
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc6706 (if approved) April 2, 2014
Intended status: Standards Track
Expires: October 4, 2014

Transmission of IPv6 Packets over AERO Links
draft-templin-aerolink-13.txt

Abstract

 This document specifies the operation of IPv6 over tunnel virtual
 Non-Broadcast, Multiple Access (NBMA) links using Asymmetric Extended
 Route Optimization (AERO). Nodes attached to AERO links can exchange
 packets via trusted intermediate routers on the link that provide
 forwarding services to reach off-link destinations and/or redirection
 services to inform the node of an on-link neighbor that is closer to
 the final destination. Operation of the IPv6 Neighbor Discovery (ND)
 protocol over AERO links is based on an IPv6 link local address
 format known as the AERO address.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 4, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Templin Expires October 4, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft AERO April 2014

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Asymmetric Extended Route Optimization (AERO) 6
3.1. AERO Node Types . 6
3.2. AERO Interface Characteristics 7
3.3. AERO Addresses . 9
3.4. AERO Interface Data Origin Authentication 9

 3.5. AERO Interface Conceptual Data Structures and Protocol
 Constants . 10

3.6. AERO Interface MTU Considerations 11
 3.7. AERO Interface Encapsulation, Re-encapsulation and
 Decapsulation . 12

3.8. AERO Reference Operational Scenario 13
3.9. AERO Router Discovery and Prefix Delegation 15
3.9.1. AERO Client Behavior 15
3.9.2. AERO Server Behavior 16

3.10. AERO Neighbor Solicitation and Advertisement 16
3.11. AERO Redirection . 16
3.11.1. Classical Redirection Approaches 17
3.11.2. AERO Redirection Concept of Operations 17
3.11.3. AERO Redirection Message Format 18
3.11.4. Sending Predirects 19
3.11.5. Processing Predirects and Sending Redirects 20
3.11.6. Re-encapsulating and Relaying Redirects 21
3.11.7. Processing Redirects 22

3.12. Neighbor Reachability Maintenance 22
3.13. Mobility and Link-Layer Address Change Considerations . . 23
3.14. Underlying Protocol Version Considerations 24
3.15. Multicast Considerations 24
3.16. Operation on Server-less AERO Links 24
3.17. Other Considerations 25

4. Implementation Status . 25
5. IANA Considerations . 25
6. Security Considerations 25
7. Acknowledgements . 26
8. References . 26
8.1. Normative References 26
8.2. Informative References 27

Appendix A. AERO Server and Relay Interworking 29

Templin Expires October 4, 2014 [Page 2]

Internet-Draft AERO April 2014

 Author's Address . 30

Templin Expires October 4, 2014 [Page 3]

Internet-Draft AERO April 2014

1. Introduction

 This document specifies the operation of IPv6 over tunnel virtual
 Non-Broadcast, Multiple Access (NBMA) links using Asymmetric Extended
 Route Optimization (AERO). Nodes attached to AERO links can exchange
 packets via trusted intermediate routers on the link that provide
 forwarding services to reach off-link destinations and/or redirection
 services to inform the node of an on-link neighbor that is closer to
 the final destination.

 Nodes on AERO links use an IPv6 link-local address format known as
 the AERO Address. This address type has properties that statelessly
 link IPv6 Neighbor Discovery (ND) to IPv6 routing. The AERO link can
 be used for tunneling to neighboring nodes on either IPv6 or IPv4
 networks, i.e., AERO views the IPv6 and IPv4 networks as equivalent
 links for tunneling. The remainder of this document presents the
 AERO specification.

2. Terminology

 The terminology in the normative references applies; the following
 terms are defined within the scope of this document:

 AERO link
 a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
 configured over a node's attached IPv6 and/or IPv4 networks. All
 nodes on the AERO link appear as single-hop neighbors from the
 perspective of IPv6.

 AERO interface
 a node's attachment to an AERO link. The AERO interface Maximum
 Transmission Unit (MTU) is less than or equal to the AERO link
 MTU.

 AERO address
 an IPv6 link-local address assigned to an AERO interface and
 constructed as specified in Section 3.6.

 AERO node
 a node that is connected to an AERO link and that participates in
 IPv6 Neighbor Discovery over the link.

 AERO Client ("client")
 a node that configures either a host interface or a router
 interface on an AERO link.

Templin Expires October 4, 2014 [Page 4]

Internet-Draft AERO April 2014

 AERO Server ("server")
 a node that configures a router interface on an AERO link over
 which it can provide default forwarding and redirection services
 for other AERO nodes.

 AERO Relay ("relay")
 a node that relays IPv6 packets between Servers on the same AERO
 link, and/or that forwards IPv6 packets between the AERO link and
 the IPv6 Internet. An AERO Relay may or may not also be
 configured as an AERO Server.

 ingress tunnel endpoint (ITE)
 an AERO interface endpoint that injects tunneled packets into an
 AERO link.

 egress tunnel endpoint (ETE)
 an AERO interface endpoint that receives tunneled packets from an
 AERO link.

 underlying network
 a connected IPv6 or IPv4 network routing region over which AERO
 nodes tunnel IPv6 packets.

 underlying interface
 an AERO node's interface point of attachment to an underlying
 network.

 underlying address
 an IPv6 or IPv4 address assigned to an AERO node's underlying
 interface. When UDP encapsulation is used, the UDP port number is
 also considered as part of the underlying address. Underlying
 addresses are used as the source and destination addresses of the
 AERO encapsulation header.

 link-layer address
 the same as defined for "underlying address" above.

 network layer address
 an IPv6 address used as the source or destination address of the
 inner IPv6 packet header.

 end user network (EUN)
 an IPv6 network attached to a downstream interface of an AERO
 Client (where the AERO interface is seen as the upstream
 interface).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

Templin Expires October 4, 2014 [Page 5]

Internet-Draft AERO April 2014

 document are to be interpreted as described in [RFC2119].

3. Asymmetric Extended Route Optimization (AERO)

 The following sections specify the operation of IPv6 over Asymmetric
 Extended Route Optimization (AERO) links:

3.1. AERO Node Types

 AERO Relays relay packets between nodes connected to the same AERO
 link and also forward packets between the AERO link and the native
 IPv6 network. The relaying process entails re-encapsulation of IPv6
 packets that were received from a first AERO node and are to be
 forwarded without modification to a second AERO node.

 AERO Servers configure their AERO interfaces as router interfaces,
 and provide default routing services to AERO Clients. AERO Servers
 configure a DHCPv6 Relay or Server function and facilitate DHCPv6
 Prefix Delegation (PD) exchanges. An AERO Server may also act as an
 AERO Relay.

 AERO Clients act as requesting routers to receive IPv6 prefixes
 through a DHCPv6 PD exchange via an AERO Server over the AERO link.
 Each AERO Client receives at least a /64 prefix delegation, and may
 receive even shorter prefixes.

 AERO Clients that act as routers configure their AERO interfaces as
 router interfaces, i.e., even if the AERO Client otherwise displays
 the outward characteristics of an ordinary host (for example, the
 Client may internally configure both an AERO interface and (internal
 virtual) End User Network (EUN) interfaces). AERO Clients that act
 as routers sub-delegate portions of their received prefix delegations
 to links on EUNs.

 AERO Clients that act as ordinary hosts configure their AERO
 interfaces as host interfaces and assign one or more IPv6 addresses
 taken from their received prefix delegations to the AERO interface
 but DO NOT assign the delegated prefix itself to the AERO interface.
 Instead, the host assigns the delegated prefix to a "black hole"
 route so that unused portions of the prefix are nullified.

 End system applications on AERO hosts bind directly to the AERO
 interface, while applications on AERO routers (or IPv6 hosts served
 by an AERO router) bind to EUN interfaces.

https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires October 4, 2014 [Page 6]

Internet-Draft AERO April 2014

3.2. AERO Interface Characteristics

 AERO interfaces use IPv6-in-IPv6 encapsulation [RFC2473] to exchange
 tunneled packets with AERO neighbors attached to an underlying IPv6
 network, and use IPv6-in-IPv4 encapsulation [RFC4213] to exchange
 tunneled packets with AERO neighbors attached to an underlying IPv4
 network. AERO interfaces can also use IPsec encapsulation [RFC4301]
 (either IPv6-in-IPsec-in-IPv6 or IPv6-in-IPsec-in-IPv4) in
 environments where strong authentication and confidentiality are
 required. When NAT traversal and/or filtering middlebox traversal is
 necessary, a UDP header is further inserted between the outer IP
 encapsulation header and the inner packet.

 Servers assign the link-local address 'fe80::0' to their AERO
 interface; this provides a handle for Clients to insert into a
 neighbor cache entry for their current Server. Servers also
 configure administratively-assigned link-local addresses on their
 AERO interfaces to support the operation of the inter-Server/Relay
 routing system (see: [IRON]).

 Clients initially assign no addresses on their AERO interface, but
 use 'fe80::1' as the IPv6 link-local address in the DHCPv6 PD
 exchanges used to derive an AERO address. After the Client receives
 a prefix delegation, it assigns the corresponding AERO address to the
 AERO interface.

 AERO interfaces maintain a neighbor cache and use a variation of
 standard unicast IPv6 ND messaging. AERO interfaces use Neighbor
 Solicitation (NS), Neighbor Advertisement (NA) and Redirect messages
 the same as for any IPv6 link. They do not use Router Solicitation
 (RS) and Router Advertisement (RA) messages for several reasons.
 First, default router discovery is supported through other means more
 appropriate for AERO links as described below. Second, discovery of
 more-specific routes is through the receipt of Redirect messages.
 Finally, AERO nodes obtain their delegated IPv6 prefixes using DHCPv6
 PD; hence, there is no need for RA-based prefix discovery.

 AERO Neighbor Solicitation (NS) and Neighbor Advertisement (NA)
 messages do not include Source/Target Link Layer Address Options
 (S/TLLAO). Instead, AERO nodes determine the link-layer addresses of
 neighbors by examining the encapsulation IP source address and UDP
 port number (when UDP encapsulation is used) of any NS/NA messages
 they receive and ignore any S/TLLAOs included in these messages.
 This is vital to the operation of AERO links for which neighbors are
 separated by Network Address Translators (NATs) - either IPv4 or
 IPv6.

 AERO Redirect messages include a TLLAO the same as for any IPv6 link.

https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4301

Templin Expires October 4, 2014 [Page 7]

Internet-Draft AERO April 2014

 The TLLAO includes the link-layer address of the target node,
 including both the IP address and the UDP source port number used by
 the target when it sends UDP-encapsulated packets over the AERO
 interface (the TLLAO instead encodes the value 0 when the target does
 not use UDP encapsulation). TLLAOs for target nodes that use an IPv6
 underlying address include the full 16 bytes of the IPv6 address as
 shown in Figure 1, while TLLAOs for target nodes that use an IPv4
 underlying address include only the 4 bytes of the IPv4 address as
 shown in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 2 | Length = 3 | UDP Source Port (or 0) |
 +-+
 | Reserved |
 +-+
 | |
 +-- --+
 | |
 +-- IPv6 Address --+
 | |
 +-- --+
 | |
 +-+

 Figure 1: AERO TLLAO Format for IPv6

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 2 | Length = 1 | UDP Source Port (or 0) |
 +-+
 | IPv4 Address |
 +-+

 Figure 2: AERO TLLAO Format for IPv4

 Finally, AERO interface NS/NA messages only update existing neighbor
 cache entires and do not create new neighbor cache entries, whereas
 Redirect messages both update and create neighbor cache entries.
 This represents a departure from the normal operation of IPv6 ND over
 common link types, but is consistent with the spirit of IPv6 over
 NBMA links as discussed in [RFC4861]. Note however that this
 restriction may be relaxed and/or redefined on AERO links that
 participate in a fully distributed mobility management model

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires October 4, 2014 [Page 8]

Internet-Draft AERO April 2014

 coordinated in a manner outside the scope of this document.

3.3. AERO Addresses

 An AERO address is an IPv6 link-local address assigned to an AERO
 interface and with an IPv6 prefix embedded within the interface
 identifier. The AERO address is formatted as:

 fe80::[IPv6 prefix]

 Each AERO Client configures an AERO address based on the delegated
 prefix it has received from the DHCPv6 server. The address begins
 with the prefix fe80::/64 and includes in its interface identifier
 the base /64 prefix taken from the Client's delegated IPv6 prefix.
 The base prefix is determined by masking the delegated prefix with
 the prefix length. For example, if an AERO Client has received the
 prefix delegation:

 2001:db8:1000:2000::/56

 it would construct its AERO address as:

 fe80::2001:db8:1000:2000

 The AERO address remains stable as the Client moves between
 topological locations, i.e., even if its underlying address changes.

3.4. AERO Interface Data Origin Authentication

 Nodes on AERO interfaces use a simple data origin authentication for
 encapsulated packets they receive from other nodes. In particular,
 AERO Clients accept encapsulated packets with a link-layer source
 address belonging to their current AERO Server. AERO nodes also
 accept encapsulated packets with a link-layer source address that is
 correct for the network-layer source address.

 The AERO node considers the link-layer source address correct for the
 network-layer source address if there is an IPv6 forwarding table
 entry that matches the network-layer source address as well as a
 neighbor cache entry corresponding to the next hop that includes the
 link-layer address. An exception is that NS, NA and Redirect
 messages may include a different link-layer address than the one
 currently in the neighbor cache, and the new link-layer address
 updates the neighbor cache entry.

Templin Expires October 4, 2014 [Page 9]

Internet-Draft AERO April 2014

3.5. AERO Interface Conceptual Data Structures and Protocol Constants

 Each AERO node maintains a per-AERO interface conceptual neighbor
 cache that includes an entry for each neighbor it communicates with
 on the AERO link, the same as for any IPv6 interface (see [RFC4861]).
 Neighbor cache entries are either static or dynamic. Static neighbor
 cache entries (including a Client's neighbor cache entry for a Server
 or a Server's neighbor cache entry for a Client) do not have timeout
 values and are retained until explicitly deleted. Dynamic neighbor
 cache entries are created and maintained by the AERO redirection
 procedures describe in the following sections.

 When an AERO node receives a valid Predirect message (See Section
3.11.5) it creates or updates a dynamic neighbor cache entry for the

 Predirect target L3 and L2 addresses, and also creates an IPv6
 forwarding table entry for the Predirected (source) prefix. The node
 then sets an ACCEPT timer and uses this timer to validate any
 messages received from the Predirected neighbor.

 When an AERO node receives a valid Redirect message (see Section
3.11.7) it creates or updates a dynamic neighbor cache entry for the

 Redirect target L3 and L2 addresses, and also creates an IPv6
 forwarding table entry for the Redirected (destination) prefix. The
 node then sets a FORWARD timer and uses this timer to determine
 whether packets can be sent directly to the Redirected neighbor. The
 node also maintains a constant value MAX_RETRY to limit the number of
 keepalives sent when a neighbor has gone unreachable.

 It is RECOMMENDED that FORWARD_TIME be set to the default constant
 value 30 seconds to match the default REACHABLE_TIME value specified
 for IPv6 neighbor discovery [RFC4861].

 It is RECOMMENDED that ACCEPT_TIME be set to the default constant
 value 40 seconds to allow a 10 second window so that the AERO
 redirection procedure can converge before the ACCEPT_TIME timer
 decrements below FORWARD_TIME.

 It is RECOMMENDED that MAX_RETRY be set to 3 the same as described
 for IPv6 neighbor discovery address resolution in Section 7.3.3 of
 [RFC4861].

 Different values for FORWARD_TIME, ACCEPT_TIME, and MAX_RETRY MAY be
 administratively set, if necessary, to better match the AERO link's
 performance characteristics; however, if different values are chosen,
 all nodes on the link MUST consistently configure the same values.
 ACCEPT_TIME SHOULD further be set to a value that is sufficiently
 longer than FORWARD_TIME to allow the AERO redirection procedure to
 converge.

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3

Templin Expires October 4, 2014 [Page 10]

Internet-Draft AERO April 2014

3.6. AERO Interface MTU Considerations

 The AERO link Maximum Transmission Unit (MTU) is 64KB minus the
 encapsulation overhead for IPv4 [RFC0791] and 4GB minus the
 encapsulation overhead for IPv6 [RFC2675]. This is the most that
 IPv4 and IPv6 (respectively) can convey within the constraints of
 protocol constants, but actual sizes available for tunneling will
 frequently be much smaller.

 The base tunneling specifications for IPv4 and IPv6 typically set a
 static MTU on the tunnel interface to 1500 bytes minus the
 encapsulation overhead or smaller still if the tunnel is likely to
 incur additional encapsulations such as IPsec on the path. This can
 result in path MTU related black holes when packets that are too
 large to be accommodated over the AERO link are dropped, but the
 resulting ICMP Packet Too Big (PTB) messages are lost on the return
 path. As a result, AERO nodes use the following MTU mitigations to
 accommodate larger packets.

 AERO nodes set their AERO interface MTU to the larger of 1500 bytes
 and the underlying interface MTU minus the encapsulation overhead.
 AERO nodes optionally cache other per-neighbor MTU values in the
 underlying IP path MTU discovery cache initialized to the underlying
 interface MTU.

 AERO nodes admit packets that are no larger than 1280 bytes minus the
 encapsulation overhead (*) as well as packets that are larger than
 1500 bytes into the tunnel without fragmentation, i.e., as long as
 they are no larger than the AERO interface MTU before encapsulation
 and also no larger than the cached per-neighbor MTU following
 encapsulation. For IPv4, the node sets the "Don't Fragment" (DF) bit
 to 0 for packets no larger than 1280 bytes minus the encapsulation
 overhead (*) and sets the DF bit to 1 for packets larger than 1500
 bytes. If a large packet is lost in the path, the node may
 optionally cache the MTU reported in the resulting PTB message or may
 ignore the message, e.g., if there is a possibility that the message
 is spurious.

 For packets destined to an AERO node that are larger than 1280 bytes
 minus the encapsulation overhead (*) but no larger than 1500 bytes,
 the node uses outer IP fragmentation to fragment the packet into two
 pieces (where the first fragment contains 1024 bytes of the
 fragmented inner packet) then admits the fragments into the tunnel.
 If the outer protocol is IPv4, the node admits the packet into the
 tunnel with DF set to 0 and subject to rate limiting to avoid
 reassembly errors [RFC4963][RFC6864]. For both IPv4 and IPv6, the
 node also sends a 1500 byte probe message (**) to the neighbor,
 subject to rate limiting. To construct a probe, the node prepares an

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc4963

Templin Expires October 4, 2014 [Page 11]

Internet-Draft AERO April 2014

 ICMPv6 Neighbor Solicitation (NS) message with trailing padding
 octets added to a length of 1500 bytes but does not include the
 length of the padding in the IPv6 Payload Length field. The node
 then encapsulates the NS in the outer encapsulation headers (while
 including the length of the padding in the outer length fields), sets
 DF to 1 (for IPv4) and sends the padded NS message to the neighbor.
 If the neighbor returns an NA message, the node may then send whole
 packets within this size range and (for IPv4) relax the rate limiting
 requirement.

 AERO nodes MUST be capable of reassembling packets up to 1500 bytes
 plus the encapsulation overhead length. It is therefore RECOMMENDED
 that AERO nodes be capable of reassembling at least 2KB.

 (*) Note that if it is known that the minimum Path MTU to an AERO
 node is MINMTU bytes (where 1280 < MINMTU < 1500) then MINMTU can be
 used instead of 1280 in the fragmentation threshold considerations
 listed above.

 (**) It is RECOMMENDED that no probes smaller than 1500 bytes be used
 for MTU probing purposes, since smaller probes may be fragmented if
 there is a nested tunnel somewhere on the path to the neighbor.

3.7. AERO Interface Encapsulation, Re-encapsulation and Decapsulation

 AERO interfaces encapsulate IPv6 packets according to whether they
 are entering the AERO interface for the first time or if they are
 being forwarded out the same AERO interface that they arrived on.
 This latter form of encapsulation is known as "re-encapsulation".

 AERO interfaces encapsulate packets per the specifications in ,
 [RFC2473], [RFC4213] except that the interface copies the "TTL/Hop
 Limit", "Type of Service/Traffic Class" and "Congestion Experienced"
 values in the inner network layer header into the corresponding
 fields in the outer IP header. For packets undergoing re-
 encapsulation, the AERO interface instead copies the "TTL/Hop Limit",
 "Type of Service/Traffic Class" and "Congestion Experienced" values
 in the original outer IP header into the corresponding fields in the
 new outer IP header (i.e., the values are transferred between outer
 headers and *not* copied from the inner network layer header).

 When UDP encapsulation is used, the AERO interface inserts a UDP
 header between the inner packet and outer IP header. If the outer
 header is IPv6 and is followed by an IPv6 Fragment header, the AERO
 interface inserts the UDP header between the outer IPv6 header and
 IPv6 Fragment header. The AERO interface sets the UDP source port to
 a constant value that it will use in each successive packet it sends,
 sets the UDP checksum field to zero (see: [RFC6935][RFC6936]) and

https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc6935

Templin Expires October 4, 2014 [Page 12]

Internet-Draft AERO April 2014

 sets the UDP length field to the length of the inner packet plus 8
 bytes for the UDP header itself. For packets sent via a Server, the
 AERO interface sets the UDP destination port to 8060 (i.e., the IANA-
 registerd port number for AERO). For packets sent to a neighboring
 Client, the AERO interface sets the UDP destination port to the port
 value stored in the neighbor cache entry for this neighbor.

 The AERO interface next sets the outer IP protocol number to the
 appropriate value for the first protocol layer within the
 encapsulation (e.g., IPv6, IPv6 Fragment Header, UDP, etc.). When
 IPv6 is used as the outer IP protocol, the ITE then sets the flow
 label value in the outer IPv6 header the same as described in
 [RFC6438]. When IPv4 is used as the outer IP protocol, the AERO
 interface sets the DF bit as discussed in Section 3.2.

 AERO interfaces decapsulate packets destined either to the node
 itself or to a destination reached via an interface other than the
 receiving AERO interface per the specifications in , [RFC2473],
 [RFC4213]. When the encapsulated packet includes a UDP header, the
 AERO interface examines the first octet of data following the UDP
 header to determine the inner header type. If the most significant
 four bits of the first octet encode the value '0110', the inner
 header is an IPv6 header. Otherwise, the interface considers the
 first octet as an IP protocol type that encodes the value '44' for
 IPv6 fragment header, the value '50' for Encapsulating Security
 Payload, the value '51' for Authentication Header etc. (If the first
 octet encodes the value '0', the interface instead discards the
 packet, since this is the value reserved for experimentation under ,
 [RFC6706]). During the decapsulation, the AERO interface records the
 UDP source port in the neighbor cache entry for this neighbor then
 discards the UDP header.

3.8. AERO Reference Operational Scenario

 Figure 3 depicts the AERO reference operational scenario. The figure
 shows an AERO Server('A'), two AERO Clients ('B', 'D') and three
 ordinary IPv6 hosts ('C', 'E', 'F'):

https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc6706

Templin Expires October 4, 2014 [Page 13]

Internet-Draft AERO April 2014

 .-(::::::::)
 .-(::: IPv6 :::)-. +-------------+
 (:::: Internet ::::)--| Host F |
 `-(::::::::::::)-' +-------------+
 `-(::::::)-' 2001:db8:3::1
 |
 +--------------+
 | AERO Server A|
 | (C->B; E->D) |
 +--------------+
 fe80::0
 L2(A)
 |
 X-----+-----------+-----------+--------X
 | AERO Link |
 L2(B) L2(D)
 fe80::2001:db8:0:0 fe80::2001:db8:1:0 .-.
 +--------------+ +--------------+ ,-(_)-.
 | AERO Client B| | AERO Client D| .-(_ IPv6)-.
 | (default->A) | | (default->A) |--(__ EUN)
 +--------------+ +--------------+ `-(______)-'
 2001:DB8:0::/48 2001:DB8:1::/48 |
 | 2001:db8:1::1
 .-. +-------------+
 ,-(_)-. 2001:db8:0::1 | Host E |
 .-(_ IPv6)-. +-------------+ +-------------+
 (__ EUN)--| Host C |
 `-(______)-' +-------------+

 Figure 3: AERO Reference Operational Scenario

 In Figure 3, AERO Server ('A') connects to the AERO link and connects
 to the IPv6 Internet, either directly or via an AERO Relay (not
 shown). Server ('A') assigns the address fe80::0 to its AERO
 interface with link-layer address L2(A). Server ('A') next arranges
 to add L2(A) to a published list of valid Servers for the AERO link.

 AERO Client ('B') registers the IPv6 prefix 2001:db8:0::/48 in a
 DHCPv6 PD exchange via Server ('A') then assigns the address fe80::
 2001:db8:0:0 to its AERO interface with link-layer address L2(B).
 Client ('B') configures a default route via the AERO interface with
 next-hop address fe80::0 and link-layer address L2(A), then sub-
 delegates the prefix 2001:db8:0::/48 to its attached EUNs. IPv6 host
 ('C') connects to the EUN, and configures the address 2001:db8:0::1.

 AERO Client ('D') registers the IPv6 prefix 2001:db8:1::/48 in a
 DHCPv6 PD exchange via Server ('A') then assigns the address fe80::
 2001:db8:1:0 to its AERO interface with link-layer address L2(D).

Templin Expires October 4, 2014 [Page 14]

Internet-Draft AERO April 2014

 Client ('D') configures a default route via the AERO interface with
 next-hop address fe80::0 and link-layer address L2(A), then sub-
 delegates the prefix 2001:db8:1::/48 to its attached EUNs. IPv6 host
 ('E') connects to the EUN, and configures the address 2001:db8:1::1.

 Finally, IPv6 host ('F') connects to an IPv6 network outside of the
 AERO link domain. Host ('F') configures its IPv6 interface in a
 manner specific to its attached IPv6 link, and assigns the address
 2001:db8:3::1 to its IPv6 link interface.

3.9. AERO Router Discovery and Prefix Delegation

3.9.1. AERO Client Behavior

 AERO Clients observe the IPv6 router requirements defined in
 [RFC6434]. AERO Clients first discover the link-layer address of an
 AERO Server via static configuration, or through an automated means
 such as DNS name resolution. In the absence of other information,
 the Client resolves the Fully-Qualified Domain Name (FQDN)
 "linkupnetworks.domainname", where "domainname" is the DNS domain
 appropriate for the Client's attached underlying network. The Client
 then creates a static neighbor cache entry with fe80::0 as the
 network-layer address and the discovered address as the link-layer
 address. The Client further creates a static default IPv6 forwarding
 table entry with fe80::0 as the next hop address.

 Next, the Client acts as a requesting router to register its IPv6
 prefix through DHCPv6 PD [RFC3633] via the Server using fe80::1 as
 the IPv6 source address and fe80::0 as the IPv6 destination address.
 The Client further includes a DHCPv6 Unique Identifier (DUID) based
 on a Universally Unique Identifier (UUID) (also known as DUID-UUID)
 as described in [RFC6355].

 After the Client registers its prefixes, it assigns the link-local
 AERO address taken from its delegated prefix to the AERO interface
 (see: Section 3.3) and sub-delegates the prefix to nodes and links
 within its attached EUNs (the AERO link-local address thereafter
 remains stable as the Client moves).

 The Client sends periodic NS messages to the Server to obtain new NAs
 in order to refresh any network state. The Client can also forward
 IPv6 packets destined to networks beyond its local EUNs via the
 Server as an IPv6 default router. The Server may in turn return a
 Redirect message informing the Client of a neighbor on the AERO link
 that is topologically closer to the final destination as specified in

Section 3.11.

https://datatracker.ietf.org/doc/html/rfc6434
https://datatracker.ietf.org/doc/html/rfc3633
https://datatracker.ietf.org/doc/html/rfc6355

Templin Expires October 4, 2014 [Page 15]

Internet-Draft AERO April 2014

3.9.2. AERO Server Behavior

 AERO Servers observe the IPv6 router requirements defined in
 [RFC6434]. They further configure a DHCPv6 relay/server function on
 their AERO links. When the Server facilitates a DHCPv6 PD exchange,
 it creates a temporary cache entry referenced by the DHCPv6 request's
 DUID-UUID. After the PD request is satisfied, the Server creates a
 static neighbor cache entry for the Client's AERO address (see:

Section 3.3) and a static IPv6 forwarding table entry that lists the
 Client's AERO address as the next hop toward the delegated IPv6
 prefix . The Server also injects the Client's prefix as an IPv6
 route into the inter-Server/Relay routing system (see: [IRON]).

 Servers respond to NS messages from Clients on their AERO interfaces
 by returning an NA message. When the Server receives an NS message,
 it updates the neighbor cache entry using the network layer source
 address as the neighbor's network layer address and using the link-
 layer source address of the NS message as the neighbor's link-layer
 address.

 When the Server forwards a packet via the same AERO interface on
 which it arrived, it initiates an AERO route optimization procedure
 as specified in Section 3.11.

3.10. AERO Neighbor Solicitation and Advertisement

 Each AERO node uses its delegated prefix to create an AERO address
 (see: Section 3.3). It can then send unicast NS messages to elicit
 NA messages from other AERO nodes the same as described for neighbor
 unreachability detection in[RFC4861] except that the messages do not
 include S/TLLAOs.

 When an AERO node sends an NS/NA message, it MUST use its AERO
 address as the IPv6 source address and the AERO address of the
 neighbor as the IPv6 destination address. The AERO node also
 includes the AERO address of the neighbor as the NS/NA message Target
 address with the exception of "terminating NS" messages as described
 in Section 3.13.

 When an AERO node receives an NS/NA message, it accepts the message
 if it has a neighbor cache entry for the neighbor; otherwise, it
 ignores the message.

3.11. AERO Redirection

Section 3.8 describes the AERO reference operational scenario. We
 now discuss the operation and protocol details of AERO Redirection
 with respect to this reference scenario.

https://datatracker.ietf.org/doc/html/rfc6434

Templin Expires October 4, 2014 [Page 16]

Internet-Draft AERO April 2014

3.11.1. Classical Redirection Approaches

 With reference to Figure 3, when the IPv6 source host ('C') sends a
 packet to an IPv6 destination host ('E'), the packet is first
 forwarded via the EUN to AERO Client ('B'). Client ('B') then
 forwards the packet over its AERO interface to AERO Server ('A'),
 which then re-encapsulates and forwards the packet to AERO Client
 ('D'), where the packet is finally forwarded to the IPv6 destination
 host ('E'). When Server ('A') re-encapsulates and forwards the
 packet back out on its advertising AERO interface, it must arrange to
 redirect Client ('B') toward Client ('D') as a better next-hop node
 on the AERO link that is closer to the final destination. However,
 this redirection process applied to AERO interfaces must be more
 carefully orchestrated than on ordinary links since the parties may
 be separated by potentially many underlying network routing hops.

 Consider a first alternative in which Server ('A') informs Client
 ('B') only and does not inform Client ('D') (i.e., "classical
 redirection"). In that case, Client ('D') has no way of knowing that
 Client ('B') is authorized to forward packets from the claimed source
 address, and it may simply elect to drop the packets. Also, Client
 ('B') has no way of knowing whether Client ('D') is performing some
 form of source address filtering that would reject packets arriving
 from a node other than a trusted default router, nor whether Client
 ('D') is even reachable via a direct path that does not involve
 Server ('A').

 Consider a second alternative in which Server ('A') informs both
 Client ('B') and Client ('D') separately, via independent redirection
 control messages (i.e., "augmented redirection"). In that case, if
 Client ('B') receives the redirection control message but Client
 ('D') does not, subsequent packets sent by Client ('B') could be
 dropped due to filtering since Client ('D') would not have a route to
 verify the claimed source address. Also, if Client ('D') receives
 the redirection control message but Client ('B') does not, subsequent
 packets sent in the reverse direction by Client ('D') would be lost.

 Since both of these alternatives have shortcomings, a new redirection
 technique (i.e., "AERO redirection") is needed.

3.11.2. AERO Redirection Concept of Operations

 Again, with reference to Figure 3, when source host ('C') sends a
 packet to destination host ('E'), the packet is first forwarded over
 the source host's attached EUN to Client ('B'), which then forwards
 the packet via its AERO interface to Server ('A').

 Server ('A') then re-encapsulates and forwards the packet out the

Templin Expires October 4, 2014 [Page 17]

Internet-Draft AERO April 2014

 same AERO interface toward Client ('D') and also sends an AERO
 "Predirect" message forward to Client ('D') as specified in

Section 3.11.4. The Predirect message includes Client ('B')'s
 network- and link-layer addresses as well as information that Client
 ('D') can use to determine the IPv6 prefix used by Client ('B') .
 After Client ('D') receives the Predirect message, it process the
 message and returns an AERO Redirect message destined for Client
 ('B') via Server ('A') as specified in Section 3.11.5. During the
 process, Client ('D') also creates or updates a dynamic neighbor
 cache entry for Client ('B'), and creates an IPv6 forwarding table
 entry for Client ('B')'s IPv6 prefix.

 When Server ('A') receives the Redirect message, it re-encapsulates
 the message and forwards it on to Client ('B') as specified in

Section 3.11.6. The message includes Client ('D')'s network- and
 link-layer addresses as well as information that Client ('B') can use
 to determine the IPv6 prefix used by Client ('D'). After Client
 ('B') receives the Redirect message, it processes the message as
 specified in Section 3.11.7. During the process, Client ('B') also
 creates or updates a dynamic neighbor cache entry for Client ('D'),
 and creates an IPv6 forwarding table entry for Client ('D')'s IPv6
 prefix.

 Following the above Predirect/Redirect message exchange, forwarding
 of packets from Client ('B') to Client ('D') without involving Server
 ('A) as an intermediary is enabled. The mechanisms that support this
 exchange are specified in the following sections.

3.11.3. AERO Redirection Message Format

 AERO Redirect/Predirect messages use the same format as for ICMPv6
 Redirect messages depicted in Section 4.5 of [RFC4861], but also
 include a new "Prefix Length" field taken from the low-order 8 bits
 of the Redirect message Reserved field (valid values for the Prefix
 Length field are 0 through 64). The Redirect/Predirect messages are
 formatted as shown in Figure 4:

https://datatracker.ietf.org/doc/html/rfc4861#section-4.5

Templin Expires October 4, 2014 [Page 18]

Internet-Draft AERO April 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (=137) | Code (=0/1) | Checksum |
 +-+
 | Reserved | Prefix Length |
 +-+
 | |
 + +
 | |
 + Target Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

 Figure 4: AERO Redirect/Predirect Message Format

3.11.4. Sending Predirects

 When an AERO Server forwards a packet out the same AERO interface
 that it arrived on, the Server sends a Predirect message forward
 toward the AERO Client nearest the destination instead of sending a
 Redirect message back to AERO Client nearest the source.

 In the reference operational scenario, when Server ('A') forwards a
 packet sent by Client ('B') toward Client ('D'), it also sends a
 Predirect message forward toward Client ('D'), subject to rate
 limiting (see Section 8.2 of [RFC4861]). Server ('A') prepares the
 Predirect message as follows:

 o the link-layer source address is set to 'L2(A)' (i.e., the
 underlying address of Server ('A')).

 o the link-layer destination address is set to 'L2(D)' (i.e., the
 underlying address of Client ('D')).

https://datatracker.ietf.org/doc/html/rfc4861#section-8.2

Templin Expires October 4, 2014 [Page 19]

Internet-Draft AERO April 2014

 o the network-layer source address is set to fe80::0 (i.e., the
 link-local address of Server ('A')).

 o the network-layer destination address is set to fe80::2001:db8:1:0
 (i.e., the AERO address of Client ('D')).

 o the Type is set to 137.

 o the Code is set to 1 to indicate "Predirect".

 o the Prefix Length is set to the length of the prefix to be applied
 to Target address.

 o the Target Address is set to fe80::2001:db8:0::0 (i.e., the AERO
 address of Client ('B')).

 o the Destination Address is set to the IPv6 source address of the
 packet that triggered the Predirection event.

 o the message includes a TLLAO set to 'L2(B)' (i.e., the underlying
 address of Client ('B')).

 o the message includes a Redirected Header Option (RHO) that
 contains the originating packet truncated to ensure that at least
 the network-layer header is included but the size of the message
 does not exceed 1280 bytes.

 Server ('A') then sends the message forward to Client ('D').

3.11.5. Processing Predirects and Sending Redirects

 When Client ('D') receives a Predirect message, it accepts the
 message only if it has a link-layer source address of the Server,
 i.e. 'L2(A)'. Client ('D') further accepts the message only if it
 is willing to serve as a redirection target. Next, Client ('D')
 validates the message according to the ICMPv6 Redirect message
 validation rules in Section 8.1 of [RFC4861].

 In the reference operational scenario, when the Client ('D') receives
 a valid Predirect message, it either creates or updates a dynamic
 neighbor cache entry that stores the Target Address of the message as
 the network-layer address of Client ('B') and stores the link-layer
 address found in the TLLAO as the link-layer address of Client ('B').
 Client ('D') then applies the Prefix Length to the Interface
 Identifier portion of the Target Address and records the resulting
 IPv6 prefix in its IPv6 forwarding table.

 After processing the message, Client ('D') prepares a Redirect

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires October 4, 2014 [Page 20]

Internet-Draft AERO April 2014

 message response as follows:

 o the link-layer source address is set to 'L2(D)' (i.e., the link-
 layer address of Client ('D')).

 o the link-layer destination address is set to 'L2(A)' (i.e., the
 link-layer address of Server ('A')).

 o the network-layer source address is set to 'L3(D)' (i.e., the AERO
 address of Client ('D')).

 o the network-layer destination address is set to 'L3(B)' (i.e., the
 AERO address of Client ('B')).

 o the Type is set to 137.

 o the Code is set to 0 to indicate "Redirect".

 o the Prefix Length is set to the length of the prefix to be applied
 to the Target and Destination address.

 o the Target Address is set to fe80::2001:db8:1::1 (i.e., the AERO
 address of Client ('D')).

 o the Destination Address is set to the IPv6 destination address of
 the packet that triggered the Redirection event.

 o the message includes a TLLAO set to 'L2(D)' (i.e., the underlying
 address of Client ('D')).

 o the message includes as much of the RHO copied from the
 corresponding AERO Predirect message as possible such that at
 least the network-layer header is included but the size of the
 message does not exceed 1280 bytes.

 After Client ('D') prepares the Redirect message, it sends the
 message to Server ('A').

3.11.6. Re-encapsulating and Relaying Redirects

 When Server ('A') receives a Redirect message, it accepts the message
 only if it has a neighbor cache entry that associates the message's
 link-layer source address with the network-layer source address.
 Next, Server ('A') validates the message according to the ICMPv6
 Redirect message validation rules in Section 8.1 of [RFC4861].
 Following validation, Server ('A') re-encapsulates the Redirect then
 relays the re-encapsulated Redirect on to Client ('B') as follows.

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires October 4, 2014 [Page 21]

Internet-Draft AERO April 2014

 In the reference operational scenario, Server ('A') receives the
 Redirect message from Client ('D') and prepares to re-encapsulate and
 forward the message to Client ('B'). Server ('A') first verifies
 that Client ('D') is authorized to use the Prefix Length in the
 Redirect message when applied to the AERO address in the network-
 layer source of the Redirect message, and discards the message if
 verification fails. Otherwise, Server ('A') re-encapsulates the
 message by changing the link-layer source address of the message to
 'L2(A)', changing the network-layer source address of the message to
 fe80::0, and changing the link-layer destination address to 'L2(B)' .
 Server ('A') finally relays the re-encapsulated message to the
 ingress node ('B') without decrementing the network-layer IPv6 header
 Hop Limit field.

 While not shown in Figure 3, AERO Relays relay Redirect and Predirect
 messages in exactly this same fashion described above. See Figure 5
 in Appendix A for an extension of the reference operational scenario
 that includes Relays.

3.11.7. Processing Redirects

 When Client ('B') receives the Redirect message, it accepts the
 message only if it has a link-layer source address of the Server,
 i.e. 'L2(A)'. Next, Client ('B') validates the message according to
 the ICMPv6 Redirect message validation rules in Section 8.1 of
 [RFC4861]. Following validation, Client ('B') then processes the
 message as follows.

 In the reference operational scenario, when Client ('B') receives the
 Redirect message, it either creates or updates a dynamic neighbor
 cache entry that stores the Target Address of the message as the
 network-layer address of Client ('D') and stores the link-layer
 address found in the TLLAO as the link-layer address of Client ('D').
 Client ('B') then applies the Prefix Length to the Interface
 Identifier portion of the Target Address and records the resulting
 IPv6 prefix in its IPv6 forwarding table.

 Now, Client ('B') has an IPv6 forwarding table entry for
 Client('D')'s prefix, and Client ('D') has an IPv6 forwarding table
 entry for Client ('B')'s prefix. Thereafter, the clients may
 exchange ordinary network-layer data packets directly without
 forwarding through Server ('A').

3.12. Neighbor Reachability Maintenance

 When a source Client is redirected to a target Client it MUST test
 the direct path to the target by sending an initial NS message to
 elicit a solicited NA response. While testing the path, the source

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1
https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires October 4, 2014 [Page 22]

Internet-Draft AERO April 2014

 Client SHOULD continue sending packets via the Server until target
 Client reachability has been confirmed. The source Client MUST
 thereafter continue to test the direct path to the target Client (see

Section 7.3 of [RFC4861]) in order to keep dynamic neighbor cache
 entries alive. In particular, the source Client sends NS messages to
 the target Client subject to rate limiting in order to receive
 solicited NA messages. If at any time the direct path appears to be
 failing, the source Client can resume sending packets via the Server
 which may or may not result in a new redirection event.

 When a target Client receives an NS message from a source Client, it
 resets the ACCEPT_TIME timer if a neighbor cache entry exists;
 otherwise, it discards the NS message.

 When a source Client receives a solicited NA message form a target
 Client, it resets the FORWARD_TIME timer if a neighbor cache entry
 exists; otherwise, it discards the NA message.

 When both the FORWARD_TIME and ACCEPT_TIME timers on a dynamic
 neighbor cache entry expire, the Client deletes both the neighbor
 cache entry and the corresponding IPv6 forwarding table entry.

 If the source Client is unable to elicit an NA response from the
 target Client after MAX_RETRY attempts, it SHOULD consider the direct
 path unusable for forwarding purposes. Otherwise, the source Client
 may continue to send packets directly to the target Client and SHOULD
 thereafter process any link-layer errors as a hint that the direct
 path to the target Client has either failed or has become
 intermittent.

3.13. Mobility and Link-Layer Address Change Considerations

 When a Client needs to change its link-layer address (e.g., due to a
 mobility event, due to a change in underlying network interface,
 etc.), it sends an immediate NS message forward to any of its
 correspondents (including the Server and any other Clients) which
 then discover the new link-layer address.

 If two Clients change their link-layer addresses simultaneously, the
 NS/NA messages may be lost. In that case, the Clients SHOULD delete
 their respective dynamic neighbor cache and IPv6 forwarding table
 entries, and allow packets to again flow through their Server(s)
 which MAY result in a new AERO redirection exchange.

 When a Client needs to change to a new Server, it changes the link-
 layer address of the neighbor cache entry for fe80::0 to the address
 of the new Server and performs a DHCPv6 PD exchange via the new
 Server. After the PD exchange is satisfied, the Client sends a

https://datatracker.ietf.org/doc/html/rfc4861#section-7.3

Templin Expires October 4, 2014 [Page 23]

Internet-Draft AERO April 2014

 "terminating NS" message to the old Server. The terminating NS
 message is prepared exactly the same as for an ordinary NS message,
 except that the Target Address field contains the value '0'.

 When the Server receives the terminating NS message, it withdraws the
 IPv6 route from the routing system and deletes the neighbor cache
 entry and IPv6 forwarding table entry for the Client. The Server
 then returns an NA message which the Client can use to verify that
 the termination signal has been processed. (Note that the Server can
 impose a small delay before deleting the neighbor cache and IPv6
 forwarding table entries so that any packets already in the system
 can still be delivered to the Client.)

3.14. Underlying Protocol Version Considerations

 A source Client may connect only to an IPvX underlying network, while
 the target Client connects only to an IPvY underlying network. In
 that case, the source Client has no means for reaching the target
 directly (since they connect to underlying networks of different IP
 protocol versions) and so must ignore any Redirects and continue to
 send packets via the Server.

3.15. Multicast Considerations

 When the underlying network does not support multicast, AERO nodes
 map IPv6 link-scoped multicast addresses (including
 "All_DHCP_Relay_Agents_and_Servers") to the underlying IP address of
 the AERO Server.

 When the underlying network supports multicast, AERO nodes use the
 multicast address mapping specification found in [RFC2529] for IPv4
 underlying networks and use a direct multicast mapping for IPv6
 underlying networks. (In the latter case, "direct multicast mapping"
 means that if the IPv6 multicast destination address of the inner
 packet is "M", then the IPv6 multicast destination address of the
 encapsulating header is also "M".)

3.16. Operation on Server-less AERO Links

 In some AERO link scenarios, there may be no Server on the link
 and/or no need for Clients to use a Server as an intermediary trust
 anchor. In that case, Clients can establish dynamic neighbor cache
 entries and IPv6 forwarding table entries by performing direct
 Client-to-Client Predirect/Redirect exchanges, and some other form of
 trust basis must be applied so that each Client can verify that the
 prospective neighbor is authorized to use its claimed prefix.

 When there is no Server on the link, Clients must arrange to receive

https://datatracker.ietf.org/doc/html/rfc2529

Templin Expires October 4, 2014 [Page 24]

Internet-Draft AERO April 2014

 prefix delegations and publish the delegations via a secure prefix
 discovery service through some means outside the scope of this
 document.

3.17. Other Considerations

 IPv6 hosts serviced by an AERO Client can reach IPv4-only services
 via a NAT64 gateway [RFC6146] within the IPv6 network.

 AERO nodes can use the Default Address Selection Policy with DHCPv6
 option [RFC7078] the same as on any IPv6 link.

 All other (non-multicast) functions that operate over ordinary IPv6
 links operate in the same fashion over AERO links.

4. Implementation Status

 An early implementation is available at:
http://linkupnetworks.com/aero/aerov2-0.1.tgz.

5. IANA Considerations

 This document uses the UDP Service Port Number 8060 reserved by IANA
 for AERO in [RFC6706]. Therefore, there are no new IANA actions
 required for this document.

6. Security Considerations

 AERO link security considerations are the same as for standard IPv6
 Neighbor Discovery [RFC4861] except that AERO improves on some
 aspects. In particular, AERO is dependent on a trust basis between
 AERO Clients and Servers, where the Clients only engage in the AERO
 mechanism when it is facilitated by a trust anchor.

 AERO links must be protected against link-layer address spoofing
 attacks in which an attacker on the link pretends to be a trusted
 neighbor. Links that provide link-layer securing mechanisms (e.g.,
 WiFi networks) and links that provide physical security (e.g.,
 enterprise network LANs) provide a first line of defense that is
 often sufficient. In other instances, securing mechanisms such as
 Secure Neighbor Discovery (SeND) [RFC3971] or IPsec [RFC4301] may be
 necessary.

 AERO Clients MUST ensure that their connectivity is not used by
 unauthorized nodes to gain access to a protected network. (This

https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc7078
http://linkupnetworks.com/aero/aerov2-0.1.tgz
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4301

Templin Expires October 4, 2014 [Page 25]

Internet-Draft AERO April 2014

 concern is no different than for ordinary hosts that receive an IP
 address delegation but then "share" the address with unauthorized
 nodes via an IPv6/IPv6 NAT function.)

 On some AERO links, establishment and maintenance of a direct path
 between neighbors requires secured coordination such as through the
 Internet Key Exchange (IKEv2) protocol [RFC5996].

7. Acknowledgements

 Discussions both on the v6ops list and in private exchanges helped
 shape some of the concepts in this work. Individuals who contributed
 insights include Mikael Abrahamsson, Fred Baker, Stewart Bryant,
 Brian Carpenter, Brian Haberman, Joel Halpern, Sascha Hlusiak, Lee
 Howard and Joe Touch. Members of the IESG also provided valuable
 input during their review process that greatly improved the document.
 Special thanks go to Stewart Bryant, Joel Halpern and Brian Haberman
 for their shepherding guidance.

 This work has further been encouraged and supported by Boeing
 colleagues including Keith Bartley, Balaguruna Chidambaram, Jeff
 Holland, Cam Brodie, Yueli Yang, Wen Fang, Ed King, Mike Slane, Kent
 Shuey, Gen MacLean, and other members of the BR&T and BIT mobile
 networking teams.

 Earlier works on NBMA tunneling approaches are found in
 [RFC2529][RFC5214][RFC5569].

8. References

8.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc5569
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires October 4, 2014 [Page 26]

Internet-Draft AERO April 2014

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 December 2003.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

 [RFC6355] Narten, T. and J. Johnson, "Definition of the UUID-Based
 DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355,
 August 2011.

 [RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node
 Requirements", RFC 6434, December 2011.

8.2. Informative References

 [IRON] Templin, F., "The Internet Routing Overlay Network
 (IRON)", Work in Progress, June 2012.

 [RFC0879] Postel, J., "TCP maximum segment size and related topics",
RFC 879, November 1983.

 [RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529, March 1999.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3633
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc6355
https://datatracker.ietf.org/doc/html/rfc6434
https://datatracker.ietf.org/doc/html/rfc879
https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4301

Templin Expires October 4, 2014 [Page 27]

Internet-Draft AERO April 2014

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
 Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
 March 2008.

 [RFC5569] Despres, R., "IPv6 Rapid Deployment on IPv4
 Infrastructures (6rd)", RFC 5569, January 2010.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC 5996, September 2010.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, April 2011.

 [RFC6204] Singh, H., Beebee, W., Donley, C., Stark, B., and O.
 Troan, "Basic Requirements for IPv6 Customer Edge
 Routers", RFC 6204, April 2011.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, November 2011.

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
RFC 6691, July 2012.

 [RFC6706] Templin, F., "Asymmetric Extended Route Optimization
 (AERO)", RFC 6706, August 2012.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, February 2013.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935, April 2013.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, April 2013.

 [RFC6980] Gont, F., "Security Implications of IPv6 Fragmentation
 with IPv6 Neighbor Discovery", RFC 6980, August 2013.

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc5214
https://datatracker.ietf.org/doc/html/rfc5569
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6204
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc6980

Templin Expires October 4, 2014 [Page 28]

Internet-Draft AERO April 2014

 [RFC7078] Matsumoto, A., Fujisaki, T., and T. Chown, "Distributing
 Address Selection Policy Using DHCPv6", RFC 7078,
 January 2014.

Appendix A. AERO Server and Relay Interworking

 Figure 3 depicts a reference AERO operational scenario with a single
 Server on the AERO link. In order to support scaling to larger
 numbers of nodes, the AERO link can deploy multiple Servers and
 Relays, e.g., as shown in Figure 5.

 .-(::::::::)
 .-(::: IPv6 :::)-.
 (:: Internetwork ::)
 `-(::::::::::::)-'
 `-(::::::)-'
 |
 +--------------+ +------+-------+ +--------------+
 |AERO Server C | | AERO Relay D | |AERO Server E |
 | (default->D) | | (A->C; G->E) | | (default->D) |
 | (A->B) | +-------+------+ | (G->F) |
 +-------+------+ | +------+-------+
 | | |
 X---+---+-------------------+------------------+---+---X
 | AERO Link |
 +-----+--------+ +--------+-----+
 |AERO Client B | |AERO Client F |
 | (default->C) | | (default->E) |
 +--------------+ +--------------+
 .-. .-.
 ,-(_)-. ,-(_)-.
 .-(_ IPv6)-. .-(_ IPv6)-.
 (__ EUN) (__ EUN)
 `-(______)-' `-(______)-'
 | |
 +--------+ +--------+
 | Host A | | Host G |
 +--------+ +--------+

 Figure 5: AERO Server/Relay Interworking

 In this example, AERO Client ('B') associates with AERO Server ('C'),
 while AERO Client ('F') associates with AERO Server ('E').
 Furthermore, AERO Servers ('C') and ('E') do not associate with each
 other directly, but rather have an association with AERO Relay ('D')
 (i.e., a router that has full topology information concerning its
 associated Servers and their Clients). Relay ('D') connects to the

https://datatracker.ietf.org/doc/html/rfc7078

Templin Expires October 4, 2014 [Page 29]

Internet-Draft AERO April 2014

 AERO link, and also connects to the native IPv6 Internetwork.

 When host ('A') sends a packet toward destination host ('G'), IPv6
 forwarding directs the packet through the EUN to Client ('B'), which
 forwards the packet to Server ('C') in absence of more-specific
 forwarding information. Server ('C') forwards the packet, and it
 also generates an AERO Predirect message that is then forwarded
 through Relay ('D') to Server ('E'). When Server ('E') receives the
 message, it forwards the message to Client ('F').

 After processing the AERO Predirect message, Client ('F') sends an
 AERO Redirect message to Server ('E'). Server ('E'), in turn,
 forwards the message through Relay ('D') to Server ('C'). When
 Server ('C') receives the message, it forwards the message to Client
 ('B') informing it that host 'G's EUN can be reached via Client
 ('F'), thus completing the AERO redirection.

 The network layer routing information shared between Servers and
 Relays must be carefully coordinated in a manner outside the scope of
 this document. In particular, Relays require full topology
 information, while individual Servers only require partial topology
 information (i.e., they only need to know the EUN prefixes associated
 with their current set of Clients). See [IRON] for an architectural
 discussion of routing coordination between Relays and Servers.

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

Templin Expires October 4, 2014 [Page 30]

