.

IPv4-Compatible LLA-MNPs are constructed as fe80::{IPv4-Prefix},

i.e., the IID consists of 32 '0' bits followed by a 32 bit IPv4

address/prefix, which may be either public or private in

correspondence with the network layer addressing plan. The IPv4-

Compatible LLA-MNP prefix length is determined by adding 96 to

the IPv4 prefix length. For example, the IPv4-Compatible LLA-MNP

for 192.0.2.0/24 is fe80::192.0.2.0/120, also written as

fe80::c000:0200/120. (The base LLA-MNP for each "/N" prefix sets

the final 128-N bits to 0, but all LLA-MNPs that match the prefix

are also accepted.) Non-MNP IPv4 prefix-based LLAs are also

represented the same as for LLA-MNPs, but include a GUA prefix

that is not properly covered by the MSP.

¶

¶

¶

*

¶

*

¶

LLA-RNDs are randomly-generated and assigned to Proxy/Servers and

other SRT infrastructure elements. They may also be assigned by

Clients to support the MNP delegation process. The upper 72 bits

of the LLA-RND encode the prefix fe80::/72, and the lower 56 bits

include a randomly-generated candidate pseudo-random value

configured as specified in [RFC7217]; if the most significant 24

bits of the 56 bit candidate encodes the value '0', the node

generates a new candidate to obtain one with a different most

significant 24 bits to avoid overlap with IPv4-Compatible LLAs.

The address fe80::/128 (i.e., the LLA /64 prefix followed by an

all-zero IID) is considered the LLA Subnet Router Anycast address

Since the prefix 0000::/8 is "Reserved by the IETF" [RFC4291], no

MNPs can be allocated from that block ensuring that there is no

possibility for overlap between the different MNP and RND LLA

constructs discussed above.

Since LLA-MNPs are based on the distribution of administratively

assured unique MNPs, and since LLA-RNDs are assumed unique through

pseudo-random assignment, OMNI interfaces set the autoconfiguration

variable DupAddrDetectTransmits to 0 [RFC4862].

Note: If future protocol extensions relax the 64-bit boundary in

IPv6 addressing, the additional prefix bits of an MNP could be

encoded in bits 16 through 63 of the LLA-MNP. (The most-significant

64 bits would therefore still be in bits 64-127, and the remaining

bits would appear in bits 16 through 48.) However, this would

interfere with the relationship between OMNI LLAs and ULAs (see:

Section 9) and render many OMNI functions inoperable. The analysis

provided in [RFC7421] furthermore suggests that the 64-bit boundary

will remain in the IPv6 architecture for the foreseeable future.

9. Unique-Local Addresses (ULAs)

OMNI links use IPv6 Unique-Local Addresses (ULAs) as the source and

destination addresses in both IPv6 ND messages and OAL packet IPv6

encapsulation headers. ULAs are routable only within the scope of an

OMNI link, and are derived from the IPv6 Unique Local Address prefix

fd00::/8 (i.e., the prefix fc00::/7 followed by the L bit set to 1).

When the first 16 bits of the ULA encode the value fd00::/16, the

address is considered as either a Temporary ULA (TLA) or an eXtended

ULA (XLA) - see below. For all other ULAs, the 56 bits following

fd00::/8 encode a 40-bit Global ID followed by a 16-bit Subnet ID as

specified in Section 3 of [RFC4193]. All OMNI link ULA types finally

include a 64-bit value in the IID portion of the address ULA::/64 as

specified below.

*

¶

*

¶

¶

¶

¶

¶

When a node configures a ULA for OMNI, it selects a 40-bit Global ID

for the OMNI link initialized to a candidate pseudo-random value as

specified in Section 3 of [RFC4193]; if the most significant 8 bits

of the candidate encodes the value '0', the node selects a new

candidate until it obtains one with a different most significant 8

bits. All nodes on the same OMNI link use the same Global ID, and

statistical uniqueness of the pseudo-random Global ID provides a

unique OMNI link identifier allowing different links to be joined

together in the future without requiring renumbering.

Next, for each logical segment of the same OMNI link the node

selects a 16-bit Subnet ID value between 0x0000 and 0xffff. Nodes on

the same logical segment configure the same Subnet ID, but nodes on

different segments of the same OMNI link can still exchange IPv6 ND

messages as single-hop neighbors even if they configure different

Subnet IDs. When a node moves to a different OMNI link segment, it

resets the Global ID and Subnet ID value according to the new

segment but need not change the IID.

ULAs and their associated prefix lengths are configured in

correspondence with LLAs through stateless prefix translation where

"ULA-MNPs" simply copy the IIDs of their corresponding LLA-MNPs and

"ULA-RNDs" simply copy the IIDs of their corresponding LLA-RNDs. For

example, for the OMNI link ULA prefix fd{Global}:{Subnet}::/64:

the ULA-MNP corresponding to the LLA-MNP fe80::2001:db8:1:2 with

a 56-bit MNP length is simply fd{Global}:{Subnet}:

2001:db8:1:2/120 (where, the ULA prefix length becomes 64 plus

the IPv6 MNP length).

the ULA-MNP corresponding to fe80::192.0.2.0 with a 28-bit MNP

length is simply fd{Global}:{Subnet}::192.0.2.0/124 (where, the

ULA prefix length becomes 96 plus the IPv4 MNP length).

the ULA-RND corresponding to fe80::0012:3456:789a:bcde is simply

fd{Global}:{Subnet}::0012:3456:789a:bcde/128.

the Subnet Router Anycast ULA corresponding to fe80::/128 is

simply fd{Global}:{Subnet}::/128.

The ULA presents an IPv6 address format that is routable within the

OMNI link routing system and can be used to convey link-scoped

(i.e., single-hop) IPv6 ND messages across multiple hops through

IPv6 encapsulation [RFC2473]. The OMNI link extends across one or

more underlying Internetworks to include all Proxy/Servers and other

service nodes. All Clients are also considered to be connected to

the OMNI link, however unnecessary encapsulations are omitted

whenever possible to conserve bandwidth (see: Section 14).

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

Clients can configure TLAs when they have no other ULA addresses by

setting the ULA prefix to fd00::/16 followed by a 48-bit randomly-

generated number followed by a random or MNP-based IID as discussed

in Section 8. XLAs are a special-case TLA that use the prefix

fd00::/64. (Note that XLAs can also be formed from LLAs simply by

inverting bits 7 and 8 of 'fe80' to form 'fd00'.)

OMNI nodes use XLA-MNPs as "default" ULAs for representing MNPs in

the OMNI link routing system. Clients use {TLA,XLA}-MNPs when they

already know their MNP but need to express it outside the context of

a specific ULA prefix, and Proxy/Servers advertise XLA-MNPs into the

OMNI link routing system instead of advertising fully-qualified

{TLA,ULA}-MNPs and/or non-routable LLA-MNPs.

{TLAs,XLAs} provide initial "bootstrapping" addresses while the

Client is in the process of procuring an MNP and/or identifying the

ULA prefix for the OMNI link segment; TLAs are not advertised into

the OMNI link routing system but can be used for Client-to-Client

communications within a single {A,I,E}NET when no OMNI link

infrastructure is present. Within each individual {A,I,E}NET, TLAs

employ optimistic DAD principles [RFC4429] since they are

statistically unique.

Each OMNI link may be subdivided into SRT segments that often

correspond to different administrative domains or physical

partitions. Each SRT segment is identified by a different Subnet ID

within the same ULA ::/48 prefix. Multiple distinct OMNI links with

different ULA ::/48 prefixes can also be joined together into a

single unified OMNI link through simple interconnection without

requiring renumbering. In that case, the (larger) unified OMNI link

routing system may carry multiple distinct ULA prefixes.

OMNI nodes can use Segment Routing [RFC8402] to support efficient

forwarding to destinations located in other OMNI link segments. A

full discussion of Segment Routing over the OMNI link appears in [I-

D.templin-6man-aero].

Note: IPv6 ULAs taken from the prefix fc00::/7 followed by the L bit

set to 0 (i.e., as fc00::/8) are never used for OMNI OAL addressing,

however the range could be used for MSP/MNP addressing under certain

limiting conditions (see: Section 10). When used within the context

of OMNI, ULAs based on the prefix fc00::/8 are referred to as "ULA-

C's".

Note: When they appear in the OMNI link routing table, ULA-RNDs

always use prefix lengths between /48 and /64 (or, /128) while XLA-

MNPs always use prefix lengths between /65 and /128. {TLA,ULA}-MNPs

and {TLA,XLA}-RNDs should never appear in the OMNI link routing

table, but may appear in {A,I,E}NET routing tables.

¶

¶

¶

¶

¶

¶

¶

10. Global Unicast Addresses (GUAs)

OMNI domains use IP Global Unicast Address (GUA) prefixes [RFC4291]

as Mobility Service Prefixes (MSPs) from which Mobile Network

Prefixes (MNP) are delegated to Clients. Fixed correspondent node

networks reachable from the OMNI link are represented by non-MNP GUA

prefixes that are not derived from the MSP, but are treated in all

other ways the same as for MNPs.

For IPv6, GUA MSPs are assigned by IANA [IPV6-GUA] and/or an

associated Regional Internet Registry (RIR) such that the OMNI link

can be interconnected to the global IPv6 Internet without causing

inconsistencies in the routing system. An OMNI link could instead

use ULAs with the 'L' bit set to 0 (i.e., from the "ULA-C" prefix

fc00::/8)[RFC4193], however this would require IPv6 NAT if the

domain were ever connected to the global IPv6 Internet.

For IPv4, GUA MSPs are assigned by IANA [IPV4-GUA] and/or an

associated RIR such that the OMNI link can be interconnected to the

global IPv4 Internet without causing routing inconsistencies. An

OMNI ANET/ENET could instead use private IPv4 prefixes (e.g.,

10.0.0.0/8, etc.) [RFC3330], however this would require IPv4 NAT at

the INET-to-ANET/ENET boundary. OMNI interfaces advertise IPv4 MSPs

into IPv6 routing systems as IPv4-Compatible IPv6 prefixes [RFC4291]

(e.g., the IPv6 prefix for the IPv4 MSP 192.0.2.0/24 is ::

192.0.2.0/120).

OMNI interfaces assign the IPv4 anycast address TBD3 (see: IANA

Considerations), and IPv4 routers that configure OMNI interfaces

advertise the prefix TBD3/N into the routing system of other

networks (see: IANA Considerations). OMNI interfaces also configure

global IPv6 anycast addresses formed according to [RFC3056] as:

2002:TBD3{32}:MSP{64}:Link-ID{16}

where TBD3{32} is the 32 bit IPv4 anycast address and MSP{64}

encodes an MSP zero-padded to 64 bits (if necessary). For example,

the OMNI IPv6 anycast address for MSP 2001:db8::/32 is

2002:TBD3{32}:2001:db8:0:0:{Link-ID}, the OMNI IPv6 anycast address

for MSP 192.0.2.0/24 is 2002:TBD3{32}::c000:0200:{Link-ID}, etc.).

The16-bit Link-ID in the OMNI IPv6 anycast address identifies a

specific OMNI link within the domain that services the MSP. The

special Link-ID value '0' is a wildcard that matches all links,

while all other values identify specific links. Mappings between

Link-ID values and the ULA Global IDs assigned to OMNI links are

outside the scope of this document.

OMNI interfaces assign OMNI IPv6 anycast addresses, and IPv6 routers

that configure OMNI interfaces advertise the corresponding prefixes

¶

¶

¶

¶

¶

¶

¶

into the routing systems of other networks. An OMNI IPv6 anycast

prefix is formed the same as for any IPv6 prefix; for example, the

prefix 2002:TBD3{32}:2001:db8::/80 matches all OMNI IPv6 anycast

addresses covered by the prefix. When IPv6 routers advertise OMNI

IPv6 anycast prefixes in this way, Clients can locate and associate

with either a specific OMNI link or any OMNI link within the domain

that services the MSP of interest.

OMNI interfaces use OMNI IPv6 and IPv4 anycast addresses to support

Service Discovery in the spirit of [RFC7094], i.e., the addresses

are not intended for use in long-term transport protocol sessions.

Specific applications for OMNI IPv6 and IPv4 anycast addresses are

discussed throughout the document as well as in [I-D.templin-6man-

aero].

11. Node Identification

OMNI Clients and Proxy/Servers that connect over open Internetworks

include a unique node identification value for themselves in the

OMNI options of their IPv6 ND messages (see: Section 12.2.12). An

example identification value alternative is the Host Identity Tag

(HIT) as specified in [RFC7401], while Hierarchical HITs (HHITs) [I-

D.ietf-drip-rid] may be more appropriate for certain domains such as

the Unmanned (Air) Traffic Management (UTM) service for Unmanned Air

Systems (UAS). Another example is the Universally Unique IDentifier

(UUID) [RFC4122] which can be self-generated by a node without

supporting infrastructure with very low probability of collision.

When a Client is truly outside the context of any infrastructure, it

may have no MNP information at all. In that case, the Client can use

a TLA or (H)HIT as an IPv6 source/destination address for sustained

communications in Vehicle-to-Vehicle (V2V) and (multihop) Vehicle-

to-Infrastructure (V2I) scenarios. The Client can also propagate the

ULA/(H)HIT into the multihop routing tables of (collective) Mobile/

Vehicular Ad-hoc Networks (MANETs/VANETs) using only the vehicles

themselves as communications relays.

When a Client connects via a protected-spectrum ANET, an alternate

form of node identification (e.g., MAC address, serial number,

airframe identification value, VIN, etc.) embedded in a ULA may be

sufficient. The Client can then include OMNI "Node Identification"

sub-options (see: Section 12.2.12) in IPv6 ND messages should the

need to transmit identification information over the network arise.

12. Address Mapping - Unicast

OMNI interfaces maintain a network layer conceptual neighbor cache

per [RFC1256] or [RFC4861] the same as for any IP interface, and

(for IPv6) use the link-local address format specified in Section 8.

¶

¶

¶

¶

¶

This network layer neighbor cache maintains state through static

and/or dynamic configurations.

Each OMNI interface also maintains a separate internal OAL

(adaptation layer) conceptual neighbor cache that includes a

Neighbor Cache Entry (NCE) for each of its active OAL neighbors per

[RFC4861]. Throughout this document, the terms "neighbor cache" and

"NCE" refer to this OAL neighbor cache unless otherwise specified.

IPv6 Neighbor Discovery (ND) [RFC4861] messages sent over OMNI

interfaces without OAL encapsulation observe the native underlay

interface Source/Target Link-Layer Address Option (S/TLLAO) format

(e.g., for Ethernet the S/TLLAO is specified in [RFC2464]). IPv6 ND

messages sent from within the OMNI interface using OAL encapsulation

do not include S/TLLAOs, but instead include a new option type that

encodes interface attributes, traffic selectors and other OMNI link

information. Hence, this document does not define a new S/TLLAO

format but instead defines a new option type termed the "OMNI

option" designed for these purposes. (Note that OMNI interface IPv6

ND messages sent without encapsulation may include both OMNI options

and S/TLLAOs, but the information conveyed in each is mutually

exclusive.)

OMNI interfaces prepare IPv6 ND messages that include one or more

OMNI options (and any other IPv6 ND options) then completely

populate all option information. If the OMNI interface includes an

authentication signature, it sets the IPv6 ND message Checksum field

to 0 and calculates the authentication signature over the length of

the entire OAL packet or super-packet (beginning with a pseudo-

header of the IPv6 ND message IPv6 header) but does not calculate/

include the IPv6 ND message checksum itself. Otherwise, the OMNI

interface calculates the standard IPv6 ND message checksum over the

entire OAL packet or super-packet and writes the value in the

Checksum field. OMNI interfaces verify authentication and/or

integrity of each IPv6 ND message received according to the specific

check(s) included, and process the message further only following

verification.

OMNI interface Clients such as aircraft typically have multiple

wireless data link types (e.g. satellite-based, cellular,

terrestrial, air-to-air directional, etc.) with diverse performance,

cost and availability properties. The OMNI interface would therefore

appear to have multiple L2 connections, and may include information

for multiple underlay interfaces in a single IPv6 ND message

exchange. OMNI interfaces manage their dynamically-changing

multilink profiles by including OMNI options in IPv6 ND messages as

discussed in the following subsections.

¶

¶

¶

¶

¶

12.1. The OMNI Option

OMNI options appear in IPv6 ND messages formatted as shown in Figure

12:

Figure 12: OMNI Option Format

In this format:

Type is set to TBD4 (see: IANA Considerations).

Length is set to the number of 8 octet blocks in the option. The

value 0 is invalid, while the values 1 through 255 (i.e., 8

through 2040 octets, respectively) indicate the total length of

the OMNI option. If multiple OMNI option instances appear in the

same IPv6 ND message, the union of the contents of all OMNI

options is accepted unless otherwise qualified for specific sub-

options below.

Sub-Options is a Variable-length field padded if necessary such

that the complete OMNI Option is an integer multiple of 8 octets

long. Sub-Options contains zero or more sub-options as specified

in Section 12.2.

The OMNI option is included in all OMNI interface IPv6 ND messages;

the option is processed by receiving interfaces that recognize it

and otherwise ignored. The OMNI interface processes all OMNI option

instances received in the same IPv6 ND message in the consecutive

order in which they appear. The OMNI option(s) included in each IPv6

ND message may include full or partial information for the neighbor.

The OMNI interface therefore retains the union of the information in

the most recently received OMNI options in the corresponding NCE.

12.2. OMNI Sub-Options

Each OMNI option includes a Sub-Options block containing zero or

more individual sub-options. Each consecutive sub-option is

concatenated immediately following its predecessor. All sub-options

except Pad1 (see below) are in an OMNI-specific type-length-value

(TLV) format encoded as follows:

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Length | Sub-Options ~

 +-+

¶

* ¶

*

¶

*

¶

¶

¶

Figure 13: Sub-Option Format

Sub-Type is a 5-bit field that encodes the sub-option type. Sub-

option types defined in this document are:

Figure 14

Sub-Types 15-29 are available for future assignment for major

protocol functions, while Sub-Type 30 supports scalable extension

to include other functions. Sub-Type 31 is reserved by IANA.

Sub-Length is an 11-bit field that encodes the length of the Sub-

Option Data in octets.

Sub-Option Data is a block of data with format determined by Sub-

Type and length determined by Sub-Length. Note that each

individual sub-option may end on an arbitrary octet boundary,

whereas the OMNI option itself must include padding if necessary

for 8-octet alignment.

The OMNI interface codes each sub-option with a 2 octet header that

includes Sub-Type in the most significant 5 bits followed by Sub-

Length in the next most significant 11 bits. Each sub-option encodes

a maximum Sub-Length value of 2038 octets minus the lengths of the

OMNI option header and any preceding sub-options. This allows ample

Sub-Option Data space for coding large objects (e.g., ASCII strings,

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +-

 | Sub-Type| Sub-Length | Sub-Option Data ...

 +-

*

¶

 Sub-Option Name Sub-Type

 Pad1 0

 PadN 1

 Neighbor Coordination 2

 Interface Attributes 3

 AERO Forwarding Parameters 4

 Traffic Selector 5

 Geo Coordinates 6

 DHCPv6 Message 7

 HIP Message 8

 PIM-SM Message 9

 Fragmentation Report 10

 Node Identification 11

 ICMPv6 Error 12

 QUIC-TLS Message 13

 Proxy/Server Departure 14

 Sub-Type Extension 30

¶

*

¶

*

¶

domain names, protocol messages, security codes, etc.), while a

single OMNI option is limited to 2040 octets the same as for any

IPv6 ND option.

The OMNI interface codes initial sub-options in a first OMNI option

instance and subsequent sub-options in additional instances in the

same IPv6 ND message in the intended order of processing. The OMNI

interface can then code any remaining sub-options in additional IPv6

ND messages if necessary. Implementations must observe these size

limits and refrain from sending IPv6 ND messages larger than the

OMNI interface MTU.

The OMNI interface processes all OMNI option Sub-Options received in

an IPv6 ND message while skipping over and ignoring any unrecognized

sub-options. The OMNI interface processes the Sub-Options of all

OMNI option instances in the consecutive order in which they appear

in the IPv6 ND message, beginning with the first instance and

continuing through any additional instances to the end of the

message. If an individual sub-option length would cause processing

to exceed the OMNI option instance and/or IPv6 ND message lengths,

the OMNI interface accepts any sub-options already processed and

ignores the remainder of that instance. The interface then processes

any remaining OMNI option instances in the same fashion to the end

of the IPv6 ND message.

When an OMNI interface includes an authentication sub-option (e.g.,

see: Section 12.2.9), it MUST appear as the first sub-option of the

first OMNI option which must appear immediately following the IPv6

ND message header (all other authentication sub-options are

ignored). If the IPv6 ND message is the first packet in a combined

OAL super-packet, the OMNI interface calculates the authentication

signature over the entire length of the super-packet, i.e., and not

just to the end of the IPv6 ND message itself. When the first sub-

option is not authentication, the OMNI interface instead calculates

the IPv6 ND message checksum over the entire length of the packet/

super-packet.

When a Client OMNI interface prepares a secured unicast RS message,

it includes a single Interface Attributes sub-option specific to the

underlay interface that will transmit the RS (see: Section 12.2.4)

immediately following the authentication and header extension sub-

options if present; otherwise as the first sub-option of the first

OMNI option which must appear immediately following the IPv6 ND

message header. When a Client OMNI interface prepares a secured

unicast NS message, it can instead include an AERO Forwarding

Parameters sub-option specific to the underlay interface that will

transmit the NS (see: Section 12.2.5).

¶

¶

¶

¶

¶

Note: large objects that exceed the maximum Sub-Option Data length

are not supported under the current specification; if this proves to

be limiting in practice, future specifications may define support

for fragmenting large sub-options across multiple OMNI options

within the same IPv6 ND message (or even across multiple IPv6 ND

messages, if necessary).

The following sub-option types and formats are defined in this

document:

12.2.1. Pad1

Figure 15: Pad1

Sub-Type is set to 0. If multiple instances appear in OMNI

options of the same message all are processed.

Sub-Type is followed by 3 'x' bits, set to any value on

transmission (typically all-zeros) and ignored on reception. Pad1

therefore consists of 1 octet with the most significant 5 bits

set to 0, and with no Sub-Length or Sub-Option Data fields

following.

If more than one octet of padding is required, the PadN option,

described next, should be used, rather than multiple Pad1 options.

12.2.2. PadN

Figure 16: PadN

Sub-Type is set to 1. If multiple instances appear in OMNI

options of the same message all are processed.

Sub-Length is set to N that encodes the number of padding octets

that follow.

¶

¶

 0

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 | S-Type=0|x|x|x|

 +-+-+-+-+-+-+-+-+

*

¶

*

¶

¶

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +-

 | S-Type=1| Sub-length=N | N padding octets ...

 +-

*

¶

*

¶

Sub-Option Data consists of N octets, set to any value on

transmission (typically all-zeros) and ignored on receipt.

When a proxy forwards an IPv6 ND message with OMNI options, it can

employ PadN to void any sub-options (other than Pad1) that should

not be processed by the next hop by simply writing the value '1'

over the Sub-Type. When the proxy alters the IPv6 ND message

contents in this way, any included authentication and integrity

checks are invalidated. See: Appendix B for a discussion of IPv6 ND

message authentication and integrity.

12.2.3. Neighbor Coordination

IPv6 ND messages used for Prefix Length assertion, service

coordination and/or Window Synchronization include a Neighbor

Coordination sub-option. If a Neighbor Coordination sub-option is

included, it must appear immediately after the authentication sub-

option if present; otherwise, as the first (non-padding) sub-option

of the first OMNI option. If multiple Neighbor Coordination sub-

options are included (whether in a single OMNI option or multiple),

only the first is processed and all others are ignored.

The Neighbor Coordination sub-option is formatted as follows:

Figure 17: Neighbor Coordination

Sub-Type is set to 2.

Sub-Length is set to 14.

The first two octets of Sub-Option Data contains a 1-octet Prefix

Length followed by a 1-octet flags field interpreted as follows:

Preflen is an 8 bit field that determines the length of prefix

associated with a ULA containing an MNP. Values 0 through 128

*

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | S-Type=2| Sub-length=14 | Preflen |N|A|U| Reservd |

 +-+

 | Sequence Number |

 +-+

 | Acknowledgment Number |

 +-+

 |S|A|R|O|P| | |

 |Y|C|S|P|N| Res | Window |

 |N|K|T|T|G| | |

 +-+

* ¶

* ¶

*

¶

-

specify a valid prefix length (if any other value appears the

OMNI option must be ignored). For IPv6 ND messages sent from a

Client to the MS, Preflen applies to the IPv6 source ULA and

provides the length that the Client is requesting from or

asserting to the MS. For IPv6 ND messages sent from the MS to

the Client, Preflen applies to the IPv6 destination ULA and

indicates the length that the MS is granting to the Client.

For IPv6 ND messages sent between MS endpoints, Preflen

provides the length associated with the source/target Client

MNP that is subject of the ND message and encodes the value 64

plus the length of the MNP. (For example, if the MNP length is

56 then Preflen encodes the value 120.) When an IPv6 ND RS/RA

message sets Preflen to 0, the recipient regards the message

as a prefix release indication.

The N/A/U flags are set or cleared in Client RS messages as

directives to FHS and Hub Proxy/Servers and ignored in all

other IPv6 ND messages. When an FHS Proxy/Server forwards or

processes an RS with the N flag set, it responds directly to

NS Neighbor Unreachability Detection (NUD) messages by

returning NA(NUD) replies; otherwise, it forwards NS(NUD)

messages to the Client. When the Hub Proxy/Server receives an

RS with the A flag set, it responds directly to NS Address

Resolution (AR) messages by returning NA(AR) replies;

otherwise, it forwards NS(AR) messages to the Client. When the

Hub Proxy/Server receives an RS with the U flag set, it

maintains a Report List of recent NS(AR) message sources for

the source or target Client and sends uNA messages to all list

members if any aspects of the Client's underlay interfaces

change. Proxy/Servers function according to the N/A/U flag

settings received in the most recent RS message to support

dynamic Client updates. In all IPv6 ND messages, the remaining

5 flag bits are set to 0 on transmission and ignored on

reception.

The remainder of Sub-Option Data contains a 4-octet Sequence

Number, followed by a 4-octet Acknowledgement Number, followed by

a 1-octet flags field followed by a 3-octet Window size modeled

from the Transmission Control Protocol (TCP) header specified in

Section 3.1 of [RFC0793]. The (SYN, ACK, RST) flags are used for

TCP-like window synchronization, while the TCP (URG, PSH, FIN)

flags are not used and therefore omitted. The (OPT, PNG) flags

are OMNI-specific, and the remaining flags are Reserved.

Together, these fields support the asymmetric and symmetric OAL

window synchronization services specified in Section 6.6.

¶

-

¶

*

¶

12.2.4. Interface Attributes

The Interface Attributes sub-option provides neighbors with

forwarding information for the multilink conceptual sending

algorithm discussed in Section 14. Neighbors use the forwarding

information to selecting among potentially multiple candidate

underlay interfaces that can be used to forward carrier packets to

the neighbor based on factors such as traffic selectors and link

quality. Interface Attributes further include link-layer address

information to be used for either direct INET encapsulation for

targets in the local SRT segment or spanning tree forwarding for

targets in remote SRT segments.

OMNI nodes include Interface Attributes for some/all of a source or

target Client's underlay interfaces in NS/NA and uNA messages used

to publish Client information (see: [I-D.templin-6man-aero]). At

most one Interface Attributes sub-option for each distinct ifIndex

may be included; if an IPv6 ND message includes multiple Interface

Attributes sub-options for the same ifIndex, the first is processed

and all others are ignored. OMNI nodes that receive NS/NA messages

can use all of the included Interface Attributes and/or Traffic

Selectors to formulate a map of the prospective source or target

node as well as to seed the information to be later populated in an

AERO Forwarding Parameters sub-option (see: Section 12.2.5).

OMNI Clients and Proxy/Servers also include Interface Attributes

sub-options in RS/RA messages used to initialize, discover and

populate routing and addressing information. Each RS message MUST

contain exactly one Interface Attributes sub-option with an ifIndex

corresponding to the Client's underlay interface used to transmit

the message, and each RA message MUST echo the same Interface

Attributes sub-option with any (proxyed) information populated by

the FHS Proxy/Server to provide operational context.

OMNI Client RS and Proxy/Server RA messages MUST include the

Interface Attributes sub-option for the Client underlay interface in

the first OMNI option immediately following the Neighbor

Coordination and/or authentication sub-option(s) if present;

otherwise, immediately following the OMNI header. When an FHS Proxy/

Server receives an RS message destined to an anycast L2 address, it

MUST include an Interface Attributes sub-option with ifIndex '0'

that encodes its unicast L2 address relative to the Client's

underlay interface immediately after the Client Interface Attributes

sub-option in the solicited RA response. Any additional Interface

Attributes sub-options that appear in RS/RA messages are ignored.

The Interface Attributes sub-option is formatted as shown below:

¶

¶

¶

¶

¶

Figure 18: Interface Attributes

Sub-Type is set to 3.

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow.

Sub-Option Data contains an "Interface Attributes" option encoded

as follows:

Link encodes a 4-bit link metric. The value '0' means the link

is DOWN, and the remaining values mean the link is UP with

metric ranging from '1' ("lowest") to '15' ("highest").

TS-Form is a 4-bit field that encodes the same value that

would appear in an [RFC6088] TS Format and determines the

trailing RFC 6088 Format Traffic Selector type, if present.

The following values are defined:

0 - no traffic selector

1 - IPv4 binary traffic selector

2 - IPv6 binary traffic selector

0 - 15 - reserved for future use

SRT is a 1-octet Segment Routing Topology prefix length value

between 0 and 128 that determines the prefix length associated

with the LHS ULA.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | S-Type=3| Sub-length=N | Link |TS Form| SRT |

 +-+

 | ifIndex |

 +-+

 | ifType |

 +-+

 | ifProvider |

 +-+

 | FMT | ~

 +-+-+-+-+-+-+-+-+ ~

 ~ LHS Proxy/Server ULA/L2ADDR ~

 +-+

 ~ ~

 ~ RFC 6088 Format Traffic Selector ~

 ~ ~

 +-+

* ¶

*

¶

*

¶

-

¶

-

¶

o ¶

o ¶

o ¶

o ¶

-

¶

ifIndex is a 4-octet index value corresponding to a specific

underlay interface. Client OMNI interfaces MUST number each

distinct underlay interface with a non-zero ifIndex value

assigned by network management per [RFC2863] and include the

value in this field. The ifIndex value '0' denotes

"unspecified".

ifType is a 4-octet type value corresponding to this underlay

interface. The value is coded per the 'IANAifType-MIB'

registry [http://www.iana.org].

ifProvider is a 4-octet provider identifier corresponding to

this underlay interface. This document defines the single

provider identifier value '0' (undefined). Future documents

may define other values.

FMT - a 1-octet "Forward/Mode/Type" code interpreted as

follows:

The most significant two bits (i.e., "FMT-Forward" and

"FMT-Mode") are interpreted in conjunction with one

another. When FMT-Forward is clear, the LHS Proxy/Server

performs OAL reassembly and decapsulation to obtain the

original IP packet before forwarding. If the FMT-Mode bit

is clear, the LHS Proxy/Server then forwards the original

IP packet at layer 3; otherwise, it invokes the OAL to re-

encapsulate, re-fragment and forwards the resulting carrier

packets to the Client via the selected underlay interface.

When FMT-Forward is set, the LHS Proxy/Server forwards

unsecured OAL fragments to the Client without reassembling,

while reassembling secured OAL fragments before re-

fragmenting and forwarding to the Client. If FMT-Mode is

clear, all carrier packets destined to the Client must

always be forwarded through the LHS Proxy/Server; otherwise

the Client is eligible for direct forwarding over the open

INET where it may be located behind one or more NATs.

The value encoded in the least significant 6 bits (i.e.,

"FMT-Type") determines the type and length of the L2ADDR

field as follows:

0 - L2ADDR is 4 octets in length and encodes an IPv4

address.

1 - L2ADDR is 16 octets in length and encodes an IPv6

address.

2 - L2ADDR is 6 octets in length and encodes an EUI-48

address [EUI].

-

¶

-

¶

-

¶

-

¶

o

¶

o

¶

o

¶

o

¶

o

¶

3 - L2ADDR is 8 octets in length and encodes an EUI-64

address [EUI].

4-63 - Reserved for future use.

LHS Proxy/Server ULA/L2ADDR - encodes the 15 least significant

octets of the Proxy/Server ULA followed by the L2ADDR field

formatted as above (note that the FMT code is replaced with

the value "fd" after processing to form a proper 16 octet

ULA). When SRT and ULA are both set to 0, the LHS Proxy/Server

is considered unspecified in this IPv6 ND message. FMT, SRT

and LHS together provide guidance for the OMNI interface

forwarding algorithm. Specifically, if LHS::/SRT is located in

the local OMNI link segment, then the source can address the

target Client either through its dependent Proxy/Server or

through direct encapsulation following NAT traversal according

to FMT. Otherwise, the target Client is located on a different

SRT segment and the path from the source must employ a

combination of route optimization and spanning tree hop

traversals. L2ADDR identifies the LHS Proxy/Server's INET-

facing interface not located behind NATs, therefore no UDP

port number is included since port number 8060 is used when

the L2 encapsulation includes a UDP header. Instead, L2ADDR

includes only an L2 address with type and length determined by

FMT-Type as described above. When L2ADDR includes an IPv4 or

IPv6 address, it is recorded in network byte order in ones-

compliment "obfuscated" form as specified in [RFC4380].

RFC 6088 Format Traffic Selector - traffic selectors formatted

according to TS Form, with length determined by the remainder

of the sup-option length following the LHS information. When

TS Form encodes the value 1 or 2, the field is processed per

[RFC6088]; when TS Form encodes any other value the field (if

present) is ignored.

12.2.5. AERO Forwarding Parameters

OMNI nodes include the AERO Forwarding Parameters sub-option in NS/

NA messages used to coordinate with multilink route optimization

targets. If an NS/NA message includes the sub-option in a manner

that solicits a response, the NA response must also include the sub-

option. The OMNI node MUST include the sub-option in the first OMNI

option immediately following the Neighbor Coordination and/or

authentication message sub-option(s) if present. Otherwise, the OMNI

node MUST include the sub-option immediately following the OMNI

header. Each NS/NA message may contain at most one AERO Forwarding

Parameters sub-option; if an NS/NA message contains additional AERO

Forwarding Parameters sub-options, the first is processed and all

others are ignored.

o

¶

o ¶

-

¶

-

¶

¶

When an NS/NA message includes an AERO Forwarding Parameters sub-

option with Job code '00' (see below), the FHS Client Interface

Attributes MUST correspond to the underlay interface used to

transmit the solicitation message. When the NS/NA message also

includes Interface Attributes sub-options and/or Traffic Selectors,

the options must appear following the AERO Forwarding Parameters

sub-option.

The AERO Forwarding Parameters sub-option includes the necessary

state for establishing AERO Forwarding Vectors (AFVs) in the AERO

Forwarding Information Bases (AFIBs) of the OAL source, destination

and intermediate nodes in the path. The sub-option also records

addressing information for FHS/LHS nodes on the path, including

"L2ADDRs" which MUST be unicast encapsulation addresses (i.e., and

not anycast/multicast). The manner for populating multilink

forwarding information is specified in detail in [I-D.templin-6man-

aero].

The AERO Forwarding Parameters sub-option is formatted as shown in

Figure 19:

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | S-Type=4| Sub-length=N | Reserved | A | B |Job|

 +-+

 ~ AERO Forwarding Vector Index (AFVI) List ~

 ~ (5 consecutive 4-octet AFVIs) ~

 +-+

 ~ Tunnel Window Synchronization Parameters ~

 +-+

 ~ FHS Client ifIndex ~

 +-+

 ~ FHS Proxy/Server FMT/ULA/L2ADDR ~

 +-+

 ~ FHS Gateway FMT/ULA/L2ADDR ~

 +-+

 ~ LHS Client ifIndex ~

 +-+

 ~ LHS Proxy/Server FMT/ULA/L2ADDR ~

 +-+

 ~ LHS Gateway FMT/ULA/L2ADDR ~

 +-+

Figure 19: AERO Forwarding Parameters

Sub-Type is set to 4. If multiple instances appear in the same

message (i.e., whether in a single OMNI option or multiple) the

first instance is processed and all others are ignored.

Sub-Length encodes the number of Sub-Option Data octets that

follow. The length includes all fields up to and including the

Tunnel Window Synchronization Parameters for all Job codes, while

including the remaining fields only for Job codes "0" and "1"

(see below).

Sub-Option Data contains AERO Forwarding Parameters as follows:

Reserved is a 1-octet reserved field set to 0 on transmission

and ignored on receipt.

A/B and Job are fields that determine per-hop processing of

the AFVI List, where A is a 3-bit count of the number of "A"

AFVI List entries and B is a 3-bit count of the number of "B"

AFVI List entries (valid A/B values are 0-5). Job is a 2-bit

code interpreted as follows:

'00' - "Initialize; Build B" - the FHS source sets this

code in an NS/NA used to initialize AFV state (any other

messages that include this code MUST be dropped). The FHS

source first sets A/B to 0, and the FHS source and each

intermediate node along the path to the LHS destination

that processes the message creates a new AFV. Each node

that processes the message then assigns a unique 4-octet

"B" AFVI to the AFV and also writes the value into list

entry B, then increments B. When the message arrives at the

LHS destination, B will contain the number of AFVI List "B"

entries, with the FHS source entry first, followed by

entries for each consecutive intermediate node and ending

with an entry for the final intermediate node (i.e., the

list is populated in the forward direction). An NS/NA

message containing a Job Code '00' AERO Forwarding

Parameters sub-option always solicits a responsive NA

message containing Job Code '01'.

'01' - "Follow B; Build A" - the LHS source sets this code

in a solicited NA response to an NS/NA with Job code "0"

(any other messages that include this code MUST be

dropped). The LHS source first copies the AFVI List and B

value from the code '00' solicitation into these fields and

sets A to 0. The LHS source and each intermediate node

along the path to the FHS destination that processes the

message then uses AFVI List entry B to locate the

*

¶

*

¶

* ¶

-

¶

-

¶

o

¶

o

corresponding AFV. Each node that processes the message

then assigns a unique 4-octet "A" AFVI to the AFV and also

writes the value into list entry B, then increments A and

decrements B. When the message arrives at the FHS

destination, A will contain the number of AFVI List "A"

entries, with the LHS source entry last, preceded by

entries for each consecutive intermediate node and

beginning with an entry for the final intermediate node

(i.e., the list is populated in the reverse direction).

'10' - "Follow A; Record B" - the FHS node that sent the

original code '00' solicitation and received the

corresponding code '01' advertisement sets this code in any

subsequent NS/NA messages sent to the same LHS destination.

The FHS source copies the AFVI List and A value from the

code '01' advertisement into these fields and sets B to 0.

The FHS source and each intermediate node along the path to

the LHS destination that processes the message then uses

the "A" AFVI found at list entry B to locate the

corresponding AFV. Each node that processes the message

then writes the AFV's "B" AFVI into list entry B, then

decrements A and increments B. When the message arrives at

the LHS destination, B will contain the number of AFVI List

"B" entries populated in the forward direction.

'11' - "Follow B; Record A" - the LHS node that received

the original code '00' solicitation and sent the

corresponding code '01' advertisement sets this code in any

subsequent NS/NA messages sent to the same FHS destination.

The LHS source copies the AFVI List and B values from the

code '00' solicitation into these fields and sets A to 0.

The LHS source and each intermediate node along the path to

the FHS destination that processes the message then uses

the "B" AFVI List entry found at list entry B to locate the

corresponding AFV. Each node that processes the message

then writes the AFV's "A" AFVI into list entry B, then

increments A and decrements B. When the message arrives at

the FHS destination, A will contain the number of AFVI List

"A" entries populated in the reverse direction.

Job and A/B together determine the per-hop behavior at each

FHS/LHS source, intermediate node and destination that

processes an IPv6 ND message. When a Job code specifies

"Initialize", each FHS/LHS node that processes the message

creates a new AFV. When a Job code specifies "Build", each

node that processes the message assigns a new AFVI. When a Job

code specifies "Follow", each node that processes the message

uses an A/B AFVI List entry to locate an AFV (if the AFV

cannot be located, the node returns a parameter problem and

¶

o

¶

o

¶

drops the message). Using this algorithm, FHS sources that

send code '00' solicitations and receive code '01'

advertisements discover only "A" information, while LHS

sources that receive code '00' solicitations and return code

'01' advertisements discover only "B" information. FHS/LHS

intermediate nodes can instead examine A, B and the AFVI List

to determine the number of previous hops, the number of

remaining hops, and the A/B AFVIs associated with the

previous/remaining hops. However, no intermediate nodes will

discover inappropriate A/B AFVIs for their location in the

multihop forwarding chain. See: [I-D.templin-6man-aero] for

further discussion on A/B AFVI processing.

AERO Forwarding Vector Index (AFVI) List is a 20-octet block

that contains 5 consecutive 4-octet AFVI entries. The FHS/LHS

source and each intermediate node on the path to the

destination processes the list according to the Job and A/B

codes (see above). Note that the reason the AFVI list contains

at most 5 entries is that only the FHS (Client, Proxy/Server,

Gateway) and LHS (Client, Proxy/Server, Gateway) nodes are

eligible for OMNI link route optimization resulting in at most

5 AFVIs "hops" that must be exposed. All other OMNI link nodes

(i.e., downstream Clients that connect via an FHS/LHS Client)

must forward through their upstream-dependent OMNI link

neighbors without applying OMNI link route optimization.

Tunnel Window Synchronization Parameters is a 12-octet block

that consists of a 4-octet Sequence Number followed by a 4-

octet Acknowledgement Number followed by a 1-octet Flags field

followed by a 3-octet Window field (i.e., the same as for the

OMNI header parameters). Tunnel endpoints use these parameters

for simultaneous middlebox window synchronization in a single

solicitation/advertisement message exchange.

For Job codes '00' and '01' only, two trailing state variable

blocks are included for First-Hop Segment (FHS) followed by

Last-Hop Segment (LHS) network elements. When present, each

block encodes the following information:

Client ifIndex encodes the 4 octet index for this Client

interface. The source sets the FHS/LHS ifIndex values

according to its own local interface information and

neighbor information discovered from earlier NS/NA address

resolution exchanges.

Proxy/Server FMT/ULA/L2ADDR encodes a 1 octet FMT code

immediately followed by the 15 least significant octets of

the Proxy/Server ULA, where FMT/ULA are interpreted the

same as defined for the Interface Attribute sub-option in

¶

-

¶

-

¶

-

¶

o

¶

o

Section 12.2.4 but with the FMT-Forward and FMT-Mode bits

ignored. FMT/ULA is then followed by a 16 octet L2ADDR that

identifies an open INET interface not located behind NATs,

therefore no UDP port number is included since port number

8060 is used when the L2 encapsulation includes a UDP

header. Unlike the Interface Attribute sub-option, L2ADDR

is always exactly 16 octets in length regardless of the

actual L2 address length 'N' with the L2 address appearing

in the N least-significant octets and the (16 - N) most-

significant octets set to '0'. When L2ADDR includes an IPv4

or IPv6 address, it is recorded in network byte order in

ones-compliment "obfuscated" form as specified in

[RFC4380].

Gateway FMT/ULA/L2ADDR encodes a 1 octet FMT code followed

by the 15 least significant ULA octets followed by a 16

octet L2ADDR exactly as for the Proxy/Server FMT/ULA/L2ADDR

above.

12.2.6. Traffic Selector

The Traffic Selector sub-option provides forwarding information for

the multilink conceptual sending algorithm discussed in Section 14.

The sub-option includes the same information that would appear in an

Interface Attributes sub-option; hence, it can be used as an

extension to any Interface Attributes with the same ifIndex value

present.

IPv6 ND messages may include Traffic Selectors for some or all of

the source/target Client's underlay interfaces (see: [I-

D.templin-6man-aero] for more information). Multiple Traffic

Selector sub-options with the same ifIndex value may appear in the

same IPv6 ND message.

Traffic Selectors must be honored by all implementations in the

format shown below:

¶

o

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | S-Type=5| Sub-length=N | TS Format | Reserved |

 +-+

 | ifIndex |

 +-+

 ~ ~

 ~ RFC 6088 Format Traffic Selector ~

 ~ ~

 +-+

Figure 20: Traffic Selector

Sub-Type is set to 5. Each IPv6 ND message may contain zero or

more Traffic Selectors for each ifIndex; when multiple Traffic

Selectors for the same ifIndex appear, all are processed and the

cumulative information from all is accepted.

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow.

Sub-Option Data contains a "Traffic Selector" encoded as follows:

TS Format is a 1-octet field that encodes a Traffic Selector

version per [RFC6088]. If TS Format encodes the value 1 or 2,

the Traffic Selector includes IPv4 or IPv6 information,

respectively. If TS Format encodes any other value, the sub-

option is ignored.

Reserved is a 1-octet field set to 0 on transmission and

ignored on receipt

ifIndex is a 4-octet value corresponding to a specific

underlay interface the same as specified above for Interface

Attributes and AERO Forwarding Parameters above. The OMNI

options of a single message may include multiple Traffic

Selector sub-options; each with the same or different ifIndex

values.

The remainder of the sub-option includes a traffic selector

formatted per [RFC6088] beginning with the "Flags (A-N)"

field, and with the Traffic Selector IP protocol version coded

in the TS Format field. If a single interface identified by

ifIndex requires Traffic Selectors for multiple IP protocol

versions, or if a Traffic Selector block would exceed the

available space, the remaining information is coded in

additional Traffic Selector sub-options that all encode the

same ifIndex.

12.2.7. Geo Coordinates

*

¶

*

¶

* ¶

-

¶

-

¶

-

¶

-

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | S-Type=6| Sub-length=N | Geo Type |Geo Coordinates

 +-+ ...

Figure 21: Geo Coordinates Sub-option

Sub-Type is set to 6. If multiple instances appear in OMNI

options of the same message all are processed.

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow.

Geo Type is a 1 octet field that encodes a type designator that

determines the format and contents of the Geo Coordinates field

that follows. The following types are currently defined:

0 - NULL, i.e., the Geo Coordinates field is zero-length.

A set of Geo Coordinates of length up to the remaining available

space for this OMNI option. New formats to be specified in future

documents and may include attributes such as latitude/longitude,

altitude, heading, speed, etc.

12.2.8. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Message

The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) sub-option

may be included in the OMNI options of Client RS messages and Proxy/

Server RA messages. FHS Proxy/Servers that forward RS/RA messages

between a Client and an LHS Proxy/Server also forward DHCPv6 Sub-

Options unchanged. Note that DHCPv6 messages do not include a

Checksum field since integrity is protected by the IPv6 ND message

checksum, authentication signature and/or lower-layer authentication

and integrity checks.

Figure 22: DHCPv6 Message Sub-option

Sub-Type is set to 7. If multiple instances appear in OMNI

options of the same message the first is processed and all others

are ignored.

*

¶

*

¶

*

¶

- ¶

*

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | S-Type=7| Sub-length=N | msg-type | id (octet 0) |

 +-+

 | transaction-id (octets 1-2) | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

 | |

 . DHCPv6 options .

 . (variable number and length) .

 | |

 +-+

*

¶

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow. The 'msg-type' and 'transaction-id' fields

are always present; hence, the length of the DHCPv6 options is

limited by the remaining available space for this OMNI option.

'msg-type' and 'transaction-id' are coded according to Section 8

of [RFC8415].

A set of DHCPv6 options coded according to Section 21 of

[RFC8415] follows.

12.2.9. Host Identity Protocol (HIP) Message

The Host Identity Protocol (HIP) Message sub-option (when present)

provides authentication for IPv6 ND messages exchanged between

Clients and FHS Proxy/Servers over an open Internetwork. FHS Proxy/

Servers authenticate the HIP authentication signatures in source

Client IPv6 ND messages before securely forwarding them to other

OMNI nodes. LHS Proxy/Servers that receive secured IPv6 ND messages

from other OMNI nodes that do not already include a security sub-

option insert HIP authentication signatures before forwarding them

to the target Client.

OMNI interfaces MUST include the HIP message (when present) as the

first sub-option of the first OMNI option, which MUST appear

immediately following the IPv6 ND message header. OMNI interfaces

can therefore easily locate the HIP message and verify the

authentication signature without applying deep inspection. OMNI

interfaces that receive IPv6 ND messages without a HIP (or other

authentication) sub-option as the first OMNI sub-option instead

verify the IPv6 ND message checksum.

OMNI interfaces include the HIP message sub-option when they forward

IPv6 ND messages that require security over INET underlay

interfaces, i.e., where authentication and integrity is not already

assured by lower layers. The OMNI interface calculates the

authentication signature over the entire length of the OAL packet

(or super-packet) beginning with a pseudo-header of the IPv6 ND

message header and extending over the remainder of the OAL packet.

OMNI interfaces that process OAL packets that contain secured IPv6

ND messages verify the signature then either process the rest of the

message locally or forward a proxyed copy to the next hop.

When a FHS Client inserts a HIP message sub-option in an NS/NA

message destined to a target in a remote spanning tree segment, it

must ensure that the insertion does not cause the message to exceed

the OMNI interface MTU. When the remote segment LHS Proxy/Server

forwards the NS/NA message from the spanning tree to the target

Client, it inserts a new HIP message sub-option if necessary while

*

¶

*

¶

*

¶

¶

¶

¶

overwriting or cancelling the (now defunct) HIP message sub-option

supplied by the FHS Client.

If the defunct HIP sub-option size was smaller than the space needed

for the LHS Client HIP message (or, if no defunct HIP sub-option is

present), the LHS Proxy/Server adjusts the space immediately

following the OMNI header by copying the preceding portion of the

IPv6 ND message into buffer headroom free space or copying the

remainder of the IPv6 ND message into buffer tailroom free space.

The LHS Proxy/Server then insets the new HIP sub-option immediately

after the OMNI header and immediately before the next sub-option

while properly overwriting the defunct sub-option if present.

If the defunct HIP sub-option size was larger than the space needed

for the LHS Client HIP message, the LHS Proxy/Server instead

overwrites the existing sub-option and writes a single Pad1 or PadN

sub-option over the next 1-2 octets to cancel the remainder of the

defunct sub-option. If the LHS Proxy/Server cannot create sufficient

space through any means without causing the OMNI option to exceed

2040 octets or causing the IPv6 ND message to exceed the OMNI

interface MTU, it returns a suitable error (see: Section 12.2.13)

and drops the message.

The HIP message sub-option is formatted as shown below:

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | S-Type=8| Sub-length=N |0| Packet Type |Version| RES.|1|

 +-+

 | Reserved | Controls |

 +-+

 | Sender's Host Identity Tag (HIT) |

 | |

 | |

 | |

 +-+

 | Receiver's Host Identity Tag (HIT) |

 | |

 | |

 | |

 +-+

 | |

 / HIP Parameters /

 / /

 | |

 +-+

Figure 23: HIP Message Sub-option

Sub-Type is set to 8. If multiple instances appear in OMNI

options of the same message the first is processed and all others

are ignored.

Sub-Length is set to N, i.e., the length of the option in octets

beginning immediately following the Sub-Length field and

extending to the end of the HIP parameters. The length of the

entire HIP message is therefore limited by the remaining

available space for this OMNI option.

The HIP message is coded per Section 5 of [RFC7401], except that

the OMNI "Sub-Type" and "Sub-Length" fields replace the first 2

octets of the HIP message header (i.e., the Next Header and

Header Length fields). Also, since the IPv6 ND message is already

protected by the authentication signature and/or lower-layer

authentication and integrity checks, the HIP message Checksum

field is replaced by a Reserved field set to 0 on transmission

and ignored on reception.

Note: In some environments, maintenance of a Host Identity Tag (HIT)

namespace may be unnecessary for securely associating an OMNI node

with an IPv6 address-based identity. In that case, IPv6 ULAs can be

used instead of HITs in the authentication signature as long as the

address can be uniquely associated with the Sender/Receiver.

12.2.10. PIM-SM Message

The Protocol Independent Multicast - Sparse Mode (PIM-SM) Message

sub-option may be included in the OMNI options of IPv6 ND messages.

PIM-SM messages are formatted as specified in Section 4.9 of

[RFC7761], with the exception that the Checksum field is replaced by

a Reserved field (set to 0) since the IPv6 ND message is already

protected by the IPv6 ND message checksum, authentication signature

and/or lower-layer authentication and integrity checks. The PIM-SM

message sub-option format is shown in Figure 24:

*

¶

*

¶

*

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | S-Type=9| Sub-length=N |PIM Ver| Type | Reserved |

 +-+

 | |

 / PIM-SM Message /

 / /

 | |

 +-+

Figure 24: PIM-SM Message Option Format

Sub-Type is set to 9. If multiple instances appear in OMNI

options of the same message all are processed.

Sub-Length is set to N, i.e., the length of the option in octets

beginning immediately following the Sub-Length field and

extending to the end of the PIM-SM message. The length of the

entire PIM-SM message is therefore limited by the remaining

available space for this OMNI option.

The PIM-SM message is coded exactly as specified in Section 4.9

of [RFC7761], except that the Checksum field is replaced by a

Reserved field set to 0 on transmission and ignored on reception.

The "PIM Ver" field MUST encode the value 2, and the "Type" field

encodes the PIM message type. (See Section 4.9 of [RFC7761] for a

list of PIM-SM message types and formats.)

12.2.11. Fragmentation Report (FRAGREP)

Fragmentation Report (FRAGREP) sub-options may be included in the

OMNI options of uNA messages sent from an OAL destination to an OAL

source. The message consists of (N / 20)-many (Identification,

Bitmap)-tuples which include the Identification values of OAL

fragments received plus a Bitmap marking the ordinal positions of

individual fragments received and fragments missing.

*

¶

*

¶

*

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |S-Type=10| Sub-Length = N | Identification #1 (bits 0-15) |

 +-+

 | Identification #1 (bits 15-31)| |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~

 | Bitmap #1 (bits 0 - 127) |

 ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | | Identification #2 (bits 0-15) |

 +-+

 | Identification #2 (bits 15-31)| |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

 | Bitmap #2 (bits 0 - 127) |

 ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~

 | ... |

 + ... +

Figure 25: Fragmentation Report (FRAGREP)

Sub-Type is set to 10. If multiple instances appear in OMNI

options of the same message all are processed.

Sub-Length is set to N, i.e., the length of the option in octets

beginning immediately following the Sub-Length field and

extending to the end of the sub-option. If N is not an integral

multiple of 20 octets, the sub-option is ignored. The length of

the entire sub-option should not cause the entire IPv6 ND message

to exceed the minimum IPv6 MTU.

Identification (i) includes the IPv6 Identification value found

in the Fragment Header of a received OAL fragment. (Only those

Identification values included represent fragments for which loss

was unambiguously observed; any Identification values not

included correspond to fragments that were either received in

their entirety or may still be in transit.)

Bitmap (i) includes an ordinal checklist of up to 128 fragments,

with each bit set to 1 for a fragment received or 0 for a

fragment missing. For example, for a 20-fragment OAL packet with

ordinal fragments #3, #10, #13 and #17 missing and all other

fragments received, Bitmap (i) encodes the following:

Figure 26

(Note that loss of an OAL atomic fragment is indicated by a

Bitmap(i) with all bits set to 0.)

12.2.12. Node Identification

*

¶

*

¶

*

¶

*

¶

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

 +-

 |1|1|1|0|1|1|1|1|1|1|0|1|1|0|1|1|1|0|1|1|0|0|0|...

 +-

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |S-Type=11| Sub-length=N | ID-Type | ~

 +-+ ~

 ~ Node Identification Value (N-1 octets) ~

 +-+

Figure 27: Node Identification

Sub-Type is set to 11. If multiple instances appear in OMNI

options of the same IPv6 ND message the first instance of a

specific ID-Type is processed and all other instances of the same

ID-Type are ignored. (It is therefore possible for a single IPv6

ND message to convey multiple distinct Node Identifications -

each with a different ID-Type.)

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow. The ID-Type field is always present; hence,

the maximum Node Identification Value length is limited by the

remaining available space in this OMNI option.

ID-Type is a 1 octet field that encodes the type of the Node

Identification Value. The following ID-Type values are currently

defined:

0 - Universally Unique IDentifier (UUID) [RFC4122]. Indicates

that Node Identification Value contains a 16 octet UUID.

1 - Host Identity Tag (HIT) [RFC7401]. Indicates that Node

Identification Value contains a 16 octet HIT.

2 - Hierarchical HIT (HHIT) [I-D.ietf-drip-rid]. Indicates

that Node Identification Value contains a 16 octet HHIT.

3 - Network Access Identifier (NAI) [RFC7542]. Indicates that

Node Identification Value contains an N-1 octet NAI.

4 - Fully-Qualified Domain Name (FQDN) [RFC1035]. Indicates

that Node Identification Value contains an N-1 octet FQDN.

5 - IPv6 Address. Indicates that Node Identification contains

a 16-octet IPv6 address that is not a (H)HIT. The IPv6 address

type is determined according to the IPv6 addressing

architecture [RFC4291].

6 - 252 - Unassigned.

253-254 - Reserved for experimentation, as recommended in

[RFC3692].

255 - reserved by IANA.

Node Identification Value is an (N - 1) octet field encoded

according to the appropriate the "ID-Type" reference above.

OMNI interfaces code Node Identification Values used for DHCPv6

messaging purposes as a DHCP Unique IDentifier (DUID) using the

*

¶

*

¶

*

¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

- ¶

-

¶

- ¶

*

¶

"DUID-EN for OMNI" format with enterprise number 45282 (see: Section

25) as shown in Figure 28:

Figure 28: DUID-EN for OMNI Format

In this format, the OMNI interface codes the ID-Type and Node

Identification Value fields from the OMNI sub-option following a 6

octet DUID-EN header, then includes the entire "DUID-EN for OMNI" in

a DHCPv6 message per [RFC8415].

12.2.13. ICMPv6 Error

Figure 29: ICMPv6 Error

Sub-Type is set to 12. If multiple instances appear in OMNI

options of the same IPv6 ND message all are processed.

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow.

Sub-Option Data includes a one octet Type followed by a one octet

Code followed by an (N-2)-octet Message Body encoded exactly as

per Section 2.1 of [RFC4443]. OMNI interfaces include as much of

the ICMPv6 error message body in the sub-option as possible

without causing the entire IPv6 ND message to exceed the minimum

IPv6 MTU. While all ICMPv6 error message types are supported, OAL

destinations in particular may include ICMPv6 PTB messages in uNA

messages to provide MTU feedback information via the OAL source

¶

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | DUID-Type (2) | EN (high bits == 0) |

 +-+

 | EN (low bits = 45282) | ID-Type | |

 +-+ |

 ~ Node Identification Value ~

 +-+

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |S-Type=12| Sub-length=N | Type | Code |

 +-+

 | |

 + Message Body +

 | |

 +-+

*

¶

*

¶

*

(see: Section 6.8). Note: ICMPv6 informational messages must not

be included and must be ignored if received.

12.2.14. QUIC-TLS Message

Figure 30: QUIC-TLS Message

Sub-Type is set to 13. If multiple instances appear in OMNI

options of the same IPv6 ND message, the first is processed and

all others are ignored.

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow.

The QUIC-TLS message [RFC9000][RFC9001][RFC9002] encodes the QUIC

and TLS message parameters necessary to support QUIC connection

establishment.

When present, the QUIC-TLS Message sub-option MUST appear

immediately after the header of the first OMNI option in the IPv6 ND

message; if the sub-option appears in any other location it MUST be

ignored. IPv6 ND solicitation and advertisement messages serve as

couriers to transport the QUIC and TLS parameters necessary to

establish a secured QUIC connection.

12.2.15. Proxy/Server Departure

OMNI Clients include a Proxy/Server Departure sub-option in RS

messages when they associate with a new FHS and/or Hub Proxy/Server

and need to send a departure indication to an old FHS and/or Hub

Proxy/Server. The Proxy/Server Departure sub-option is formatted as

shown below:

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |S-Type=13| Sub-length=N | ~

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- ~

 ~ QUIC-TLS Message ~

 +-+

*

¶

*

¶

*

¶

¶

¶

Figure 31: Proxy/Server Departure

Sub-Type is set to 14.

Sub-Length is set to 32.

Sub-Option Data contains the 16 octet ULA for the "Old FHS Proxy/

Server" followed by a 16 octet ULA for an "Old Hub Proxy/Server.

(If the Old FHS/Hub is unspecified, the corresponding ULA instead

includes the value 0.)

12.2.16. Sub-Type Extension

Since the Sub-Type field is only 5 bits in length, future

specifications of major protocol functions may exhaust the remaining

Sub-Type values available for assignment. This document therefore

defines Sub-Type 30 as an "extension", meaning that the actual Sub-

Option type is determined by examining a 1 octet "Extension-Type"

field immediately following the Sub-Length field. The Sub-Type

Extension is formatted as shown in Figure 32:

Figure 32: Sub-Type Extension

Sub-Type is set to 30. If multiple instances appear in OMNI

options of the same message all are processed, where each

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |S-Type=14| Sub-length=32 | ~

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~

 ~ Old FHS Proxy/Server ULA (16 octets) ~

 ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 ~ | ~

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~

 ~ Old Hub Proxy/Server ULA (16 0ctets) ~

 ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 ~ |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

* ¶

* ¶

*

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |S-Type=30| Sub-length=N | Extension-Type| ~

 +-+ ~

 ~ ~

 ~ Extension-Type Body ~

 ~ ~

 +-+

*

individual extension defines its own policy for processing

multiple of that type.

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow. The Extension-Type field is always present,

and the maximum Extension-Type Body length is limited by the

remaining available space in this OMNI option.

Extension-Type contains a 1 octet Sub-Type Extension value

between 0 and 255.

Extension-Type Body contains an N-1 octet block with format

defined by the given extension specification.

Extension-Type values 0 and 1 are defined in the following

subsections, while Extension-Type values 2 through 252 are available

for assignment by future specifications which must also define the

format of the Extension-Type Body and its processing rules.

Extension-Type values 253 and 254 are reserved for experimentation,

as recommended in [RFC3692], and value 255 is reserved by IANA.

12.2.16.1. RFC4380 Header Extension Option

Figure 33: RFC4380 Header Extension Option (Extension-Type 0)

Sub-Type is set to 30.

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow. The Extension-Type and Header Type fields are

always present, and the Header Option Value is limited by the

remaining available space in this OMNI option.

Extension-Type is set to 0. Each instance encodes exactly one

header option per Section 5.1.1 of [RFC4380], with Ext-Type and

Header Type representing the first two octets of the option. If

multiple instances of the same Header Type appear in OMNI options

of the same message the first instance is processed and all

others are ignored. If Header Type indicates an Authentication

Encapsulation (see below), the entire sub-option MUST appear as

the first sub-option of the first OMNI option, which MUST appear

immediately following the IPv6 ND message header.

¶

*

¶

*

¶

*

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |S-Type=30| Sub-length=N | Ext-Type=0 | Header Type |

 +-+

 ~ Header Option Value ~

 +-+

* ¶

*

¶

*

¶

Header Type and Header Option Value are coded exactly as

specified in Section 5.1.1 of [RFC4380]; the following types are

currently defined:

0 - Origin Indication (IPv4) - value coded as a UDP port

number followed by a 4-octet IPv4 address both in "obfuscated"

form per Section 5.1.1 of [RFC4380].

1 - Authentication Encapsulation - value coded per Section

5.1.1 of [RFC4380].

2 - Origin Indication (IPv6) - value coded per Section 5.1.1

of [RFC4380], except that the address is a 16-octet IPv6

address instead of a 4-octet IPv4 address.

Header Type values 3 through 252 are available for assignment by

future specifications, which must also define the format of the

Header Option Value and its processing rules. Header Type values

253 and 254 are reserved for experimentation, as recommended in

[RFC3692], and value 255 is Reserved by IANA.

12.2.16.2. RFC6081 Trailer Extension Option

Figure 34: RFC6081 Trailer Extension Option (Extension-Type 1)

Sub-Type is set to 30.

Sub-Length is set to N that encodes the number of Sub-Option Data

octets that follow. The Extension-Type and Trailer Type fields

are always present, and the maximum-length Trailer Option Value

is limited by the remaining available space in this OMNI option.

Extension-Type is set to 1. Each instance encodes exactly one

trailer option per Section 4 of [RFC6081]. If multiple instances

of the same Trailer Type appear in OMNI options of the same

message the first instance is processed and all others ignored.

*

¶

-

¶

-

¶

-

¶

*

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |S-Type=30| Sub-length=N | Ext-Type=1 | Trailer Type |

 +-+

 ~ Trailer Option Value ~

 +-+

* ¶

*

¶

*

¶

Trailer Type and Trailer Option Value are coded exactly as

specified in Section 4 of [RFC6081]; the following Trailer Types

are currently defined:

0 - Unassigned

1 - Nonce Trailer - value coded per Section 4.2 of [RFC6081].

2 - Unassigned

3 - Alternate Address Trailer (IPv4) - value coded per Section

4.3 of [RFC6081].

4 - Neighbor Discovery Option Trailer - value coded per

Section 4.4 of [RFC6081].

5 - Random Port Trailer - value coded per Section 4.5 of

[RFC6081].

6 - Alternate Address Trailer (IPv6) - value coded per Section

4.3 of [RFC6081], except that each address is a 16-octet IPv6

address instead of a 4-octet IPv4 address.

Trailer Type values 7 through 252 are available for assignment by

future specifications, which must also define the format of the

Trailer Option Value and its processing rules. Trailer Type

values 253 and 254 are reserved for experimentation, as

recommended in [RFC3692], and value 255 is Reserved by IANA.

13. Address Mapping - Multicast

The multicast address mapping of the native underlay interface

applies. The Client mobile router also serves as an IGMP/MLD Proxy

for its ENETs and/or hosted applications per [RFC4605].

The Client uses Multicast Listener Discovery (MLDv2) [RFC3810] to

coordinate with Proxy/Servers, and underlay network elements use MLD

snooping [RFC4541]. The Client can also employ multicast routing

protocols to coordinate with network-based multicast sources as

specified in [I-D.templin-6man-aero].

Since the OMNI link model is NBMA, OMNI links support link-scoped

multicast through iterative unicast transmissions to individual

multicast group members (i.e., unicast/multicast emulation).

14. Multilink Conceptual Sending Algorithm

The Client's IPv6 layer selects the outbound OMNI interface

according to SBM considerations when forwarding original IP packets

from local or ENET applications to external correspondents. Each

*

¶

- ¶

- ¶

- ¶

-

¶

-

¶

-

¶

-

¶

*

¶

¶

¶

¶

OMNI interface maintains an internal OAL neighbor cache maintained

the same as discussed in [RFC4861], but also includes additional

state for multilink coordination. Each Client OMNI interface

maintains default routes via Proxy/Servers discovered as discussed

in Section 15, and may configure more-specific routes discovered

through means outside the scope of this specification.

For each original IP packet it forwards, the OMNI interface selects

one or more source underlay interfaces based on PBM factors (e.g.,

traffic attributes, cost, performance, message size, etc.) and one

or more target underlay interfaces for the neighbor based on

Interface Attributes received in IPv6 ND messages (see: Section

12.2.4). Multilink forwarding may also direct packet replication

across multiple underlay interface pairs for increased reliability

at the expense of duplication. The set of all Interface Attributes

and Traffic Selectors received in IPv6 ND messages determines the

multilink forwarding profile for selecting target underlay

interfaces.

When the OMNI interface sends an original IP packet over a selected

source underlay interface, it first employs OAL encapsulation and

fragmentation as discussed in Section 5, then performs L2

encapsulation as directed by the appropriate AFV. The OMNI interface

also performs L2 encapsulation (following OAL encapsulation) when

the nearest Proxy/Server is located multiple hops away as discussed

in Section 15.2.

OMNI interface multilink service designers MUST observe the BCP

guidance in Section 15 [RFC3819] in terms of implications for

reordering when original IP packets from the same flow may be spread

across multiple underlay interfaces having diverse properties.

14.1. Multiple OMNI Interfaces

Clients may connect to multiple independent OMNI links within the

same or different OMNI domains to support SBM. The Client configures

a separate OMNI interface for each link so that multiple interfaces

(e.g., omni0, omni1, omni2, etc.) are exposed to the IP layer. Each

OMNI interface configures one or more OMNI anycast addresses (see:

Section 10), and the Client injects the corresponding anycast

prefixes into the ENET routing system. Multiple distinct OMNI links

can therefore be used to support fault tolerance, load balancing,

reliability, etc.

Applications in ENETs can use Segment Routing to select the desired

OMNI interface based on SBM considerations. The application writes

an OMNI anycast address into the original IP packet's destination

address, and writes the actual destination (along with any

additional intermediate hops) into the Segment Routing Header.

¶

¶

¶

¶

¶

Standard IP routing directs the packet to the Client's mobile router

entity, where the anycast address identifies the correct OMNI

interface for next hop forwarding. When the Client receives the

packet, it replaces the IP destination address with the next hop

found in the Segment Routing Header and forwards the message via the

OMNI interface identified by the anycast address.

Note: The Client need not configure its OMNI interface indexes in

one-to-one correspondence with the global OMNI Link-IDs configured

for OMNI domain administration since the Client's indexes (i.e.,

omni0, omni1, omni2, etc.) are used only for its own local interface

management.

14.2. Client-Proxy/Server Loop Prevention

After a Proxy/Server has registered an MNP for a Client (see:

Section 15), the Proxy/Server will forward all packets destined to

an address within the MNP to the Client. The Client will under

normal circumstances then forward the packet to the correct

destination within its connected (downstream) ENETs.

If at some later time the Client loses state (e.g., after a reboot),

it may begin returning packets with destinations corresponding to

its MNP to the Proxy/Server as its default router. The Proxy/Server

therefore drops any original IP packets received from the Client

with a destination address that corresponds to the Client's MNP

(i.e., whether ULA or GUA), and drops any carrier packets with both

source and destination address corresponding to the same Client's

MNP regardless of their origin.

15. Router Discovery and Prefix Registration

Clients engage the MS by sending RS messages with OMNI options under

the assumption that one or more Proxy/Server will process the

message and respond. The RS message is received by a FHS Proxy/

Server, which may in turn forward a proxyed copy of the RS to a Hub

Proxy/Server located on the same or different SRT segment. The Hub

Proxy/Server then returns an RA message either directly to the

Client or via an FHS Proxy/Server acting as a proxy.

Clients and FHS Proxy/Servers include an authentication signature in

their RS/RA exchanges when necessary; otherwise, they calculate and

include a valid IPv6 ND message checksum (see: Section 12 and

Appendix B). FHS and Hub Proxy/Server RS/RA message exchanges over

the SRT secured spanning tree instead always include the checksum

and omit the authentication signature. Clients and Proxy/Servers use

the information included in RS/RA messages to establish NCE state

and OMNI link autoconfiguration information as discussed in this

section.

¶

¶

¶

¶

¶

¶

For each underlay interface, the Client sends RS messages with OMNI

options to coordinate with a (potentially) different FHS Proxy/

Server for each interface but with a single Hub Proxy/Server. All

Proxy/Servers are identified by their ULA-RNDs and accept carrier

packets addressed to their anycast/unicast L2ADDRs; the Hub Proxy/

Server may be chosen among any of the Client's FHS Proxy/Servers or

may be any other Proxy/Server for the OMNI link. Example ULA/L2ADDR

discovery methods are given in [RFC5214] and include data link login

parameters, name service lookups, static configuration, a static

"hosts" file, etc. In the absence of other information, the Client

can resolve the DNS Fully-Qualified Domain Name (FQDN)

"linkupnetworks.[domainname]" where "linkupnetworks" is a constant

text string and "[domainname]" is a DNS suffix for the OMNI link

(e.g., "example.com"). The name resolution will retain a set of DNS

resource records with the addresses of Proxy/Servers for the domain.

Each FHS Proxy/Server configures a ULA-RND based on a /64 ULA prefix

for the link/segment with randomly-generated Global ID to assure

global uniqueness then administratively assigned to FHS Proxy/

Servers for the link to assure global consistency. The Client can

then configure ULA-MNPs derived from the 64-bit ULA prefix assigned

to a FHS Proxy/Server for each underlay interface. The FHS Proxy/

Servers discovered over multiple of the Client's underlay interfaces

may configure the same or different ULA prefixes, and the Client's

ULA-MNP for each underlay interface will fall within the ULA

(multilink) subnet relative to each FHS Proxy/Server.

Clients configure OMNI interfaces that observe the properties

discussed in previous sections. The OMNI interface and its underlay

interfaces are said to be in either the "UP" or "DOWN" state

according to administrative actions in conjunction with the

interface connectivity status. An OMNI interface transitions to UP

or DOWN through administrative action and/or through state

transitions of the underlay interfaces. When a first underlay

interface transitions to UP, the OMNI interface also transitions to

UP. When all underlay interfaces transition to DOWN, the OMNI

interface also transitions to DOWN.

When a Client OMNI interface transitions to UP, it sends RS messages

to register its MNP and an initial set of underlay interfaces that

are also UP. The Client sends additional RS messages to refresh

lifetimes and to register/deregister underlay interfaces as they

transition to UP or DOWN. The Client's OMNI interface sends initial

RS messages over an UP underlay interface with its XLA-MNP as the

source (or with a TLA-RND as the source if it does not yet have an

MNP) and with destination set to link-scoped All-Routers multicast

or the ULA of a specific (Hub) Proxy/Server. The OMNI interface

includes an OMNI option per Section 12 with an OMNI Neighbor

Coordination sub-option with (Preflen assertion, N/A/U flags and

¶

¶

¶

Window Synchronization parameters), an Interface Attributes sub-

option for the underlay interface, a DHCPv6 Solicit sub-option if

necessary, and with any other necessary OMNI sub-options such as

authentication, Proxy/Server Departure, etc.

The Client then calculates the authentication signature or checksum

and prepares to forward the RS over the underlay interface using OAL

encapsulation and fragmentation if necessary. If the Client uses OAL

encapsulation for RS messages sent to an unsynchronized FHS Proxy/

Server over an INET interface, the entire RS message must fit within

a single carrier packet (i.e., an atomic fragment) so that the FHS

Proxy/Server can verify the authentication signature without having

to first reassemble. The OMNI interface selects an Identification

value (see: Section 6.6), sets the OAL source address to the ULA-MNP

corresponding to the RS source if known (otherwise to a TLA-RND),

sets the OAL destination to an OMNI IPv6 anycast address or a known

Proxy/Server ULA, optionally includes a Nonce and/or Timestamp, then

performs fragmentation if necessary. When L2 encapsulation is used,

the Client includes the discovered FHS Proxy/Server L2ADDR or an

anycast address as the L2 destination then forwards the resulting

carrier packet(s) into the underlay network. Note that the Client

does not yet create a NCE, but instead caches the Identification,

Nonce and/or Timestamp values included in its RS message

transmissions to match against any received RA messages.

When an FHS Proxy/Server receives the carrier packets containing an

RS it sets aside the L2 headers, verifies the Identifications and

reassembles if necessary, sets aside the OAL header, then verifies

the RS authentication signature or checksum. The FHS Proxy/Server

then creates/updates a NCE indexed by the Client's RS source address

and caches the OMNI Interface Attributes and any Traffic Selector

sub-options while also caching the L2 (UDP/IP) and OAL source and

destination address information. The FHS Proxy/Server next caches

the OMNI Neighbor Coordination sub-option Window Synchronization

parameters and N flag to determine its role in processing NS(NUD)

messages (see: Section 12.1) then examines the RS destination

address. If the destination matches its own ULA, the FHS Proxy/

Server assumes the Hub role and acts as the sole entry point for

injecting the Client's XLA-MNP into the OMNI link routing system

(i.e., after performing any necessary prefix delegation operations)

while setting the prefix to fd00::/64 and suffix to the 64-bit MNP,

then including a prefix length set to the MNP prefix length plus 64.

(For example, if the MNP prefix length is 48, the prefix length

field encodes the value 112.) The FHS/Hub Proxy/Server then caches

the OMNI Neighbor Coordination sub-option A/U flags to determine its

role in processing NS(AR) messages and generating uNA messages (see:

Section 12.1).

¶

¶

¶

The FHS/Hub Proxy/Server then prepares to return an RA message

directly to the Client by first populating the Cur Hop Limit, Flags,

Router Lifetime, Reachable Time and Retrans Timer fields with values

appropriate for the OMNI link. The FHS/Hub Proxy/Server next

includes as the first RA message option an OMNI option with a

neighbor coordination sub-option with Window Synchronization

information, an authentication sub-option if necessary and a

(proxyed) copy of the Client's original Interface Attributes sub-

option with its INET-facing interface information written in the

FMT, SRT and LHS Proxy/Server ULA/L2ADDR fields. If the FHS/Hub

Proxy/Server's Client-facing interface is different than its INET-

facing interface, the Proxy/Server next includes a second Interface

Attributes sub-option with ifIndex set to '0' and with a unicast L2

address for its Client-facing interface in the L2ADDR field.

The FHS/Hub Proxy/Server next includes an Origin Indication sub-

option that includes the RS L2 source L2ADDR information (see:

Section 12.2.16.1), then includes any other necessary OMNI sub-

options (either within the same OMNI option or in additional OMNI

options). Following the OMNI option(s), the FHS/Hub Proxy/Server

next includes any other necessary RA options such as PIOs with (A;

L=0) that include the OMNI link MSPs [RFC8028], RIOs [RFC4191] with

more-specific routes, Nonce and Timestamp options, etc. The FHS/Hub

Proxy/Server then sets the RA source address to its own ULA and

destination address to the Client's ULA-MNP (i.e., relative to the

ULA /64 prefix for its Client-facing underlay interface) while also

recording the corresponding XLA-MNP as an (alternate) index to the

Client NCE, then calculates the authentication signature or

checksum. The FHS/Hub Proxy/Server finally performs OAL

encapsulation with source set to its own ULA and destination set to

the OAL source that appeared in the RS, then calculates the OAL

checksum, selects an appropriate Identification, fragments if

necessary, encapsulates each fragment in appropriate L2 headers with

source and destination address information reversed from the RS L2

information and returns the resulting carrier packets to the Client

over the same underlay interface the RS arrived on.

When an FHS Proxy/Server receives an RS with a valid authentication

signature or checksum and with destination set to link-scoped All-

Routers multicast, it can either assume the Hub role itself the same

as above or act as a proxy and select the ULA of another Proxy/

Server to serve as the Hub. When an FHS Proxy/Server assumes the

proxy role or receives an RS with destination set to the ULA of

another Proxy/Server, it forwards the message while acting as a

proxy. The FHS Proxy/Server creates/updates a NCE for the Client

(i.e., based on the RS source address) and caches the OAL source,

Window Synchronization, N flag, Interface Attributes addressing

information as above then writes its own INET-facing FMT, SRT and

LHS Proxy/Server ULA/L2ADDR information into the appropriate

¶

¶

Interface Attributes sub-option fields. The FHS Proxy/Server then

calculates and includes the checksum, performs OAL encapsulation

with source set to its own ULA and destination set to the ULA of the

Hub Proxy/Server, calculates the OAL checksum, selects an

appropriate Identification, fragments if necessary, encapsulates

each fragment in appropriate L2 headers and sends the resulting

carrier packets into the SRT secured spanning tree.

When the Hub Proxy/Server receives the carrier packets, it discards

the L2 headers, reassembles if necessary to obtain the proxyed RS,

verifies checksums, then performs DHCPv6 Prefix Delegation (PD) to

obtain the Client's MNP if the RS source is a (TLA,XLA}-RND. The Hub

Proxy/Server then creates/updates a NCE for the Client's XLA-MNP and

caches any state (including the A/U flags, OAL addresses, Interface

Attributes information and Traffic Selectors), then finally performs

routing protocol injection. The Hub Proxy/Server then returns an RA

that echoes the Client's (proxyed) Interface Attributes sub-option

and with any RA parameters the same as specified for the FHS/Hub

Proxy/Server case above. The Hub Proxy/Server then sets the RA

source address to its own ULA and destination address to the RS

source address; if the RS source address is a TLA-RND, the Hub

Proxy/Server also includes the MNP in a DHCPv6 PD Reply OMNI sub-

option. The Hub Proxy/Server next calculates the checksum, then

encapsulates the RA as an OAL packet with source set to its own ULA

and destination set to the ULA of the FHS Proxy/Server that

forwarded the RS. The Hub Proxy/Server finally calculates the OAL

checksum, selects an appropriate Identification, fragments if

necessary, encapsulates each fragment in appropriate L2 headers and

sends the resulting carrier packets into the secured spanning tree.

When the FHS Proxy/Server receives the carrier packets it discards

the L2 headers, reassembles if necessary to obtain the RA message,

verifies checksums then updates the OMNI interface NCE for the

Client and creates/updates a NCE for the Hub. The FHS Proxy/Server

then sets the P flag in the RA flags field [RFC4389] and proxys the

RA by changing the OAL source to its own ULA, changing the OAL

destination to the OAL address found in the Client's NCE, and

changing the RA destination address to the ULA-MNP of the Client

relative to its own /64 ULA prefix while also recording the

corresponding XLA-MNP as an alternate index into the Client NCE. (If

the RA destination address was a TLA-RND, the FHS Proxy Server

determines the MNP by consulting the DHCPv6 PD Reply message sub-

option.) The FHS Proxy/Server next includes Window Synchronization

parameters responsive to those in the Client's RS, an Interface

Attributes sub-option with ifIndex '0' and with its Client-facing

interface unicast L2 address if necessary (see above), an Origin

Indication sub-option with the Client's cached L2ADDR and an

authentication sub-option if necessary. The FHS Proxy/Server finally

selects an Identification value per Section 6.6, calculates the

¶

¶

authentication signature or checksum, fragments if necessary,

encapsulates each fragment in L2 headers with addresses taken from

the Client's NCE and returns the resulting carrier packets via the

same underlay interface over which the RS was received.

When the Client receives the carrier packets, it discards the L2

headers, reassembles if necessary and removes the OAL header to

obtain the RA message. The Client next verifies the authentication

signature or checksum, then matches the RA message with its

previously-sent RS by comparing the RS Sequence Number with the RA

Acknowledgement Number and also comparing the Nonce and/or Timestamp

values if present. If the values match, the Client then creates/

updates OMNI interface NCEs for both the Hub and FHS Proxy/Server

and caches the information in the RA message. In particular, the

Client caches the RA source address as the Hub Proxy/Server ULA and

uses the OAL source address to configure both an underlay interface-

specific ULA for the Hub Proxy/Server and the ULA of this FHS Proxy/

Server. The Client then uses the ULA-MNP in the RA destination

address to configure its address within the ULA (multilink) subnet

prefix of the FHS Proxy/Server. If the Client has multiple underlay

interfaces, it creates additional FHS Proxy/Server NCEs and ULA-MNPs

as necessary when it receives RAs over those interfaces (noting that

multiple of the Client's underlay interfaces may be serviced by the

same or different FHS Proxy/Servers). The Client finally adds the

Hub Proxy/Server ULA to the default router list if necessary.

For each underlay interface, the Client next caches the (filled-out)

Interface Attributes for its own ifIndex and Origin Indication

information that it received in an RA message over that interface so

that it can include them in future NS/NA messages to provide

neighbors with accurate FMT/SRT/LHS information. (If the message

includes an Interface Attributes sub-option with ifIndex '0', the

Client also caches the L2ADDR as the underlay network-local unicast

address of the FHS Proxy//Server via that underlay interface.) The

Client then compares the Origin Indication L2ADDR information with

its own underlay interface addresses to determine whether there may

be NATs on the path to the FHS Proxy/Server; if the L2ADDR

information differs, the Client is behind a NAT and must supply the

Origin information in IPv6 ND message exchanges with prospective

neighbors on the same SRT segment. The Client finally configures

default routes and assigns the OMNI Subnet Router Anycast address

corresponding to the MNP (e.g., 2001:db8:1:2::) to the OMNI

interface.

Following the initial exchange, the FHS Proxy/Server MAY later send

additional periodic and/or event-driven unsolicited RA messages per

[RFC4861]. (The unsolicited RAs may be initiated either by the FHS

Proxy/Server itself or by the Hub via the FHS as a proxy.) The

¶

¶

¶

Client then continuously manages its underlay interfaces according

to their states as follows:

When an underlay interface transitions to UP, the Client sends an

RS over the underlay interface with an OMNI option with sub-

options as specified above.

When an underlay interface transitions to DOWN, the Client sends

unsolicited NA messages over any UP underlay interface with an

OMNI option containing Interface Attributes sub-options for the

DOWN underlay interface with Link set to '0'. The Client sends

isolated unsolicited NAs when reliability is not thought to be a

concern (e.g., if redundant transmissions are sent on multiple

underlay interfaces), or may instead set the PNG flag in the OMNI

header to trigger a uNA reply.

When the Router Lifetime for the Hub Proxy/Server nears

expiration, the Client sends an RS over any underlay interface to

receive a fresh RA from the Hub. If no RA messages are received

over a first underlay interface (i.e., after retrying), the

Client marks the underlay interface as DOWN and should attempt to

contact the Hub Proxy/Server via a different underlay interface.

If the Hub Proxy/Server is unresponsive over additional underlay

interfaces, the Client sends an RS message with destination set

to the ULA of another Proxy/Server which will then assume the Hub

role.

When all of a Client's underlay interfaces have transitioned to

DOWN (or if the prefix registration lifetime expires), the Hub

Proxy/Server withdraws the MNP the same as if it had received a

message with a release indication.

The Client is responsible for retrying each RS exchange up to

MAX_RTR_SOLICITATIONS times separated by RTR_SOLICITATION_INTERVAL

seconds until an RA is received. If no RA is received over an UP

underlay interface (i.e., even after attempting to contact alternate

Proxy/Servers), the Client declares this underlay interface as DOWN.

When changing to a new FHS or Hub Proxy/Server, the Client also

includes a Proxy/Server Departure OMNI sub-option in new RS

messages; the (new) FHS Proxy/Server will in turn send uNA messages

to the old FHS and/or Hub Proxy/Server to announce the Client's

departure as discussed in [I-D.templin-6man-aero].

The IPv6 layer sees the OMNI interface as an ordinary IPv6

interface. Therefore, when the IPv6 layer sends an RS message the

OMNI interface returns an internally-generated RA message as though

the message originated from an IPv6 router. The internally-generated

RA message contains configuration information consistent with the

information received from the RAs generated by the Hub Proxy/Server.

¶

*

¶

*

¶

*

¶

*

¶

¶

Whether the OMNI interface IPv6 ND messaging process is initiated

from the receipt of an RS message from the IPv6 layer or

independently of the IPv6 layer is an implementation matter. Some

implementations may elect to defer the OMNI interface internal RS/RA

messaging process until an RS is received from the IPv6 layer, while

others may elect to initiate the process proactively. Still other

deployments may elect to administratively disable IPv6 layer RS/RA

messaging over the OMNI interface, since the messages are not

required to drive the OMNI interface internal RS/RA process. (Note

that this same logic applies to IPv4 implementations that employ

"ICMP Router Discovery" [RFC1256].)

Note: The Router Lifetime value in RA messages indicates the time

before which the Client must send another RS message over this

underlay interface (e.g., 600 seconds), however that timescale may

be significantly longer than the lifetime the MS has committed to

retain the prefix registration (e.g., REACHABLETIME seconds). Proxy/

Servers are therefore responsible for keeping MS state alive on a

shorter timescale than the Client may be required to do on its own

behalf.

Note: On certain multicast-capable underlay interfaces, Clients

should send periodic unsolicited multicast NA messages and Proxy/

Servers should send periodic unsolicited multicast RA messages as

"beacons" that can be heard by other nodes on the link. If a node

fails to receive a beacon after a timeout value specific to the

link, it can initiate Neighbor Unreachability Detection (NUD)

exchanges to test reachability.

Note: If a single FHS Proxy/Server services multiple of a Client's

underlay interfaces, Window Synchronization will initially be

repeated for the RS/RA exchange over each underlay interface, i.e.,

until the Client discovers the many-to-one relationship. This will

naturally result in a single window synchronization that applies

over the Client's multiple underlay interfaces for the same FHS

Proxy/Server.

Note: Although the Client's FHS Proxy/Server is a first-hop segment

node from its own perspective, the Client stores the Proxy/Server's

FMT/SRT/ULA/L2ADDR as last-hop segment (LHS) information to supply

to neighbors. This allows both the Client and Hub Proxy/Server to

supply the information to neighbors that will perceive it as LHS

information on the return path to the Client.

Note: The Hub Proxy/Server injects Client XLA-MNP into the OMNI link

routing system by simply creating a route-to-interface forwarding

table entry for fd00::{MNP}/N via the OMNI interface. The dynamic

routing protocol will notice the new entry and propagate the route

to its peers. If the Hub receives additional RS messages, it need

¶

¶

¶

¶

¶

not re-create the forwarding table entry (nor disturb the dynamic

routing protocol) if an entry is already present. If the Hub ceases

to receive RS messages from any of the Client's interfaces, it

removes the Client XLA-MNP from the forwarding table (i.e., after a

short delay) resulting in its removal also from the routing system.

Note: If the Client's initial RS message includes an anycast L2

destination address, the FHS Proxy/Server returns the solicited RA

using the same anycast address as the L2 source while including an

Interface Attributes sub-option with ifIndex '0' and its true

unicast address in the L2ADDR. When the Client sends additional RS

messages, it includes this FHS Proxy/Server unicast address as the

L2 destination and the FHS Proxy/Server returns the solicited RA

using the same unicast address as the L2 source. This will ensure

that RS/RA exchanges are not impeded by any NATs on the path while

avoiding long-term exposure of messages that use an anycast address

as the source.

Note: The Origin Indication sub-option is included only by the FHS

Proxy/Server and not by the Hub (unless the Hub is also serving as

an FHS).

Note: Clients should set the N/A/U flags consistently in successive

RS messages and only change those settings when an FHS/Hub Proxy/

Server service profile update is necessary.

Note: After a Client has discovered its ULA-MNPs for a given set of

FHS Proxy/Servers, it should begin using its XLA-MNP as the IPv6 ND

message source address and ULA-MNP as the OAL source address in

future IPv6 ND messages and refrain from further use of TLAs. In any

case, the Client SHOULD NOT gratuitously configure and use large

numbers of additional TLAs, as doing so would simply result in

address change churn in NCEs with no operational advantages.

Note: Although the Client adds the Hub Proxy/Server ULA to the

default router list, it also caches the ULAs of the FHS Proxy/

Servers on the path to the Hub over each underlying interface. When

the Client needs to send a packet to a default router, it therefore

selects an ULA corresponding to the selected interface which directs

the packet to an FHS Proxy/Server for that interface. The FHS Proxy/

Server then forwards the packet without disturbing the Hub.

15.1. Window Synchronization

In environments where Identification window synchronization is

necessary, the RS/RA exchanges discussed above observe the

principles specified in Section 6.6. Window synchronization is

conducted between the Client and each FHS Proxy/Server used to

contact the Hub Proxy/Server, i.e., and not between the Client and

¶

¶

¶

¶

¶

¶

the Hub. This is due to the fact that the Hub Proxy/Server is

responsible only for forwarding control and data messages via the

secured spanning tree to FHS Proxy/Servers, and is not responsible

for forwarding messages directly to the Client under a synchronized

window. Also, in the reverse direction the FHS Proxy/Servers handle

all default forwarding actions without forwarding Client-initiated

data to the Hub.

When a Client needs to perform window synchronization via a new FHS

Proxy/Server, it sets the RS source address to its own {TLA,XLA}-MNP

(or a {TLA,XLA}-RND) and destination address to the ULA of the Hub

Proxy/Server (or to All-Routers multicast in an initial RS), then

sets the SYN flag and includes an initial Sequence Number for Window

Synchronization. The Client then performs OAL encapsulation using

its own ULA-MNP (or the TLA-RND) as the source and the ULA of the

FHS Proxy/Server as the destination and includes an Interface

Attributes sub-option then forwards the resulting carrier packets to

the FHS Proxy/Server. The FHS Proxy/Server then extracts the RS

message and caches the Window Synchronization parameters then re-

encapsulates with its own ULA as the source and the ULA of the Hub

Proxy/Server as the target.

The FHS Proxy/Server then forwards the resulting carrier packets via

the secured spanning tree to the Hub Proxy/Server, which updates the

Client's Interface Attributes and returns a unicast RA message with

source set to its own ULA and destination set to the RS source

address and with the Client's Interface Attributes echoed. The Hub

Proxy/Server then performs OAL encapsulation using its own ULA as

the source and the ULA of the FHS Proxy/Server as the destination,

then forwards the carrier packets via the secured spanning tree to

the FHS Proxy/Server. The FHS Proxy/Server then proxys the message

as discussed in the previous section and includes responsive Window

Synchronization information. The FHS Proxy/Server then forwards the

message to the Client which updates its window synchronization

information for the FHS Proxy/Server as necessary.

Following the initial RS/RA-driven window synchronization, the

Client can re-assert new windows with specific FHS Proxy/Servers by

performing NS/NA exchanges between its own XLA-MNPs and the ULAs of

the FHS Proxy/Servers without having to disturb the Hub.

15.2. Router Discovery in IP Multihop and IPv4-Only Networks

On some *NETs, a Client may be located multiple IP hops away from

the nearest OMNI link Proxy/Server. Forwarding through IP multihop

*NETs is conducted through the application of a routing protocol

(e.g., a MANET/VANET routing protocol over omni-directional wireless

interfaces, an inter-domain routing protocol in an enterprise

network, etc.). Example routing protocols optimized for MANET/VANET

¶

¶

¶

¶

operations include [RFC3684] and [RFC5614] which operate according

to the link model articulated in [RFC5889] and subnet model

articulated in [RFC5942].

A Client located potentially multiple *NET hops away from the

nearest Proxy/Server prepares an RS message, sets the source address

to its XLA-MNP (or to a TLA-RND if it does not yet have an MNP), and

sets the destination to link-scoped All-Routers multicast or the

unicast ULA of a Proxy/Server the same as discussed above. The OMNI

interface then employs OAL encapsulation, sets the OAL source

address to a TLA and sets the OAL destination to an OMNI IPv6

anycast address based on either a native IPv6 or IPv4-Compatible

IPv6 prefix (see: Section 10).

For IPv6-enabled *NETs, if the underlay interface does not configure

an IPv6 GUA the Client injects the TLA into the IPv6 multihop

routing system and forwards the message without further

encapsulation. Otherwise, the Client encapsulates the message in

UDP/IPv6 L2 headers, sets the source to the underlay interface IPv6

address and sets the destination to the same OMNI IPv6 anycast

address. The Client then forwards the message into the IPv6 multihop

routing system which conveys it to the nearest Proxy/Server that

advertises a matching OMNI IPv6 anycast prefix. If the nearest

Proxy/Server is too busy, it should forward (without Proxying) the

OAL-encapsulated RS to another nearby Proxy/Server connected to the

same IPv6 (multihop) network that also advertises the matching OMNI

IPv6 anycast prefix.

For IPv4-only *NETs, the Client encapsulates the RS message in UDP/

IPv4 L2 headers, sets the source to the underlay interface IPv4

address and sets the destination to the OMNI IPv4 anycast address.

The Client then forwards the message into the IPv4 multihop routing

system which conveys it to the nearest Proxy/Server that advertises

the corresponding IPv4 prefix. If the nearest Proxy/Server is too

busy and/or does not configure the specified OMNI IPv6 anycast

address, it should forward (without Proxying) the OAL-encapsulated

RS to another nearby Proxy/Server connected to the same IPv4

(multihop) network that configures the OMNI IPv6 anycast address.

(In environments where reciprocal RS forwarding cannot be supported,

the first Proxy/Server should instead return an RA based on its own

MSP(s).)

When an intermediate *NET hop that participates in the routing

protocol receives the encapsulated RS, it forwards the message

according to its routing tables (note that an intermediate node

could be a fixed infrastructure element such as a roadside unit or

another MANET/VANET node). This process repeats iteratively until

the RS message is received by a penultimate *NET hop within single-

¶

¶

¶

¶

hop communications range of a Proxy/Server, which forwards the

message to the Proxy/Server.

When a Proxy/Server that configures the OMNI IPv6 anycast OAL

destination receives the message, it decapsulates the RS and assumes

either the Hub or FHS role (in which case, it forwards the RS to a

candidate Hub). The Hub Proxy/Server then prepares an RA message

with source address set to its own ULA and destination address set

to the RS source address if it is acting only as the Hub (or to the

Client ULA-MNP within its ULA subnet prefix if it is also acting as

the FHS Proxy/Server). The Hub Proxy/Server then performs OAL

encapsulation with the RA OAL source/destination set to the RS OAL

destination/source and forwards the RA either to the FHS Proxy/

Server or directly to the Client.

When the Hub or FHS Proxy/Server forwards the RA to the Client, it

encapsulates the message in L2 encapsulation headers (if necessary)

with (src, dst) set to the (dst, src) of the RS L2 encapsulation

headers. The Proxy/Server then forwards the message to a *NET node

within communications range, which forwards the message according to

its routing tables to an intermediate node. The multihop forwarding

process within the *NET continues repetitively until the message is

delivered to the original Client, which decapsulates the message and

performs autoconfiguration the same as if it had received the RA

directly from a Proxy/Server on the same physical link. The Client

then injects the ULA-MNP into the IPv6 multihop routing system if

necessary, then begins using the ULA-MNP as its OAL source address

and suspends use of its TLA since it now has a unique address within

the FHS Proxy/Server's "Multilink Subnet".

Note: When the RS message includes anycast OAL and/or L2

encapsulation destinations, the FHS Proxy/Server must use the same

anycast addresses as the OAL and/or L2 encapsulation sources to

support forwarding of the RA message and any initial data packets

over any NATs on the path. When the Client receives the RA, it will

discover its unicast ULA-MNP and/or L2 encapsulation addresses and

can forward future packets using the unicast (instead of anycast)

addresses to populate NAT state in the forward path. (If the Client

does not have immediate data to send to the FHS Proxy/Server, it can

instead send an OAL "bubble" - see Section 6.10.) After the Client

begins using unicast OAL/L2 encapsulation addresses in this way, the

FHS Proxy/Server should also begin using the same unicast addresses

in the reverse direction.

Note: When an OMNI interface configures a TLA, any nodes that

forward an encapsulated RS message with the TLA as the OAL source

must not consider the message as being specific to a particular OMNI

link. TLAs can therefore also serve as the source and destination

addresses of unencapsulated IPv6 data communications within the

¶

¶

¶

¶

local routing region, and if the TLAs are injected into the local

network routing protocol their prefix length must be set to 128.

Note: Each node normally conducts the multi-hop relaying between

intermediate forwarding nodes using the same underlay interface in

both the inbound and outbound directions, i.e. as opposed to

different underlay interfaces. The final forwarding node within

range of a Proxy/Server could use the same or a different underlay

interface to exchange packets with the Proxy/Server, but may not be

well positioned to perform multilink selections over multiple

underlay interfaces on behalf of multihop dependent peers.

15.3. DHCPv6-based Prefix Registration

When a Client is not pre-provisioned with an MNP (or, when the

Client requires additional MNP delegations), it requests the MS to

select MNPs on its behalf and set up the correct routing state. The

DHCPv6 service [RFC8415] supports this requirement.

When a Client requires the MS to select MNPs, it sends an RS message

with source set to a TLA-RND. If the Client requires only a single

MNP delegation, it can then include a OMNI Node Identification sub-

option plus an OMNI Neighbor Coordination sub-option with Preflen

set to the length of the desired MNP. If the Client requires

multiple MNP delegations and/or more complex DHCPv6 services, it

instead includes a DHCPv6 Message sub-option containing a Client

Identifier, one or more IA_PD options and a Rapid Commit option then

sets the 'msg-type' field to "Solicit", and includes a 3 octet

'transaction-id'. The Client then sets the RS destination to link-

scoped All-Routers multicast and sends the message using OAL

encapsulation and fragmentation if necessary as discussed above.

When the Hub Proxy/Server receives the RS message, it performs OAL

reassembly if necessary. Next, if the RS source is a TLA-RND and/or

the OMNI option includes a DHCPv6 message sub-option, the Hub Proxy/

Server acts as a "Proxy DHCPv6 Client" in a message exchange with

the locally-resident DHCPv6 server. If the RS did not contain a

DHCPv6 message sub-option, the Hub Proxy/Server generates a DHCPv6

Solicit message on behalf of the Client using an IA_PD option with

the prefix length set to the OMNI Neighbor Coordination header

Preflen value and with a Client Identifier formed from the OMNI

option Node Identification sub-option; otherwise, the Hub Proxy/

Server uses the DHCPv6 Solicit message contained in the OMNI option.

The Hub Proxy/Server then sends the DHCPv6 message to the DHCPv6

Server, which delegates MNPs and returns a DHCPv6 Reply message with

PD parameters. (If the Hub Proxy/Server wishes to defer creation of

Client state until the DHCPv6 Reply is received, it can instead act

as a Lightweight DHCPv6 Relay Agent per [RFC6221] by encapsulating

the DHCPv6 message in a Relay-forward/reply exchange with Relay

¶

¶

¶

¶

Message and Interface ID options. In the process, the Hub Proxy/

Server packs any state information needed to return an RA to the

Client in the Relay-forward Interface ID option so that the

information will be echoed back in the Relay-reply.)

When the Hub Proxy/Server receives the DHCPv6 Reply, it creates XLA-

MNPs based on the delegated MNPs and creates OMNI interface XLA-MNP

forwarding table entries (i.e., to prompt the dynamic routing

protocol). The Hub Proxy/Server then sends an RA back to the FHS

Proxy/Server with the DHCPv6 Reply message included in an OMNI

DHCPv6 message sub-option. The Hub Proxy/Server sets the RA

destination address to the RS source address, sets the RA source

address to its own ULA, performs OAL encapsulation and

fragmentation, performs L2 encapsulation and sends the RA to the

Client via the FHS Proxy/Server as discussed above.

When the FHS Proxy/Server receives the RA, it changes the RA

destination address to the ULA-MNP for the Client within its own ULA

subnet prefix then forwards the RA to the Client. When the Client

receives the RA, it reassembles and discards the OAL encapsulation

then creates a default route, assigns Subnet Router Anycast

addresses and uses the RA destination address or DHCPv6-delegated

MNP to automatically configure its primary ULA-MNP. The Client will

then use these primary MNP-based addresses as the source address of

any IPv6 ND messages it sends as long as it retains ownership of the

MNP.

Note: when the Hub Proxy/Server is also the FHS Proxy/Server, it

forwards the RA message directly to the Client with the destination

set to the Client's ULA-MNP (i.e., instead of forwarding via another

Proxy/Server).

15.4. OMNI Link Extension

Clients can provide an OMNI link ingress point for other nodes on

their (downstream) ENETs that also act as Clients. When Client A has

already coordinated with an (upstream) ANET/INET Proxy/Server,

Client B on an ENET serviced by Client A can send OAL-encapsulated

RS messages with addresses set the same as specified in Section

15.2. When Client A receives the RS message, it infers from the OAL

encapsulation that Client B is seeking to establish itself as a

Client instead of just a simple ENET Host.

Client A then returns an RA message the same as a Proxy/Server would

do as specified in Section 15.2 except that it instead uses its own

ULA-MNP as the RA and OAL source addresses and performs (recursive)

DHCPv6 Prefix Delegation. The MNP delegation in the RA message must

be a sub-MNP from the MNP delegated to Client A. For example, if

Client A receives the MNP 2001:db8:1000::/48 it can provide a sub-

¶

¶

¶

¶

¶

delegation such as 2001:db8:1000:2000::/56 to Client B. Client B can

in turn sub-delegate 2001:db8:1000:2000::/56 to its own ENET(s),

where there may be a further prospective Client C that would in turn

request OMNI link services via Client B.

To support this Client-to-Client chaining, Clients send IPv6 ND

messages addressed to the OMNI link anycast address via their ANET/

INET (i.e., upstream) interfaces, but advertise the OMNI link

anycast address into their ENET (i.e., downstream) networks where

there may be further prospective Clients wishing to join the chain.

The ENET of the upstream Client is therefore seen as an ANET by

downstream Clients, and the upstream Client is seen as a Proxy/

Server by downstream Clients.

16. Secure Redirection

If the underlay network link model is multiple access, the FHS

Proxy/Server is responsible for assuring that address duplication

cannot corrupt the neighbor caches of other nodes on the link. When

the Client sends an RS message on a multiple access underlay

network, the Proxy/Server verifies that the Client is authorized to

use the address and responds with an RA (or forwards the RS to the

Hub) only if the Client is authorized.

After verifying Client authorization and returning an RA, the Proxy/

Server MAY return IPv6 ND Redirect messages to direct Clients

located on the same underlay network to exchange packets directly

without transiting the Proxy/Server. In that case, the Clients can

exchange packets according to their unicast L2 addresses discovered

from the Redirect message instead of using the dogleg path through

the Proxy/Server. In some underlay networks, however, such direct

communications may be undesirable and continued use of the dogleg

path through the Proxy/Server may provide better performance. In

that case, the Proxy/Server can refrain from sending Redirects, and/

or Clients can ignore them.

17. Proxy/Server Resilience

*NETs SHOULD deploy Proxy/Servers in Virtual Router Redundancy

Protocol (VRRP) [RFC5798] configurations so that service continuity

is maintained even if one or more Proxy/Servers fail. Using VRRP,

the Client is unaware which of the (redundant) FHS Proxy/Servers is

currently providing service, and any service discontinuity will be

limited to the failover time supported by VRRP. Widely deployed

public domain implementations of VRRP are available.

Proxy/Servers SHOULD use high availability clustering services so

that multiple redundant systems can provide coordinated response to

failures. As with VRRP, widely deployed public domain

¶

¶

¶

¶

¶

implementations of high availability clustering services are

available. Note that special-purpose and expensive dedicated

hardware is not necessary, and public domain implementations can be

used even between lightweight virtual machines in cloud deployments.

18. Detecting and Responding to Proxy/Server Failures

In environments where fast recovery from Proxy/Server failure is

required, FHS Proxy/Servers SHOULD use proactive Neighbor

Unreachability Detection (NUD) in a manner that parallels

Bidirectional Forwarding Detection (BFD) [RFC5880] to track Hub

Proxy/Server reachability. FHS Proxy/Servers can then quickly detect

and react to failures so that cached information is re-established

through alternate paths. Proactive NUD control messaging is carried

only over well-connected ground domain networks (i.e., and not low-

end links such as aeronautical radios) and can therefore be tuned

for rapid response.

FHS Proxy/Servers perform proactive NUD for Hub Proxy/Servers for

which there are currently active Clients. If a Hub Proxy/Server

fails, the FHS Proxy/Server can quickly inform Clients of the outage

by sending multicast RA messages. The FHS Proxy/Server sends RA

messages to Clients with source set to the ULA of the Hub, with

destination address set to All-Nodes multicast (ff02::1) [RFC4291]

and with Router Lifetime set to 0.

The FHS Proxy/Server SHOULD send MAX_FINAL_RTR_ADVERTISEMENTS RA

messages separated by small delays [RFC4861]. Any Clients that have

been using the (now defunct) Hub Proxy/Server will receive the RA

messages.

19. Transition Considerations

When a Client connects to an *NET link for the first time, it sends

an RS message with an OMNI option. If the first hop router

recognizes the option, it responds according to the appropriate FHS/

Hub Proxy/Server role resulting in an RA message with an OMNI option

returned to the Client. The Client then engages this FHS Proxy/Sever

according to the OMNI link model specified above. If the first hop

router is a legacy IPv6 router, however, it instead returns an RA

message with no OMNI option and with a non-OMNI unicast source LLA

as specified in [RFC4861]. In that case, the Client engages the *NET

according to the legacy IPv6 link model and without the OMNI

extensions specified in this document.

If the *NET link model is multiple access, there must be assurance

that address duplication cannot corrupt the neighbor caches of other

nodes on the link. When the Client sends an RS message on a multiple

access *NET link with an OMNI option, first hop routers that

¶

¶

¶

¶

¶

recognize the option ensure that the Client is authorized to use the

address and return an RA with a non-zero Router Lifetime only if the

Client is authorized. First hop routers that do not recognize the

OMNI option instead return an RA that makes no statement about the

Client's authorization to use the source address. In that case, the

Client should perform Duplicate Address Detection to ensure that it

does not interfere with other nodes on the link.

An alternative approach for multiple access *NET links to ensure

isolation for Client-Proxy/Server communications is through link-

layer address mappings as discussed in Appendix D. This arrangement

imparts a (virtual) point-to-point link model over the (physical)

multiple access link.

20. OMNI Interfaces on Open Internetworks

Client OMNI interfaces configured over IPv6-enabled underlay

interfaces on an open Internetwork without an OMNI-aware first-hop

router receive IPv6 RA messages with no OMNI options, while OMNI

interfaces configured over IPv4-only underlay interfaces receive no

IPv6 RA messages at all (but may receive IPv4 RA messages

[RFC1256]). Client OMNI interfaces that receive RA messages with

OMNI options configure addresses, on-link prefixes, etc. on the

underlay interface that received the RA according to standard IPv6

ND and address resolution conventions [RFC4861] [RFC4862]. Client

OMNI interfaces configured over IPv4-only underlay interfaces

configure IPv4 address information on the underlay interfaces using

mechanisms such as DHCPv4 [RFC2131].

Client OMNI interfaces configured over underlay interfaces connected

to open Internetworks can apply security services such as VPNs to

connect to a Proxy/Server, or can establish a direct link to the

Proxy/Server through some other means (see Section 4). In

environments where an explicit VPN or direct link may be impractical

or undesirable, Client OMNI interfaces can instead send IPv6 ND

messages with OMNI options that include authentication signatures.

OMNI interfaces use UDP/IP as L2 encapsulation headers for

transmission over open Internetworks with UDP service port number

8060 (see: Section 25.13 and Section 3.6 of [I-D.templin-6man-aero])

for both IPv4 and IPv6 underlay interfaces. The OMNI interface

submits original IP packets for OAL encapsulation, then encapsulates

the resulting OAL fragments in UDP/IP L2 headers to form carrier

packets. (The first four bits following the UDP header determine

whether the OAL headers are uncompressed/compressed as discussed in

Section 6.4.) The OMNI interface sets the UDP length to the

encapsulated OAL fragment length and sets the IP length to an

appropriate value at least as large as the UDP datagram.

¶

¶

¶

¶

¶

For Client-Proxy/Server (e.g., "Vehicle-to-Infrastructure (V2I)")

neighbor exchanges, the source must include an OMNI option with an

authentication sub-option in all IPv6 ND messages. The source can

apply HIP security services per [RFC7401] using the IPv6 ND message

OMNI option as a "shipping container" to convey an authentication

signature in a (unidirectional) HIP "Notify" message. For Client-

Client (e.g., "Vehicle-to-Vehicle (V2V)") neighbor exchanges, two

Clients can exchange HIP "Initiator/Responder" messages coded in

OMNI options of multiple IPv6 NS/NA messages for mutual

authentication according to the HIP protocol. (Note: a simple Hashed

Message Authentication Code (HMAC) such as specified in [RFC4380] or

the QUIC-TLS connection-oriented service [RFC9000] can be used as an

alternate authentication service in some environments.)

When an OMNI interface includes an authentication sub-option, it

must appear as the first sub-option of the first OMNI option in the

IPv6 ND message which must appear immediately following the IPv6 ND

message header. When an OMNI interface prepares a HIP message sub-

option, it includes its own (H)HIT as the Sender's HIT and the

neighbor's (H)HIT if known as the Receiver's HIT (otherwise 0). If

(H)HITs are not available within the OMNI operational environment,

the source can instead include other IPv6 address types instead of

(H)HITs as long as the Sender and Receiver have some way to

associate information embedded in the IPv6 address with the

neighbor; such information could include a node identifier, vehicle

identifier, MAC address, etc.

Before calculating the authentication signature, the source includes

any other necessary sub-options (such as Interface Attributes and

Origin Indication) and sets both the IPv6 ND message Checksum and

authentication signature fields to 0. The source then calculates the

authentication signature over the full length of the IPv6 ND message

beginning with a pseudo-header of the IPv6 header (i.e., the same as

specified in [RFC4443]) and extending over the length of the

message. (If the IPv6 ND message is part of an OAL super-packet, the

source instead calculates the authentication signature over the

remainder of the super-packet.) The source next writes the

authentication signature into the sub-option signature field and

forwards the message.

After establishing a VPN or preparing for UDP/IP encapsulation, OMNI

interfaces send RS/RA messages for Client-Proxy/Server coordination

(see: Section 15) and NS/NA messages for route optimization, window

synchronization and mobility management (see: [I-D.templin-6man-

aero]). These control plane messages must be authenticated while

other control and data plane messages are delivered the same as for

ordinary best-effort traffic with source address and/or

Identification window-based data origin verification. Upper layer

protocol sessions over OMNI interfaces that connect over open

¶

¶

¶

Internetworks without an explicit VPN should therefore employ

transport- or higher-layer security to ensure authentication,

integrity and/or confidentiality.

Clients should avoid using INET Proxy/Servers as general-purpose

routers for steady streams of carrier packets that do not require

authentication. Clients should therefore perform route optimization

to coordinate with other INET nodes that can provide forwarding

services (or preferably coordinate directly with peer Clients

directly) instead of burdening the Proxy/Server. Procedures for

coordinating with peer Clients and discovering INET nodes that can

provide better forwarding services are discussed in [I-

D.templin-6man-aero].

Clients that attempt to contact peers over INET underlay interfaces

often encounter NATs in the path. OMNI interfaces accommodate NAT

traversal using UDP/IP encapsulation and the mechanisms discussed in

[I-D.templin-6man-aero]. FHS Proxy/Servers include Origin

Indications in RA messages to allow Clients to detect the presence

of NATs.

Note: Following the initial IPv6 ND message exchange, OMNI

interfaces configured over INET underlay interfaces maintain

neighbor relationships by transmitting periodic IPv6 ND messages

with OMNI options that include HIP "Update" and/or "Notify"

messages. When HMAC authentication is used instead of HIP, the

Client and Proxy/Server exchange all IPv6 ND messages with HMAC

signatures included based on a shared-secret. When QUIC-TLS

connections are used, the Client and Proxy/Server observe QUIC-TLS

conventions [RFC9000][RFC9001].

Note: OMNI interfaces configured over INET underlay interfaces

should employ the Identification window synchronization mechanisms

specified in Section 6.6 in order to exclude spurious carrier

packets that might otherwise clutter the reassembly cache. This is

especially important in environments where carrier packet spoofing

and/or corruption is a threat.

Note: NATs may be present on the path from a Client to its FHS

Proxy/Server, but never on the path from the FHS Proxy/Server to the

Hub where only INET and/or spanning tree hops occur. Therefore, the

FHS Proxy/Server does not communicate Client origin information to

the Hub where it would serve no purpose.

21. Time-Varying MNPs

In some use cases, it is desirable, beneficial and efficient for the

Client to receive a constant MNP that travels with the Client

wherever it moves. For example, this would allow air traffic

¶

¶

¶

¶

¶

¶

controllers to easily track aircraft, etc. In other cases, however

(e.g., intelligent transportation systems), the Client may be

willing to sacrifice a modicum of efficiency in order to have time-

varying MNPs that can be changed every so often to defeat

adversarial tracking.

The prefix delegation services discussed in Section 15.3 allows

Clients that desire time-varying MNPs to obtain short-lived prefixes

to send RS messages with a {TLA,XLA}-RND source address and/or with

an OMNI option with DHCPv6 Option sub-options. The Client would then

be obligated to renumber its internal networks whenever its MNP (and

therefore also its OMNI address) changes. This should not present a

challenge for Clients with automated network renumbering services,

but may disrupt persistent sessions that would prefer to use a

constant address.

22. (H)HITs and Temporary ULA (TLA)s

Clients that generate (H)HITs but do not have pre-assigned MNPs can

request MNP delegations by issuing IPv6 ND messages that use the

(H)HIT instead of a TLA. For example, when a Client creates an RS

message it can set the source to a (H)HIT and destination to link-

scoped All-Routers multicast. The IPv6 ND message includes an OMNI

option with a HIP message sub-option, and need not include a Node

Identification sub-option if the Client's (H)HIT appears in the HIP

message. The Client then encapsulates the message in an IPv6 header

with the (H)HIT as the source address. The Client then sends the

message as specified in Section 15.2.

When the Hub Proxy/Server receives the RS message, it notes that the

source was a (H)HIT, then invokes the DHCPv6 protocol to request an

MNP prefix delegation while using the (H)HIT (in the form of a DUID)

as the Client Identifier. The Hub Proxy/Server then prepares an RA

message with source address set to its own ULA and destination set

to the source of the RS message. The Hub Proxy/Server next includes

an OMNI option with a HIP message sub-option and any DHCPv6 prefix

delegation parameters. The Proxy/Server finally encapsulates the RA

in an OAL header with source address set to its own ULA and

destination set to the RS OAL source address, then returns the

encapsulated RA to the Client either directly or by way of the FHS

Proxy/Server as a proxy.

Clients can also use (H)HITs and/or TLAs for direct Client-to-Client

communications outside the context of any OMNI link supporting

infrastructure. When two Clients encounter one another they can use

their (H)HITs and/or TLAs as original IPv6 packet source and

destination addresses to support direct communications. Clients can

also inject their (H)HITs and/or TLAs into an IPv6 multihop routing

protocol to enable multihop communications as discussed in Section

¶

¶

¶

¶

15.2. Clients can further exchange other IPv6 ND messages using

their (H)HITs and/or TLAs as source and destination addresses.

Lastly, when Clients are within the coverage range of OMNI link

infrastructure a case could be made for injecting (H)HITs and/or

TLAs into the global MS routing system. For example, when the Client

sends an RS to an FHS Proxy/Server it could include a request to

inject the (H)HIT / TLA into the routing system instead of

requesting an MNP prefix delegation. This would potentially enable

OMNI link-wide communications using only (H)HITs or TLAs, and not

MNPs. This document notes the opportunity, but makes no

recommendation.

23. Address Selection

Clients assign LLAs to the OMNI interface, but do not use LLAs as

IPv6 ND message source/destination addresses nor for addressing

ordinary original IP packets exchanged with OMNI link neighbors.

Clients use ULA-MNPs as source/destination IPv6 addresses in the

encapsulation headers of OAL packets and use XLA-MNPs as the IPv6

source addresses of the IPv6 ND messages themselves. Clients use

TLAs when an MNP is not available, or as source/destination IPv6

addresses for communications within a MANET/VANET local area.

Clients can also use (H)HITs instead of ULAs for local

communications when operation outside the context of a specific ULA

domain and/or source address attestation is necessary.

Clients use MNP-based GUAs as original IP packet source and

destination addresses for communications with Internet destinations

when they are within range of OMNI link supporting infrastructure

that can inject the MNP into the routing system. Clients can also

use MNP-based GUAs within multihop routing regions that are

currently disconnected from infrastructure as long as the

corresponding ULA-MNPs have been injected into the routing system.

Clients use anycast GUAs as OAL and/or L2 encapsulation destination

addresses for RS messages used to discover the nearest FHS Proxy/

Server. When the Proxy/Server returns a solicited RA, it must also

use the same anycast address as the RA OAL/L2 encapsulation source

in order to successfully traverse any NATs in the path. The Client

should then immediately transition to using the FHS Proxy/Server's

discovered unicast OAL/L2 address as the destination in order to

minimize dependence on the Proxy/Server's use of an anycast source

address.

24. Error Messages

An OAL destination or intermediate node may need to return ICMPv6-

like error messages (e.g., Destination Unreachable, Packet Too Big,

¶

¶

¶

¶

¶

¶

Time Exceeded, etc.) [RFC4443] to an OAL source. Since ICMPv6 error

messages do not themselves include authentication codes, OAL nodes

can instead return error messages as an OMNI ICMPv6 Error sub-option

in a secured IPv6 ND uNA message.

25. IANA Considerations

The following IANA actions are requested in accordance with

[RFC8126] and [RFC8726]:

25.1. "Protocol Numbers" Registry

The IANA is instructed to allocate an Internet Protocol number TBD1

from the 'protocol numbers' registry for the Overlay Multilink

Network Interface (OMNI) protocol. Guidance is found in [RFC5237]

(registration procedure is IESG Approval or Standards Action).

25.2. "IEEE 802 Numbers" Registry

During final publication stages, the IESG will be requested to

procure an IEEE EtherType value TBD2 for OMNI according to the

statement found at https://www.ietf.org/about/groups/iesg/

statements/ethertypes/.

Following this procurement, the IANA is instructed to register the

value TBD2 in the 'ieee-802-numbers' registry for Overlay Multilink

Network Interface (OMNI) encapsulation on Ethernet networks.

Guidance is found in [RFC7042] (registration procedure is Expert

Review).

25.3. "IPv4 Special-Purpose Address" Registry

The IANA is instructed to assign TBD3/N as an "OMNI IPv4 anycast"

address/prefix in the "IPv4 Special-Purpose Address" registry in a

similar fashion as for [RFC3068]. The IANA is requested to work with

the authors to obtain a TBD3/N public IPv4 prefix, whether through

an RIR allocation, a delegation from IANA's "IPv4 Recovered Address

Space" registry or through an unspecified third party donation.

25.4. "IPv6 Neighbor Discovery Option Formats" Registry

The IANA is instructed to allocate an official Type number TBD4 from

the "IPv6 Neighbor Discovery Option Formats" registry for the OMNI

option (registration procedure is RFC required). Implementations set

Type to 253 as an interim value [RFC4727].

25.5. "Ethernet Numbers" Registry

The IANA is instructed to allocate one Ethernet unicast address TBD5

(suggested value '00-52-14') in the 'ethernet-numbers' registry

¶

¶

¶

¶

¶

¶

¶

under "IANA Unicast 48-bit MAC Addresses" (registration procedure is

Expert Review). The registration should appear as follows:

Figure 35: IANA Unicast 48-bit MAC Addresses

25.6. "ICMPv6 Code Fields: Type 2 - Packet Too Big" Registry

The IANA is instructed to assign two new Code values in the "ICMPv6

Code Fields: Type 2 - Packet Too Big" registry (registration

procedure is Standards Action or IESG Approval). The registry should

appear as follows:

Figure 36: ICMPv6 Code Fields: Type 2 - Packet Too Big Values

(Note: this registry also to be used to define values for setting

the "unused" field of ICMPv4 "Destination Unreachable -

Fragmentation Needed" messages.)

25.7. "OMNI Option Sub-Type Values" (New Registry)

The OMNI option defines a 5-bit Sub-Type field, for which IANA is

instructed to create and maintain a new registry entitled "OMNI

Option Sub-Type Values". Initial values are given below

(registration procedure is RFC required):

¶

 Addresses Usage Reference

 --------- ----- ---------

 00-52-14 Overlay Multilink Network (OMNI) Interface [RFCXXXX]

¶

 Code Name Reference

 --- ---- ---------

 0 PTB Hard Error [RFC4443]

 1 PTB Soft Error (loss) [RFCXXXX]

 2 PTB Soft Error (no loss) [RFCXXXX]

¶

¶

Figure 37: OMNI Option Sub-Type Values

25.8. "OMNI Geo Coordinates Type Values" (New Registry)

The OMNI Geo Coordinates sub-option (see: Section 12.2.7) contains

an 8-bit Type field, for which IANA is instructed to create and

maintain a new registry entitled "OMNI Geo Coordinates Type Values".

Initial values are given below (registration procedure is RFC

required):

Figure 38: OMNI Geo Coordinates Type

25.9. "OMNI Node Identification ID-Type Values" (New Registry)

The OMNI Node Identification sub-option (see: Section 12.2.12)

contains an 8-bit ID-Type field, for which IANA is instructed to

create and maintain a new registry entitled "OMNI Node

Identification ID-Type Values". Initial values are given below

(registration procedure is RFC required):

 Value Sub-Type name Reference

 ----- ------------- ----------

 0 Pad1 [RFCXXXX]

 1 PadN [RFCXXXX]

 2 Neighbor Coordination [RFCXXXX]

 3 Interface Attributes [RFCXXXX]

 4 AERO Forwarding Parameters [RFCXXXX]

 5 Traffic Selector [RFCXXXX]

 6 Geo Coordinates [RFCXXXX]

 7 DHCPv6 Message [RFCXXXX]

 8 HIP Message [RFCXXXX]

 9 PIM-SM Message [RFCXXXX]

 10 Fragmentation Report [RFCXXXX]

 11 Node Identification [RFCXXXX]

 12 ICMPv6 Error [RFCXXXX]

 13 QUIC-TLS Message [RFCXXXX]

 14 Proxy/Server Departure [RFCXXXX]

 15-29 Unassigned

 30 Sub-Type Extension [RFCXXXX]

 31 Reserved by IANA [RFCXXXX]

¶

 Value Sub-Type name Reference

 ----- ------------- ----------

 0 NULL [RFCXXXX]

 1-252 Unassigned [RFCXXXX]

 253-254 Reserved for Experimentation [RFCXXXX]

 255 Reserved by IANA [RFCXXXX]

¶

Figure 39: OMNI Node Identification ID-Type Values

25.10. "OMNI Option Sub-Type Extension Values" (New Registry)

The OMNI option defines an 8-bit Extension-Type field for Sub-Type

30 (Sub-Type Extension), for which IANA is instructed to create and

maintain a new registry entitled "OMNI Option Sub-Type Extension

Values". Initial values are given below (registration procedure is

RFC required):

Figure 40: OMNI Option Sub-Type Extension Values

25.11. "OMNI RFC4380 UDP/IP Header Option" (New Registry)

The OMNI Sub-Type Extension "RFC4380 UDP/IP Header Option" defines

an 8-bit Header Type field, for which IANA is instructed to create

and maintain a new registry entitled "OMNI RFC4380 UDP/IP Header

Option". Initial registry values are given below (registration

procedure is RFC required):

 Value Sub-Type name Reference

 ----- ------------- ----------

 0 UUID [RFCXXXX]

 1 HIT [RFCXXXX]

 2 HHIT [RFCXXXX]

 3 Network Access Identifier [RFCXXXX]

 4 FQDN [RFCXXXX]

 5 IPv6 Address [RFCXXXX]

 6-252 Unassigned [RFCXXXX]

 253-254 Reserved for Experimentation [RFCXXXX]

 255 Reserved by IANA [RFCXXXX]

¶

 Value Sub-Type name Reference

 ----- ------------- ----------

 0 RFC4380 UDP/IP Header Option [RFCXXXX]

 1 RFC6081 UDP/IP Trailer Option [RFCXXXX]

 2-252 Unassigned

 253-254 Reserved for Experimentation [RFCXXXX]

 255 Reserved by IANA [RFCXXXX]

¶

 Value Sub-Type name Reference

 ----- ------------- ----------

 0 Origin Indication (IPv4) [RFC4380]

 1 Authentication Encapsulation [RFC4380]

 2 Origin Indication (IPv6) [RFCXXXX]

 3-252 Unassigned

 253-254 Reserved for Experimentation [RFCXXXX]

 255 Reserved by IANA [RFCXXXX]

Figure 41: OMNI RFC4380 UDP/IP Header Option

25.12. "OMNI RFC6081 UDP/IP Trailer Option" (New Registry)

The OMNI Sub-Type Extension for "RFC6081 UDP/IP Trailer Option"

defines an 8-bit Trailer Type field, for which IANA is instructed to

create and maintain a new registry entitled "OMNI RFC6081 UDP/IP

Trailer Option". Initial registry values are given below

(registration procedure is RFC required):

Figure 42: OMNI RFC6081 Trailer Option

25.13. Additional Considerations

The IANA has assigned the UDP port number "8060" for an earlier

experimental version of AERO [RFC6706]. This document reclaims the

UDP port number "8060" for 'aero' as the service port for UDP/IP

encapsulation. (Note that, although [RFC6706] is not widely

implemented or deployed, any messages coded to that specification

can be easily distinguished and ignored since they include an

invalid ICMPv6 message type number '0'.) The IANA is therefore

instructed to update the reference for UDP port number "8060" from

"RFC6706" to "RFCXXXX" (i.e., this document) while retaining the

existing name 'aero'.

The IANA has assigned a 4 octet Private Enterprise Number (PEN) code

"45282" in the "enterprise-numbers" registry. This document is the

normative reference for using this code in DHCP Unique IDentifiers

based on Enterprise Numbers ("DUID-EN for OMNI Interfaces") (see:

Section 11). The IANA is therefore instructed to change the

enterprise designation for PEN code "45282" from "LinkUp Networks"

to "Overlay Multilink Network Interface (OMNI)".

The IANA has assigned the ifType code "301 - omni - Overlay

Multilink Network Interface (OMNI)" in accordance with Section 6 of

[RFC8892]. The registration appears under the IANA "Structure of

¶

 Value Sub-Type name Reference

 ----- ------------- ----------

 0 Unassigned

 1 Nonce [RFC6081]

 2 Unassigned

 3 Alternate Address (IPv4) [RFC6081]

 4 Neighbor Discovery Option [RFC6081]

 5 Random Port [RFC6081]

 6 Alternate Address (IPv6) [RFCXXXX]

 7-252 Unassigned

 253-254 Reserved for Experimentation [RFCXXXX]

 255 Reserved by IANA [RFCXXXX]

¶

¶

Management Information (SMI) Numbers (MIB Module Registrations) -

Interface Types (ifType)" registry.

No further IANA actions are required.

26. Security Considerations

Security considerations for IPv4 [RFC0791], IPv6 [RFC8200] and IPv6

Neighbor Discovery [RFC4861] apply. OMNI interface IPv6 ND messages

SHOULD include Nonce and Timestamp options [RFC3971] when

transaction confirmation and/or time synchronization is needed.

(Note however that when OAL encapsulation is used the (echoed) OAL

Identification value can provide sufficient transaction

confirmation.)

OMNI interfaces configured over secured ANET/ENET interfaces inherit

the physical and/or link-layer security properties (i.e., "protected

spectrum") of the connected networks. OMNI interfaces configured

over open INET interfaces can use symmetric securing services such

as VPNs or can by some other means establish a direct link. When a

VPN or direct link may be impractical or undesirable, however, the

security services specified in [RFC7401], [RFC4380] or [RFC9000] can

be employed. While the OMNI link protects control plane messaging,

applications must still employ end-to-end transport- or higher-layer

security services to protect the data plane.

Strong network layer security for control plane messages and

forwarding path integrity for data plane messages between Proxy/

Servers MUST be supported. In one example, the AERO service [I-

D.templin-6man-aero] constructs an SRT spanning tree with Proxy/

Serves as leaf nodes and secures the spanning tree links with

network layer security mechanisms such as IPsec [RFC4301] or

WireGuard [WG]. Secured control plane messages are then constrained

to travel only over the secured spanning tree paths and are

therefore protected from attack or eavesdropping. Other control and

data plane messages can travel over route optimized paths that do

not strictly follow the secured spanning tree, therefore end-to-end

sessions should employ transport- or higher-layer security services.

Additionally, the OAL Identification value can provide a first level

of data origin authentication to mitigate off-path spoofing in some

environments.

Identity-based key verification infrastructure services such as iPSK

may be necessary for verifying the identities claimed by Clients.

This requirement should be harmonized with the manner in which

(H)HITs are attested in a given operational environment.

¶

¶

¶

¶

¶

¶

Security considerations for specific access network interface types

are covered under the corresponding IP-over-(foo) specification

(e.g., [RFC2464], [RFC2492], etc.).

Security considerations for IPv6 fragmentation and reassembly are

discussed in Section 6.12. In environments where spoofing is

considered a threat, OMNI nodes SHOULD employ Identification window

synchronization and OAL destinations SHOULD configure an (end-

system-based) firewall.

27. Implementation Status

AERO/OMNI Release-3.2 was tagged on March 30, 2021, and is

undergoing internal testing. Additional internal releases expected

within the coming months, with first public release expected end of

1H2021.

Many AERO/OMNI functions are implemented and undergoing final

integration. OAL fragmentation/reassembly buffer management code has

been cleared for public release.

28. Document Updates

This document does not itself update other RFCs, but suggests that

the following could be updated through future IETF initiatives:

[RFC1191]

[RFC2675]

[RFC4291]

[RFC4443]

[RFC8201]

Updates can be through, e.g., standards action, the errata process,

etc. as appropriate.

29. Acknowledgements

The first version of this document was prepared per the consensus

decision at the 7th Conference of the International Civil Aviation

Organization (ICAO) Working Group-I Mobility Subgroup on March 22,

2019. Consensus to take the document forward to the IETF was reached

at the 9th Conference of the Mobility Subgroup on November 22, 2019.

Attendees and contributors included: Guray Acar, Danny Bharj,

Francois D'Humieres, Pavel Drasil, Nikos Fistas, Giovanni Garofolo,

Bernhard Haindl, Vaughn Maiolla, Tom McParland, Victor Moreno, Madhu

Niraula, Brent Phillips, Liviu Popescu, Jacky Pouzet, Aloke Roy,

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

Greg Saccone, Robert Segers, Michal Skorepa, Michel Solery, Stephane

Tamalet, Fred Templin, Jean-Marc Vacher, Bela Varkonyi, Tony Whyman,

Fryderyk Wrobel and Dongsong Zeng.

The following individuals are acknowledged for their useful

comments: Amanda Baber, Stuart Card, Donald Eastlake, Adrian Farrel,

Michael Matyas, Robert Moskowitz, Madhu Niraula, Greg Saccone,

Stephane Tamalet, Eliot Lear, Eduard Vasilenko, Eric Vyncke. Pavel

Drasil, Zdenek Jaron and Michal Skorepa are especially recognized

for their many helpful ideas and suggestions. Akash Agarwal, Madhuri

Madhava Badgandi, Sean Dickson, Don Dillenburg, Joe Dudkowski,

Vijayasarathy Rajagopalan, Ron Sackman, Bhargava Raman Sai Prakash

and Katherine Tran are acknowledged for their hard work on the

implementation and technical insights that led to improvements for

the spec.

Discussions on the IETF 6man and atn mailing lists during the fall

of 2020 suggested additional points to consider. The authors

gratefully acknowledge the list members who contributed valuable

insights through those discussions. Eric Vyncke and Erik Kline were

the intarea ADs, while Bob Hinden and Ole Troan were the 6man WG

chairs at the time the document was developed; they are all

gratefully acknowledged for their many helpful insights. Many of the

ideas in this document have further built on IETF experiences

beginning in the 1990s, with insights from colleagues including Ron

Bonica, Brian Carpenter, Ralph Droms, Christian Huitema, Thomas

Narten, Dave Thaler, Joe Touch, Pascal Thubert, and many others who

deserve recognition.

Early observations on IP fragmentation performance implications were

noted in the 1986 Digital Equipment Corporation (DEC) "qe reset"

investigation, where fragment bursts from NFS UDP traffic triggered

hardware resets resulting in communication failures. Jeff Chase,

Fred Glover and Chet Juzsczak of the Ultrix Engineering Group led

the investigation, and determined that setting a smaller NFS mount

block size reduced the amount of fragmentation and suppressed the

resets. Early observations on L2 media MTU issues were noted in the

1988 DEC FDDI investigation, where Raj Jain, KK Ramakrishnan and

Kathy Wilde represented architectural considerations for FDDI

networking in general including FDDI/Ethernet bridging. Jeff Mogul

(who led the IETF Path MTU Discovery working group) and other DEC

colleagues who supported these early investigations are also

acknowledged.

Throughout the 1990's and into the 2000's, many colleagues supported

and encouraged continuation of the work. Beginning with the DEC

Project Sequoia effort at the University of California, Berkeley,

then moving to the DEC research lab offices in Palo Alto CA, then to

Sterling Software at the NASA Ames Research Center, then to SRI in

¶

¶

¶

¶

[RFC0768]

[RFC0791]

[RFC0793]

[RFC2119]

[RFC3971]

Menlo Park, CA, then to Nokia in Mountain View, CA and finally to

the Boeing Company in 2005 the work saw continuous advancement

through the encouragement of many. Those who offered their support

and encouragement are gratefully acknowledged.

This work is aligned with the NASA Safe Autonomous Systems Operation

(SASO) program under NASA contract number NNA16BD84C.

This work is aligned with the FAA as per the SE2025 contract number

DTFAWA-15-D-00030.

This work is aligned with the Boeing Information Technology (BIT)

Mobility Vision Lab (MVL) program.

30. References

30.1. Normative References

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,

"SEcure Neighbor Discovery (SEND)", RFC 3971, DOI

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC4191]

[RFC4193]

[RFC4291]

[RFC4443]

[RFC4727]

[RFC4861]

[RFC4862]

[RFC6088]

[RFC8028]

[RFC8174]

10.17487/RFC3971, March 2005, <https://www.rfc-

editor.org/info/rfc3971>.

Draves, R. and D. Thaler, "Default Router Preferences and

More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,

November 2005, <https://www.rfc-editor.org/info/rfc4191>.

Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast

Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,

<https://www.rfc-editor.org/info/rfc4193>.

Hinden, R. and S. Deering, "IP Version 6 Addressing

Architecture", RFC 4291, DOI 10.17487/RFC4291, February

2006, <https://www.rfc-editor.org/info/rfc4291>.

Conta, A., Deering, S., and M. Gupta, Ed., "Internet

Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification", STD 89, RFC

4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-

editor.org/info/rfc4443>.

Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,

ICMPv6, UDP, and TCP Headers", RFC 4727, DOI 10.17487/

RFC4727, November 2006, <https://www.rfc-editor.org/info/

rfc4727>.

Narten, T., Nordmark, E., Simpson, W., and H. Soliman,

"Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,

DOI 10.17487/RFC4861, September 2007, <https://www.rfc-

editor.org/info/rfc4861>.

Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless

Address Autoconfiguration", RFC 4862, DOI 10.17487/

RFC4862, September 2007, <https://www.rfc-editor.org/

info/rfc4862>.

Tsirtsis, G., Giarreta, G., Soliman, H., and N.

Montavont, "Traffic Selectors for Flow Bindings", RFC

6088, DOI 10.17487/RFC6088, January 2011, <https://

www.rfc-editor.org/info/rfc6088>.

Baker, F. and B. Carpenter, "First-Hop Router Selection

by Hosts in a Multi-Prefix Network", RFC 8028, DOI

10.17487/RFC8028, November 2016, <https://www.rfc-

editor.org/info/rfc8028>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://www.rfc-editor.org/info/rfc3971
https://www.rfc-editor.org/info/rfc3971
https://www.rfc-editor.org/info/rfc4191
https://www.rfc-editor.org/info/rfc4193
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4727
https://www.rfc-editor.org/info/rfc4727
https://www.rfc-editor.org/info/rfc4861
https://www.rfc-editor.org/info/rfc4861
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc6088
https://www.rfc-editor.org/info/rfc6088
https://www.rfc-editor.org/info/rfc8028
https://www.rfc-editor.org/info/rfc8028
https://www.rfc-editor.org/info/rfc8174

[RFC8200]

[RFC8201]

[RFC8415]

[ATN]

[ATN-IPS]

[CKSUM]

[CRC]

[EUI]

[I-D.ietf-drip-rid]

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,

"Path MTU Discovery for IP version 6", STD 87, RFC 8201,

DOI 10.17487/RFC8201, July 2017, <https://www.rfc-

editor.org/info/rfc8201>.

Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,

Richardson, M., Jiang, S., Lemon, T., and T. Winters,

"Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",

RFC 8415, DOI 10.17487/RFC8415, November 2018, <https://

www.rfc-editor.org/info/rfc8415>.

30.2. Informative References

Maiolla, V., "The OMNI Interface - An IPv6 Air/Ground

Interface for Civil Aviation, IETF Liaison Statement

#1676, https://datatracker.ietf.org/liaison/1676/", 3

March 2020.

WG-I, ICAO., "ICAO Document 9896 (Manual on the

Aeronautical Telecommunication Network (ATN) using

Internet Protocol Suite (IPS) Standards and Protocol),

Draft Edition 3 (work-in-progress)", 10 December 2020.

Stone, J., Greenwald, M., Partridge, C., and J. Hughes,

"Performance of Checksums and CRC's Over Real Data, IEEE/

ACM Transactions on Networking, Vol. 6, No. 5", October

1998.

Jain, R., "Error Characteristics of Fiber Distributed

Data Interface (FDDI), IEEE Transactions on

Communications", August 1990.

IEEE, I., "Guidelines for Use of Extended Unique

Identifier (EUI), Organizationally Unique Identifier

(OUI), and Company ID, https://standards.ieee.org/wp-

content/uploads/import/documents/tutorials/eui.pdf", 3

August 2017.

Moskowitz, R., Card, S. W., Wiethuechter, A.,

and A. Gurtov, "DRIP Entity Tag (DET) for Unmanned

Aircraft System Remote ID (UAS RID)", Work in Progress,

Internet-Draft, draft-ietf-drip-rid-28, 17 May 2022,

https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8415
https://www.rfc-editor.org/info/rfc8415

[I-D.ietf-intarea-tunnels]

[I-D.ietf-ipwave-vehicular-networking]

[I-D.templin-6man-aero]

[I-D.templin-6man-fragrep]

[I-D.templin-6man-lla-type]

[I-D.templin-intarea-parcels]

[IPV4-GUA]

[IPV6-GUA]

<https://www.ietf.org/archive/id/draft-ietf-drip-

rid-28.txt>.

Touch, J. and M. Townsley, "IP Tunnels in

the Internet Architecture", Work in Progress, Internet-

Draft, draft-ietf-intarea-tunnels-10, 12 September 2019,

<https://www.ietf.org/archive/id/draft-ietf-intarea-

tunnels-10.txt>.

Jeong, J. P., "IPv6 Wireless Access in Vehicular

Environments (IPWAVE): Problem Statement and Use Cases",

Work in Progress, Internet-Draft, draft-ietf-ipwave-

vehicular-networking-29, 19 May 2022, <https://

www.ietf.org/archive/id/draft-ietf-ipwave-vehicular-

networking-29.txt>.

Templin, F. L., "Automatic Extended Route Optimization

(AERO)", Work in Progress, Internet-Draft, draft-

templin-6man-aero-51, 17 June 2022, <https://

www.ietf.org/archive/id/draft-templin-6man-aero-51.txt>.

Templin, F. L., "IPv6 Fragment Retransmission and Path

MTU Discovery Soft Errors", Work in Progress, Internet-

Draft, draft-templin-6man-fragrep-07, 29 March 2022,

<https://www.ietf.org/archive/id/draft-templin-6man-

fragrep-07.txt>.

Templin, F. L., "The IPv6 Link-Local Address Type Field",

Work in Progress, Internet-Draft, draft-templin-6man-lla-

type-02, 23 November 2020, <https://www.ietf.org/archive/

id/draft-templin-6man-lla-type-02.txt>.

Templin, F. L., "IP Parcels", Work in Progress, Internet-

Draft, draft-templin-intarea-parcels-10, 29 March 2022,

<https://www.ietf.org/archive/id/draft-templin-intarea-

parcels-10.txt>.

Postel, J., "IPv4 Address Space Registry, https://

www.iana.org/assignments/ipv4-address-space/ipv4-address-

space.xhtml", 14 December 2020.

Postel, J., "IPv6 Global Unicast Address Assignments,

https://www.iana.org/assignments/ipv6-unicast-address-

assignments/ipv6-unicast-address-assignments.xhtml", 14

December 2020.

https://www.ietf.org/archive/id/draft-ietf-drip-rid-28.txt
https://www.ietf.org/archive/id/draft-ietf-drip-rid-28.txt
https://www.ietf.org/archive/id/draft-ietf-intarea-tunnels-10.txt
https://www.ietf.org/archive/id/draft-ietf-intarea-tunnels-10.txt
https://www.ietf.org/archive/id/draft-ietf-ipwave-vehicular-networking-29.txt
https://www.ietf.org/archive/id/draft-ietf-ipwave-vehicular-networking-29.txt
https://www.ietf.org/archive/id/draft-ietf-ipwave-vehicular-networking-29.txt
https://www.ietf.org/archive/id/draft-templin-6man-aero-51.txt
https://www.ietf.org/archive/id/draft-templin-6man-aero-51.txt
https://www.ietf.org/archive/id/draft-templin-6man-fragrep-07.txt
https://www.ietf.org/archive/id/draft-templin-6man-fragrep-07.txt
https://www.ietf.org/archive/id/draft-templin-6man-lla-type-02.txt
https://www.ietf.org/archive/id/draft-templin-6man-lla-type-02.txt
https://www.ietf.org/archive/id/draft-templin-intarea-parcels-10.txt
https://www.ietf.org/archive/id/draft-templin-intarea-parcels-10.txt

[RFC1035]

[RFC1122]

[RFC1146]

[RFC1149]

[RFC1191]

[RFC1256]

[RFC2131]

[RFC2464]

[RFC2473]

[RFC2492]

[RFC2675]

[RFC2863]

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

Zweig, J. and C. Partridge, "TCP alternate checksum

options", RFC 1146, DOI 10.17487/RFC1146, March 1990,

<https://www.rfc-editor.org/info/rfc1146>.

Waitzman, D., "Standard for the transmission of IP

datagrams on avian carriers", RFC 1149, DOI 10.17487/

RFC1149, April 1990, <https://www.rfc-editor.org/info/

rfc1149>.

Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,

DOI 10.17487/RFC1191, November 1990, <https://www.rfc-

editor.org/info/rfc1191>.

Deering, S., Ed., "ICMP Router Discovery Messages", RFC

1256, DOI 10.17487/RFC1256, September 1991, <https://

www.rfc-editor.org/info/rfc1256>.

Droms, R., "Dynamic Host Configuration Protocol", RFC

2131, DOI 10.17487/RFC2131, March 1997, <https://www.rfc-

editor.org/info/rfc2131>.

Crawford, M., "Transmission of IPv6 Packets over Ethernet

Networks", RFC 2464, DOI 10.17487/RFC2464, December 1998,

<https://www.rfc-editor.org/info/rfc2464>.

Conta, A. and S. Deering, "Generic Packet Tunneling in

IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,

December 1998, <https://www.rfc-editor.org/info/rfc2473>.

Armitage, G., Schulter, P., and M. Jork, "IPv6 over ATM

Networks", RFC 2492, DOI 10.17487/RFC2492, January 1999,

<https://www.rfc-editor.org/info/rfc2492>.

Borman, D., Deering, S., and R. Hinden, "IPv6

Jumbograms", RFC 2675, DOI 10.17487/RFC2675, August 1999,

<https://www.rfc-editor.org/info/rfc2675>.

McCloghrie, K. and F. Kastenholz, "The Interfaces Group

MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,

<https://www.rfc-editor.org/info/rfc2863>.

https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1146
https://www.rfc-editor.org/info/rfc1149
https://www.rfc-editor.org/info/rfc1149
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1256
https://www.rfc-editor.org/info/rfc1256
https://www.rfc-editor.org/info/rfc2131
https://www.rfc-editor.org/info/rfc2131
https://www.rfc-editor.org/info/rfc2464
https://www.rfc-editor.org/info/rfc2473
https://www.rfc-editor.org/info/rfc2492
https://www.rfc-editor.org/info/rfc2675
https://www.rfc-editor.org/info/rfc2863

[RFC2923]

[RFC2983]

[RFC3056]

[RFC3068]

[RFC3168]

[RFC3330]

[RFC3366]

[RFC3684]

[RFC3692]

[RFC3810]

[RFC3819]

Lahey, K., "TCP Problems with Path MTU Discovery", RFC

2923, DOI 10.17487/RFC2923, September 2000, <https://

www.rfc-editor.org/info/rfc2923>.

Black, D., "Differentiated Services and Tunnels", RFC

2983, DOI 10.17487/RFC2983, October 2000, <https://

www.rfc-editor.org/info/rfc2983>.

Carpenter, B. and K. Moore, "Connection of IPv6 Domains

via IPv4 Clouds", RFC 3056, DOI 10.17487/RFC3056,

February 2001, <https://www.rfc-editor.org/info/rfc3056>.

Huitema, C., "An Anycast Prefix for 6to4 Relay Routers",

RFC 3068, DOI 10.17487/RFC3068, June 2001, <https://

www.rfc-editor.org/info/rfc3068>.

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/info/rfc3168>.

IANA, "Special-Use IPv4 Addresses", RFC 3330, DOI

10.17487/RFC3330, September 2002, <https://www.rfc-

editor.org/info/rfc3330>.

Fairhurst, G. and L. Wood, "Advice to link designers on

link Automatic Repeat reQuest (ARQ)", BCP 62, RFC 3366,

DOI 10.17487/RFC3366, August 2002, <https://www.rfc-

editor.org/info/rfc3366>.

Ogier, R., Templin, F., and M. Lewis, "Topology

Dissemination Based on Reverse-Path Forwarding (TBRPF)",

RFC 3684, DOI 10.17487/RFC3684, February 2004, <https://

www.rfc-editor.org/info/rfc3684>.

Narten, T., "Assigning Experimental and Testing Numbers

Considered Useful", BCP 82, RFC 3692, DOI 10.17487/

RFC3692, January 2004, <https://www.rfc-editor.org/info/

rfc3692>.

Vida, R., Ed. and L. Costa, Ed., "Multicast Listener

Discovery Version 2 (MLDv2) for IPv6", RFC 3810, DOI

10.17487/RFC3810, June 2004, <https://www.rfc-editor.org/

info/rfc3810>.

Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman, D.,

Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and

L. Wood, "Advice for Internet Subnetwork Designers", BCP

https://www.rfc-editor.org/info/rfc2923
https://www.rfc-editor.org/info/rfc2923
https://www.rfc-editor.org/info/rfc2983
https://www.rfc-editor.org/info/rfc2983
https://www.rfc-editor.org/info/rfc3056
https://www.rfc-editor.org/info/rfc3068
https://www.rfc-editor.org/info/rfc3068
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3330
https://www.rfc-editor.org/info/rfc3330
https://www.rfc-editor.org/info/rfc3366
https://www.rfc-editor.org/info/rfc3366
https://www.rfc-editor.org/info/rfc3684
https://www.rfc-editor.org/info/rfc3684
https://www.rfc-editor.org/info/rfc3692
https://www.rfc-editor.org/info/rfc3692
https://www.rfc-editor.org/info/rfc3810
https://www.rfc-editor.org/info/rfc3810

[RFC4122]

[RFC4301]

[RFC4380]

[RFC4389]

[RFC4429]

[RFC4541]

[RFC4605]

[RFC4821]

[RFC4963]

[RFC5213]

89, RFC 3819, DOI 10.17487/RFC3819, July 2004, <https://

www.rfc-editor.org/info/rfc3819>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,

December 2005, <https://www.rfc-editor.org/info/rfc4301>.

Huitema, C., "Teredo: Tunneling IPv6 over UDP through

Network Address Translations (NATs)", RFC 4380, DOI

10.17487/RFC4380, February 2006, <https://www.rfc-

editor.org/info/rfc4380>.

Thaler, D., Talwar, M., and C. Patel, "Neighbor Discovery

Proxies (ND Proxy)", RFC 4389, DOI 10.17487/RFC4389,

April 2006, <https://www.rfc-editor.org/info/rfc4389>.

Moore, N., "Optimistic Duplicate Address Detection (DAD)

for IPv6", RFC 4429, DOI 10.17487/RFC4429, April 2006,

<https://www.rfc-editor.org/info/rfc4429>.

Christensen, M., Kimball, K., and F. Solensky,

"Considerations for Internet Group Management Protocol

(IGMP) and Multicast Listener Discovery (MLD) Snooping

Switches", RFC 4541, DOI 10.17487/RFC4541, May 2006,

<https://www.rfc-editor.org/info/rfc4541>.

Fenner, B., He, H., Haberman, B., and H. Sandick,

"Internet Group Management Protocol (IGMP) / Multicast

Listener Discovery (MLD)-Based Multicast Forwarding

("IGMP/MLD Proxying")", RFC 4605, DOI 10.17487/RFC4605,

August 2006, <https://www.rfc-editor.org/info/rfc4605>.

Mathis, M. and J. Heffner, "Packetization Layer Path MTU

Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,

<https://www.rfc-editor.org/info/rfc4821>.

Heffner, J., Mathis, M., and B. Chandler, "IPv4

Reassembly Errors at High Data Rates", RFC 4963, DOI

10.17487/RFC4963, July 2007, <https://www.rfc-editor.org/

info/rfc4963>.

Gundavelli, S., Ed., Leung, K., Devarapalli, V.,

Chowdhury, K., and B. Patil, "Proxy Mobile IPv6", RFC

5213, DOI 10.17487/RFC5213, August 2008, <https://

www.rfc-editor.org/info/rfc5213>.

https://www.rfc-editor.org/info/rfc3819
https://www.rfc-editor.org/info/rfc3819
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4380
https://www.rfc-editor.org/info/rfc4380
https://www.rfc-editor.org/info/rfc4389
https://www.rfc-editor.org/info/rfc4429
https://www.rfc-editor.org/info/rfc4541
https://www.rfc-editor.org/info/rfc4605
https://www.rfc-editor.org/info/rfc4821
https://www.rfc-editor.org/info/rfc4963
https://www.rfc-editor.org/info/rfc4963
https://www.rfc-editor.org/info/rfc5213
https://www.rfc-editor.org/info/rfc5213

[RFC5214]

[RFC5237]

[RFC5558]

[RFC5614]

[RFC5798]

[RFC5880]

[RFC5889]

[RFC5942]

[RFC6081]

[RFC6214]

[RFC6221]

Templin, F., Gleeson, T., and D. Thaler, "Intra-Site

Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,

DOI 10.17487/RFC5214, March 2008, <https://www.rfc-

editor.org/info/rfc5214>.

Arkko, J. and S. Bradner, "IANA Allocation Guidelines for

the Protocol Field", BCP 37, RFC 5237, DOI 10.17487/

RFC5237, February 2008, <https://www.rfc-editor.org/info/

rfc5237>.

Templin, F., Ed., "Virtual Enterprise Traversal (VET)",

RFC 5558, DOI 10.17487/RFC5558, February 2010, <https://

www.rfc-editor.org/info/rfc5558>.

Ogier, R. and P. Spagnolo, "Mobile Ad Hoc Network (MANET)

Extension of OSPF Using Connected Dominating Set (CDS)

Flooding", RFC 5614, DOI 10.17487/RFC5614, August 2009,

<https://www.rfc-editor.org/info/rfc5614>.

Nadas, S., Ed., "Virtual Router Redundancy Protocol

(VRRP) Version 3 for IPv4 and IPv6", RFC 5798, DOI

10.17487/RFC5798, March 2010, <https://www.rfc-

editor.org/info/rfc5798>.

Katz, D. and D. Ward, "Bidirectional Forwarding Detection

(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,

<https://www.rfc-editor.org/info/rfc5880>.

Baccelli, E., Ed. and M. Townsley, Ed., "IP Addressing

Model in Ad Hoc Networks", RFC 5889, DOI 10.17487/

RFC5889, September 2010, <https://www.rfc-editor.org/

info/rfc5889>.

Singh, H., Beebee, W., and E. Nordmark, "IPv6 Subnet

Model: The Relationship between Links and Subnet

Prefixes", RFC 5942, DOI 10.17487/RFC5942, July 2010,

<https://www.rfc-editor.org/info/rfc5942>.

Thaler, D., "Teredo Extensions", RFC 6081, DOI 10.17487/

RFC6081, January 2011, <https://www.rfc-editor.org/info/

rfc6081>.

Carpenter, B. and R. Hinden, "Adaptation of RFC 1149 for

IPv6", RFC 6214, DOI 10.17487/RFC6214, April 2011,

<https://www.rfc-editor.org/info/rfc6214>.

Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A.

Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221, DOI

https://www.rfc-editor.org/info/rfc5214
https://www.rfc-editor.org/info/rfc5214
https://www.rfc-editor.org/info/rfc5237
https://www.rfc-editor.org/info/rfc5237
https://www.rfc-editor.org/info/rfc5558
https://www.rfc-editor.org/info/rfc5558
https://www.rfc-editor.org/info/rfc5614
https://www.rfc-editor.org/info/rfc5798
https://www.rfc-editor.org/info/rfc5798
https://www.rfc-editor.org/info/rfc5880
https://www.rfc-editor.org/info/rfc5889
https://www.rfc-editor.org/info/rfc5889
https://www.rfc-editor.org/info/rfc5942
https://www.rfc-editor.org/info/rfc6081
https://www.rfc-editor.org/info/rfc6081
https://www.rfc-editor.org/info/rfc6214

[RFC6247]

[RFC6438]

[RFC6543]

[RFC6706]

[RFC6935]

[RFC6936]

[RFC6980]

[RFC7042]

[RFC7094]

[RFC7217]

10.17487/RFC6221, May 2011, <https://www.rfc-editor.org/

info/rfc6221>.

Eggert, L., "Moving the Undeployed TCP Extensions RFC

1072, RFC 1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379,

RFC 1644, and RFC 1693 to Historic Status", RFC 6247, DOI

10.17487/RFC6247, May 2011, <https://www.rfc-editor.org/

info/rfc6247>.

Carpenter, B. and S. Amante, "Using the IPv6 Flow Label

for Equal Cost Multipath Routing and Link Aggregation in

Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,

<https://www.rfc-editor.org/info/rfc6438>.

Gundavelli, S., "Reserved IPv6 Interface Identifier for

Proxy Mobile IPv6", RFC 6543, DOI 10.17487/RFC6543, May

2012, <https://www.rfc-editor.org/info/rfc6543>.

Templin, F., Ed., "Asymmetric Extended Route Optimization

(AERO)", RFC 6706, DOI 10.17487/RFC6706, August 2012,

<https://www.rfc-editor.org/info/rfc6706>.

Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and

UDP Checksums for Tunneled Packets", RFC 6935, DOI

10.17487/RFC6935, April 2013, <https://www.rfc-

editor.org/info/rfc6935>.

Fairhurst, G. and M. Westerlund, "Applicability Statement

for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013, <https://

www.rfc-editor.org/info/rfc6936>.

Gont, F., "Security Implications of IPv6 Fragmentation

with IPv6 Neighbor Discovery", RFC 6980, DOI 10.17487/

RFC6980, August 2013, <https://www.rfc-editor.org/info/

rfc6980>.

Eastlake 3rd, D. and J. Abley, "IANA Considerations and

IETF Protocol and Documentation Usage for IEEE 802

Parameters", BCP 141, RFC 7042, DOI 10.17487/RFC7042,

October 2013, <https://www.rfc-editor.org/info/rfc7042>.

McPherson, D., Oran, D., Thaler, D., and E. Osterweil,

"Architectural Considerations of IP Anycast", RFC 7094,

DOI 10.17487/RFC7094, January 2014, <https://www.rfc-

editor.org/info/rfc7094>.

Gont, F., "A Method for Generating Semantically Opaque

Interface Identifiers with IPv6 Stateless Address

Autoconfiguration (SLAAC)", RFC 7217, DOI 10.17487/

https://www.rfc-editor.org/info/rfc6221
https://www.rfc-editor.org/info/rfc6221
https://www.rfc-editor.org/info/rfc6247
https://www.rfc-editor.org/info/rfc6247
https://www.rfc-editor.org/info/rfc6438
https://www.rfc-editor.org/info/rfc6543
https://www.rfc-editor.org/info/rfc6706
https://www.rfc-editor.org/info/rfc6935
https://www.rfc-editor.org/info/rfc6935
https://www.rfc-editor.org/info/rfc6936
https://www.rfc-editor.org/info/rfc6936
https://www.rfc-editor.org/info/rfc6980
https://www.rfc-editor.org/info/rfc6980
https://www.rfc-editor.org/info/rfc7042
https://www.rfc-editor.org/info/rfc7094
https://www.rfc-editor.org/info/rfc7094

[RFC7401]

[RFC7421]

[RFC7542]

[RFC7739]

[RFC7761]

[RFC7847]

[RFC8126]

[RFC8402]

[RFC8726]

RFC7217, April 2014, <https://www.rfc-editor.org/info/

rfc7217>.

Moskowitz, R., Ed., Heer, T., Jokela, P., and T.

Henderson, "Host Identity Protocol Version 2 (HIPv2)",

RFC 7401, DOI 10.17487/RFC7401, April 2015, <https://

www.rfc-editor.org/info/rfc7401>.

Carpenter, B., Ed., Chown, T., Gont, F., Jiang, S.,

Petrescu, A., and A. Yourtchenko, "Analysis of the 64-bit

Boundary in IPv6 Addressing", RFC 7421, DOI 10.17487/

RFC7421, January 2015, <https://www.rfc-editor.org/info/

rfc7421>.

DeKok, A., "The Network Access Identifier", RFC 7542, DOI

10.17487/RFC7542, May 2015, <https://www.rfc-editor.org/

info/rfc7542>.

Gont, F., "Security Implications of Predictable Fragment

Identification Values", RFC 7739, DOI 10.17487/RFC7739,

February 2016, <https://www.rfc-editor.org/info/rfc7739>.

Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,

Parekh, R., Zhang, Z., and L. Zheng, "Protocol

Independent Multicast - Sparse Mode (PIM-SM): Protocol

Specification (Revised)", STD 83, RFC 7761, DOI 10.17487/

RFC7761, March 2016, <https://www.rfc-editor.org/info/

rfc7761>.

Melia, T., Ed. and S. Gundavelli, Ed., "Logical-Interface

Support for IP Hosts with Multi-Access Support", RFC

7847, DOI 10.17487/RFC7847, May 2016, <https://www.rfc-

editor.org/info/rfc7847>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,

Decraene, B., Litkowski, S., and R. Shakir, "Segment

Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,

July 2018, <https://www.rfc-editor.org/info/rfc8402>.

Farrel, A., "How Requests for IANA Action Will Be Handled

on the Independent Stream", RFC 8726, DOI 10.17487/

https://www.rfc-editor.org/info/rfc7217
https://www.rfc-editor.org/info/rfc7217
https://www.rfc-editor.org/info/rfc7401
https://www.rfc-editor.org/info/rfc7401
https://www.rfc-editor.org/info/rfc7421
https://www.rfc-editor.org/info/rfc7421
https://www.rfc-editor.org/info/rfc7542
https://www.rfc-editor.org/info/rfc7542
https://www.rfc-editor.org/info/rfc7739
https://www.rfc-editor.org/info/rfc7761
https://www.rfc-editor.org/info/rfc7761
https://www.rfc-editor.org/info/rfc7847
https://www.rfc-editor.org/info/rfc7847
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8402

[RFC8892]

[RFC8899]

[RFC8900]

[RFC8981]

[RFC9000]

[RFC9001]

[RFC9002]

[WG]

RFC8726, November 2020, <https://www.rfc-editor.org/info/

rfc8726>.

Thaler, D. and D. Romascanu, "Guidelines and Registration

Procedures for Interface Types and Tunnel Types", RFC

8892, DOI 10.17487/RFC8892, August 2020, <https://

www.rfc-editor.org/info/rfc8892>.

Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.

Völker, "Packetization Layer Path MTU Discovery for

Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,

September 2020, <https://www.rfc-editor.org/info/

rfc8899>.

Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,

and F. Gont, "IP Fragmentation Considered Fragile", BCP

230, RFC 8900, DOI 10.17487/RFC8900, September 2020,

<https://www.rfc-editor.org/info/rfc8900>.

Gont, F., Krishnan, S., Narten, T., and R. Draves,

"Temporary Address Extensions for Stateless Address

Autoconfiguration in IPv6", RFC 8981, DOI 10.17487/

RFC8981, February 2021, <https://www.rfc-editor.org/info/

rfc8981>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/info/rfc9001>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

May 2021, <https://www.rfc-editor.org/info/rfc9002>.

WireGuard, W., "WireGuard, Fast, Modern, Secure VPN

Tunnel, https://wireguard.com/", 7 March 2022.

Appendix A. OAL Checksum Algorithm

The OAL Checksum Algorithm adopts the 8-bit Fletcher algorithm

specified in Appendix I of [RFC1146] as also analyzed in [CKSUM].

[RFC6247] declared [RFC1146] historic for the reason that the

algorithms had never seen widespread use with TCP, however this

document adopts the 8-bit Fletcher algorithm for a different

https://www.rfc-editor.org/info/rfc8726
https://www.rfc-editor.org/info/rfc8726
https://www.rfc-editor.org/info/rfc8892
https://www.rfc-editor.org/info/rfc8892
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc8900
https://www.rfc-editor.org/info/rfc8981
https://www.rfc-editor.org/info/rfc8981
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9002

purpose. Quoting from Appendix I of [RFC1146], the OAL Checksum

Algorithm proceeds as follows:

"The 8-bit Fletcher Checksum Algorithm is calculated over a

sequence of data octets (call them D[1] through D[N]) by

maintaining 2 unsigned 1's-complement 8-bit accumulators A and B

whose contents are initially zero, and performing the following

loop where i ranges from 1 to N:

A := A + D[i]

B := B + A

It can be shown that at the end of the loop A will contain the 8-

bit 1's complement sum of all octets in the datagram, and that B

will contain (N)D[1] + (N-1)D[2] + ... + D[N]."

To calculate the OAL checksum, the above algorithm is applied over

the N-octet concatenation of the OAL pseudo-header and the

encapsulated IP packet or packets. Specifically, the algorithm is

first applied over the 40 octets of the OAL pseudo-header as data

octets D[1] through D[40], then continues over the entire length of

the original IP packet(s) as data octets D[41] through D[N].

Appendix B. IPv6 ND Message Authentication and Integrity

OMNI interface IPv6 ND messages are subject to authentication and

integrity checks at multiple levels. When an OMNI interface sends an

IPv6 ND message over an INET interface, it includes an

authentication sub-option with a valid signature but does not

include an IPv6 ND message checksum. The OMNI interface that

receives the message verifies the OAL checksum as a first-level

integrity check, then verifies the authentication signature (while

ignoring the IPv6 ND message checksum) to ensure IPv6 ND message

authentication and integrity.

When an OMNI interface sends an IPv6 ND message over an underlay

interface connected to a secured network, it omits the

authentication sub-option but instead calculates/includes an IPv6 ND

message checksum. The OMNI interface that receives the message

applies any lower-layer authentication and integrity checks, then

verifies both the OAL checksum and the IPv6 ND message checksum.

(Note that optimized implementations can verify both the OAL and

IPv6 ND message checksums in a single pass over the data.) When an

OMNI interface sends IPv6 ND messages to a synchronized neighbor, it

includes an authentication sub-option only if authentication is

necessary; otherwise, it calculates/includes the IPv6 ND message

checksum.

¶

¶

¶

¶

¶

¶

¶

¶

When the OMNI interface calculates the authentication signature or

IPv6 ND message checksum, it performs the calculation beginning with

a pseudo-header of the IPv6 ND message header and extends over all

following OAL packet data. In particular, for OAL super-packets any

additional original IP packets included beyond the end of the IPv6

ND message are simply considered as extensions of the IPv6 ND

message for the purpose of the calculation.

OAL destinations discard carrier packets with unacceptable

Identifications and submit the encapsulated fragments in all others

for reassembly. The reassembly algorithm rejects any fragments with

unacceptable sizes, offsets, etc. and reassembles all others.

Following reassembly, the OAL checksum algorithm provides an

integrity assurance layer that compliments any integrity checks

already applied by lower layers as well as a first-pass filter for

any checks that will be applied later by upper layers.

Appendix C. VDL Mode 2 Considerations

ICAO Doc 9776 is the "Technical Manual for VHF Data Link Mode 2"

(VDLM2) that specifies an essential radio frequency data link

service for aircraft and ground stations in worldwide civil aviation

air traffic management. The VDLM2 link type is "multicast capable"

[RFC4861], but with considerable differences from common multicast

links such as Ethernet and IEEE 802.11.

First, the VDLM2 link data rate is only 31.5Kbps - multiple orders

of magnitude less than most modern wireless networking gear. Second,

due to the low available link bandwidth only VDLM2 ground stations

(i.e., and not aircraft) are permitted to send broadcasts, and even

so only as compact layer 2 "beacons". Third, aircraft employ the

services of ground stations by performing unicast RS/RA exchanges

upon receipt of beacons instead of listening for multicast RA

messages and/or sending multicast RS messages.

This beacon-oriented unicast RS/RA approach is necessary to conserve

the already-scarce available link bandwidth. Moreover, since the

numbers of beaconing ground stations operating within a given

spatial range must be kept as sparse as possible, it would not be

feasible to have different classes of ground stations within the

same region observing different protocols. It is therefore highly

desirable that all ground stations observe a common language of RS/

RA as specified in this document.

Note that links of this nature may benefit from compression

techniques that reduce the bandwidth necessary for conveying the

same amount of data. The IETF lpwan working group is considering

possible alternatives: [https://datatracker.ietf.org/wg/lpwan/

documents].

¶

¶

¶

¶

¶

¶

Appendix D. Client-Proxy/Server Isolation Through Link-Layer Address

Mapping

Per [RFC4861], IPv6 ND messages may be sent to either a multicast or

unicast link-scoped IPv6 destination address. However, IPv6 ND

messaging should be coordinated between the Client and Proxy/Server

only without invoking other nodes on the underlay network. This

implies that Client-Proxy/Server control messaging should be

isolated and not overheard by other nodes on the link.

To support Client-Proxy/Server isolation on some links, Proxy/

Servers can maintain an OMNI-specific unicast link-layer address

("MSADDR"). For Ethernet-compatible links, this specification

reserves one Ethernet unicast address TBD5 (see: IANA

Considerations). For non-Ethernet statically-addressed links MSADDR

is reserved per the assigned numbers authority for the link-layer

addressing space. For still other links, MSADDR may be dynamically

discovered through other means, e.g., link-layer beacons.

Clients map the L3 addresses of all IPv6 ND messages they send

(i.e., both multicast and unicast) to MSADDR instead of to an

ordinary unicast or multicast link-layer address. In this way, all

of the Client's IPv6 ND messages will be received by Proxy/Servers

that are configured to accept packets destined to MSADDR. Note that

multiple Proxy/Servers on the link could be configured to accept

packets destined to MSADDR, e.g., as a basis for supporting

redundancy.

Therefore, Proxy/Servers must accept and process packets destined to

MSADDR, while all other devices must not process packets destined to

MSADDR. This model has well-established operational experience in

Proxy Mobile IPv6 (PMIP) [RFC5213][RFC6543].

Appendix E. Change Log

<< RFC Editor - remove prior to publication >>

Differences from earlier versions:

Submit for RFC publication.

Author's Address

Fred L. Templin (editor)

The Boeing Company

P.O. Box 3707

Seattle, WA 98124

United States of America

Email: fltemplin@acm.org

¶

¶

¶

¶

¶

¶

* ¶

mailto:fltemplin@acm.org

	Transmission of IP Packets over Overlay Multilink Network (OMNI) Interfaces
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Requirements
	4. Overlay Multilink Network (OMNI) Interface Model
	5. OMNI Interface Maximum Transmission Unit (MTU)
	5.1. Jumbograms
	5.2. IPv6 Parcels

	6. The OMNI Adaptation Layer (OAL)
	6.1. OAL Source Encapsulation and Fragmentation
	6.2. OAL L2 Encapsulation and Re-Encapsulation
	6.3. OAL L2 Decapsulation and Reassembly
	6.4. OAL Header Compression
	6.5. OAL-in-OAL Encapsulation
	6.6. OAL Identification Window Maintenance
	6.7. OAL Fragment Retransmission
	6.8. OAL MTU Feedback Messaging
	6.9. OAL Super-Packets
	6.10. OAL Bubbles
	6.11. OAL Requirements
	6.12. OAL Fragmentation Security Implications
	6.13. OMNI Hosts
	6.14. IP Parcels

	7. Frame Format
	8. Link-Local Addresses (LLAs)
	9. Unique-Local Addresses (ULAs)
	10. Global Unicast Addresses (GUAs)
	11. Node Identification
	12. Address Mapping - Unicast
	12.1. The OMNI Option
	12.2. OMNI Sub-Options
	12.2.1. Pad1
	12.2.2. PadN
	12.2.3. Neighbor Coordination
	12.2.4. Interface Attributes
	12.2.5. AERO Forwarding Parameters
	12.2.6. Traffic Selector
	12.2.7. Geo Coordinates
	12.2.8. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Message
	12.2.9. Host Identity Protocol (HIP) Message
	12.2.10. PIM-SM Message
	12.2.11. Fragmentation Report (FRAGREP)
	12.2.12. Node Identification
	12.2.13. ICMPv6 Error
	12.2.14. QUIC-TLS Message
	12.2.15. Proxy/Server Departure
	12.2.16. Sub-Type Extension
	12.2.16.1. RFC4380 Header Extension Option
	12.2.16.2. RFC6081 Trailer Extension Option

	13. Address Mapping - Multicast
	14. Multilink Conceptual Sending Algorithm
	14.1. Multiple OMNI Interfaces
	14.2. Client-Proxy/Server Loop Prevention

	15. Router Discovery and Prefix Registration
	15.1. Window Synchronization
	15.2. Router Discovery in IP Multihop and IPv4-Only Networks
	15.3. DHCPv6-based Prefix Registration
	15.4. OMNI Link Extension

	16. Secure Redirection
	17. Proxy/Server Resilience
	18. Detecting and Responding to Proxy/Server Failures
	19. Transition Considerations
	20. OMNI Interfaces on Open Internetworks
	21. Time-Varying MNPs
	22. (H)HITs and Temporary ULA (TLA)s
	23. Address Selection
	24. Error Messages
	25. IANA Considerations
	25.1. "Protocol Numbers" Registry
	25.2. "IEEE 802 Numbers" Registry
	25.3. "IPv4 Special-Purpose Address" Registry
	25.4. "IPv6 Neighbor Discovery Option Formats" Registry
	25.5. "Ethernet Numbers" Registry
	25.6. "ICMPv6 Code Fields: Type 2 - Packet Too Big" Registry
	25.7. "OMNI Option Sub-Type Values" (New Registry)
	25.8. "OMNI Geo Coordinates Type Values" (New Registry)
	25.9. "OMNI Node Identification ID-Type Values" (New Registry)
	25.10. "OMNI Option Sub-Type Extension Values" (New Registry)
	25.11. "OMNI RFC4380 UDP/IP Header Option" (New Registry)
	25.12. "OMNI RFC6081 UDP/IP Trailer Option" (New Registry)
	25.13. Additional Considerations

	26. Security Considerations
	27. Implementation Status
	28. Document Updates
	29. Acknowledgements
	30. References
	30.1. Normative References
	30.2. Informative References

	Appendix A. OAL Checksum Algorithm
	Appendix B. IPv6 ND Message Authentication and Integrity
	Appendix C. VDL Mode 2 Considerations
	Appendix D. Client-Proxy/Server Isolation Through Link-Layer Address Mapping
	Appendix E. Change Log
	Author's Address

