
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320, rfc5558, rfc5720, September 25, 2014

rfc6179, rfc6706 (if
 approved)
Intended status: Standards Track
Expires: March 29, 2015

Transmission of IP Packets over AERO Links
draft-templin-aerolink-40.txt

Abstract

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). Nodes attached
 to AERO links can exchange packets via trusted intermediate routers
 that provide forwarding services to reach off-link destinations and
 redirection services for route optimization. AERO provides an IPv6
 link-local address format known as the AERO address that supports
 operation of the IPv6 Neighbor Discovery (ND) protocol and links IPv6
 ND to IP forwarding. Admission control and provisioning are
 supported by the Dynamic Host Configuration Protocol for IPv6
 (DHCPv6), and node mobility is naturally supported through dynamic
 neighbor cache updates. Although DHCPv6 and IPv6 ND messaging is
 used in the control plane, both IPv4 and IPv6 are supported in the
 data plane.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 29, 2015.

Templin Expires March 29, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft AERO September 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Asymmetric Extended Route Optimization (AERO) 6
3.1. AERO Link Reference Model 6
3.2. AERO Node Types . 7
3.3. AERO Addresses . 8
3.4. AERO Interface Characteristics 9
3.4.1. Coordination of Multiple Underlying Interfaces . . . 11

3.5. AERO Interface Neighbor Cache Maintenace 11
3.6. AERO Interface Sending Algorithm 13

 3.7. AERO Interface Encapsulation, Re-encapsulation and
 Decapsulation . 15

3.8. AERO Interface Data Origin Authentication 16
3.9. AERO Interface MTU and Fragmentation 17
3.9.1. Accommodating Large IPv6 ND and DHCPv6 Messages . . . 19
3.9.2. Integrity . 20

3.10. AERO Interface Error Handling 21
 3.11. AERO Router Discovery, Prefix Delegation and Address
 Configuration . 25

3.11.1. AERO DHCPv6 Service Model 25
3.11.2. AERO Client Behavior 26
3.11.3. AERO Server Behavior 28

3.12. AERO Relay/Server Routing System 31
3.13. AERO Redirection . 31
3.13.1. Reference Operational Scenario 31
3.13.2. Concept of Operations 33
3.13.3. Message Format 33
3.13.4. Sending Predirects 34
3.13.5. Re-encapsulating and Relaying Predirects 35
3.13.6. Processing Predirects and Sending Redirects 36
3.13.7. Re-encapsulating and Relaying Redirects 38

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Templin Expires March 29, 2015 [Page 2]

Internet-Draft AERO September 2014

3.13.8. Processing Redirects 39
3.13.9. Server-Oriented Redirection 39

3.14. Neighbor Unreachability Detection (NUD) 39
3.15. Mobility Management 41
3.15.1. Announcing Link-Layer Address Changes 41
3.15.2. Bringing New Links Into Service 42
3.15.3. Removing Existing Links from Service 42
3.15.4. Moving to a New Server 43

3.16. Encapsulation Protocol Version Considerations 43
3.17. Multicast Considerations 44
3.18. Operation on AERO Links Without DHCPv6 Services 44
3.19. Operation on Server-less AERO Links 44
3.20. Proxy AERO . 45
3.21. Extending AERO Links Through Security Gateways 46
3.22. Extending IPv6 AERO Links to the Internet 47

4. Implementation Status . 51
5. IANA Considerations . 51
6. Security Considerations 51
7. Acknowledgements . 52
8. References . 52
8.1. Normative References 52
8.2. Informative References 53

 Author's Address . 56

1. Introduction

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). The AERO link
 can be used for tunneling to neighboring nodes over either IPv6 or
 IPv4 networks, i.e., AERO views the IPv6 and IPv4 networks as
 equivalent links for tunneling. Nodes attached to AERO links can
 exchange packets via trusted intermediate routers that provide
 forwarding services to reach off-link destinations and redirection
 services for route optimization that addresses the requirements
 outlined in [RFC5522].

 AERO provides an IPv6 link-local address format known as the AERO
 address that supports operation of the IPv6 Neighbor Discovery (ND)
 [RFC4861] protocol and links IPv6 ND to IP forwarding. Admission
 control and provisioning are supported by the Dynamic Host
 Configuration Protocol for IPv6 (DHCPv6) [RFC3315], and node mobility
 is naturally supported through dynamic neighbor cache updates.
 Although DHCPv6 and IPv6 ND message signalling is used in the control
 plane, both IPv4 and IPv6 can be used in the data plane. The
 remainder of this document presents the AERO specification.

https://datatracker.ietf.org/doc/html/rfc5522
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3315

Templin Expires March 29, 2015 [Page 3]

Internet-Draft AERO September 2014

2. Terminology

 The terminology in the normative references applies; the following
 terms are defined within the scope of this document:

 AERO link
 a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
 configured over a node's attached IPv6 and/or IPv4 networks. All
 nodes on the AERO link appear as single-hop neighbors from the
 perspective of the virtual overlay.

 AERO interface
 a node's attachment to an AERO link.

 AERO address
 an IPv6 link-local address constructed as specified in Section 3.2
 and assigned to a Client's AERO interface.

 AERO node
 a node that is connected to an AERO link and that participates in
 IPv6 ND and DHCPv6 messaging over the link.

 AERO Client ("Client")
 a node that applies an AERO address to an AERO interface and
 receives an IP prefix via a DHCPv6 Prefix Delegation (PD) exchange
 with one or more AERO Servers.

 AERO Server ("Server")
 a node that configures an AERO interface to provide default
 forwarding and DHCPv6 services for AERO Clients. The Server
 applies the IPv6 link-local subnet router anycast address (fe80::)
 to the AERO interface and also applies an administratively
 assigned IPv6 link-local unicast address used for operation of
 DHCPv6 and the IPv6 ND protocol.

 AERO Relay ("Relay")
 a node that configures an AERO interface to relay IP packets
 between nodes on the same AERO link and/or forward IP packets
 between the AERO link and the native Internetwork. The Relay
 applies an administratively assigned IPv6 link-local unicast
 address to the AERO interface the same as for a Server.

 ingress tunnel endpoint (ITE)
 an AERO interface endpoint that injects tunneled packets into an
 AERO link.

 egress tunnel endpoint (ETE)

Templin Expires March 29, 2015 [Page 4]

Internet-Draft AERO September 2014

 an AERO interface endpoint that receives tunneled packets from an
 AERO link.

 underlying network
 a connected IPv6 or IPv4 network routing region over which the
 tunnel virtual overlay is configured. A typical example is an
 enterprise network.

 underlying interface
 an AERO node's interface point of attachment to an underlying
 network.

 link-layer address
 an IP address assigned to an AERO node's underlying interface.
 When UDP encapsulation is used, the UDP port number is also
 considered as part of the link-layer address. Link-layer
 addresses are used as the encapsulation header source and
 destination addresses.

 network layer address
 the source or destination address of the encapsulated IP packet.

 end user network (EUN)
 an internal virtual or external edge IP network that an AERO
 Client connects to the rest of the network via the AERO interface.

 AERO Service Prefix (ASP)
 an IP prefix associated with the AERO link and from which AERO
 Client Prefixes (ACPs) are derived (for example, the IPv6 ACP
 2001:db8:1:2::/64 is derived from the IPv6 ASP 2001:db8::/32).

 AERO Client Prefix (ACP)
 a more-specific IP prefix taken from an ASP and delegated to a
 Client.

 Throughout the document, the simple terms "Client", "Server" and
 "Relay" refer to "AERO Client", "AERO Server" and "AERO Relay",
 respectively. Capitalization is used to distinguish these terms from
 DHCPv6 client/server/relay.

 The terminology of [RFC4861] (including the names of node variables
 and protocol constants) applies to this document. Also throughout
 the document, the term "IP" is used to generically refer to either
 Internet Protocol version (i.e., IPv4 or IPv6).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires March 29, 2015 [Page 5]

Internet-Draft AERO September 2014

3. Asymmetric Extended Route Optimization (AERO)

 The following sections specify the operation of IP over Asymmetric
 Extended Route Optimization (AERO) links:

3.1. AERO Link Reference Model

 .-(::::::::)
 .-(:::: IP ::::)-.
 (:: Internetwork ::)
 `-(::::::::::::)-'
 `-(::::::)-'
 |
 +--------------+ +--------+-------+ +--------------+
 |AERO Server S1| | AERO Relay R1 | |AERO Server S2|
 | Nbr: C1; R1 | | Nbr: S1; S2 | | Nbr: C2; R1 |
 | default->R1 | |(H1->S1; H2->S2)| | default->R1 |
 | H1->C1 | +--------+-------+ | H2->C2 |
 +-------+------+ | +------+-------+
 | | |
 X---+---+-------------------+------------------+---+---X
 | AERO Link |
 +-----+--------+ +--------+-----+
 |AERO Client C1| |AERO Client C2|
 | Nbr: S1 | | Nbr: S2 |
 | default->S1 | | default->S2 |
 +--------------+ +--------------+
 .-. .-.
 ,-(_)-. ,-(_)-.
 .-(_ IP)-. .-(_ IP)-.
 (__ EUN) (__ EUN)
 `-(______)-' `-(______)-'
 | |
 +--------+ +--------+
 | Host H1| | Host H2|
 +--------+ +--------+

 Figure 1: AERO Link Reference Model

 Figure 1 above presents the AERO link reference model. In this
 model:

 o Relay R1 acts as a default router for its associated Servers S1
 and S2, and connects the AERO link to the rest of the IP
 Internetwork

 o Servers S1 and S2 associate with Relay R1 and also act as default
 routers for their associated Clients C1 and C2.

Templin Expires March 29, 2015 [Page 6]

Internet-Draft AERO September 2014

 o Clients C1 and C2 associate with Servers S1 and S2, respectively
 and also act as default routers for their associated EUNs

 o Hosts H1 and H2 attach to the EUNs served by Clients C1 and C2,
 respectively

 In common operational practice, there may be many additional Relays,
 Servers and Clients.

3.2. AERO Node Types

 AERO Relays provide default forwarding services to AERO Servers.
 Relays forward packets between Servers connected to the same AERO
 link and also forward packets between the AERO link and the native
 Internetwork. Relays present the AERO link to the native
 Internetwork as a set of one or more AERO Service Prefixes (ASPs).
 Each Relay advertises the ASPs for the AERO link into the native IP
 Internetwork and serves as a gateway between the AERO link and the
 Internetwork. AERO Relays maintain an AERO interface neighbor cache
 entry for each AERO Server, and maintain an IP forwarding table entry
 for each AERO Client Prefix (ACP).

 AERO Servers provide default forwarding services to AERO Clients.
 Each Server also peers with each Relay in a dynamic routing protocol
 instance to advertise its list of associated ACPs. Servers configure
 a DHCPv6 server function to facilitate Prefix Delegation (PD)
 exchanges with Clients. Each delegated prefix becomes an ACP taken
 from an ASP. Servers forward packets between Clients and Relays, as
 well as between Clients and other Clients associated with the same
 Server. AERO Servers maintain an AERO interface neighbor cache entry
 for each AERO Relay. They also maintain both a neighbor cache entry
 and an IP forwarding table entry for each of their associated
 Clients.

 AERO Clients act as requesting routers to receive ACPs through DHCPv6
 PD exchanges with AERO Servers over the AERO link and sub-delegate
 portions of their ACPs to EUN interfaces. (Each Client MAY associate
 with a single Server or with multiple Servers, e.g., for fault
 tolerance and/or load balancing.) Each IPv6 Client receives at least
 a /64 IPv6 ACP, and may receive even shorter prefixes. Similarly,
 each IPv4 Client receives at least a /32 IPv4 ACP (i.e., a singleton
 IPv4 address), and may receive even shorter prefixes. AERO Clients
 maintain an AERO interface neighbor cache entry for each of their
 associated Servers as well as for each of their correspondent
 Clients.

 AERO Clients that act as hosts typically configure a TUN/TAP
 interface as a point-to-point linkage between the IP layer and the

Templin Expires March 29, 2015 [Page 7]

Internet-Draft AERO September 2014

 AERO interface. The IP layer therefore sees only the TUN/TAP
 interface, while the AERO interface provides an intermediate conduit
 between the TUN/TAP interface and the underlying interfaces. AERO
 Clients that act as hosts assign one or more IP addresses from their
 ACPs to the TUN/TAP interface.

3.3. AERO Addresses

 An AERO address is an IPv6 link-local address with an embedded ACP
 and assigned to a Client's AERO interface. The AERO address is
 formed as follows:

 fe80::[ACP]

 For IPv6, the AERO address begins with the prefix fe80::/64 and
 includes in its interface identifier the base prefix taken from the
 Client's IPv6 ACP. The base prefix is determined by masking the ACP
 with the prefix length. For example, if the AERO Client receives the
 IPv6 ACP:

 2001:db8:1000:2000::/56

 it constructs its AERO address as:

 fe80::2001:db8:1000:2000

 For IPv4, the AERO address is formed from the lower 64 bits of an
 IPv4-mapped IPv6 address [RFC4291] that includes the base prefix
 taken from the Client's IPv4 ACP. For example, if the AERO Client
 receives the IPv4 ACP:

 192.0.2.32/28

 it constructs its AERO address as:

 fe80::FFFF:192.0.2.32

 The AERO address remains stable as the Client moves between
 topological locations, i.e., even if its link-layer addresses change.

 NOTE: In some cases, prospective neighbors may not have advanced
 knowledge of the Client's ACP length and may therefore send initial
 IPv6 ND messages with an AERO destination address that matches the
 ACP but does not correspond to the base prefix. In that case, the
 Client MUST accept the address as equivalent to the base address, but
 then use the base address as the source address of any IPv6 ND
 message replies. For example, if the Client receives the IPv6 ACP
 2001:db8:1000:2000::/56 then subsequently receives an IPv6 ND message

https://datatracker.ietf.org/doc/html/rfc4291

Templin Expires March 29, 2015 [Page 8]

Internet-Draft AERO September 2014

 with destination address fe80::2001:db8:1000:2001, it accepts the
 message but uses fe80::2001:db8:1000:2000 as the source address of
 any IPv6 ND replies.

3.4. AERO Interface Characteristics

 AERO interfaces use IP-in-IPv6 encapsulation [RFC2473] to exchange
 tunneled packets with AERO neighbors attached to an underlying IPv6
 network, and use IP-in-IPv4 encapsulation [RFC2003][RFC4213] to
 exchange tunneled packets with AERO neighbors attached to an
 underlying IPv4 network. AERO interfaces can also coordinate secured
 tunnel types such as IPsec [RFC4301] or TLS [RFC5246]. When Network
 Address Translator (NAT) traversal and/or filtering middlebox
 traversal may be necessary, a UDP header is further inserted
 immediately above the IP encapsulation header.

 AERO interfaces maintain a neighbor cache, and AERO Clients and
 Servers use an adaptation of standard unicast IPv6 ND messaging.
 AERO interfaces use unicast Neighbor Solicitation (NS), Neighbor
 Advertisement (NA), Router Solicitation (RS) and Router Advertisement
 (RA) messages the same as for any IPv6 link. AERO interfaces use two
 redirection message types -- the first known as a Predirect message
 and the second being the standard Redirect message (see

Section 3.12). AERO links further use link-local-only addressing;
 hence, AERO nodes ignore any Prefix Information Options (PIOs) they
 may receive in RA messages over an AERO interface.

 AERO interface ND messages include one or more Target Link-Layer
 Address Options (TLLAOs) formatted as shown in Figure 2:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 2 | Length = 3 | Reserved |
 +-+
 | Link ID | Preference | UDP Port Number |
 +-+
 | |
 +-- --+
 | |
 +-- IP Address --+
 | |
 +-- --+
 | |
 +-+

 Figure 2: AERO Target Link-Layer Address Option (TLLAO) Format

https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5246

Templin Expires March 29, 2015 [Page 9]

Internet-Draft AERO September 2014

 In this format, Link ID is an integer value between 0 and 255
 corresponding to an underlying interface of the target node, and
 Preference is an integer value between 0 and 255 indicating the
 node's preference for this underlying interface (with 255 being the
 highest preference, 1 being the lowest, and 0 meaning "link
 disabled"). UDP Port Number and IP Address are set to the addresses
 used by the target node when it sends encapsulated packets over the
 underlying interface. When the encapsulation IP address family is
 IPv4, IP Address is formed as an IPv4-mapped IPv6 address [RFC4291].

 When a Relay enables an AERO interface, it assigns an
 administratively assigned link-local address fe80::ID to the
 interface. Each fe80::ID address MUST be unique among all Relays and
 Servers on the link, and MUST NOT collide with any potential AERO
 addresses. The addresses are typically taken from the range
 fe80::/96, e.g., as fe80::1, fe80::2, fe80::3, etc. The Relay also
 maintains an IP forwarding table entry for each Client-Server
 association and maintains a neighbor cache entry for each Server on
 the link. Relays do not require the use of IPv6 ND messaging for
 reachability determination since Relays and Servers engage in a
 dynamic routing protocol over the AERO interface. At a minimum,
 however, Relays respond to NS messages by returning an NA.

 When a Server enables an AERO interface, it assigns the address
 fe80:: to the interface as a link-local Subnet Router Anycast
 address, and also assigns an administratively assigned link-local
 address fe80::ID the same as for Relays. (The Server then accepts
 DHCPv6 and IPv6 ND solicitation messages destined to either the
 fe80:: or fe80::ID addresses, but always uses fe80::ID as the source
 address in the replies it generates.) The Server further configures
 a DHCPv6 server function to facilitate DHCPv6 PD exchanges with AERO
 Clients. The Server maintains a neighbor cache entry for each Relay
 on the link, and manages per-Client neighbor cache entries and IP
 forwarding table entries based on DHCPv6 exchanges. When the Server
 receives an NS/RS message on the AERO interface it returns an NA/RA
 message but does not update the neighbor cache. Each Server also
 engages in a dynamic routing protocol with all Relays on the link.
 Finally, the Server provides a simple conduit between Clients and
 Relays, or between Clients and other Clients. Therefore, packets
 enter the Server's AERO interface from the link layer and are
 forwarded back out the link layer without ever leaving the AERO
 interface and therefore without ever disturbing the network layer.

 When a Client enables an AERO interface, it invokes DHCPv6 PD to
 receive an ACP from an AERO Server. Next, it assigns the
 corresponding AERO address to the AERO interface and creates a
 neighbor cache entry for the Server, i.e., the PD exchange bootstraps
 the provisioning of a unique link-local address. The Client

https://datatracker.ietf.org/doc/html/rfc4291

Templin Expires March 29, 2015 [Page 10]

Internet-Draft AERO September 2014

 maintains a neighbor cache entry for each of its Servers and each of
 its active correspondent Clients. When the Client receives Redirect/
 Predirect messages on the AERO interface it updates or creates
 neighbor cache entries, including link-layer address information.
 Unsolicited NA messages update the cached link-layer addresses for
 correspondent Clients (e.g., following a link-layer address change
 due to node mobility) but do not create new neighbor cache entries.
 NS/NA messages used for Neighbor Unreachability Detection (NUD)
 update timers in existing neighbor cache entires but do not update
 link-layer addresses nor create new neighbor cache entries. Finally,
 the Client need not maintain any IP forwarding table entries for its
 Servers or correspondent Clients. Instead, it can set a single
 "route-to-interface" default route in the IP forwarding table
 pointing to the AERO interface, and all forwarding decisions can be
 made within the AERO interface based on neighbor cache entries. (On
 systems in which adding a default route would violate security
 policy, the default route could instead be installed via a
 "synthesized RA", e.g., as discussed in Section 3.11.2.)

3.4.1. Coordination of Multiple Underlying Interfaces

 AERO interfaces may be configured over multiple underlying
 interfaces. For example, common mobile handheld devices have both
 wireless local area network ("WLAN") and cellular wireless links.
 These links are typically used "one at a time" with low-cost WLAN
 preferred and highly-available cellular wireless as a standby. In a
 more complex example, aircraft frequently have many wireless data
 link types (e.g. satellite-based, terrestrial, air-to-air
 directional, etc.) with diverse performance and cost properties.

 If a Client's multiple underlying interfaces are used "one at a time"
 (i.e., all other interfaces are in standby mode while one interface
 is active), then Redirect, Predirect and unsolicited NA messages
 include only a single TLLAO with Link ID set to a constant value.

 If the Client has multiple active underlying interfaces, then from
 the perspective of IPv6 ND it would appear to have a single link-
 local address with multiple link-layer addresses. In that case,
 Redirect, Predirect and unsolicited NA messages MAY include multiple
 TLLAOs -- each with a different Link ID that corresponds to a
 specific underlying interface of the Client.

3.5. AERO Interface Neighbor Cache Maintenace

 Each AERO interface maintains a conceptual neighbor cache that
 includes an entry for each neighbor it communicates with on the AERO
 link, the same as for any IPv6 interface [RFC4861]. AERO interface

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires March 29, 2015 [Page 11]

Internet-Draft AERO September 2014

 neighbor cache entires are said to be one of "permanent", "static" or
 "dynamic".

 Permanent neighbor cache entries are created through explicit
 administrative action; they have no timeout values and remain in
 place until explicitly deleted. AERO Relays maintain a permanent
 neighbor cache entry for each Server on the link, and AERO Servers
 maintain a permanent neighbor cache entry for each Relay on the link.

 Static neighbor cache entries are created though DHCPv6 PD exchanges
 and remain in place for durations bounded by prefix lifetimes. AERO
 Servers maintain a static neighbor cache entry for each of their
 associated Clients, and AERO Clients maintain a static neighbor cache
 for each of their associated Servers. When an AERO Server sends a
 DHCPv6 Reply message response to a Client's DHCPv6 Solicit/Request or
 Renew message, it creates or updates a static neighbor cache entry
 based on the Client's AERO address as the network-layer address, the
 prefix lifetime as the neighbor cache entry lifetime, the Client's
 encapsulation IP address and UDP port number as the link-layer
 address and the prefix length as the length to apply to the AERO
 address. When an AERO Client receives a DHCPv6 Reply message from a
 Server, it creates or updates a static neighbor cache entry based on
 the Reply message link-local source address as the network-layer
 address, the prefix lifetime as the neighbor cache entry lifetime,
 and the encapsulation IP source address and UDP source port number as
 the link-layer address.

 Dynamic neighbor cache entries are created based on receipt of an
 IPv6 ND message, and are garbage-collected if not used within a short
 timescale. AERO Clients maintain dynamic neighbor cache entries for
 each of their active correspondent Clients with lifetimes based on
 IPv6 ND messaging constants. When an AERO Client receives a valid
 Predirect message it creates or updates a dynamic neighbor cache
 entry for the Predirect target network-layer and link-layer addresses
 plus prefix length. The node then sets an "AcceptTime" variable in
 the neighbor cache entry and uses this value to determine whether
 packets received from the correspondent can be accepted. When an
 AERO Client receives a valid Redirect message it creates or updates a
 dynamic neighbor cache entry for the Redirect target network-layer
 and link-layer addresses plus prefix length. The Client then sets a
 "ForwardTime" variable in the neighbor cache entry and uses this
 value to determine whether packets can be sent directly to the
 correspondent. The Client also maintains a "MaxRetry" variable to
 limit the number of keepalives sent when a correspondent may have
 gone unreachable.

 For dynamic neighbor cache entries, when an AERO Client receives a
 valid NS message it (re)sets AcceptTime for the neighbor to

Templin Expires March 29, 2015 [Page 12]

Internet-Draft AERO September 2014

 ACCEPT_TIME. When an AERO Client receives a valid solicited NA
 message, it (re)sets ForwardTime for the neighbor to FORWARD_TIME and
 sets MaxRetry to MAX_RETRY. When an AERO Client receives a valid
 unsolicited NA message, it updates the correspondent's link-layer
 addresses but DOES NOT reset AcceptTime, ForwardTime or MaxRetry.

 It is RECOMMENDED that FORWARD_TIME be set to the default constant
 value 30 seconds to match the default REACHABLE_TIME value specified
 for IPv6 ND [RFC4861].

 It is RECOMMENDED that ACCEPT_TIME be set to the default constant
 value 40 seconds to allow a 10 second window so that the AERO
 redirection procedure can converge before AcceptTime decrements below
 FORWARD_TIME.

 It is RECOMMENDED that MAX_RETRY be set to 3 the same as described
 for IPv6 ND address resolution in Section 7.3.3 of [RFC4861].

 Different values for FORWARD_TIME, ACCEPT_TIME, and MAX_RETRY MAY be
 administratively set, if necessary, to better match the AERO link's
 performance characteristics; however, if different values are chosen,
 all nodes on the link MUST consistently configure the same values.
 Most importantly, ACCEPT_TIME SHOULD be set to a value that is
 sufficiently longer than FORWARD_TIME to allow the AERO redirection
 procedure to converge.

3.6. AERO Interface Sending Algorithm

 IP packets enter a node's AERO interface either from the network
 layer (i.e., from a local application or the IP forwarding system),
 or from the link layer (i.e., from the AERO tunnel virtual link).
 Packets that enter the AERO interface from the network layer are
 encapsulated and admitted into the AERO link, i.e., they are
 tunnelled to an AERO interface neighbor. Packets that enter the AERO
 interface from the link layer are either re-admitted into the AERO
 link or delivered to the network layer where they are subject to
 either local delivery or IP forwarding. Since each AERO node has
 only partial information about neighbors on the link, AERO interfaces
 may forward packets with link-local destination addresses at a layer
 below the network layer. This means that AERO nodes act as both IP
 routers and sub-IP layer forwarding agents. AERO interface sending
 considerations for Clients, Servers and Relays are given below.

 When an IP packet enters a Client's AERO interface from the network
 layer, if the destination is covered by an ASP the Client searches
 for a dynamic neighbor cache entry with a non-zero ForwardTime and an
 AERO address that matches the packet's destination address. (The
 destination address may be either an address covered by the

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3

Templin Expires March 29, 2015 [Page 13]

Internet-Draft AERO September 2014

 neighbor's ACP or the (link-local) AERO address itself.) If there is
 a match, the Client uses a link-layer address in the entry as the
 link-layer address for encapsulation then admits the packet into the
 AERO link. If there is no match, the Client instead uses the link-
 layer address of a neighboring Server as the link-layer address for
 encapsulation.

 When an IP packet enters a Server's AERO interface from the link
 layer, if the destination is covered by an ASP the Server searches
 for a static neighbor cache entry with an AERO address that matches
 the packet's destination address. (The destination address may be
 either an address covered by the neighbor's ACP or the AERO address
 itself.) If there is a match, the Server uses a link-layer address
 in the entry as the link-layer address for encapsulation and re-
 admits the packet into the AERO link. If there is no match, the
 Server instead uses the link-layer address in any permanent neighbor
 cache entry as the link-layer address for encapsulation.

 When an IP packet enters a Relay's AERO interface from the network
 layer, the Relay searches its IP forwarding table for an entry that
 is covered by an ASP and also matches the destination. If there is a
 match, the Relay uses the link-layer address in the neighbor cache
 entry for the next-hop Server as the link-layer address for
 encapsulation and admits the packet into the AERO link. When an IP
 packet enters a Relay's AERO interface from the link-layer, if the
 destination is not a link-local address and is does not match an ASP
 the Relay removes the packet from the AERO interface and uses IP
 forwarding to forward the packet to the Internetwork. If the
 destination address is a link-local or non-link-local address that
 matches an ASP, and there is a more-specific ACP entry in the IP
 forwarding table, the Relay uses the link-layer address in the
 corresponding neighbor cache entry for the next-hop Server as the
 link-layer address for encapsulation and re-admits the packet into
 the AERO link. When an IP packet enters a Relay's AERO interface
 from either the network layer or link-layer, and the packet's
 destination address matches an ASP but there is no more-specific ACP
 entry, the Relay drops the packet and returns an ICMP Destination
 Unreachable message (see: Section 3.10).

 When an AERO Server receives a packet from a Relay via the AERO
 interface, the Server MUST NOT forward the packet back to the same or
 a different Relay.

 When an AERO Relay receives a packet from a Server via the AERO
 interface, the Relay MUST NOT forward the packet back to the same
 Server.

Templin Expires March 29, 2015 [Page 14]

Internet-Draft AERO September 2014

 When an AERO node re-admits a packet into the AERO link without
 involving the network layer, the node MUST NOT decrement the network
 layer TTL/Hop-count.

 Note that in the above that the link-layer address for encapsulation
 may be determined through consulting either the neighbor cache or the
 IP forwarding table. IP forwarding is therefore linked to IPv6 ND
 via the AERO address.

3.7. AERO Interface Encapsulation, Re-encapsulation and Decapsulation

 AERO interfaces encapsulate IP packets according to whether they are
 entering the AERO interface from the network layer or if they are
 being re-admitted into the same AERO link they arrived on. This
 latter form of encapsulation is known as "re-encapsulation".

 AERO interfaces encapsulate packets per the base tunneling
 specifications (e.g., [RFC2003][RFC2473][RFC4213][RFC4301][RFC5246],
 etc.) except that the interface copies the "TTL/Hop Limit", "Type of
 Service/Traffic Class" and "Congestion Experienced" values in the
 packet's IP header into the corresponding fields in the encapsulation
 IP header. For packets undergoing re-encapsulation, the AERO
 interface instead copies the "TTL/Hop Limit", "Type of Service/
 Traffic Class" and "Congestion Experienced" values in the original
 encapsulation IP header into the corresponding fields in the new
 encapsulation IP header (i.e., the values are transferred between
 encapsulation headers and *not* copied from the encapsulated packet's
 network-layer header).

 The AERO interface encapsulates the packet per the base tunneling
 specification except that it inserts a UDP header following the
 encapsulation IP header and before any other encapsulation headers.
 The AERO interface sets the UDP source port to a constant value that
 it will use in each successive packet it sends and sets the UDP
 length field to the length of the encapsulated packet plus 8 bytes
 for the UDP header itself. For packets sent via a Server, the AERO
 interface sets the UDP destination port to 8060, i.e., the IANA-
 registered port number for AERO. For packets sent to a correspondent
 Client, the AERO interface sets the UDP destination port to the port
 value stored in the neighbor cache entry for this correspondent. The
 AERO interface also sets the UDP checksum field to zero (see:
 [RFC6935][RFC6936]) unless an integrity check is required (see:

Section 3.9.2).

 The AERO interface next sets the IP protocol number in the
 encapsulation header to 17 (i.e., the IP protocol number for UDP).
 When IPv6 is used as the encapsulation protocol, the interface then
 sets the flow label value in the encapsulation header the same as

https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6935

Templin Expires March 29, 2015 [Page 15]

Internet-Draft AERO September 2014

 described in [RFC6438]. When IPv4 is used as the encapsulation
 protocol, the AERO interface sets the DF bit as discussed in

Section 3.9.

 AERO interfaces decapsulate packets destined either to the node
 itself or to a destination reached via an interface other than the
 AERO interface the packet was received on. When the AERO interface
 receives a UDP packet, it examines the first octet of the
 encapsulated packet. The packet is accepted if the most significant
 four bits of the first octet encode the value '0110' (i.e., the
 version number value for IPv6) or the value '0100' (i.e., the version
 number value for IPv4). Otherwise, the packet is accepted if the
 first octet encodes a valid IP protocol number per the IANA
 "protocol-numbers" registry that matches a supported encapsulation
 type. Otherwise, the packet is discarded.

 Further decapsulation then proceeds according to the appropriate base
 tunneling specification.

3.8. AERO Interface Data Origin Authentication

 AERO nodes employ simple data origin authentication procedures for
 encapsulated packets they receive from other nodes on the AERO link.
 In particular:

 o AERO Relays and Servers accept encapsulated packets with a link-
 layer source address that matches a permanent neighbor cache
 entry.

 o AERO Servers accept authentic encapsulated DHCPv6 messages, and
 create or update a static neighbor cache entry for the source
 based on the specific message type.

 o AERO Servers accept encapsulated packets if there is a static
 neighbor cache entry with an AERO address that matches the
 packet's network-layer source address and with a link-layer
 address that matches the packet's link-layer source address.

 o AERO Clients accept encapsulated packets if there is a static
 neighbor cache entry with a link-layer source address that matches
 the packet's link-layer source address.

 o AERO Clients and Servers accept encapsulated packets if there is a
 dynamic neighbor cache entry with an AERO address that matches the
 packet's network-layer source address, with a link-layer address
 that matches the packet's link-layer source address, and with a
 non-zero AcceptTime.

https://datatracker.ietf.org/doc/html/rfc6438

Templin Expires March 29, 2015 [Page 16]

Internet-Draft AERO September 2014

 Note that this simple data origin authentication only applies to
 environments in which link-layer addresses cannot be spoofed.
 Additional security mitigations may be necessary in other
 environments.

3.9. AERO Interface MTU and Fragmentation

 The AERO interface is the node's point of attachment to the AERO
 link. AERO links over IP networks have a maximum link MTU of 64KB
 minus the encapsulation overhead (termed here "ENCAPS"), since the
 maximum packet size in the base IP specifications is 64KB
 [RFC0791][RFC2460] (while IPv6 jumbograms can be up to 4GB, they are
 considered optional for IPv6 nodes [RFC2675][RFC6434]).

 IPv6 specifies a minimum link MTU of 1280 bytes [RFC2460]. This is
 the minimum packet size the AERO interface MUST admit without
 returning an ICMP Packet Too Big (PTB) message. Although IPv4
 specifies a smaller minimum link MTU of 68 bytes [RFC0791], AERO
 interfaces also observe a 1280 byte minimum for IPv4. Additionally,
 the vast majority of links in the Internet configure an MTU of at
 least 1500 bytes. Original source hosts have therefore become
 conditioned to expect that IP packets up to 1500 bytes in length will
 either be delivered to the final destination or a suitable PTB
 message returned. However, PTB messages may be lost in the network
 [RFC2923] resulting in failure of the IP MTU discovery mechanisms
 [RFC1191][RFC1981].

 For these reasons, AERO interfaces MUST admit packets up to 1500
 bytes in length even if some fragmentation is necessary. AERO
 interfaces MAY admit even larger packets as long as they can be
 accommodated without fragmentation.

 For AERO links over IPv4, the IP ID field is only 16 bits in length,
 meaning that fragmentation at high data rates could result in data
 corruption due to reassembly misassociations [RFC6864][RFC4963] (see:

Section 3.9.2). For AERO links over both IPv4 and IPv6, studies have
 also shown that IP fragments are dropped unconditionally over some
 network paths [I-D.taylor-v6ops-fragdrop]. For these reasons, when
 fragmentation is needed it is performed within the AERO interface
 (i.e., instead of at the encapsulating IP layer) through the
 insertion of an IPv6 Fragment Header [RFC2460]. Since the Fragment
 Header reduces the room available for packet data, but the original
 source has no way to control its insertion, the Fragment Header
 length MUST be included in the ENCAPS length even for packets in
 which the header does not appear.

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires March 29, 2015 [Page 17]

Internet-Draft AERO September 2014

 The source AERO interface (i.e., the tunnel ingress) therefore sends
 encapsulated packets to the destination AERO interface (i.e., the
 tunnel egress) according to the following algorithm:

 o For IP packets that are no larger than (1280-ENCAPS) bytes, the
 tunnel ingress encapsulates the packet and admits it into the
 tunnel without fragmentation. For IPv4 AERO links, tunnel ingress
 sets the Don't Fragment (DF) bit to 0 so that these packets will
 be delivered to the tunnel egress even if there is a restricting
 link in the path, i.e., unless lost due to congestion or routing
 errors.

 o For IP packets that are larger than (1280-ENCAPS) bytes but no
 larger than 1500 bytes, the tunnel ingress encapsulates the packet
 and inserts a Fragment Header above the UDP/IP encapsulation
 headers. Next, the tunnel ingress uses the fragmentation
 algorithm in [RFC2460] to break the packet into two non-
 overlapping fragments where the first fragment (including ENCAPS)
 is no larger than 1024 bytes and the second is no larger than the
 first. Each fragment consists of identical UDP/IP encapsulation
 headers, followed by the Fragment Header followed by the fragment
 of the encapsulated packet itself. The tunnel ingress then admits
 both fragments into the tunnel, and for IPv4 sets the DF bit to 0
 in the IP encapsulation header. These fragmented encapsulated
 packets will be delivered to the tunnel egress.

 o For IPv4 packets that are larger than 1500 bytes and with the DF
 bit set to 0, the tunnel ingress uses ordinary IP fragmentation to
 break the unencapsulated packet into a minimum number of non-
 overlapping fragments where the first fragment is no larger than
 1024-ENCAPS and all other fragments are no larger than the first
 fragment. The tunnel ingress then encapsulates each fragment (and
 for IPv4 sets the DF bit to 0) then admits them into the tunnel.
 These encapsulated fragments will be delivered to the final
 destination via the tunnel egress.

 o For all other IP packets, if the packet is too large to enter the
 underlying interface following encapsulation, the tunnel ingress
 drops the packet and returns a network-layer (L3) PTB message to
 the original source with MTU set to the larger of 1500 bytes or
 the underlying interface MTU minus ENCAPS. Otherwise, the tunnel
 ingress encapsulates the packet and admits it into the tunnel
 without fragmentation (and for IPv4 sets the DF bit to 1) and
 translates any link-layer (L2) PTB messages it may receive from
 the network into corresponding L3 PTB messages to send to the
 original source as specified in Section 3.10. Since both L2 and
 L3 PTB messages may be either lost or contain insufficient
 information, however, it is RECOMMENDED that original sources that

https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires March 29, 2015 [Page 18]

Internet-Draft AERO September 2014

 send unfragmentable IP packets larger than 1500 bytes use
 Packetization Layer Path MTU Discovery (PLPMTUD) [RFC4821].

 While sending packets according to the above algorithm, the tunnel
 ingress MAY also send 1500 byte probe packets to determine whether
 they can reach the tunnel egress without fragmentation. If the
 probes succeed, the tunnel ingress can begin sending packets that are
 no larger than 1500 bytes without fragmentation (and for IPv4 with DF
 set to 1). Since the path MTU within the tunnel may fluctuate due to
 routing changes, the tunnel ingress SHOULD continue to send
 additional probes subject to rate limiting and SHOULD process any L2
 PTB messages as an indication that the path MTU may have decreased.
 If the path MTU within the tunnel becomes insufficient, the source
 MUST resume fragmentation.

 To construct a probe, the tunnel ingress prepares an NS message with
 a Nonce option plus trailing NULL padding octets added to a length of
 1500 bytes without including the length of the padding in the IPv6
 Payload Length field, but with the length included in the
 encapsulating IP header. The tunnel ingress then encapsulates the
 padded NS message in the encapsulation headers (and for IPv4 sets DF
 to 1) then sends the message to the tunnel egress. If the tunnel
 egress returns a solicited NA message with a matching Nonce option,
 the tunnel ingress deems the probe successful.

 When the tunnel egress receives the fragments of a fragmented packet,
 it reassembles them into a whole packet per the reassembly algorithm
 in [RFC2460] then discards the Fragment Header. The tunnel egress
 therefore MUST be capable of reassembling packets up to 1500+ENCAPS
 bytes in length; hence, it is RECOMMENDED that the tunnel egress be
 capable of reassembling at least 2KB.

3.9.1. Accommodating Large IPv6 ND and DHCPv6 Messages

 IPv6 ND and DHCPv6 messages MUST be accommodated even if some
 fragmentation is necessary. These packets are therefore accommodated
 through a modification of the second rule in the above algorithm as
 follows:

 o For IPv6 ND and DHCPv6 messages that are larger than (1280-ENCAPS)
 bytes, the tunnel ingress encapsulates the packet and inserts a
 Fragment Header above the UDP/IP encapsulation headers. Next, the
 tunnel ingress uses the fragmentation algorithm in [RFC2460] to
 break the packet into a minimum number of non-overlapping
 fragments where the first fragment (including ENCAPS) is no larger
 than 1024 bytes and the remaining fragments are no larger than the
 first. The tunnel ingress then encapsulates each fragment (and
 for IPv4 sets the DF bit to 0) then admits them into the tunnel.

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires March 29, 2015 [Page 19]

Internet-Draft AERO September 2014

 IPv6 ND and DHCPv6 messages that exceed the minimum reassembly size
 listed above rarely occur in the modern era, however the tunnel
 egress SHOULD be able to reassemble them if they do. This means that
 the tunnel egress SHOULD include a configuration knob allowing the
 operator to set a larger reassembly buffer size if large IPv6ND and
 DHCPv6 messages become more common in the future.

 The tunnel ingress can send large IPv6 ND and DHCPv6 messages without
 fragmentation if there is assurance that large packets can traverse
 the tunnel without fragmentation. The tunnel ingress MAY send probe
 packets of 1500 bytes or larger as specified above to determine a
 size for which fragmentation can be avoided.

3.9.2. Integrity

 When fragmentation is needed, there must be assurance that reassembly
 can be safely conducted without incurring data corruption. Sources
 of corruption can include implementation errors, memory errors and
 misassociation of fragments from a first datagram with fragments of
 another datagram. The first two conditions (implementation and
 memory errors) are mitigated by modern systems and implementations
 that have demonstrated integrity through decades of operational
 practice. The third condition (reassembly misassociations) must be
 accounted for by AERO.

 The AERO fragmentation procedure described in the above algorithms
 uses the IPv6 Fragment Header and reuses standard IPv6 fragmentation
 and reassembly code. Since the Fragment Header includes a 32-bit ID
 field, there would need to be 2^32 packets alive in the network
 before a second packet with a duplicate ID enters the system with the
 (remote) possibility for a reassembly misassociation. For 1280 byte
 packets, and for a maximum network lifetime value of 60
 seconds[RFC2460], this means that the tunnel ingress would need to
 produce ~(7 *10^12) bits/sec in order for a duplication event to be
 possible. This exceeds the bandwidth of data link technologies of
 the modern era, but not necessarily so going forward into the future.
 Although typical wireless data links used by AERO Clients support
 vastly lower data rates, the aggregate data rates between AERO
 Servers and Relays may be substantial. However, high speed data
 links in the network core are expected to configure larger MTUs,
 e.g., 4KB, 8KB or even larger. Hence, no integrity check is included
 to cover the AERO fragmentation and reassembly procedures.

 When the tunnel ingress sends an IPv4-encapsulated packet with the DF
 bit set to 0 in the above algorithms, there is a chance that the
 packet may be fragmented by an IPv4 router somewhere within the
 tunnel. Since the largest such packet is only 1280 bytes, however,
 it is very likely that the packet will traverse the tunnel without

Templin Expires March 29, 2015 [Page 20]

Internet-Draft AERO September 2014

 incurring a restricting link. Even when a link within the tunnel
 configures an MTU smaller than 1280 bytes, it is very likely that it
 does so due to limited performance characteristics [RFC3819]. This
 means that the tunnel would not be able to convey fragmented
 IPv4-encapsulated packets fast enough to produce reassembly
 misassociations, as discussed above. However, AERO must also account
 for the possibility of tunnel paths that include "poorly managed"
 IPv4 link MTUs.

 Since the IPv4 header includes only a 16-bit ID field, there would
 only need to be 2^16 packets alive in the network before a second
 packet with a duplicate ID enters the system. For 1280 byte packets,
 and for a maximum network lifetime value of 120 seconds[RFC0791],
 this means that the tunnel ingress would only need to produce ~(5
 *10^6) bits/sec in order for a duplication event to be possible - a
 value that is well within range for many modern wired and wireless
 data link technologies.

 Therefore, if there is strong operational assurance that no IPv4
 links capable of supporting data rates of 5Mbps or more configure an
 MTU smaller than 1280 the tunnel ingress MAY omit an integrity check
 for the IPv4 fragmentation and reassembly procedures; otherwise, the
 tunnel ingress SHOULD include an integrity check. When an upper
 layer encapsulation (e.g., IPsec) already includes an integrity
 check, the tunnel ingress need not include an additional check.
 Otherwise, the tunnel ingress calculates the UDP checksum over the
 encapsulated packet and writes the value into the UDP encapsulation
 header, i.e., instead of writing the value 0. The tunnel egress will
 then verify the UDP checksum and discard the packet if the checksum
 is incorrect.

3.10. AERO Interface Error Handling

 When an AERO node admits encapsulated packets into the AERO
 interface, it may receive link-layer (L2) or network-layer (L3) error
 indications.

 An L2 error indication is an ICMP error message generated by a router
 on the path to the neighbor or by the neighbor itself. The message
 includes an IP header with the address of the node that generated the
 error as the source address and with the link-layer address of the
 AERO node as the destination address.

 The IP header is followed by an ICMP header that includes an error
 Type, Code and Checksum. For ICMPv6 [RFC4443], the error Types
 include "Destination Unreachable", "Packet Too Big (PTB)", "Time
 Exceeded" and "Parameter Problem". For ICMPv4 [RFC0792], the error
 Types include "Destination Unreachable", "Fragmentation Needed" (a

https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires March 29, 2015 [Page 21]

Internet-Draft AERO September 2014

 Destination Unreachable Code that is analogous to the ICMPv6 PTB),
 "Time Exceeded" and "Parameter Problem".

 The ICMP header is followed by the leading portion of the packet that
 generated the error, also known as the "packet-in-error". For
 ICMPv6, [RFC4443] specifies that the packet-in-error includes: "As
 much of invoking packet as possible without the ICMPv6 packet
 exceeding the minimum IPv6 MTU" (i.e., no more than 1280 bytes). For
 ICMPv4, [RFC0792] specifies that the packet-in-error includes:
 "Internet Header + 64 bits of Original Data Datagram", however

[RFC1812] Section 4.3.2.3 updates this specification by stating: "the
 ICMP datagram SHOULD contain as much of the original datagram as
 possible without the length of the ICMP datagram exceeding 576
 bytes".

 The L2 error message format is shown in Figure 3:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~
 | L2 IP Header of |
 | error message |
 ~ ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | L2 ICMP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 ~ ~ P
 | IP and other encapsulation | a
 | headers of original L3 packet | c
 ~ ~ k
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ e
 ~ ~ t
 | IP header of |
 | original L3 packet | i
 ~ ~ n
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~ e
 | Upper layer headers and | r
 | leading portion of body | r
 | of the original L3 packet | o
 ~ ~ r
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 3: AERO Interface L2 Error Message Format

 The AERO node rules for processing these L2 error messages is as
 follows:

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812#section-4.3.2.3

Templin Expires March 29, 2015 [Page 22]

Internet-Draft AERO September 2014

 o When an AERO node receives an L2 Parameter Problem message, it
 processes the message the same as described as for ordinary ICMP
 errors in the normative references [RFC0792][RFC4443].

 o When an AERO node receives persistent L2 IPv4 Time Exceeded
 messages, the IP ID field may be wrapping before earlier fragments
 have been processed. In that case, the node SHOULD begin
 including IPv4 integrity checks (see: Section 3.9.2).

 o When an AERO Client receives persistent L2 Destination Unreachable
 messages in response to tunneled packets that it sends to one of
 its dynamic neighbor correspondents, the Client SHOULD test the
 path to the correspondent using Neighbor Unreachability Detection
 (NUD) (see Section 3.14). If NUD fails, the Client SHOULD set
 ForwardTime for the corresponding dynamic neighbor cache entry to
 0 and allow future packets destined to the correspondent to flow
 through a Server.

 o When an AERO Client receives persistent L2 Destination Unreachable
 messages in response to tunneled packets that it sends to one of
 its static neighbor Servers, the Client SHOULD test the path to
 the Server using NUD. If NUD fails, the Client SHOULD delete the
 neighbor cache entry and attempt to associate with a new Server.

 o When an AERO Server receives persistent L2 Destination Unreachable
 messages in response to tunneled packets that it sends to one of
 its static neighbor Clients, the Server SHOULD test the path to
 the Client using NUD. If NUD fails, the Server SHOULD cancel the
 DHCPv6 PD lease for the Client's ACP, withdraw its route for the
 ACP from the AERO routing system and delete the neighbor cache
 entry (see Sections 3.11 and 3.12).

 o When an AERO Relay or Server receives an L2 Destination
 Unreachable message in response to a tunneled packet that it sends
 to one of its permanent neighbors, it discards the message since
 the routing system is likely in a temporary transitional state
 that will soon re-converge.

 o When an AERO node receives an L2 PTB message, it translates the
 message into an L3 PTB message if possible (*) and forwards the
 message toward the original source as described below.

 To translate an L2 PTB message to an L3 PTB message, the AERO node
 first caches the MTU field value of the L2 ICMP header. The node
 next discards the L2 IP and ICMP headers, and also discards the
 encapsulation headers of the original L3 packet. Next the node
 encapsulates the included segment of the original L3 packet in an L3
 IP and ICMP header, and sets the ICMP header Type and Code values to

https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires March 29, 2015 [Page 23]

Internet-Draft AERO September 2014

 appropriate values for the L3 IP protocol. In the process, the node
 writes the maximum of 1500 bytes and (L2 MTU - ENCAPS) into the MTU
 field of the L3 ICMP header.

 The node next writes the IP source address of the original L3 packet
 as the destination address of the L3 PTB message and determines the
 next hop to the destination. If the next hop is reached via the AERO
 interface, the node uses the IPv6 address "::" or the IPv4 address
 "0.0.0.0" as the IP source address of the L3 PTB message. Otherwise,
 the node uses one of its non link-local addresses as the source
 address of the L3 PTB message. The node finally calculates the ICMP
 checksum over the L3 PTB message and writes the Checksum in the
 corresponding field of the L3 ICMP header. The L3 PTB message
 therefore is formatted as follows:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~
 | L3 IP Header of |
 | error message |
 ~ ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | L3 ICMP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 ~ ~ p
 | IP header of | k
 | original L3 packet | t
 ~ ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ i
 ~ ~ n
 | Upper layer headers and |
 | leading portion of body | e
 | of the original L3 packet | r
 ~ ~ r
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 4: AERO Interface L3 Error Message Format

 After the node has prepared the L3 PTB message, it either forwards
 the message via a link outside of the AERO interface without
 encapsulation, or encapsulates and forwards the message to the next
 hop via the AERO interface.

 When an AERO Relay receives an L3 packet for which the destination
 address is covered by an ASP, if there is no more-specific routing
 information for the destination the Relay drops the packet and
 returns an L3 Destination Unreachable message. The Relay first
 writes the IP source address of the original L3 packet as the
 destination address of the L3 Destination Unreachable message and

Templin Expires March 29, 2015 [Page 24]

Internet-Draft AERO September 2014

 determines the next hop to the destination. If the next hop is
 reached via the AERO interface, the Relay uses the IPv6 address "::"
 or the IPv4 address "0.0.0.0" as the IP source address of the L3
 Destination Unreachable message and forwards the message to the next
 hop within the AERO interface. Otherwise, the Relay uses one of its
 non link-local addresses as the source address of the L3 Destination
 Unreachable message and forwards the message via a link outside the
 AERO interface.

 When an AERO node receives any L3 error message via the AERO
 interface, it examines the destination address in the L3 IP header of
 the message. If the next hop toward the destination address of the
 error message is via the AERO interface, the node re-encapsulates and
 forwards the message to the next hop within the AERO interface.
 Otherwise, if the source address in the L3 IP header of the message
 is the IPv6 address "::" or the IPv4 address "0.0.0.0", the node
 writes one of its non link-local addresses as the source address of
 the L3 message and recalculates the IP and/or ICMP checksums. The
 node finally forwards the message via a link outside of the AERO
 interface.

 (*) Note that in some instances the packet-in-error field of an L2
 PTB message may not include enough information for translation to an
 L3 PTB message. In that case, the AERO interface simply discards the
 L2 PTB message. It can therefore be said that translation of L2 PTB
 messages to L3 PTB messages can provide a useful optimization when
 possible, but is not critical for sources that correctly use PLPMTUD.

3.11. AERO Router Discovery, Prefix Delegation and Address
 Configuration

3.11.1. AERO DHCPv6 Service Model

 Each AERO Server configures a DHCPv6 server function to facilitate PD
 requests from Clients. Each Server is pre-configured with an
 identical list of ACP-to-Client ID mappings for all Clients enrolled
 in the AERO system, as well as any information necessary to
 authenticate Clients. The configuration information is maintained by
 a central administrative authority for the AERO link and securely
 propagated to all Servers whenever a new Client is enrolled or an
 existing Client is withdrawn.

 With these identical configurations, each Server can function
 independently of all other Servers, including the maintenance of
 active leases. Therefore, no Server-to-Server DHCPv6 state
 synchronization is necessary, and Clients can optionally hold
 separate leases for the same ACP from multiple Servers.

Templin Expires March 29, 2015 [Page 25]

Internet-Draft AERO September 2014

 In this way, Clients can easily associate with multiple Servers, and
 can receive new leases from new Servers before deprecating leases
 held through old Servers. This enables a graceful "make-before-
 break" capability.

3.11.2. AERO Client Behavior

 AERO Clients discover the link-layer addresses of AERO Servers via
 static configuration, or through an automated means such as DNS name
 resolution. In the absence of other information, the Client resolves
 the Fully-Qualified Domain Name (FQDN) "linkupnetworks.[domainname]"
 where "linkupnetworks" is a constant text string and "[domainname]"
 is the connection-specific DNS suffix for the Client's underlying
 network connection (e.g., "example.com"). After discovering the
 link-layer addresses, the Client associates with one or more of the
 corresponding Servers.

 To associate with a Server, the Client acts as a requesting router to
 request an ACP through a DHCPv6 PD exchange[RFC3315][RFC3633] in
 which the Client's Solicit/Request messages use the IPv6
 "unspecified" address (i.e., "::") as the IPv6 source address,
 'All_DHCP_Relay_Agents_and_Servers' as the IPv6 destination address
 and the link-layer address of the Server as the link-layer
 destination address. The Client also includes a Client Identifier
 option with a DHCP Unique Identifier (DUID) plus any necessary
 authentication options to identify itself to the DHCPv6 server, and
 includes a Client Link Layer Address Option (CLLAO) [RFC6939] with
 the format shown in Figure 5:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_CLIENT_LINKLAYER_ADDR | option-length |
 +-+
 | link-layer type (16 bits) | Link ID | Preference |
 +-+

 Figure 5: AERO Client Link-Layer Address Option (CLLAO) Format

 The Client sets the CLLAO 'option-length' field to 4 and sets the
 'link-layer type' field to TBD1 (see: IANA Considerations), then
 includes appropriate Link ID and Preference values for the underlying
 interface over which the Solicit/Request will be issued (note that
 these are the same values that would be included in a TLLAO as shown
 in Figure 2). If the Client is pre-provisioned with an ACP
 associated with the AERO service, it MAY also include the ACP in the
 Solicit/Request message Identity Association (IA) option to indicate

https://datatracker.ietf.org/doc/html/rfc3633
https://datatracker.ietf.org/doc/html/rfc6939

Templin Expires March 29, 2015 [Page 26]

Internet-Draft AERO September 2014

 its preferred ACP to the DHCPv6 server. The Client then sends the
 encapsulated DHCPv6 request via the underlying interface.

 When the Client receives its ACP and the set of ASPs via a DHCPv6
 Reply from the AERO Server, it creates a static neighbor cache entry
 with the Server's link-local address as the network-layer address and
 the Server's encapsulation address as the link-layer address. The
 Client then records the lifetime for the ACP in the neighbor cache
 entry and marks the neighbor cache entry as "default", i.e., the
 Client considers the Server as a default router. If the Reply
 message contains a Vendor-Specific Information Option (see:

Section 3.11.3) the Client also caches each ASP in the option.

 The Client then applies the AERO address to the AERO interface and
 sub-delegates the ACP to nodes and links within its attached EUNs
 (the AERO address thereafter remains stable as the Client moves).
 The Client also assigns a default IP route to the AERO interface as a
 route-to-interface, i.e., with no explicit next-hop. The next hop
 will then be determined after a packet has been submitted to the AERO
 interface by inspecting the neighbor cache (see above).

 On some platforms (e.g., popular cell phone operating systems), the
 act of assigning a default IPv6 route to the AERO interface may not
 be permitted from a user application due to security policy.
 Typically, those platforms include a TUN/TAP interface that acts as a
 point-to-point conduit between user applications and the AERO
 interface. In that case, the Client can instead generate a
 "synthesized RA" message. The message conforms to [RFC4861] and is
 prepared as follows:

 o the IPv6 source address is fe80::

 o the IPv6 destination address is all-nodes multicast

 o the Router Lifetime is set to a time that is no longer than the
 ACP DHCPv6 lifetime

 o the message does not include a Source Link Layer Address Option
 (SLLAO)

 o the message includes a Prefix Information Option (PIO) with a /64
 prefix taken from the ACP as the prefix for autoconfiguration

 The Client then sends the synthesized RA message via the TUN/TAP
 interface, where the operating system kernel will interpret it as
 though it were generated by an actual router. The operating system
 will then install a default route and use StateLess Address
 AutoConfiguration (SLAAC) to configure an IPv6 address on the TUN/TAP

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires March 29, 2015 [Page 27]

Internet-Draft AERO September 2014

 interface. Methods for similarly installing an IPv4 default route
 and IPv4 address on the TUN/TAP interface are based on synthesized
 DHCPv4 messages [RFC2131]. Note that in this method, the Client
 appears as a mobility proxy for applications that bind to the (point-
 to-point) TUN/TAP interface. The arrangement can be likened to a
 Proxy AERO scenario in which the mobile node and Client are located
 within the same physical platform (see Section 3.20 for further
 details on Proxy AERO).

 The Client subsequently renews its ACP delegation through each of its
 Servers by performing DHCPv6 Renew/Reply exchanges with its AERO
 address as the IPv6 source address,
 'All_DHCP_Relay_Agents_and_Servers' as the IPv6 destination address,
 the link-layer address of a Server as the link-layer destination
 address and the same Client identifier, authentication options and
 CLLAO option as was used in the initial PD request. Note that if the
 Client does not issue a DHCPv6 Renew before the Server has terminated
 the lease (e.g., if the Client has been out of touch with the Server
 for a considerable amount of time), the Server's Reply will report
 NoBinding and the Client must re-initiate the DHCPv6 PD procedure.
 If the Client sends synthesized RA and/or DHCPv4 messages (see
 above), it also sends a new synthesized message when issuing a DHCPv6
 Renew or when re-initiating the DHCPv6 PD procedure.

 Since the Client's AERO address is configured from the unique ACP
 delegation it receives, there is no need for Duplicate Address
 Detection (DAD) on AERO links. Other nodes maliciously attempting to
 hijack an authorized Client's AERO address will be denied access to
 the network by the DHCPv6 server due to an unacceptable link-layer
 address and/or security parameters (see: Security Considerations).

 AERO Clients ignore the IP address and UDP port number in any S/TLLAO
 options in ND messages they receive directly from another AERO
 Client, but examine the Link ID and Preference values to match the
 message with the correct link-layer address information.

 When a source Client forwards a packet to a prospective destination
 Client (i.e., one for which the packet's destination address is
 covered by an ASP), the source Client initiates an AERO route
 optimization procedure as specified in Section 3.13.

3.11.3. AERO Server Behavior

 AERO Servers configure a DHCPv6 server function on their AERO links.
 AERO Servers arrange to add their encapsulation layer IP addresses
 (i.e., their link-layer addresses) to the DNS resource records for
 the FQDN "linkupnetworks.[domainname]" before entering service.

https://datatracker.ietf.org/doc/html/rfc2131

Templin Expires March 29, 2015 [Page 28]

Internet-Draft AERO September 2014

 When an AERO Server receives a prospective Client's DHCPv6 PD
 Solicit/Request message, it first authenticates the message. If
 authentication succeeds, the Server determines the correct ACP to
 delegate to the Client by matching the Client's DUID within an online
 directory service (e.g., LDAP). The Server then delegates the ACP
 and creates a static neighbor cache entry for the Client's AERO
 address with lifetime set to no more than the lease lifetime and the
 Client's link-layer address as the link-layer address for the Link ID
 specified in the CLLAO option. The Server then creates an IP
 forwarding table entry so that the AERO routing system will propagate
 the ACP to all Relays (see: Section 3.12). Finally, the Server sends
 a DHCPv6 Reply message to the Client while using fe80::ID as the IPv6
 source address, the Client's AERO address as the IPv6 destination
 address, and the Client's link-layer address as the destination link-
 layer address. The Server also includes a Server Unicast option with
 server-address set to fe80::ID so that all future Client/Server
 transactions will be link-local-only unicast over the AERO link.

 When the Server sends the DHCPv6 Reply message, it also includes a
 DHCPv6 Vendor-Specific Information Option with 'enterprise-number'
 set to "TBD2" (see: IANA Considerations). The option is formatted as
 shown in[RFC3315] and with the AERO enterprise-specific format shown
 in Figure 6:

Templin Expires March 29, 2015 [Page 29]

Internet-Draft AERO September 2014

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_VENDOR_OPTS | option-len |
 +-+
 | enterprise-number ("TBD2") |
 +-+
 | Reserved | Prefix Length |
 +-+
 | |
 + ASP (1) +
 | |
 +-+
 | Reserved | Prefix Length |
 +-+
 | |
 + ASP (2) +
 | |
 +-+
 | Reserved | Prefix Length |
 +-+
 | |
 + ASP (3) +
 | |
 +-+
 . (etc.) .
 . .
 +-+

 Figure 6: AERO Vendor-Specific Information Option

 Per Figure 6, the option includes one or more ASP. The ASP field
 contains the IP prefix as it would appear in the interface identifier
 portion of the corresponding AERO address (see: Section 3.3). For
 IPv6, valid values for the Prefix Length field are 0 through 64; for
 IPv4, valid values are 0 through 32.

 After the initial DHCPv6 PD exchange, the AERO Server maintains the
 neighbor cache entry for the Client as long as the lease lifetime
 remains current. If the Client issues a Renew/Reply exchange, the
 Server extends the lifetime. If the Client issues a Release/Reply
 exchange, or if the Client does not issue a Renew/Reply within the
 lease lifetime, the Server deletes the neighbor cache entry for the
 Client and withdraws the IP route from the AERO routing system.

Templin Expires March 29, 2015 [Page 30]

Internet-Draft AERO September 2014

3.12. AERO Relay/Server Routing System

 Relays require full topology information of all Client/Server
 associations, while individual Servers only require partial topology
 information, i.e., they only need to know the ACPs associated with
 their current set of associated Clients. This is accomplished
 through the use of an internal instance of the Border Gateway
 Protocol (BGP) [RFC4271] coordinated between Servers and Relays.
 This internal BGP instance does not interact with the public Internet
 BGP instance; therefore, the AERO link is presented to the IP
 Internetwork as a small set of ASPs as opposed to the full set of
 individual ACPs.

 In a reference BGP arrangement, each AERO Server is configured as an
 Autonomous System Border Router (ASBR) for a stub Autonomous System
 (AS) (possibly using a private AS Number (ASN) [RFC1930]), and each
 Server further peers with each Relay but does not peer with other
 Servers. Similarly, Relays need not peer with each other, since they
 will receive all updates from all Servers and will therefore have a
 consistent view of the AERO link ACP delegations.

 Each Server maintains a working set of associated Clients, and
 dynamically announces new ACPs and withdraws departed ACPs in its BGP
 updates to Relays (this is typically accomplished via a "redistribute
 static" routing directive). Relays do not send BGP updates to
 Servers, however, such that the BGP route reporting is unidirectional
 from the Servers to the Relays.

 The Relays therefore discover the full topology of the AERO link in
 terms of the working set of ACPs associated with each Server, while
 the Servers only discover the ACPs of their associated Clients.
 Since Clients are expected to remain associated with their current
 set of Servers for extended timeframes, the amount of BGP control
 messaging between Servers and Relays should be minimal. However, BGP
 peers SHOULD dampen any route oscillations caused by impatient
 Clients that repeatedly associate and disassociate with Servers.

3.13. AERO Redirection

3.13.1. Reference Operational Scenario

 Figure 7 depicts the AERO redirection reference operational scenario,
 using IPv6 addressing as the example (while not shown, a
 corresponding example for IPv4 addressing can be easily constructed).
 The figure shows an AERO Relay ('R1'), two AERO Servers ('S1', 'S2'),
 two AERO Clients ('C1', 'C2') and two ordinary IPv6 hosts ('H1',
 'H2'):

https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc1930

Templin Expires March 29, 2015 [Page 31]

Internet-Draft AERO September 2014

 +--------------+ +--------------+ +--------------+
 | Server S1 | | Relay R1 | | Server S2 |
 +--------------+ +--------------+ +--------------+
 fe80::2 fe80::1 fe80::3
 L2(S1) L2(R1) L2(S2)
 | | |
 X-----+-----+------------------+-----------------+----+----X
 | AERO Link |
 L2(A) L2(B)
 fe80::2001:db8:0:0 fe80::2001:db8:1:0
 +--------------+ +--------------+
 |AERO Client C1| |AERO Client C2|
 +--------------+ +--------------+
 2001:DB8:0::/48 2001:DB8:1::/48
 | |
 .-. .-.
 ,-(_)-. 2001:db8:0::1 2001:db8:1::1 ,-(_)-.
 .-(_ IP)-. +---------+ +---------+ .-(_ IP)-.
 (__ EUN)--| Host H1 | | Host H2 |--(__ EUN)
 `-(______)-' +---------+ +---------+ `-(______)-'

 Figure 7: AERO Reference Operational Scenario

 In Figure 7, Relay ('R1') applies the address fe80::1 to its AERO
 interface with link-layer address L2(R1), Server ('S1') applies the
 address fe80::2 with link-layer address L2(S1),and Server ('S2')
 applies the address fe80::3 with link-layer address L2(S2). Servers
 ('S1') and ('S2') next arrange to add their link-layer addresses to a
 published list of valid Servers for the AERO link.

 AERO Client ('C1') receives the ACP 2001:db8:0::/48 in a DHCPv6 PD
 exchange via AERO Server ('S1') then applies the address
 fe80::2001:db8:0:0 to its AERO interface with link-layer address
 L2(C1). Client ('C1') configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::2 and link-
 layer address L2(S1), then sub-delegates the ACP to its attached
 EUNs. IPv6 host ('H1') connects to the EUN, and configures the
 address 2001:db8:0::1.

 AERO Client ('C2') receives the ACP 2001:db8:1::/48 in a DHCPv6 PD
 exchange via AERO Server ('S2') then applies the address
 fe80::2001:db8:1:0 to its AERO interface with link-layer address
 L2(C2). Client ('C2') configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::3 and link-
 layer address L2(S2), then sub-delegates the ACP to its attached
 EUNs. IPv6 host ('H1') connects to the EUN, and configures the
 address 2001:db8:1::1.

Templin Expires March 29, 2015 [Page 32]

Internet-Draft AERO September 2014

3.13.2. Concept of Operations

 Again, with reference to Figure 7, when source host ('H1') sends a
 packet to destination host ('H2'), the packet is first forwarded over
 the source host's attached EUN to Client ('C1'). Client ('C1') then
 forwards the packet via its AERO interface to Server ('S1') and also
 sends a Predirect message toward Client ('C2') via Server ('S1').
 Server ('S1') then re-encapsulates and forwards both the packet and
 the Predirect message out the same AERO interface toward Client
 ('C2') via Relay ('R1').

 When Relay ('R1') receives the packet and Predirect message, it
 consults its forwarding table to discover Server ('S2') as the next
 hop toward Client ('C2'). Relay ('R1') then forwards both the packet
 and the Predirect message to Server ('S2'), which then forwards them
 to Client ('C2').

 After Client ('C2') receives the Predirect message, it process the
 message and returns a Redirect message toward Client ('C1') via
 Server ('S2'). During the process, Client ('C2') also creates or
 updates a dynamic neighbor cache entry for Client ('C1').

 When Server ('S2') receives the Redirect message, it re-encapsulates
 the message and forwards it on to Relay ('R1'), which forwards the
 message on to Server ('S1') which forwards the message on to Client
 ('C1'). After Client ('C1') receives the Redirect message, it
 processes the message and creates or updates a dynamic neighbor cache
 entry for Client ('C2').

 Following the above Predirect/Redirect message exchange, forwarding
 of packets from Client ('C1') to Client ('C2') without involving any
 intermediate nodes is enabled. The mechanisms that support this
 exchange are specified in the following sections.

3.13.3. Message Format

 AERO Redirect/Predirect messages use the same format as for ICMPv6
 Redirect messages depicted in Section 4.5 of [RFC4861], but also
 include a new "Prefix Length" field taken from the low-order 8 bits
 of the Redirect message Reserved field. For IPv6, valid values for
 the Prefix Length field are 0 through 64; for IPv4, valid values are
 0 through 32. The Redirect/Predirect messages are formatted as shown
 in Figure 8:

https://datatracker.ietf.org/doc/html/rfc4861#section-4.5

Templin Expires March 29, 2015 [Page 33]

Internet-Draft AERO September 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (=137) | Code (=0/1) | Checksum |
 +-+
 | Reserved | Prefix Length |
 +-+
 | |
 + +
 | |
 + Target Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

 Figure 8: AERO Redirect/Predirect Message Format

3.13.4. Sending Predirects

 When a Client forwards a packet with a source address from one of its
 ACPs toward a destination address covered by an ASP (i.e., toward
 another AERO Client connected to the same AERO link), the source
 Client MAY send a Predirect message forward toward the destination
 Client via the Server.

 In the reference operational scenario, when Client ('C1') forwards a
 packet toward Client ('C2'), it MAY also send a Predirect message
 forward toward Client ('C2'), subject to rate limiting (see

Section 8.2 of [RFC4861]). Client ('C1') prepares the Predirect
 message as follows:

 o the link-layer source address is set to 'L2(C1)' (i.e., the link-
 layer address of Client ('C1')).

 o the link-layer destination address is set to 'L2(S1)' (i.e., the
 link-layer address of Server ('S1')).

https://datatracker.ietf.org/doc/html/rfc4861#section-8.2

Templin Expires March 29, 2015 [Page 34]

Internet-Draft AERO September 2014

 o the network-layer source address is set to fe80::2001:db8:0:0
 (i.e., the AERO address of Client ('C1')).

 o the network-layer destination address is set to fe80::2001:db8:1:0
 (i.e., the AERO address of Client ('C2')).

 o the Type is set to 137.

 o the Code is set to 1 to indicate "Predirect".

 o the Prefix Length is set to the length of the prefix to be
 assigned to the Target Address.

 o the Target Address is set to fe80::2001:db8:0:0 (i.e., the AERO
 address of Client ('C1')).

 o the Destination Address is set to the source address of the
 originating packet that triggered the Predirection event. (If the
 originating packet is an IPv4 packet, the address is constructed
 in IPv4-compatible IPv6 address format).

 o the message includes one or more TLLAOs with Link ID and
 Preference set to appropriate values for Client ('C1')'s
 underlying interfaces, and with UDP Port Number and IP Address set
 to 0'.

 o the message SHOULD include a Timestamp option and a Nonce option.

 o the message includes a Redirected Header Option (RHO) that
 contains the originating packet truncated if necessary to ensure
 that at least the network-layer header is included but the size of
 the message does not exceed 1280 bytes.

 Note that the act of sending Predirect messages is cited as "MAY",
 since Client ('C1') may have advanced knowledge that the direct path
 to Client ('C2') would be unusable or otherwise undesirable. If the
 direct path later becomes unusable after the initial route
 optimization, Client ('C1') simply allows packets to again flow
 through Server ('S1').

3.13.5. Re-encapsulating and Relaying Predirects

 When Server ('S1') receives a Predirect message from Client ('C1'),
 it first verifies that the TLLAOs in the Predirect are a proper
 subset of the Link IDs in Client ('C1')'s neighbor cache entry. If
 the Client's TLLAOs are not acceptable, Server ('S1') discards the
 message. Otherwise, Server ('S1') validates the message according to
 the ICMPv6 Redirect message validation rules in Section 8.1 of

Templin Expires March 29, 2015 [Page 35]

Internet-Draft AERO September 2014

 [RFC4861], except that the Predirect has Code=1. Server ('S1') also
 verifies that Client ('C1') is authorized to use the Prefix Length in
 the Predirect when applied to the AERO address in the network-layer
 source address by searching for the AERO address in the neighbor
 cache. If validation fails, Server ('S1') discards the Predirect;
 otherwise, it copies the correct UDP Port numbers and IP Addresses
 for Client ('C1')'s links into the (previously empty) TLLAOs.

 Server ('S1') then examines the network-layer destination address of
 the Predirect to determine the next hop toward Client ('C2') by
 searching for the AERO address in the neighbor cache. Since Client
 ('C2') is not one of its neighbors, Server ('S1') re-encapsulates the
 Predirect and relays it via Relay ('R1') by changing the link-layer
 source address of the message to 'L2(S1)' and changing the link-layer
 destination address to 'L2(R1)'. Server ('S1') finally forwards the
 re-encapsulated message to Relay ('R1') without decrementing the
 network-layer TTL/Hop Limit field.

 When Relay ('R1') receives the Predirect message from Server ('S1')
 it determines that Server ('S2') is the next hop toward Client ('C2')
 by consulting its forwarding table. Relay ('R1') then re-
 encapsulates the Predirect while changing the link-layer source
 address to 'L2(R1)' and changing the link-layer destination address
 to 'L2(S2)'. Relay ('R1') then relays the Predirect via Server
 ('S2').

 When Server ('S2') receives the Predirect message from Relay ('R1')
 it determines that Client ('C2') is a neighbor by consulting its
 neighbor cache. Server ('S2') then re-encapsulates the Predirect
 while changing the link-layer source address to 'L2(S2)' and changing
 the link-layer destination address to 'L2(C2)'. Server ('S2') then
 forwards the message to Client ('C2').

3.13.6. Processing Predirects and Sending Redirects

 When Client ('C2') receives the Predirect message, it accepts the
 Predirect only if the message has a link-layer source address of one
 of its Servers (e.g., L2(S2)). Client ('C2') further accepts the
 message only if it is willing to serve as a redirection target.
 Next, Client ('C2') validates the message according to the ICMPv6
 Redirect message validation rules in Section 8.1 of [RFC4861], except
 that it accepts the message even though Code=1 and even though the
 network-layer source address is not that of it's current first-hop
 router.

 In the reference operational scenario, when Client ('C2') receives a
 valid Predirect message, it either creates or updates a dynamic
 neighbor cache entry that stores the Target Address of the message as

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires March 29, 2015 [Page 36]

Internet-Draft AERO September 2014

 the network-layer address of Client ('C1') , stores the link-layer
 addresses found in the TLLAOs as the link-layer addresses of Client
 ('C1') and stores the Prefix Length as the length to be applied to
 the network-layer address for forwarding purposes. Client ('C2')
 then sets AcceptTime for the neighbor cache entry to ACCEPT_TIME.

 After processing the message, Client ('C2') prepares a Redirect
 message response as follows:

 o the link-layer source address is set to 'L2(C2)' (i.e., the link-
 layer address of Client ('C2')).

 o the link-layer destination address is set to 'L2(S2)' (i.e., the
 link-layer address of Server ('S2')).

 o the network-layer source address is set to fe80::2001:db8:1:0
 (i.e., the AERO address of Client ('C2')).

 o the network-layer destination address is set to fe80::2001:db8:0:0
 (i.e., the AERO address of Client ('C1')).

 o the Type is set to 137.

 o the Code is set to 0 to indicate "Redirect".

 o the Prefix Length is set to the length of the prefix to be applied
 to the Target Address.

 o the Target Address is set to fe80::2001:db8:1:0 (i.e., the AERO
 address of Client ('C2')).

 o the Destination Address is set to the destination address of the
 originating packet that triggered the Redirection event. (If the
 originating packet is an IPv4 packet, the address is constructed
 in IPv4-compatible IPv6 address format).

 o the message includes one or more TLLAOs with Link ID and
 Preference set to appropriate values for Client ('C2')'s
 underlying interfaces, and with UDP Port Number and IP Address set
 to '0'.

 o the message SHOULD include a Timestamp option and MUST echo the
 Nonce option received in the Predirect (i.e., if a Nonce option is
 included).

 o the message includes as much of the RHO copied from the
 corresponding AERO Predirect message as possible such that at

Templin Expires March 29, 2015 [Page 37]

Internet-Draft AERO September 2014

 least the network-layer header is included but the size of the
 message does not exceed 1280 bytes.

 After Client ('C2') prepares the Redirect message, it sends the
 message to Server ('S2').

3.13.7. Re-encapsulating and Relaying Redirects

 When Server ('S2') receives a Redirect message from Client ('C2'), it
 first verifies that the TLLAOs in the Redirect are a proper subset of
 the Link IDs in Client ('C2')'s neighbor cache entry. If the
 Client's TLLAOs are not acceptable, Server ('S2') discards the
 message. Otherwise, Server ('S2') validates the message according to
 the ICMPv6 Redirect message validation rules in Section 8.1 of
 [RFC4861]. Server ('S2') also verifies that Client ('C2') is
 authorized to use the Prefix Length in the Redirect when applied to
 the AERO address in the network-layer source address by searching for
 the AERO address in the neighbor cache. If validation fails, Server
 ('S2') discards the Predirect; otherwise, it copies the correct UDP
 Port numbers and IP Addresses for Client ('C2')'s links into the
 (previously empty) TLLAOs.

 Server ('S2') then examines the network-layer destination address of
 the Predirect to determine the next hop toward Client ('C2') by
 searching for the AERO address in the neighbor cache. Since Client
 ('C2') is not a neighbor, Server ('S2') re-encapsulates the Predirect
 and relays it via Relay ('R1') by changing the link-layer source
 address of the message to 'L2(S2)' and changing the link-layer
 destination address to 'L2(R1)'. Server ('S2') finally forwards the
 re-encapsulated message to Relay ('R1') without decrementing the
 network-layer TTL/Hop Limit field.

 When Relay ('R1') receives the Predirect message from Server ('S2')
 it determines that Server ('S1') is the next hop toward Client ('C1')
 by consulting its forwarding table. Relay ('R1') then re-
 encapsulates the Predirect while changing the link-layer source
 address to 'L2(R1)' and changing the link-layer destination address
 to 'L2(S1)'. Relay ('R1') then relays the Predirect via Server
 ('S1').

 When Server ('S1') receives the Predirect message from Relay ('R1')
 it determines that Client ('C1') is a neighbor by consulting its
 neighbor cache. Server ('S1') then re-encapsulates the Predirect
 while changing the link-layer source address to 'L2(S1)' and changing
 the link-layer destination address to 'L2(C1)'. Server ('S1') then
 forwards the message to Client ('C1').

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1
https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires March 29, 2015 [Page 38]

Internet-Draft AERO September 2014

3.13.8. Processing Redirects

 When Client ('C1') receives the Redirect message, it accepts the
 message only if it has a link-layer source address of one of its
 Servers (e.g., ''L2(S1)'). Next, Client ('C1') validates the message
 according to the ICMPv6 Redirect message validation rules in

Section 8.1 of [RFC4861], except that it accepts the message even
 though the network-layer source address is not that of it's current
 first-hop router. Following validation, Client ('C1') then processes
 the message as follows.

 In the reference operational scenario, when Client ('C1') receives
 the Redirect message, it either creates or updates a dynamic neighbor
 cache entry that stores the Target Address of the message as the
 network-layer address of Client ('C2'), stores the link-layer
 addresses found in the TLLAOs as the link-layer addresses of Client
 ('C2') and stores the Prefix Length as the length to be applied to
 the network-layer address for forwarding purposes. Client ('C1')
 then sets ForwardTime for the neighbor cache entry to FORWARD_TIME.

 Now, Client ('C1') has a neighbor cache entry with a valid
 ForwardTime value, while Client ('C2') has a neighbor cache entry
 with a valid AcceptTime value. Thereafter, Client ('C1') may forward
 ordinary network-layer data packets directly to Client ('C2') without
 involving any intermediate nodes, and Client ('C2') can verify that
 the packets came from an acceptable source. (In order for Client
 ('C2') to forward packets to Client ('C1'), a corresponding
 Predirect/Redirect message exchange is required in the reverse
 direction; hence, the mechanism is asymmetric.)

3.13.9. Server-Oriented Redirection

 In some environments, the Server nearest the target Client may need
 to serve as the redirection target, e.g., if direct Client-to-Client
 communications are not possible. In that case, the Server prepares
 the Redirect message the same as if it were the destination Client
 (see: Section 3.13.6), except that it writes its own link-layer
 address in the TLLAO option. The Server must then maintain a
 neighbor cache entry for the redirected source Client.

3.14. Neighbor Unreachability Detection (NUD)

 AERO nodes perform Neighbor Unreachability Detection (NUD) by sending
 unicast NS messages to elicit solicited NA messages from neighbors
 the same as described in [RFC4861]. NUD is performed either
 reactively in response to persistent L2 errors (see Section 3.10) or
 proactively to refresh existing neighbor cache entries.

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1
https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires March 29, 2015 [Page 39]

Internet-Draft AERO September 2014

 When an AERO node sends an NS/NA message, it MUST use its link-local
 address as the IPv6 source address and the link-local address of the
 neighbor as the IPv6 destination address. When an AERO node receives
 an NS message or a solicited NA message, it accepts the message if it
 has a neighbor cache entry for the neighbor; otherwise, it ignores
 the message.

 When a source Client is redirected to a target Client it SHOULD
 proactively test the direct path by sending an initial NS message to
 elicit a solicited NA response. While testing the path, the source
 Client can optionally continue sending packets via the Server,
 maintain a small queue of packets until target reachability is
 confirmed, or (optimistically) allow packets to flow directly to the
 target. The source Client SHOULD thereafter continue to proactively
 test the direct path to the target Client (see Section 7.3 of
 [RFC4861]) periodically in order to keep dynamic neighbor cache
 entries alive.

 In particular, while the source Client is actively sending packets to
 the target Client it SHOULD also send NS messages separated by
 RETRANS_TIMER milliseconds in order to receive solicited NA messages.
 If the source Client is unable to elicit a solicited NA response from
 the target Client after MAX_RETRY attempts, it SHOULD set ForwardTime
 to 0 and resume sending packets via one of its Servers. Otherwise,
 the source Client considers the path usable and SHOULD thereafter
 process any link-layer errors as a hint that the direct path to the
 target Client has either failed or has become intermittent.

 When a target Client receives an NS message from a source Client, it
 resets AcceptTime to ACCEPT_TIME if a neighbor cache entry exists;
 otherwise, it discards the NS message. If ForwardTime is non-zero,
 the target Client then sends a solicited NA message to the link-layer
 address of the source Client; otherwise, it sends the solicited NA
 message to the link-layer address of one of its Servers.

 When a source Client receives a solicited NA message from a target
 Client, it resets ForwardTime to FORWARD_TIME if a neighbor cache
 entry exists; otherwise, it discards the NA message.

 When ForwardTime for a dynamic neighbor cache entry expires, the
 source Client resumes sending any subsequent packets via a Server and
 may (eventually) attempt to re-initiate the AERO redirection process.
 When AcceptTime for a dynamic neighbor cache entry expires, the
 target Client discards any subsequent packets received directly from
 the source Client. When both ForwardTime and AcceptTime for a
 dynamic neighbor cache entry expire, the Client deletes the neighbor
 cache entry.

https://datatracker.ietf.org/doc/html/rfc4861#section-7.3
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3

Templin Expires March 29, 2015 [Page 40]

Internet-Draft AERO September 2014

3.15. Mobility Management

3.15.1. Announcing Link-Layer Address Changes

 When a Client needs to change its link-layer address, e.g., due to a
 mobility event, it performs an immediate DHCPv6 Rebind/Reply exchange
 via each of its Servers using the new link-layer address as the
 source and with a CLLAO that includes the correct Link ID and
 Preference values. If authentication succeeds, the Server then
 update its neighbor cache and sends a DHCPv6 Reply. Note that if the
 Client does not issue a DHCPv6 Rebind before the Server has
 terminated the lease (e.g., if the Client has been out of touch with
 the Server for a considerable amount of time), the Server's Reply
 will report NoBinding and the Client must re-initiate the DHCPv6 PD
 procedure.

 Next, the Client sends unsolicited NA messages to each of its
 correspondent Client neighbors using the same procedures as specified
 in Section 7.2.6 of [RFC4861], except that it sends the messages as
 unicast to each neighbor via a Server instead of multicast. In this
 process, the Client should send no more than
 MAX_NEIGHBOR_ADVERTISEMENT messages separated by no less than
 RETRANS_TIMER seconds to each neighbor.

 With reference to Figure 7, when Client ('C2') needs to change its
 link-layer address it sends unicast unsolicited NA messages to Client
 ('C1') via Server ('S2') as follows:

 o the link-layer source address is set to 'L2(C2)' (i.e., the link-
 layer address of Client ('C2')).

 o the link-layer destination address is set to 'L2(S2)' (i.e., the
 link-layer address of Server ('S2')).

 o the network-layer source address is set to fe80::2001:db8:1:0
 (i.e., the AERO address of Client ('C2')).

 o the network-layer destination address is set to fe80::2001:db8:0:0
 (i.e., the AERO address of Client ('C1')).

 o the Type is set to 136.

 o the Code is set to 0.

 o the Solicited flag is set to 0.

 o the Override flag is set to 1.

https://datatracker.ietf.org/doc/html/rfc4861#section-7.2.6

Templin Expires March 29, 2015 [Page 41]

Internet-Draft AERO September 2014

 o the Target Address is set to fe80::2001:db8:1:0 (i.e., the AERO
 address of Client ('C2')).

 o the message includes one or more TLLAOs with Link ID and
 Preference set to appropriate values for Client ('C2')'s
 underlying interfaces, and with UDP Port Number and IP Address set
 to '0'.

 o the message SHOULD include a Timestamp option.

 When Server ('S1') receives the NA message, it relays the message in
 the same way as described for relaying Redirect messages in

Section 3.13.7. In particular, Server ('S1') copies the correct UDP
 port numbers and IP addresses into the TLLAOs, changes the link-layer
 source address to its own address, changes the link-layer destination
 address to the address of Relay ('R1'), then forwards the NA message
 via the relaying chain the same as for a Redirect.

 When Client ('C1') receives the NA message, it accepts the message
 only if it already has a neighbor cache entry for Client ('C2') then
 updates the link-layer addresses for Client ('C2') based on the
 addresses in the TLLAOs. However, Client ('C1') MUST NOT update
 ForwardTime since Client ('C2') will not have updated AcceptTime.

 Note that these unsolicited NA messages are unacknowledged; hence,
 Client ('C2') has no way of knowing whether Client ('C1') has
 received them. If the messages are somehow lost, however, Client
 ('C1') will soon learn of the mobility event via the NUD procedures
 specified in Section 3.14.

3.15.2. Bringing New Links Into Service

 When a Client needs to bring a new underlying interface into service
 (e.g., when it activates a new data link), it performs an immediate
 Rebind/Reply exchange via each of its Servers using the new link-
 layer address as the source address and with a CLLAO that includes
 the new Link ID and Preference values. If authentication succeeds,
 the Server then updates its neighbor cache and sends a DHCPv6 Reply.
 The Client MAY then send unsolicited NA messages to each of its
 correspondent Clients to inform them of the new link-layer address as
 described in Section 3.15.1.

3.15.3. Removing Existing Links from Service

 When a Client needs to remove an existing underlying interface from
 service (e.g., when it de-activates an existing data link), it
 performs an immediate Rebind/Reply exchange via each of its Servers
 over any available link with a CLLAO that includes the deprecated

Templin Expires March 29, 2015 [Page 42]

Internet-Draft AERO September 2014

 Link ID and a Preference value of 0. If authentication succeeds, the
 Server then updates its neighbor cache and sends a DHCPv6 Reply. The
 Client SHOULD then send unsolicited NA messages to each of its
 correspondent Clients to inform them of the deprecated link-layer
 address as described in Section 3.15.1.

3.15.4. Moving to a New Server

 When a Client associates with a new Server, it performs the Client
 procedures specified in Section 3.12.

 When a Client disassociates with an existing Server, it sends a
 DHCPv6 Release message to the unicast link-local network layer
 address of the old Server. The Client SHOULD send the message via a
 new Server (i.e., by setting the link-layer destination address to
 the address of the new Server) in case the old Server is unreachable
 at the link layer, e.g., if the old Server is in a different network
 partition. The new Server will forward the message to a Relay, which
 will in turn forward the message to the old Server.

 When the old Server receives the DHCPv6 Release, it first
 authenticates the message. If authentication succeeds, the old
 Server withdraws the IP route from the AERO routing system and
 deletes the neighbor cache entry for the Client. (The old Server MAY
 impose a small delay before deleting the neighbor cache entry so that
 any packets already in the system can still be delivered to the
 Client.) The old Server then returns a DHCPv6 Reply message via a
 Relay. The Client can then use the Reply message to verify that the
 termination signal has been processed, and can delete both the
 default route and the neighbor cache entry for the old Server. (Note
 that the Server's Reply to the Client's Release message may be lost,
 e.g., if the AERO routing system has not yet converged. Since the
 Client is responsible for reliability, however, it will retry until
 it gets an indication that the Release was successful.)

 Clients SHOULD NOT move rapidly between Servers in order to avoid
 causing excessive oscillations in the AERO routing system. Such
 oscillations could result in intermittent reachability for the Client
 itself, while causing little harm to the network due to routing
 protocol dampening. Examples of when a Client might wish to change
 to a different Server include a Server that has gone unreachable,
 topological movements of significant distance, etc.

3.16. Encapsulation Protocol Version Considerations

 A source Client may connect only to an IPvX underlying network, while
 the target Client connects only to an IPvY underlying network. In
 that case, the target and source Clients have no means for reaching

Templin Expires March 29, 2015 [Page 43]

Internet-Draft AERO September 2014

 each other directly (since they connect to underlying networks of
 different IP protocol versions) and so must ignore any redirection
 messages and continue to send packets via the Server.

3.17. Multicast Considerations

 When the underlying network does not support multicast, AERO nodes
 map IPv6 link-scoped multicast addresses (including
 'All_DHCP_Relay_Agents_and_Servers') to the link-layer address of a
 Server.

 When the underlying network supports multicast, AERO nodes use the
 multicast address mapping specification found in [RFC2529] for IPv4
 underlying networks and use a direct multicast mapping for IPv6
 underlying networks. (In the latter case, "direct multicast mapping"
 means that if the IPv6 multicast destination address of the
 encapsulated packet is "M", then the IPv6 multicast destination
 address of the encapsulating header is also "M".)

3.18. Operation on AERO Links Without DHCPv6 Services

 When Servers on the AERO link do not provide DHCPv6 services,
 operation can still be accommodated through administrative
 configuration of ACPs on AERO Clients. In that case, administrative
 configurations of AERO interface neighbor cache entries on both the
 Server and Client are also necessary. However, this may interfere
 with the ability for Clients to dynamically change to new Servers,
 and can expose the AERO link to misconfigurations unless the
 administrative configurations are carefully coordinated.

3.19. Operation on Server-less AERO Links

 In some AERO link scenarios, there may be no Servers on the link and/
 or no need for Clients to use a Server as an intermediary trust
 anchor. In that case, each Client acts as a Server unto itself to
 establish neighbor cache entries by performing direct Client-to-
 Client IPv6 ND message exchanges, and some other form of trust basis
 must be applied so that each Client can verify that the prospective
 neighbor is authorized to use its claimed ACP.

 When there is no Server on the link, Clients must arrange to receive
 ACPs and publish them via a secure alternate prefix delegation
 authority through some means outside the scope of this document.

https://datatracker.ietf.org/doc/html/rfc2529

Templin Expires March 29, 2015 [Page 44]

Internet-Draft AERO September 2014

3.20. Proxy AERO

 Proxy Mobile IPv6 (PMIPv6) [RFC5213][RFC5844] presents a localized
 mobility management scheme for use within an access network domain.
 It is typically used in cellular wireless service provider networks,
 and allows mobile nodes to receive and retain a stable IP address
 without needing to implement any special mobility protocols. In the
 PMIPv6 architecture, access network devices known as Mobility Access
 Gateways (MAGs) provide mobile nodes with an access link abstraction
 and receive prefixes for the mobile nodes from a Local Mobility
 Anchor (LMA).

 The AERO Client (acting as a MAG) can similarly provide proxy
 services for mobile nodes that do not participate in AERO messaging.
 The proxy Client presents an access link abstraction to mobile nodes,
 and performs DHCPv6 PD exchanges over the AERO interface with an AERO
 Server (acting as an LMA) to receive a prefix for address
 provisioning of the mobile node.

 When a mobile node comes onto an access link presented by a proxy
 Client, the Client authenticates the node and obtains a unique
 identifier that it can use as the DUID in its DHCPv6 PD messages to
 the Server. When the Server delegates a prefix, the Client creates a
 new AERO address for the mobile node and assigns the delegated prefix
 to the mobile node's access link. The Client then generates address
 autoconfiguration messages (e.g., IPv6 RA, DHCPv6, DHCPv4, etc.) over
 the access link and configures itself as a default router for the
 mobile node. Since the Client may serve many such mobile nodes
 simultaneously, it may configure multiple AERO addresses, i.e., one
 for each mobile node.

 When two mobile nodes are associated with the same proxy Client, the
 Client can forward traffic between the mobiles without involving the
 Server since it configures the AERO addresses of each mobile and
 therefore also has the necessary routing information. When two
 mobiles are associated with different Clients, the first mobile
 node's Client can initiate standard AERO route optimization using the
 mobile's AERO address as the source for route optimization messaging.
 This may result in a route optimization where the first mobile node's
 Client discovers a direct path to the second mobile node's Client.

 When a mobile node moves to a new proxy Client, the old proxy Client
 issues a DHCPv6 Release message and sends unsolicited NA messages to
 any of the mobile node's correspondents the same as specified for
 announcing link-layer address changes in Section 3.15.1. However,
 since the old Client has no way of knowing where the mobile has moved
 to, it sets the Code field in the NA message to 1. When the
 correspondent receives such an NA message, it deletes the neighbor

https://datatracker.ietf.org/doc/html/rfc5213

Templin Expires March 29, 2015 [Page 45]

Internet-Draft AERO September 2014

 cache entry for the departed mobile node and again allows packets to
 flow through its Server.

 In addition to the use of DHCPv6 PD signaling, the AERO approach
 differs from PMIPv6 in its use of the NBMA virtual link model instead
 of point-to-point tunnels. This provides a more agile interface for
 Client-to-Server coordinations, and also facilitates simple route
 optimization. The AERO routing system is also arranged in such a
 fashion that Clients get the same service from any Server they happen
 to associate with. This provides a natural fault tolerance and load
 balancing capability such as desired for distributed mobility
 management. All other considerations are the same as specified in
 [RFC5213][RFC5844].

3.21. Extending AERO Links Through Security Gateways

 When an enterprise mobile device moves from a campus LAN connection
 to a public Internet link, it must re-enter the enterprise via a
 security gateway that has both a physical interface connection to the
 Internet and a physical interface connection to the enterprise
 internetwork. This most often entails the establishment of a Virtual
 Private Network (VPN) link over the public Internet from the mobile
 device to the security gateway. During this process, the mobile
 device supplies the security gateway with its public Internet address
 as the link-layer address for the VPN. The mobile device then acts
 as an AERO Client to negotiate with the security gateway to obtain
 its ACP.

 In order to satisfy this need, the security gateway also operates as
 an AERO Server with support for AERO Client proxying. In particular,
 when a mobile device (i.e., the Client) connects via the security
 gateway (i.e., the Server), the Server provides the Client with an
 ACP in a DHCPv6 PD exchange the same as if it were attached to an
 enterprise campus access link. The Server then replaces the Client's
 link-layer source address with the Server's enterprise-facing link-
 layer address in all AERO messages the Client sends toward neighbors
 on the AERO link. The AERO messages are then delivered to other
 devices on the AERO link as if they were originated by the security
 gateway instead of by the AERO Client. In the reverse direction, the
 AERO messages sourced by devices within the enterprise network can be
 forwarded to the security gateway, which then replaces the link-layer
 destination address with the Client's link-layer address and replaces
 the link-layer source address with its own (Internet-facing) link-
 layer address.

 After receiving the ACP, the Client can send IP packets that use an
 address taken from the ACP as the network layer source address, the
 Client's link-layer address as the link-layer source address, and the

https://datatracker.ietf.org/doc/html/rfc5213

Templin Expires March 29, 2015 [Page 46]

Internet-Draft AERO September 2014

 Server's Internet-facing link-layer address as the link-layer
 destination address. The Server will then rewrite the link-layer
 source address with the Server's own enterprise-facing link-layer
 address and rewrite the link-layer destination address with the
 target AERO node's link-layer address, and the packets will enter the
 enterprise network as though they were sourced from a device located
 within the enterprise. In the reverse direction, when a packet
 sourced by a node within the enterprise network uses a destination
 address from the Client's ACP, the packet will be delivered to the
 security gateway which then rewrites the link-layer destination
 address to the Client's link-layer address and rewrites the link-
 layer source address to the Server's Internet-facing link-layer
 address. The Server then delivers the packet across the VPN to the
 AERO Client. In this way, the AERO virtual link is essentially
 extended *through* the security gateway to the point at which the VPN
 link and AERO link are effectively grafted together by the link-layer
 address rewriting performed by the security gateway. All AERO
 messaging services (including route optimization and mobility
 signaling) are therefore extended to the Client.

 In order to support this virtual link grafting, the security gateway
 (acting as an AERO Server) must keep static neighbor cache entries
 for all of its associated Clients located on the public Internet.
 The neighbor cache entry is keyed by the AERO Client's AERO address
 the same as if the Client were located within the enterprise
 internetwork. The neighbor cache is then managed in all ways as
 though the Client were an ordinary AERO Client. This includes the
 AERO IPv6 ND messaging signaling for Route Optimization and Neighbor
 Unreachability Detection.

 Note that the main difference between a security gateway acting as an
 AERO Server and an enterprise-internal AERO Server is that the
 security gateway has at least one enterprise-internal physical
 interface and at least one public Internet physical interface.
 Conversely, the enterprise-internal AERO Server has only enterprise-
 internal physical interfaces. For this reason security gateway
 proxying is needed to ensure that the public Internet link-layer
 addressing space is kept separate from the enterprise-internal link-
 layer addressing space. This is afforded through a natural extension
 of the security association caching already performed for each VPN
 client by the security gateway.

3.22. Extending IPv6 AERO Links to the Internet

 When an IPv6 host ('H1') with an address from an ACP owned by AERO
 Client ('C1') sends packets to a correspondent IPv6 host ('H2'), the
 packets eventually arrive at the IPv6 router that owns ('H2')s
 prefix. This IPv6 router may or may not be an AERO Client ('C2')

Templin Expires March 29, 2015 [Page 47]

Internet-Draft AERO September 2014

 either within the same home network as ('C1') or in a different home
 network.

 If Client ('C1') is currently located outside the boundaries of its
 home network, it will connect back into the home network via a
 security gateway acting as an AERO Server. The packets sent by
 ('H1') via ('C1') will then be forwarded through the security gateway
 then through the home network and finally to ('C2') where they will
 be delivered to ('H2'). This could lead to sub-optimal performance
 when ('C2') could instead be reached via a more direct route without
 involving the security gateway.

 Consider the case when host ('H1') has the IPv6 address
 2001:db8:1::1, and Client ('C1') has the ACP 2001:db8:1::/64 with
 underlying IPv6 Internet address of 2001:db8:1000::1. Also, host
 ('H2') has the IPv6 address 2001:db8:2::1, and Client ('C2') has the
 ACP 2001:db8:2::/64 with underlying IPv6 Internet address of
 2001:db8:2000::1. While Client ('C1') may not initially know whether
 ('C2') is in fact an AERO Client, it can attempt route optimization
 using an approach similar to the Return Routability procedure
 specified for Mobile IPv6 (MIPv6) [RFC6275]. In order to support
 this process, both Clients MUST intercept and decapsulate packets
 that have a subnet router anycast address corresponding to any of the
 /64 prefixes covered by their respective ACPs.

 To initiate the process, Client ('C1') creates a specially-crafted
 encapsulated AERO Predirect message that will be routed through its
 home network then through ('C2')s home network and finally to ('C2')
 itself. Client ('C1') prepares the initial message in the exchange
 as follows:

 o The encapsulating IPv6 header source address is set to
 2001:db8:1:: (i.e., the IPv6 subnet router anycast address for
 ('C1')s ACP)

 o The encapsulating IPv6 header destination address is set to
 2001:db8:2:: (i.e., the presumed IPv6 subnet router anycast
 address for ('C2')s ACP)

 o The encapsulating IPv6 header is followed by a UDP header with
 source and destination port set to 8060

 o The encapsulated IPv6 header source address is set to
 fe80::2001:db8:1:0 (i.e., the AERO address for ('C1'))

 o The encapsulated IPv6 header destination address is set to
 fe80::2001:db8:2:0 (i.e., the presumed AERO address for ('C2'))

https://datatracker.ietf.org/doc/html/rfc6275

Templin Expires March 29, 2015 [Page 48]

Internet-Draft AERO September 2014

 o The encapsulated AERO Predirect message includes all of the
 securing information that would occur in a MIPv6 "Home Test Init"
 message (format TBD)

 Client ('C1') then further encapsulates the message in the
 encapsulating headers necessary to convey the packet to the security
 gateway (e.g., through IPsec encapsulation) so that the message now
 appears "double-encapsulated". ('C1') then sends the message to the
 security gateway, which re-encapsulates and forwards it over the home
 network from where it will eventually reach ('C2').

 At the same time, ('C1') creates and sends a second encapsulated AERO
 Predirect message that will be routed through the IPv6 Internet
 without involving the security gateway. Client ('C1') prepares the
 message as follows:

 o The encapsulating IPv6 header source address is set to
 2001:db8:1000:1 (i.e., the Internet IPv6 address of ('C1'))

 o The encapsulating IPv6 header destination address is set to
 2001:db8:2:: (i.e., the presumed IPv6 subnet router anycast
 address for ('C2')s ACP)

 o The encapsulating IPv6 header is followed by a UDP header with
 source and destination port set to 8060

 o The encapsulated IPv6 header source address is set to
 fe80::2001:db8:1:0 (i.e., the AERO address for ('C1'))

 o The encapsulated IPv6 header destination address is set to
 fe80::2001:db8:2:0 (i.e., the presumed AERO address for ('C2'))

 o The encapsulated AERO Predirect message includes all of the
 securing information that would occur in a MIPv6 "Care-of Test
 Init" message (format TBD)

 If ('C2') is indeed an AERO Client, it will receive both Predirect
 messages through its home network. ('C2') then return a
 corresponding Redirect for each of the Predirect messages with the
 source and destination addresses in the inner and outer headers
 reversed. The first message includes all of the securing information
 that would occur in a MIPv6 "Home Test" message, while the second
 message includes all of the securing information that would occur in
 a MIPv6 "Care-of Test" message (formats TBD).

 When ('C1') receives the Redirect messages, it performs the necessary
 security procedures per the MIPv6 specification. It then prepares an
 encapsulated NS message that includes the same source and destination

Templin Expires March 29, 2015 [Page 49]

Internet-Draft AERO September 2014

 addresses as for the "Care-of Test Init" Predirect message, and
 includes all of the securing information that would occur in a MIPv6
 "Binding Update" message (format TBD) and sends the message to
 ('C2').

 When ('C2') receives the NS message, if the securing information is
 correct it creates or updates a neighbor cache entry for ('C1') with
 fe80::2001:db8:1:0 as the network-layer address, 2001:db8:1000::1 as
 the link-layer address and with AcceptTime set to ACCEPT_TIME.
 ('C2') then sends an encapsulated NA message back to ('C1') that
 includes the same source and destination addresses as for the "Care-
 of Test" Redirect message, and includes all of the securing
 information that would occur in a MIPv6 "Binding Acknowledgement"
 message (format TBD) and sends the message to ('C1').

 When ('C1') receives the NA message, it creates or updates a neighbor
 cache entry for ('C2') with fe80::2001:db8:2:0 as the network-layer
 address and 2001:db8:2:: as the link-layer address and with
 ForwardTime set to FORWARD_TIME, thus completing the route
 optimization in the forward direction.

 ('C1') subsequently forwards encapsulated packets with outer source
 address 2001:db8:1000::1, with outer destination address
 2001:db8:2::, with inner source address taken from the 2001:db8:1::,
 and with inner destination address taken from 2001:db8:2:: due to the
 fact that it has a securely-established neighbor cache entry with
 non-zero ForwardTime. ('C2') subsequently accepts any such
 encapsulated packets due to the fact that it has a securely-
 established neighbor cache entry with non-zero AcceptTime..

 In order to keep neighbor cache entries alive, ('C1') periodically
 sends additional NS messages to ('C2') and receives any NA responses.
 If ('C1') moves to a different point of attachment after the initial
 route optimization, it sends a new secured NS message to ('C2') as
 above to update ('C2')s neighbor cache.

 If ('C2') has packets to send to ('C1'), it performs a corresponding
 route optimization in the opposite direction following the same
 procedures described above. In the process, the already-established
 unidirectional neighbor cache entries within ('C1') and ('C2') are
 updated to include the now-bidirectional information. In particular,
 the AcceptTime and ForwardTime variables for both neighbor cache
 entries are updated to non-zero values, and the link-layer address
 for ('C1')s neighbor cache entry for ('C2') is reset to
 2001:db8:2000::1.

 Note that two AERO Clients can use full security protocol messaging
 instead of Return Routability, e.g., if strong authentication and/or

Templin Expires March 29, 2015 [Page 50]

Internet-Draft AERO September 2014

 confidentiality are desired. In that case, security protocol key
 exchanges such as specified for MOBIKE [RFC4555] would be used to
 establish security associations and neighbor cache entries between
 the AERO clients. Thereafter, AERO NS/NA messaging can be used to
 maintain neighbor cache entries, test reachability, and to announce
 mobility events. If reachability testing fails, e.g., if both
 Clients move at roughly the same time, the Clients can tear down the
 security association and neighbor cache entries and again allow
 packets to flow through their home network (which may result in a new
 route optimization event).

4. Implementation Status

 An application-layer implementation is in progress.

5. IANA Considerations

 IANA is instructed to assign a new 2-octet Hardware Type number
 "TBD1" for AERO in the "arp-parameters" registry per Section 2 of
 [RFC5494]. The number is assigned from the 2-octet Unassigned range
 with Hardware Type "AERO" and with this document as the reference.

 IANA is instructed to assign a 4-octet Enterprise Number "TBD2" for
 AERO in the "enterprise-numbers" registry per [RFC3315].

6. Security Considerations

 AERO link security considerations are the same as for standard IPv6
 Neighbor Discovery [RFC4861] except that AERO improves on some
 aspects. In particular, AERO uses a trust basis between Clients and
 Servers, where the Clients only engage in the AERO mechanism when it
 is facilitated by a trust anchor. Unless there is some other means
 of authenticating the Client's identity (e.g., link-layer security),
 AERO nodes SHOULD also use DHCPv6 securing services (e.g., DHCPv6
 authentication, Secure DHCPv6 [I-D.ietf-dhc-sedhcpv6], etc.) for
 Client authentication and network admission control.

 AERO Redirect, Predirect and unsolicited NA messages SHOULD include a
 Timestamp option (see Section 5.3 of [RFC3971]) that other AERO nodes
 can use to verify the message time of origin. AERO Predirect, NS and
 RS messages SHOULD include a Nonce option (see Section 5.3 of
 [RFC3971]) that recipients echo back in corresponding responses.

 AERO links must be protected against link-layer address spoofing
 attacks in which an attacker on the link pretends to be a trusted
 neighbor. Links that provide link-layer securing mechanisms (e.g.,
 IEEE 802.1X WLANs) and links that provide physical security (e.g.,
 enterprise network wired LANs) provide a first line of defense that

https://datatracker.ietf.org/doc/html/rfc4555
https://datatracker.ietf.org/doc/html/rfc5494#section-2
https://datatracker.ietf.org/doc/html/rfc5494#section-2
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3

Templin Expires March 29, 2015 [Page 51]

Internet-Draft AERO September 2014

 is often sufficient. In other instances, additional securing
 mechanisms such as Secure Neighbor Discovery (SeND) [RFC3971], IPsec
 [RFC4301] or TLS [RFC5246] may be necessary.

 AERO Clients MUST ensure that their connectivity is not used by
 unauthorized nodes on their EUNs to gain access to a protected
 network, i.e., AERO Clients that act as routers MUST NOT provide
 routing services for unauthorized nodes. (This concern is no
 different than for ordinary hosts that receive an IP address
 delegation but then "share" the address with unauthorized nodes via a
 NAT function.)

 On some AERO links, establishment and maintenance of a direct path
 between neighbors requires secured coordination such as through the
 Internet Key Exchange (IKEv2) protocol [RFC5996] to establish a
 security association.

7. Acknowledgements

 Discussions both on IETF lists and in private exchanges helped shape
 some of the concepts in this work. Individuals who contributed
 insights include Mikael Abrahamsson, Mark Andrews, Fred Baker,
 Stewart Bryant, Brian Carpenter, Wojciech Dec, Ralph Droms, Sri
 Gundavelli, Brian Haberman, Joel Halpern, Sascha Hlusiak, Lee Howard,
 Andre Kostur, Ted Lemon, Joe Touch and Bernie Volz. Members of the
 IESG also provided valuable input during their review process that
 greatly improved the document. Special thanks go to Stewart Bryant,
 Joel Halpern and Brian Haberman for their shepherding guidance.

 This work has further been encouraged and supported by Boeing
 colleagues including Keith Bartley, Dave Bernhardt, Cam Brodie,
 Balaguruna Chidambaram, Claudiu Danilov, Wen Fang, Anthony Gregory,
 Jeff Holland, Ed King, Gen MacLean, Kent Shuey, Brian Skeen, Mike
 Slane, Julie Wulff, Yueli Yang, and other members of the BR&T and BIT
 mobile networking teams.

 Earlier works on NBMA tunneling approaches are found in
 [RFC2529][RFC5214][RFC5569].

8. References

8.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc5569
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc791

Templin Expires March 29, 2015 [Page 52]

Internet-Draft AERO September 2014

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 December 2003.

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

 [RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node
 Requirements", RFC 6434, December 2011.

8.2. Informative References

 [I-D.ietf-dhc-sedhcpv6]
 Jiang, S., Shen, S., Zhang, D., and T. Jinmei, "Secure
 DHCPv6 with Public Key", draft-ietf-dhc-sedhcpv6-03 (work
 in progress), June 2014.

 [RFC0879] Postel, J., "TCP maximum segment size and related topics",
RFC 879, November 1983.

https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3633
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc6434
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-sedhcpv6-03
https://datatracker.ietf.org/doc/html/rfc879

Templin Expires March 29, 2015 [Page 53]

Internet-Draft AERO September 2014

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers", RFC
1812, June 1995.

 [RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation,
 selection, and registration of an Autonomous System (AS)",

BCP 6, RFC 1930, March 1996.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
2131, March 1997.

 [RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529, March 1999.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery", RFC
2923, September 2000.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, July 2004.

 [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
 Protocol 4 (BGP-4)", RFC 4271, January 2006.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, June 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/bcp6
https://datatracker.ietf.org/doc/html/rfc1930
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4555
https://datatracker.ietf.org/doc/html/rfc4821

Templin Expires March 29, 2015 [Page 54]

Internet-Draft AERO September 2014

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC4994] Zeng, S., Volz, B., Kinnear, K., and J. Brzozowski,
 "DHCPv6 Relay Agent Echo Request Option", RFC 4994,
 September 2007.

 [RFC5213] Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K.,
 and B. Patil, "Proxy Mobile IPv6", RFC 5213, August 2008.

 [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
 Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
 March 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5494] Arkko, J. and C. Pignataro, "IANA Allocation Guidelines
 for the Address Resolution Protocol (ARP)", RFC 5494,
 April 2009.

 [RFC5522] Eddy, W., Ivancic, W., and T. Davis, "Network Mobility
 Route Optimization Requirements for Operational Use in
 Aeronautics and Space Exploration Mobile Networks", RFC

5522, October 2009.

 [RFC5569] Despres, R., "IPv6 Rapid Deployment on IPv4
 Infrastructures (6rd)", RFC 5569, January 2010.

 [RFC5844] Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy
 Mobile IPv6", RFC 5844, May 2010.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC

5996, September 2010.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, April 2011.

 [RFC6204] Singh, H., Beebee, W., Donley, C., Stark, B., and O.
 Troan, "Basic Requirements for IPv6 Customer Edge
 Routers", RFC 6204, April 2011.

 [RFC6275] Perkins, C., Johnson, D., and J. Arkko, "Mobility Support
 in IPv6", RFC 6275, July 2011.

https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc4994
https://datatracker.ietf.org/doc/html/rfc5213
https://datatracker.ietf.org/doc/html/rfc5214
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5494
https://datatracker.ietf.org/doc/html/rfc5522
https://datatracker.ietf.org/doc/html/rfc5522
https://datatracker.ietf.org/doc/html/rfc5569
https://datatracker.ietf.org/doc/html/rfc5844
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6204
https://datatracker.ietf.org/doc/html/rfc6275

Templin Expires March 29, 2015 [Page 55]

Internet-Draft AERO September 2014

 [RFC6355] Narten, T. and J. Johnson, "Definition of the UUID-Based
 DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355, August
 2011.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, November 2011.

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
RFC 6691, July 2012.

 [RFC6706] Templin, F., "Asymmetric Extended Route Optimization
 (AERO)", RFC 6706, August 2012.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, February 2013.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935, April 2013.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, April 2013.

 [RFC6939] Halwasia, G., Bhandari, S., and W. Dec, "Client Link-Layer
 Address Option in DHCPv6", RFC 6939, May 2013.

 [RFC6980] Gont, F., "Security Implications of IPv6 Fragmentation
 with IPv6 Neighbor Discovery", RFC 6980, August 2013.

 [RFC7078] Matsumoto, A., Fujisaki, T., and T. Chown, "Distributing
 Address Selection Policy Using DHCPv6", RFC 7078, January
 2014.

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

https://datatracker.ietf.org/doc/html/rfc6355
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc6939
https://datatracker.ietf.org/doc/html/rfc6980
https://datatracker.ietf.org/doc/html/rfc7078

Templin Expires March 29, 2015 [Page 56]

