
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320, rfc5558, rfc5720, July 22, 2016

rfc6179, rfc6706 (if
 approved)
Intended status: Standards Track
Expires: January 23, 2017

Asymmetric Extended Route Optimization (AERO)
draft-templin-aerolink-68.txt

Abstract

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). Nodes attached
 to AERO links can exchange packets via trusted intermediate routers
 that provide forwarding services to reach off-link destinations and
 redirection services for route optimization. AERO provides an IPv6
 link-local address format known as the AERO address that supports
 operation of the IPv6 Neighbor Discovery (ND) protocol and links IPv6
 ND to IP forwarding. Admission control, address/prefix provisioning
 and mobility are supported by the Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6), and route optimization is naturally supported
 through dynamic neighbor cache updates. Although DHCPv6 and IPv6 ND
 messaging are used in the control plane, both IPv4 and IPv6 are
 supported in the data plane. AERO is a widely-applicable tunneling
 solution using standard control messaging exchanges as described in
 this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 23, 2017.

Templin Expires January 23, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft AERO July 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Asymmetric Extended Route Optimization (AERO) 6
3.1. AERO Link Reference Model 6
3.2. AERO Link Node Types 8
3.3. AERO Addresses . 9
3.4. AERO Interface Characteristics 10
3.5. AERO Link Registration 11
3.6. AERO Interface Initialization 12
3.6.1. AERO Relay Behavior 12
3.6.2. AERO Server Behavior 12
3.6.3. AERO Client Behavior 13
3.6.4. AERO Forwarding Agent Behavior 13

3.7. AERO Routing System 13
3.8. AERO Interface Neighbor Cache Maintenace 15
3.9. AERO Interface Sending Algorithm 16
3.10. AERO Interface Encapsulation and Re-encapsulation 18
3.11. AERO Interface Decapsulation 19
3.12. AERO Interface Data Origin Authentication 19
3.13. AERO Interface MTU and Fragmentation 20
3.14. AERO Interface Error Handling 22

 3.15. AERO Router Discovery, Prefix Delegation and Address
 Configuration . 25

3.15.1. AERO DHCPv6 Service Model 25
3.15.2. AERO Client Behavior 25
3.15.3. AERO Server Behavior 28
3.15.4. Deleting Link Registrations 32

3.16. AERO Forwarding Agent Behavior 32
3.17. AERO Intradomain Route Optimization 33
3.17.1. Reference Operational Scenario 33
3.17.2. Concept of Operations 35

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Templin Expires January 23, 2017 [Page 2]

Internet-Draft AERO July 2016

3.17.3. Message Format 35
3.17.4. Sending Predirects 36
3.17.5. Re-encapsulating and Relaying Predirects 37
3.17.6. Processing Predirects and Sending Redirects 38
3.17.7. Re-encapsulating and Relaying Redirects 40
3.17.8. Processing Redirects 40
3.17.9. Server-Oriented Redirection 41
3.17.10. Route Optimization Policy 41
3.17.11. Route Optimization and Multiple ACPs 42

3.18. Neighbor Unreachability Detection (NUD) 42
3.19. Mobility Management 43
3.19.1. Announcing Link-Layer Address Changes 43
3.19.2. Bringing New Links Into Service 43
3.19.3. Removing Existing Links from Service 43
3.19.4. Moving to a New Server 44
3.19.5. Packet Queueing for Mobility 44

3.20. Proxy AERO . 45
3.21. Extending AERO Links Through Security Gateways 47
3.22. Extending IPv6 AERO Links to the Internet 49
3.23. Encapsulation Protocol Version Considerations 52
3.24. Multicast Considerations 53
3.25. Operation on AERO Links Without DHCPv6 Services 53
3.26. Operation on Server-less AERO Links 53
3.27. Manually-Configured AERO Tunnels 53
3.28. Intradomain Routing 54

4. Implementation Status . 54
5. IANA Considerations . 54
6. Security Considerations 54
7. Acknowledgements . 55
8. References . 56
8.1. Normative References 56
8.2. Informative References 58

Appendix A. AERO Alternate Encapsulations 65
Appendix B. When to Insert an Encapsulation Fragment Header . . 66

 Author's Address . 67

1. Introduction

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). The AERO link
 can be used for tunneling to neighboring nodes over either IPv6 or
 IPv4 networks, i.e., AERO views the IPv6 and IPv4 networks as
 equivalent links for tunneling. Nodes attached to AERO links can
 exchange packets via trusted intermediate routers that provide
 forwarding services to reach off-link destinations and redirection
 services for route optimization [RFC5522].

https://datatracker.ietf.org/doc/html/rfc5522

Templin Expires January 23, 2017 [Page 3]

Internet-Draft AERO July 2016

 AERO provides an IPv6 link-local address format known as the AERO
 address that supports operation of the IPv6 Neighbor Discovery (ND)
 [RFC4861] protocol and links IPv6 ND to IP forwarding. Admission
 control, address/prefix provisioning and mobility are supported by
 the Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315],
 and route optimization is naturally supported through dynamic
 neighbor cache updates. Although DHCPv6 and IPv6 ND messaging are
 used in the control plane, both IPv4 and IPv6 can be used in the data
 plane. AERO is a widely-applicable tunneling solution using standard
 control messaging exchanges as described in this document. The
 remainder of this document presents the AERO specification.

2. Terminology

 The terminology in the normative references applies; the following
 terms are defined within the scope of this document:

 AERO link
 a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
 configured over a node's attached IPv6 and/or IPv4 networks. All
 nodes on the AERO link appear as single-hop neighbors from the
 perspective of the virtual overlay even though they may be
 separated by many underlying network hops. AERO can also operate
 over native multiple access link types (e.g., Ethernet, WiFi etc.)
 when a tunnel virtual overlay is not needed.

 AERO interface
 a node's attachment to an AERO link. Nodes typically have a
 single AERO interface; support for multiple AERO interfaces is
 also possible but out of scope for this document. AERO interfaces
 do not require Duplicate Address Detection (DAD) and therefore set
 the administrative variable DupAddrDetectTransmits to zero
 [RFC4862].

 AERO address
 an IPv6 link-local address constructed as specified in Section 3.3
 and assigned to a Client's AERO interface.

 AERO node
 a node that is connected to an AERO link and that participates in
 IPv6 ND and DHCPv6 messaging over the link.

 AERO Client ("Client")
 a node that issues DHCPv6 messages to receive IP Prefix
 Delegations (PDs) from one or more AERO Servers. Following PD,
 the Client assigns an AERO address to the AERO interface for use
 in DHCPv6 and IPv6 ND exchanges with other AERO nodes.

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc4862

Templin Expires January 23, 2017 [Page 4]

Internet-Draft AERO July 2016

 AERO Server ("Server")
 a node that configures an AERO interface to provide default
 forwarding and DHCPv6 services for AERO Clients. The Server
 assigns an administratively provisioned IPv6 link-local unicast
 address to support the operation of DHCPv6 and the IPv6 ND
 protocol. An AERO Server can also act as an AERO Relay.

 AERO Relay ("Relay")
 a node that configures an AERO interface to relay IP packets
 between nodes on the same AERO link and/or forward IP packets
 between the AERO link and the native Internetwork. The Relay
 assigns an administratively provisioned IPv6 link-local unicast
 address to the AERO interface the same as for a Server. An AERO
 Relay can also act as an AERO Server.

 AERO Forwarding Agent ("Forwarding Agent")
 a node that performs data plane forwarding services as a companion
 to an AERO Server.

 ingress tunnel endpoint (ITE)
 an AERO interface endpoint that injects tunneled packets into an
 AERO link.

 egress tunnel endpoint (ETE)
 an AERO interface endpoint that receives tunneled packets from an
 AERO link.

 underlying network
 a connected IPv6 or IPv4 network routing region over which the
 tunnel virtual overlay is configured. A typical example is an
 enterprise network, but many other use cases are also in scope.

 underlying interface
 an AERO node's interface point of attachment to an underlying
 network.

 link-layer address
 an IP address assigned to an AERO node's underlying interface.
 When UDP encapsulation is used, the UDP port number is also
 considered as part of the link-layer address; otherwise, UDP port
 number is set to the constant value '0'. Link-layer addresses are
 used as the encapsulation header source and destination addresses.

 network layer address
 the source or destination address of the encapsulated IP packet.

 end user network (EUN)

Templin Expires January 23, 2017 [Page 5]

Internet-Draft AERO July 2016

 an internal virtual or external edge IP network that an AERO
 Client connects to the rest of the network via the AERO interface.

 AERO Service Prefix (ASP)
 an IP prefix associated with the AERO link and from which AERO
 Client Prefixes (ACPs) are derived (for example, the IPv6 ACP
 2001:db8:1:2::/64 is derived from the IPv6 ASP 2001:db8::/32).

 AERO Client Prefix (ACP)
 a more-specific IP prefix taken from an ASP and delegated to a
 Client.

 Throughout the document, the simple terms "Client", "Server" and
 "Relay" refer to "AERO Client", "AERO Server" and "AERO Relay",
 respectively. Capitalization is used to distinguish these terms from
 DHCPv6 client/server/relay [RFC3315].

 The terminology of DHCPv6 [RFC3315] and IPv6 ND [RFC4861] (including
 the names of node variables and protocol constants) applies to this
 document. Also throughout the document, the term "IP" is used to
 generically refer to either Internet Protocol version (i.e., IPv4 or
 IPv6).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. Lower case
 uses of these words are not to be interpreted as carrying RFC2119
 significance.

3. Asymmetric Extended Route Optimization (AERO)

 The following sections specify the operation of IP over Asymmetric
 Extended Route Optimization (AERO) links:

3.1. AERO Link Reference Model

https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires January 23, 2017 [Page 6]

Internet-Draft AERO July 2016

 .-(::::::::)
 .-(:::: IP ::::)-.
 (:: Internetwork ::)
 `-(::::::::::::)-'
 `-(::::::)-'
 |
 +--------------+ +--------+-------+ +--------------+
 |AERO Server S1| | AERO Relay R1 | |AERO Server S2|
 | Nbr: C1; R1 | | Nbr: S1; S2 | | Nbr: C2; R1 |
 | default->R1 | |(P1->S1; P2->S2)| | default->R1 |
 | P1->C1 | | ASP A1 | | P2->C2 |
 +-------+------+ +--------+-------+ +------+-------+
 | | |
 X---+---+-------------------+------------------+---+---X
 | AERO Link |
 +-----+--------+ +--------+-----+
 |AERO Client C1| |AERO Client C2|
 | Nbr: S1 | | Nbr: S2 |
 | default->S1 | | default->S2 |
 | ACP P1 | | ACP P2 |
 +--------------+ +--------------+
 .-. .-.
 ,-(_)-. ,-(_)-.
 .-(_ IP)-. .-(_ IP)-.
 (__ EUN) (__ EUN)
 `-(______)-' `-(______)-'
 | |
 +--------+ +--------+
 | Host H1| | Host H2|
 +--------+ +--------+

 Figure 1: AERO Link Reference Model

 Figure 1 presents the AERO link reference model. In this model:

 o AERO Relay R1 aggregates AERO Service Prefix (ASP) A1, acts as a
 default router for its associated Servers S1 and S2, and connects
 the AERO link to the rest of the IP Internetwork.

 o AERO Servers S1 and S2 associate with Relay R1 and also act as
 default routers for their associated Clients C1 and C2.

 o AERO Clients C1 and C2 associate with Servers S1 and S2,
 respectively. They receive AERO Client Prefix (ACP) delegations
 P1 and P2, and also act as default routers for their associated
 physical or internal virtual EUNs. (Alternatively, clients can
 act as multi-addressed hosts without serving any EUNs).

Templin Expires January 23, 2017 [Page 7]

Internet-Draft AERO July 2016

 o Simple hosts H1 and H2 attach to the EUNs served by Clients C1 and
 C2, respectively.

 Each AERO node maintains an AERO interface neighbor cache and an IP
 forwarding table. For example, AERO Relay R1 in the diagram has
 neighbor cache entries for Servers S1 and S2 as well as IP forwarding
 table entries for the ACPs delegated to Clients C1 and C2. In common
 operational practice, there may be many additional Relays, Servers
 and Clients. (Although not shown in the figure, AERO Forwarding
 Agents may also be provided for data plane forwarding offload
 services.)

3.2. AERO Link Node Types

 AERO Relays provide default forwarding services to AERO Servers.
 Relays forward packets between neighbors connected to the same AERO
 link and also forward packets between the AERO link and the native IP
 Internetwork. Relays present the AERO link to the native
 Internetwork as a set of one or more AERO Service Prefixes (ASPs) and
 serve as a gateway between the AERO link and the Internetwork. AERO
 Relays maintain an AERO interface neighbor cache entry for each AERO
 Server, and maintain an IP forwarding table entry for each AERO
 Client Prefix (ACP). AERO Relays can also be configured to act as
 AERO Servers.

 AERO Servers provide default forwarding services to AERO Clients.
 Each Server also peers with each Relay in a dynamic routing protocol
 instance to advertise its list of associated ACPs. Servers configure
 a DHCPv6 server function to facilitate Prefix Delegation (PD)
 exchanges with Clients. Each delegated prefix becomes an ACP taken
 from an ASP. Servers forward packets between AERO interface
 neighbors, and maintain an AERO interface neighbor cache entry for
 each AERO Relay. They also maintain both neighbor cache entries and
 IP forwarding table entries for each of their associated Clients.
 AERO Servers can also be configured to act as AERO Relays.

 AERO Clients act as requesting routers to receive ACPs through DHCPv6
 PD exchanges with AERO Servers over the AERO link. Each Client MAY
 associate with a single Server or with multiple Servers, e.g., for
 fault tolerance, load balancing, etc. Each IPv6 Client receives at
 least a /64 IPv6 ACP, and may receive even shorter prefixes.
 Similarly, each IPv4 Client receives at least a /32 IPv4 ACP (i.e., a
 singleton IPv4 address), and may receive even shorter prefixes. AERO
 Clients maintain an AERO interface neighbor cache entry for each of
 their associated Servers as well as for each of their correspondent
 Clients.

Templin Expires January 23, 2017 [Page 8]

Internet-Draft AERO July 2016

 AERO Forwarding Agents provide data plane forwarding services as
 companions to AERO Servers. Note that while Servers are required to
 perform both control and data plane operations on their own behalf,
 they may optionally enlist the services of special-purpose Forwarding
 Agents to offload data plane traffic.

3.3. AERO Addresses

 An AERO address is an IPv6 link-local address with an embedded ACP
 and assigned to a Client's AERO interface. The AERO address is
 formed as follows:

 fe80::[ACP]

 For IPv6, the AERO address begins with the prefix fe80::/64 and
 includes in its interface identifier the base prefix taken from the
 Client's IPv6 ACP. The base prefix is determined by masking the ACP
 with the prefix length. For example, if the AERO Client receives the
 IPv6 ACP:

 2001:db8:1000:2000::/56

 it constructs its AERO address as:

 fe80::2001:db8:1000:2000

 For IPv4, the AERO address is formed from the lower 64 bits of an
 IPv4-mapped IPv6 address [RFC4291] that includes the base prefix
 taken from the Client's IPv4 ACP. For example, if the AERO Client
 receives the IPv4 ACP:

 192.0.2.32/28

 it constructs its AERO address as:

 fe80::FFFF:192.0.2.32

 The AERO address remains stable as the Client moves between
 topological locations, i.e., even if its link-layer addresses change.

 NOTE: In some cases, prospective neighbors may not have advanced
 knowledge of the Client's ACP length and may therefore send initial
 IPv6 ND messages with an AERO destination address that matches the
 ACP but does not correspond to the base prefix. For example, if the
 Client receives the IPv6 ACP 2001:db8:1000:2000::/56 then
 subsequently receives an IPv6 ND message with destination address
 fe80::2001:db8:1000:2001, it accepts the message as though it were
 addressed to fe80::2001:db8:1000:2000.

https://datatracker.ietf.org/doc/html/rfc4291

Templin Expires January 23, 2017 [Page 9]

Internet-Draft AERO July 2016

3.4. AERO Interface Characteristics

 AERO interfaces use encapsulation (see: Section 3.10) to exchange
 packets with neighbors attached to the AERO link. AERO interfaces
 maintain a neighbor cache, and AERO nodes use both DHCPv6 PD and IPv6
 ND control messaging. AERO Clients send DHCPv6 Solicit, Rebind,
 Renew and Release messages to AERO Servers, which respond with DHCPv6
 Reply messages. These messages result in the creation, modification
 and deletion of neighbor cache entries.

 AERO interfaces use unicast IPv6 ND Neighbor Solicitation (NS),
 Neighbor Advertisement (NA), Router Solicitation (RS) and Router
 Advertisement (RA) messages the same as for any IPv6 link. AERO
 interfaces use two IPv6 ND redirection message types -- the first
 known as a Predirect message and the second being the standard
 Redirect message (see Section 3.17). AERO links further use link-
 local-only addressing; hence, AERO nodes ignore any Prefix
 Information Options (PIOs) they may receive in RA messages over an
 AERO interface.

 AERO interface ND messages include one or more Source/Target Link-
 Layer Address Options (S/TLLAOs) formatted as shown in Figure 2:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 2 | Length = 3 | Reserved |
 +-+
 | Link ID | NDSCPs | DSCP #1 |Prf| DSCP #2 |Prf|
 +-+
 | DSCP #3 |Prf| DSCP #4 |Prf|
 +-+
 | UDP Port Number | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 + +
 | IP Address |
 + +
 | |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 2: AERO Source/Target Link-Layer Address Option (S/TLLAO)
 Format

 In this format, Link ID is an integer value between 0 and 255
 corresponding to an underlying interface of the target node, NDSCPs

Templin Expires January 23, 2017 [Page 10]

Internet-Draft AERO July 2016

 encodes an integer value between 0 and 64 indicating the number of
 Differentiated Services Code Point (DSCP) octets that follow. Each
 DSCP octet is a 6-bit integer DSCP value followed by a 2-bit
 Preference ("Prf") value. Each DSCP value encodes an integer between
 0 and 63 associated with this Link ID, where the value 0 means
 "default" and other values are interpreted as specified in [RFC2474].
 The 'Prf' qualifier for each DSCP value is set to the value 0
 ("deprecated'), 1 ("low"), 2 ("medium"), or 3 ("high") to indicate a
 preference level for packet forwarding purposes. When a particular
 DSCP value is not specified, its preference level is set to "medium"
 by default.

 UDP Port Number and IP Address are set to the addresses used by the
 target node when it sends encapsulated packets over the underlying
 interface. When UDP is not used as part of the encapsulation, UDP
 Port Number is set to the value '0'. When the encapsulation IP
 address family is IPv4, IP Address is formed as an IPv4-mapped IPv6
 address [RFC4291].

 AERO interfaces may be configured over multiple underlying
 interfaces. For example, common mobile handheld devices have both
 wireless local area network ("WLAN") and cellular wireless links.
 These links are typically used "one at a time" with low-cost WLAN
 preferred and highly-available cellular wireless as a standby. In a
 more complex example, aircraft frequently have many wireless data
 link types (e.g. satellite-based, terrestrial, air-to-air
 directional, etc.) with diverse performance and cost properties.

 If a Client's multiple underlying interfaces are used "one at a time"
 (i.e., all other interfaces are in standby mode while one interface
 is active), then Redirect, Predirect and unsolicited NA messages
 include only a single TLLAO with Link ID set to a constant value.

 If the Client has multiple active underlying interfaces, then from
 the perspective of IPv6 ND it would appear to have multiple link-
 layer addresses. In that case, Redirect and Predirect messages MAY
 include multiple TLLAOs -- each with a Link ID that corresponds to a
 specific underlying interface of the Client.

3.5. AERO Link Registration

 When an administrative authority first deploys a set of AERO Relays
 and Servers that comprise an AERO link, they also assign a unique
 domain name for the link, e.g., "linkupnetworks.example.com". Next,
 if administrative policy permits Clients within the domain to serve
 as correspondent nodes for Internet mobile nodes, the administrative
 authority adds a Fully Qualified Domain Name (FQDN) for each of the
 AERO link's ASPs to the Domain Name System (DNS) [RFC1035]. The FQDN

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc1035

Templin Expires January 23, 2017 [Page 11]

Internet-Draft AERO July 2016

 is based on the suffix "aero.linkupnetworks.net" with a prefix formed
 from the wildcard-terminated reverse mapping of the ASP
 [RFC3596][RFC4592], and resolves to a DNS PTR resource record. For
 example, for the ASP '2001:db8:1::/48' within the domain name
 "linkupnetworks.example.com", the DNS database contains:

 '*.1.0.0.0.8.b.d.0.1.0.0.2.aero.linkupnetworks.net. PTR
 linkupnetworks.example.com'

 This DNS registration advertises the AERO link's ASPs to prospective
 correspondent nodes.

3.6. AERO Interface Initialization

3.6.1. AERO Relay Behavior

 When a Relay enables an AERO interface, it first assigns an
 administratively provisioned link-local address fe80::ID to the
 interface. Each fe80::ID address MUST be unique among all AERO nodes
 on the link, and MUST NOT collide with any potential AERO addresses
 nor the special addresses fe80:: and fe80::ffff:ffff:ffff:ffff. (The
 fe80::ID addresses are typically taken from the available range
 fe80::/96, e.g., as fe80::1, fe80::2, fe80::3, etc.) The Relay then
 engages in a dynamic routing protocol session with all Servers on the
 link (see: Section 3.7), and advertises its assigned ASP prefixes
 into the native IP Internetwork.

 Each Relay subsequently maintains an IP forwarding table entry for
 each ACP covered by its ASP(s), and maintains a neighbor cache entry
 for each Server on the link. Relays exchange NS/NA messages with
 AERO link neighbors the same as for any AERO node, however they
 typically do not perform explicit Neighbor Unreachability Detection
 (NUD) (see: Section 3.18) since the dynamic routing protocol already
 provides reachability confirmation.

3.6.2. AERO Server Behavior

 When a Server enables an AERO interface, it assigns an
 administratively provisioned link-local address fe80::ID the same as
 for Relays. The Server further configures a DHCPv6 server function
 to facilitate DHCPv6 PD exchanges with AERO Clients. The Server
 maintains a neighbor cache entry for each Relay on the link, and
 manages per-ACP neighbor cache entries and IP forwarding table
 entries based on control message exchanges. Each Server also engages
 in a dynamic routing protocol with each Relay on the link (see:

Section 3.7).

https://datatracker.ietf.org/doc/html/rfc3596

Templin Expires January 23, 2017 [Page 12]

Internet-Draft AERO July 2016

 When the Server receives an NS/RS message from a Client on the AERO
 interface it returns an NA/RA message. The Server further provides a
 simple link-layer conduit between AERO interface neighbors.
 Therefore, packets enter the Server's AERO interface from the link
 layer and are forwarded back out the link layer without ever leaving
 the AERO interface and therefore without ever disturbing the network
 layer.

3.6.3. AERO Client Behavior

 When a Client enables an AERO interface, it uses the special address
 fe80::ffff:ffff:ffff:ffff to obtain one or more ACPs from an AERO
 Server via DHCPv6 PD. Next, it assigns the corresponding AERO
 address(es) to the AERO interface and creates a neighbor cache entry
 for the Server, i.e., the DHCPv6 PD exchange bootstraps
 autoconfiguration of unique link-local address(es). The Client
 maintains a neighbor cache entry for each of its Servers and each of
 its active correspondent Clients. When the Client receives Redirect/
 Predirect messages on the AERO interface it updates or creates
 neighbor cache entries, including link-layer address information.

3.6.4. AERO Forwarding Agent Behavior

 When a Forwarding Agent enables an AERO interface, it assigns the
 same link-local address(es) as the companion AERO Server. The
 Forwarding Agent thereafter provides data plane forwarding services
 based solely on the forwarding information assigned to it by the
 companion AERO Server.

3.7. AERO Routing System

 The AERO routing system is based on a private instance of the Border
 Gateway Protocol (BGP) [RFC4271] that is coordinated between Relays
 and Servers and does not interact with either the public Internet BGP
 routing system or the native IP Internetwork interior routing system.
 Relays advertise only a small and unchanging set of ASPs to the
 native routing system instead of the full dynamically changing set of
 ACPs.

 In a reference deployment, each AERO Server is configured as an
 Autonomous System Border Router (ASBR) for a stub Autonomous System
 (AS) using an AS Number (ASN) that is unique within the BGP instance,
 and each Server further peers with each Relay but does not peer with
 other Servers. Similarly, Relays do not peer with each other, since
 they will reliably receive all updates from all Servers and will
 therefore have a consistent view of the AERO link ACP delegations.

https://datatracker.ietf.org/doc/html/rfc4271

Templin Expires January 23, 2017 [Page 13]

Internet-Draft AERO July 2016

 Each Server maintains a working set of associated ACPs, and
 dynamically announces new ACPs and withdraws departed ACPs in its BGP
 updates to Relays. Clients are expected to remain associated with
 their current Servers for extended timeframes, however Servers SHOULD
 selectively suppress BGP updates for impatient Clients that
 repeatedly associate and disassociate with them in order to dampen
 routing churn.

 Each Relay configures a black-hole route for each of its ASPs. By
 black-holing the ASPs, the Relay will maintain forwarding table
 entries only for the ACPs that are currently active, and all other
 ACPs will correctly result in destination unreachable failures due to
 the black hole route.

 Scaling properties of the AERO routing system are limited by the
 number of BGP routes that can be carried by Relays. Assuming O(10^6)
 as a reasonable maximum number of BGP routes, this means that O(10^6)
 Clients can be serviced by a single set of Relays. A means of
 increasing scaling would be to assign a different set of Relays for
 each set of ASPs. In that case, each Server still peers with each
 Relay, but the Server institutes route filters so that each set of
 Relays only receives BGP updates for the ASPs they aggregate. For
 example, if the ASP for the AERO link is 2001:db8::/32, a first set
 of Relays could service the ASP segment 2001:db8::/40, a second set
 of Relays could service 2001:db8:0100::/40, a third set could service
 2001:db8:0200::/40, etc.

 Assuming up to O(10^3) sets of Relays, the AERO routing system can
 then accommodate O(10^9) ACPs with no additional overhead for Servers
 and Relays (for example, it should be possible to service 4 billion
 /64 ACPs taken from a /32 ASP and even more for shorter ASPs). In
 this way, each set of Relays services a specific set of ASPs that
 they advertise to the native routing system, and each Server
 configures ASP-specific routes that list the correct set of Relays as
 next hops. This arrangement also allows for natural incremental
 deployment, and can support small scale initial deployments followed
 by dynamic deployment of additional Clients, Servers and Relays
 without disturbing the already-deployed base.

 Note that in an alternate routing arrangement each set of Relays
 could advertise the aggregated ASP for the link into the native
 routing system even though each Relay services only a segment of the
 ASP. In that case, a Relay upon receiving a packet with a
 destination address covered by the ASP segment of another Relay can
 simply tunnel the packet to the correct Relay. The tradeoff then is
 the penalty for Relay-to-Relay tunneling compared with reduced
 routing information in the native routing system.

Templin Expires January 23, 2017 [Page 14]

Internet-Draft AERO July 2016

3.8. AERO Interface Neighbor Cache Maintenace

 Each AERO interface maintains a conceptual neighbor cache that
 includes an entry for each neighbor it communicates with on the AERO
 link, the same as for any IPv6 interface [RFC4861]. AERO interface
 neighbor cache entires are said to be one of "permanent", "static" or
 "dynamic".

 Permanent neighbor cache entries are created through explicit
 administrative action; they have no timeout values and remain in
 place until explicitly deleted. AERO Relays maintain a permanent
 neighbor cache entry for each Server on the link, and AERO Servers
 maintain a permanent neighbor cache entry for each Relay. Each entry
 maintains the mapping between the neighbor's fe80::ID network-layer
 address and corresponding link-layer address.

 Static neighbor cache entries are created through DHCPv6 PD exchanges
 and remain in place for durations bounded by prefix lifetimes. AERO
 Servers maintain static neighbor cache entries for the ACPs of each
 of their associated Clients, and AERO Clients maintain a static
 neighbor cache entry for each of their associated Servers. When an
 AERO Server sends a Reply message response to a Client's Solicit,
 Rebind or Renew message, it creates or updates a static neighbor
 cache entry based on the Client's DHCP Unique Identifier (DUID) as
 the Client identifier, the AERO address(es) corresponding to the
 Client's ACP(s) as the network-layer address(es), the prefix lifetime
 as the neighbor cache entry lifetime, the Client's encapsulation IP
 address and UDP port number as the link-layer address and the prefix
 length(s) as the length to apply to the AERO address(es). When an
 AERO Client receives a Reply message from a Server, it creates or
 updates a static neighbor cache entry based on the Reply message
 link-local source address as the network-layer address, the prefix
 lifetime as the neighbor cache entry lifetime, and the encapsulation
 IP source address and UDP source port number as the link-layer
 address.

 Dynamic neighbor cache entries are created or updated based on
 receipt of a Predirect/Redirect message, and are garbage-collected if
 not used within a bounded timescale. AERO Clients maintain dynamic
 neighbor cache entries for each of their active correspondent Client
 ACPs with lifetimes based on IPv6 ND messaging constants. When an
 AERO Client receives a valid Predirect message it creates or updates
 a dynamic neighbor cache entry for the Predirect target network-layer
 and link-layer addresses plus prefix length. The node then sets an
 "AcceptTime" variable in the neighbor cache entry to ACCEPT_TIME
 seconds and uses this value to determine whether packets received
 from the correspondent can be accepted. When an AERO Client receives
 a valid Redirect message it creates or updates a dynamic neighbor

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires January 23, 2017 [Page 15]

Internet-Draft AERO July 2016

 cache entry for the Redirect target network-layer and link-layer
 addresses plus prefix length. The Client then sets a "ForwardTime"
 variable in the neighbor cache entry to FORWARD_TIME seconds and uses
 this value to determine whether packets can be sent directly to the
 correspondent. The Client also sets a "MaxRetry" variable to
 MAX_RETRY to limit the number of keepalives sent when a correspondent
 may have gone unreachable.

 It is RECOMMENDED that FORWARD_TIME be set to the default constant
 value 30 seconds to match the default REACHABLE_TIME value specified
 for IPv6 ND [RFC4861].

 It is RECOMMENDED that ACCEPT_TIME be set to the default constant
 value 40 seconds to allow a 10 second window so that the AERO
 redirection procedure can converge before AcceptTime decrements below
 FORWARD_TIME.

 It is RECOMMENDED that MAX_RETRY be set to 3 the same as described
 for IPv6 ND address resolution in Section 7.3.3 of [RFC4861].

 Different values for FORWARD_TIME, ACCEPT_TIME, and MAX_RETRY MAY be
 administratively set, if necessary, to better match the AERO link's
 performance characteristics; however, if different values are chosen,
 all nodes on the link MUST consistently configure the same values.
 Most importantly, ACCEPT_TIME SHOULD be set to a value that is
 sufficiently longer than FORWARD_TIME to allow the AERO redirection
 procedure to converge.

 When there may be a Network Address Translator (NAT) between the
 Client and the Server, or if the path from the Client to the Server
 should be tested for reachability, the Client can send periodic RS
 messages to the Server to receive RA replies. The RS/RA messaging
 will keep NAT state alive and test Server reachability without
 disturbing the DHCPv6 server.

3.9. AERO Interface Sending Algorithm

 IP packets enter a node's AERO interface either from the network
 layer (i.e., from a local application or the IP forwarding system),
 or from the link layer (i.e., from the AERO tunnel virtual link).
 Packets that enter the AERO interface from the network layer are
 encapsulated and admitted into the AERO link, i.e., they are
 tunnelled to an AERO interface neighbor. Packets that enter the AERO
 interface from the link layer are either re-admitted into the AERO
 link or delivered to the network layer where they are subject to
 either local delivery or IP forwarding. Since each AERO node may
 have only partial information about neighbors on the link, AERO
 interfaces may forward packets with link-local destination addresses

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3

Templin Expires January 23, 2017 [Page 16]

Internet-Draft AERO July 2016

 at a layer below the network layer. This means that AERO nodes act
 as both IP routers/hosts and sub-IP layer forwarding nodes. AERO
 interface sending considerations for Clients, Servers and Relays are
 given below.

 When an IP packet enters a Client's AERO interface from the network
 layer, if the destination is covered by an ASP the Client searches
 for a dynamic neighbor cache entry with a non-zero ForwardTime and an
 AERO address that matches the packet's destination address. (The
 destination address may be either an address covered by the
 neighbor's ACP or the (link-local) AERO address itself.) If there is
 a match, the Client uses a link-layer address in the entry as the
 link-layer address for encapsulation then admits the packet into the
 AERO link. If there is no match, the Client instead uses the link-
 layer address of a neighboring Server as the link-layer address for
 encapsulation.

 When an IP packet enters a Server's AERO interface from the link
 layer, if the destination is covered by an ASP the Server searches
 for a neighbor cache entry with an AERO address that matches the
 packet's destination address. (The destination address may be either
 an address covered by the neighbor's ACP or the AERO address itself.)
 If there is a match, the Server uses a link-layer address in the
 entry as the link-layer address for encapsulation and re-admits the
 packet into the AERO link. If there is no match, the Server instead
 uses the link-layer address in a permanent neighbor cache entry for a
 Relay selected through longest-prefix-match as the link-layer address
 for encapsulation.

 When an IP packet enters a Relay's AERO interface from the network
 layer, the Relay searches its IP forwarding table for an entry that
 is covered by an ASP and also matches the destination. If there is a
 match, the Relay uses the link-layer address in the corresponding
 neighbor cache entry as the link-layer address for encapsulation and
 admits the packet into the AERO link. When an IP packet enters a
 Relay's AERO interface from the link-layer, if the destination is not
 a link-local address and does not match an ASP the Relay removes the
 packet from the AERO interface and uses IP forwarding to forward the
 packet to the Internetwork. If the destination address is a link-
 local address or a non-link-local address that matches an ASP, and
 there is a more-specific ACP entry in the IP forwarding table, the
 Relay uses the link-layer address in the corresponding neighbor cache
 entry as the link-layer address for encapsulation and re-admits the
 packet into the AERO link. When an IP packet enters a Relay's AERO
 interface from either the network layer or link-layer, and the
 packet's destination address matches an ASP but there is no more-
 specific ACP entry, the Relay drops the packet and returns an ICMP
 Destination Unreachable message (see: Section 3.14).

Templin Expires January 23, 2017 [Page 17]

Internet-Draft AERO July 2016

 When an AERO Server receives a packet from a Relay via the AERO
 interface, the Server MUST NOT forward the packet back to the same or
 a different Relay.

 When an AERO Relay receives a packet from a Server via the AERO
 interface, the Relay MUST NOT forward the packet back to the same
 Server.

 When an AERO node re-admits a packet into the AERO link without
 involving the network layer, the node MUST NOT decrement the network
 layer TTL/Hop-count.

 When an AERO node forwards a data packet to the primary link-layer
 address of a Server, it may receive Redirect messages with an SLLAO
 that include the link-layer address of an AERO Forwarding Agent. The
 AERO node SHOULD record the link-layer address in the neighbor cache
 entry for the neighbor and send subsequent data packets via this
 address instead of the Server's primary address (see: Section 3.16).

3.10. AERO Interface Encapsulation and Re-encapsulation

 AERO interfaces encapsulate IP packets according to whether they are
 entering the AERO interface from the network layer or if they are
 being re-admitted into the same AERO link they arrived on. This
 latter form of encapsulation is known as "re-encapsulation".

 The AERO interface encapsulates packets per the Generic UDP
 Encapsulation (GUE) encapsulation procedures in
 [I-D.ietf-nvo3-gue][I-D.herbert-gue-fragmentation], or through an
 alternate encapsulation format (see: Appendix A). For packets
 entering the AERO link from the IP layer, the AERO interface copies
 the "TTL/Hop Limit", "Type of Service/Traffic Class" [RFC2983], "Flow
 Label"[RFC6438].(for IPv6) and "Congestion Experienced" [RFC3168]
 values in the packet's IP header into the corresponding fields in the
 encapsulation IP header. For packets undergoing re-encapsulation
 within the AERO link, the AERO interface instead copies the "TTL/Hop
 Limit", "Type of Service/Traffic Class", "Flow Label" and "Congestion
 Experienced" values in the original encapsulation IP header into the
 corresponding fields in the new encapsulation IP header, i.e., the
 values are transferred between encapsulation headers and *not* copied
 from the encapsulated packet's network-layer header.

 When GUE encapsulation is used, the AERO interface next sets the UDP
 source port to a constant value that it will use in each successive
 packet it sends, and sets the UDP length field to the length of the
 encapsulated packet plus 8 bytes for the UDP header itself plus the
 length of the GUE header (or 0 if GUE direct IP encapsulation is
 used). For packets sent to a Server, the AERO interface sets the UDP

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc3168

Templin Expires January 23, 2017 [Page 18]

Internet-Draft AERO July 2016

 destination port to 8060, i.e., the IANA-registered port number for
 AERO. For packets sent to a correspondent Client, the AERO interface
 sets the UDP destination port to the port value stored in the
 neighbor cache entry for this correspondent. The AERO interface then
 either includes or omits the UDP checksum according to the GUE
 specification.

 For IPv4 encapsulation, the AERO interface sets the DF bit as
 discussed in Section 3.13.

3.11. AERO Interface Decapsulation

 AERO interfaces decapsulate packets destined either to the AERO node
 itself or to a destination reached via an interface other than the
 AERO interface the packet was received on. Decapsulation is per the
 procedures specified for the appropriate encapsulation format.

3.12. AERO Interface Data Origin Authentication

 AERO nodes employ simple data origin authentication procedures for
 encapsulated packets they receive from other nodes on the AERO link.
 In particular:

 o AERO Servers and Relays accept encapsulated packets with a link-
 layer source address that matches a permanent neighbor cache
 entry.

 o AERO Servers accept authentic encapsulated DHCPv6 messages from
 Clients, and create or update a static neighbor cache entry for
 the Client based on the specific DHCPv6 message type.

 o AERO Clients and Servers accept encapsulated packets if there is a
 static neighbor cache entry with a link-layer address that matches
 the packet's link-layer source address.

 o AERO Clients, Servers and Relays accept encapsulated packets if
 there is a dynamic neighbor cache entry with an AERO address that
 matches the packet's network-layer source address, with a link-
 layer address that matches the packet's link-layer source address,
 and with a non-zero AcceptTime.

 Note that this simple data origin authentication is effective in
 environments in which link-layer addresses cannot be spoofed. In
 other environments, each AERO message must include a signature that
 the recipient can use to authenticate the message origin.

Templin Expires January 23, 2017 [Page 19]

Internet-Draft AERO July 2016

3.13. AERO Interface MTU and Fragmentation

 The AERO interface is the node's attachment to the AERO link. The
 AERO interface acts as a tunnel ingress when it sends a packet to an
 AERO link neighbor and as a tunnel egress when it receives a packet
 from an AERO link neighbor.

 AERO links over IP networks have a maximum link MTU of 64KB minus the
 encapsulation overhead ("ENCAPS"), since the maximum packet size in
 the base IP specifications is 64KB [RFC0791][RFC2460]. While IPv6
 jumbograms can be up to 4GB [RFC2675], they are not supported by AERO
 interfaces since they cannot be fragmented and are considered
 optional for IPv6 nodes [RFC6434]. MTU and fragmentation
 considerations for tunnels are further discussed in [RFC4459] and
 updated by [I-D.ietf-intarea-tunnels].

 IPv6 specifies a minimum link MTU of 1280 bytes [RFC2460]. This is
 the minimum packet size any IPv6 interface MUST admit without
 returning a PTB message. Although IPv4 specifies a smaller minimum
 link MTU of 68 bytes [RFC0791], AERO interfaces also observe the IPv6
 minimum for IPv4 even if the packet may be fragmented in the network.

 AERO Clients set their AERO interface MTU according to the MTU
 information in a Server's DHCPv6 Reply message (see: Section 3.15.3).
 AERO Servers and Relays set their AERO interface MTUs through
 administrative configuration, and all AERO interfaces on the link
 MUST set the same MTU value for reasons specified in [RFC4861], e.g.,
 to ensure that multicast will work correctly.

 Original sources expect that IP packets will either be delivered to
 the final destination or a suitable PTB message returned. However,
 PTB messages may be crafted for malicious purposes such as denial of
 service, or lost in the network [RFC2923] resulting in failure of the
 IP Path MTU Discovery (PMTUD) mechanisms [RFC1191][RFC1981]. This
 document therefore specifies only behaviors that avoid all
 interactions with classical PMTUD.

 When there is operational assurance that all paths that the tunnel
 may traverse are capable of passing packets up to 'S' bytes in
 length, the ingress can admit all packets up to (S-ENCAPS) bytes
 without loss due to path MTU restrictions and without invoking
 fragmentation. Otherwise, the ingress admits all packets that are no
 larger than the AERO interface MTU even if some fragmentation is
 needed as suggested in [I-D.ietf-intarea-tunnels] and as specified
 below:

 o First, for original IPv4 packets that are larger than the AERO
 interface MTU and with the DF bit set to 0, the ingress uses IPv4

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc6434
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc1191

Templin Expires January 23, 2017 [Page 20]

Internet-Draft AERO July 2016

 fragmentation to break the packet into a minimum number of non-
 overlapping fragments where the first fragment is no larger than
 (1280-ENCAPS) bytes and the remaining fragments are no larger than
 the first.

 o Next, for each original IP packet or fragment that is no larger
 than (1280-ENCAPS) bytes, the ingress encapsulates the packet and
 admits it into the tunnel. For IPv4 AERO links, the ingress sets
 the Don't Fragment (DF) bit to 0 so that these packets will be
 delivered to the egress even if some fragmentation occurs in the
 network.

 o For all other original IP packets or fragments, if the packet is
 larger than the AERO interface MTU, the ingress drops the packet
 and returns a PTB message to the original source. Otherwise, the
 ingress encapsulates the packet and fragments the encapsulated
 packet into a minimum number of non-overlapping fragments where
 the first fragment is no larger than 1280 bytes and the remaining
 fragments are no larger than the first. The ingress then admits
 the fragments into the tunnel, and for IPv4 sets the DF bit to 0
 in the IP encapsulation header. These fragmented encapsulated
 packets will be delivered to the egress, which reassembles them
 into a whole packet.

 Several factors must be considered when fragmentation of the
 encapsulated packet is needed. For AERO links over IPv4, the IP ID
 field is only 16 bits in length, meaning that fragmentation at high
 data rates could result in data corruption due to reassembly
 misassociations [RFC6864][RFC4963]. For AERO links over both IPv4
 and IPv6, studies have also shown that IP fragments are dropped
 unconditionally over some network paths [I-D.taylor-v6ops-fragdrop].
 In environments where these issues could result in operational
 problems, the ingress instead performs intermediate-layer
 fragmentation (see: [RFC2764] and [I-D.herbert-gue-fragmentation])
 before appending the outer encapsulation headers to each fragment.
 Since the intermediate fragment header reduces the room available for
 packet data, but the original source has no way to control its
 insertion, the ingress MUST include the fragment header length in the
 ENCAPS length even for packets in which the header is absent.

 All nodes on the AERO link MUST support reassembly for encapsulated
 packets up to the AERO interface MTU plus ENCAPS bytes. (Note that
 this size may be larger than the IPv6 minimum of 1500 bytes [RFC2460]
 and the IPv4 minimum of 576 bytes [RFC1122].)

https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc2764
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1122

Templin Expires January 23, 2017 [Page 21]

Internet-Draft AERO July 2016

3.14. AERO Interface Error Handling

 When an AERO node admits encapsulated packets into the AERO
 interface, it may receive link-layer (L2) or network-layer (L3) error
 indications.

 An L2 error indication is an ICMP error message generated by a router
 on the path to the neighbor or by the neighbor itself. The message
 includes an IP header with the address of the node that generated the
 error as the source address and with the link-layer address of the
 AERO node as the destination address.

 The IP header is followed by an ICMP header that includes an error
 Type, Code and Checksum. Valid type values include "Destination
 Unreachable", "Time Exceeded" and "Parameter Problem"
 [RFC0792][RFC4443]. (AERO interfaces ignore all L2 IPv4
 "Fragmentation Needed" and IPv6 "Packet Too Big" messages since they
 only emit packets that are guaranteed to be no larger than the IP
 minimum link MTU.)

 The ICMP header is followed by the leading portion of the packet that
 generated the error, also known as the "packet-in-error". For
 ICMPv6, [RFC4443] specifies that the packet-in-error includes: "As
 much of invoking packet as possible without the ICMPv6 packet
 exceeding the minimum IPv6 MTU" (i.e., no more than 1280 bytes). For
 ICMPv4, [RFC0792] specifies that the packet-in-error includes:
 "Internet Header + 64 bits of Original Data Datagram", however

[RFC1812] Section 4.3.2.3 updates this specification by stating: "the
 ICMP datagram SHOULD contain as much of the original datagram as
 possible without the length of the ICMP datagram exceeding 576
 bytes".

 The L2 error message format is shown in Figure 3:

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812#section-4.3.2.3

Templin Expires January 23, 2017 [Page 22]

Internet-Draft AERO July 2016

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~
 | L2 IP Header of |
 | error message |
 ~ ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | L2 ICMP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 ~ ~ P
 | IP and other encapsulation | a
 | headers of original L3 packet | c
 ~ ~ k
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ e
 ~ ~ t
 | IP header of |
 | original L3 packet | i
 ~ ~ n
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~ e
 | Upper layer headers and | r
 | leading portion of body | r
 | of the original L3 packet | o
 ~ ~ r
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 3: AERO Interface L2 Error Message Format

 The AERO node rules for processing these L2 error messages is as
 follows:

 o When an AERO node receives an L2 Parameter Problem message, it
 processes the message the same as described as for ordinary ICMP
 errors in the normative references [RFC0792][RFC4443].

 o When an AERO node receives persistent L2 IPv4 Time Exceeded
 messages, the IP ID field may be wrapping before earlier fragments
 have been processed. In that case, the node SHOULD begin
 including integrity checks and/or institute rate limits for
 subseqent packets.

 o When an AERO Client receives persistent L2 Destination Unreachable
 messages in response to tunneled packets that it sends to one of
 its dynamic neighbor correspondents, the Client SHOULD test the
 path to the correspondent using Neighbor Unreachability Detection
 (NUD) (see Section 3.18). If NUD fails, the Client SHOULD set
 ForwardTime for the corresponding dynamic neighbor cache entry to
 0 and allow future packets destined to the correspondent to flow
 through a Server.

https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires January 23, 2017 [Page 23]

Internet-Draft AERO July 2016

 o When an AERO Client receives persistent L2 Destination Unreachable
 messages in response to tunneled packets that it sends to one of
 its static neighbor Servers, the Client SHOULD test the path to
 the Server using NUD. If NUD fails, the Client SHOULD delete the
 neighbor cache entry and attempt to associate with a new Server.

 o When an AERO Server receives persistent L2 Destination Unreachable
 messages in response to tunneled packets that it sends to one of
 its static neighbor Clients, the Server SHOULD test the path to
 the Client using NUD. If NUD fails, the Server SHOULD cancel the
 DHCPv6 PD for the Client's ACP, withdraw its route for the ACP
 from the AERO routing system and delete the neighbor cache entry
 (see Section 3.18 and Section 3.19).

 o When an AERO Relay or Server receives an L2 Destination
 Unreachable message in response to a tunneled packet that it sends
 to one of its permanent neighbors, it discards the message since
 the AERO routing system is likely in a temporary transitional
 state that will soon re-converge. In case of a prolonged outage,
 however, the AERO routing system will compensate for Relays or
 Servers that have fallen silent.

 When an AERO Relay receives an L3 packet for which the destination
 address is covered by an ASP, if there is no more-specific routing
 information for the destination the Relay drops the packet and
 returns an L3 Destination Unreachable message. The Relay first
 writes the IP source address of the original L3 packet as the
 destination address of the L3 Destination Unreachable message and
 determines the next hop to the destination. If the next hop is
 reached via the AERO interface, the Relay uses the IPv6 address "::"
 or the IPv4 address "0.0.0.0" as the IP source address of the L3
 Destination Unreachable message and forwards the message to the next
 hop within the AERO interface. Otherwise, the Relay uses one of its
 non link-local addresses as the source address of the L3 Destination
 Unreachable message and forwards the message via a link outside the
 AERO interface.

 When an AERO node receives an encapsulated packet for which the
 reassembly buffer it too small, it drops the packet and returns an L3
 Packet To Big (PTB) message. The node first writes the IP source
 address of the original L3 packet as the destination address of the
 L3 PTB message and determines the next hop to the destination. If
 the next hop is reached via the AERO interface, the node uses the
 IPv6 address "::" or the IPv4 address "0.0.0.0" as the IP source
 address of the L3 PTB message and forwards the message to the next
 hop within the AERO interface. Otherwise, the node uses one of its
 non link-local addresses as the source address of the L3 PTB message
 and forwards the message via a link outside the AERO interface.

Templin Expires January 23, 2017 [Page 24]

Internet-Draft AERO July 2016

 When an AERO node receives any L3 error message via the AERO
 interface, it examines the destination address in the L3 IP header of
 the message. If the next hop toward the destination address of the
 error message is via the AERO interface, the node re-encapsulates and
 forwards the message to the next hop within the AERO interface.
 Otherwise, if the source address in the L3 IP header of the message
 is the IPv6 address "::" or the IPv4 address "0.0.0.0", the node
 writes one of its non link-local addresses as the source address of
 the L3 message and recalculates the IP and/or ICMP checksums. The
 node finally forwards the message via a link outside of the AERO
 interface.

3.15. AERO Router Discovery, Prefix Delegation and Address
 Configuration

3.15.1. AERO DHCPv6 Service Model

 Each AERO Server configures a DHCPv6 server function to facilitate PD
 requests from Clients. Each Server is provisioned with a database of
 ACP-to-Client ID mappings for all Clients enrolled in the AERO
 system, as well as any information necessary to authenticate each
 Client. The Client database is maintained by a central
 administrative authority for the AERO link and securely distributed
 to all Servers, e.g., via the Lightweight Directory Access Protocol
 (LDAP) [RFC4511] or a similar distributed database service.

 Therefore, no Server-to-Server DHCPv6 PD delegation state
 synchronization is necessary, and Clients can optionally hold
 separate delegations for the same ACPs from multiple Servers. In
 this way, Clients can associate with multiple Servers, and can
 receive new delegations from new Servers before deprecating
 delegations received from existing Servers. This provides the Client
 with a natural fault-tolerance and/or load balancing profile.

 AERO Clients and Servers exchange Client link-layer address
 information using an option format similar to the Client Link Layer
 Address Option (CLLAO) defined in [RFC6939]. Due to practical
 limitations of CLLAO, however, AERO interfaces instead use Vendor-
 Specific Information Options as described in the following sections.

3.15.2. AERO Client Behavior

 AERO Clients discover the link-layer addresses of AERO Servers via
 static configuration (e.g., from a flat-file map of Server addresses
 and locations), or through an automated means such as DNS name
 resolution. In the absence of other information, the Client resolves
 the FQDN "linkupnetworks.[domainname]" where "linkupnetworks" is a
 constant text string and "[domainname]" is a DNS suffix for the

https://datatracker.ietf.org/doc/html/rfc4511
https://datatracker.ietf.org/doc/html/rfc6939

Templin Expires January 23, 2017 [Page 25]

Internet-Draft AERO July 2016

 Client's underlying network (e.g., "example.com"). After discovering
 the link-layer addresses, the Client associates with one or more of
 the corresponding Servers.

 To associate with a Server, the Client acts as a requesting router to
 request ACPs through a two-message (i.e., Solicit/Reply) DHCPv6 PD
 exchange [RFC3315][RFC3633]. The Client's Solicit message includes
 fe80::ffff:ffff:ffff:ffff as the IPv6 source address,
 'All_DHCP_Relay_Agents_and_Servers' as the IPv6 destination address
 and the link-layer address of the Server as the link-layer
 destination address. The Solicit message also includes a Client
 Identifier option with a DUID and an Identity Association for Prefix
 Delegation (IA_PD) option. If the Client is pre-provisioned with
 ACPs associated with the AERO service, it MAY also include the ACPs
 in the IA_PD to indicate its preferences to the DHCPv6 server.

 The Client also SHOULD include an AERO Link-registration Request
 (ALREQ) option in the Solicit message to register one or more links
 with the Server. The Server will include an AERO Link-registration
 Reply (ALREP) option in the corresponding Reply message as specified
 in Section 3.15.3. (The Client MAY omit the ALREQ option, in which
 case the Server will still include an ALREP option in its Reply with
 "Link ID" set to 0.)

 The format for the ALREQ option is shown in Figure 4:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_VENDOR_OPTS | option-len (1) |
 +-+
 | enterprise-number = 45282 |
 +-+
 | opt-code = OPTION_ALREQ (0) | option-len (2) |
 +-+
 | Link ID | DSCP #1 |Prf| DSCP #2 |Prf| ...
 +-

 Figure 4: AERO Link-registration Request (ALREQ) Option

 In the above format, the Client sets 'option-code' to
 OPTION_VENDOR_OPTS, sets 'option-len (1)' to the length of the option
 following this field, sets 'enterprise-number' to 45282 (see: "IANA
 Considerations"), sets opt-code to the value 0 ("OPTION_ALREQ") and
 sets 'option-len (2)' to the length of the remainder of the option.
 The Client includes appropriate 'Link ID, 'DSCP' and 'Prf' values for
 the underlying interface over which the Solicit message will be
 issued the same as specified for an S/TLLAO Section 3.4. The Server

https://datatracker.ietf.org/doc/html/rfc3315

Templin Expires January 23, 2017 [Page 26]

Internet-Draft AERO July 2016

 will register each value with the Link ID in the Client's neighbor
 cache entry. The Client finally includes any necessary
 authentication options to identify itself to the DHCPv6 server, and
 sends the encapsulated Solicit message via the underlying interface
 corresponding to Link ID. (Note that this implies that the Client
 must send additional Rebind messages with ALREQ options to the server
 following the initial PD exchange using different underlying
 interfaces and their corresponding Link IDs if it wishes to register
 additional link-layer addresses and their associated DSCPs.)

 When the Client receives its ACP via a Reply from the AERO Server, it
 creates a static neighbor cache entry with the Server's link-local
 address as the network-layer address and the Server's encapsulation
 address as the link-layer address. The Client then considers the
 link-layer address of the Server as the primary default encapsulation
 address for forwarding packets for which no more-specific forwarding
 information is available. The Client further applies the MTU value
 in the ALREP option to its AERO interface, then caches any ASPs
 included in the ALREP option as ASPs to apply to the AERO link.

 Next, the Client autoconfigures an AERO address for each of the
 delegated ACPs, assigns the address(es) to the AERO interface and
 sub-delegates the ACPs to its attached EUNs and/or the Client's own
 internal virtual interfaces. Alternatively, the Client can configure
 as many addresses as it wants from /64 prefixes taken from the ACPs
 and assign them to either an internal virtual interface ("weak end-
 system") or to the AERO interface itself ("strong end-system")
 [RFC1122] while black-holing the remaining portions of the /64s.
 Finally, the Client assigns one or more default IP routes to the AERO
 interface with the link-local address of a Server as the next hop.

 After AERO address autoconfiguration, the Client SHOULD begin using
 the AERO address as the source address for further DHCPv6 messaging.
 The Client subsequently renews its ACP delegations through each of
 its Servers by sending Renew messages with the link-layer address of
 a Server as the link-layer destination address and the same options
 that were used in the initial PD request. Note that if the Client
 does not issue a Renew before the delegations expire (e.g., if the
 Client has been out of touch with the Server for a considerable
 amount of time) it must re-initiate the DHCPv6 PD procedure.

 Since the addresses assigned to the Client's AERO interface are
 obtained from the unique ACP delegations it receives, there is no
 need for DAD on AERO links. Other nodes maliciously attempting to
 hijack addresses from an authorized Client's ACPs will be denied
 access to the network by the Server due to an unacceptable link-layer
 address and/or security parameters (see: Security Considerations).

https://datatracker.ietf.org/doc/html/rfc1122

Templin Expires January 23, 2017 [Page 27]

Internet-Draft AERO July 2016

 When a Client attempts to perform a DHCPv6 PD exchange with a Server
 that is too busy to service the request, the Client may receive
 either a "NoPrefixAvail" status code in the Server's Reply per
 [RFC3633] or no reply at all. In that case, the Client SHOULD
 discontinue DHCPv6 PD attempts through this Server and try another
 Server.

3.15.2.1. Autoconfiguration for Constrained Platforms

 On some platforms (e.g., popular cell phone operating systems), the
 act of assigning a default IPv6 route and/or assigning an address to
 an interface may not be permitted from a user application due to
 security policy. Typically, those platforms include a TUN/TAP
 interface [TUNTAP] that acts as a point-to-point conduit between user
 applications and the AERO interface. In that case, the Client can
 instead generate a "synthesized RA" message. The message conforms to
 [RFC4861] and is prepared as follows:

 o the IPv6 source address is the Client's AERO address

 o the IPv6 destination address is all-nodes multicast

 o the Router Lifetime is set to a time that is no longer than the
 ACP DHCPv6 lifetime

 o the message does not include a Source Link Layer Address Option
 (SLLAO)

 o the message includes a Prefix Information Option (PIO) with a /64
 prefix taken from the ACP as the prefix for autoconfiguration

 The Client then sends the synthesized RA message via the TUN/TAP
 interface, where the operating system kernel will interpret it as
 though it were generated by an actual router. The operating system
 will then install a default route and use StateLess Address
 AutoConfiguration (SLAAC) to configure an IPv6 address on the TUN/TAP
 interface. Methods for similarly installing an IPv4 default route
 and IPv4 address on the TUN/TAP interface are based on synthesized
 DHCPv4 messages [RFC2131].

3.15.3. AERO Server Behavior

 AERO Servers configure a DHCPv6 server function on their AERO links.
 AERO Servers arrange to add their encapsulation layer IP addresses
 (i.e., their link-layer addresses) to a static map of Server
 addresses for the link and/or the DNS resource records for the FQDN
 "linkupnetworks.[domainname]" before entering service.

https://datatracker.ietf.org/doc/html/rfc3633
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2131

Templin Expires January 23, 2017 [Page 28]

Internet-Draft AERO July 2016

 When an AERO Server receives a prospective Client's Solicit on its
 AERO interface, and the Server is too busy to service the message, it
 SHOULD return a Reply with status code "NoPrefixAvail" per [RFC3633].
 Otherwise, the Server authenticates the message. If authentication
 succeeds, the Server determines the correct ACPs to delegate to the
 Client by searching the Client database.

 When the Server delegates the ACPs, it also creates IP forwarding
 table entries so that the AERO routing system will propagate the ACPs
 to all Relays that aggregate the corresponding ASP (see:

Section 3.7). Next, the Server prepares a Reply message to send to
 the Client while using fe80::ID as the IPv6 source address, the link-
 local address taken from the Client's Solicit as the IPv6 destination
 address, the Server's link-layer address as the source link-layer
 address, and the Client's link-layer address as the destination link-
 layer address. The server also includes IA_PD options with the
 delegated ACPs. Since the Client may experience a fault that
 prevents it from issuing a Release before departing from the network,
 Servers should set a short prefix lifetime (e.g., 40 seconds) so that
 stale prefix delegation state can be flushed out of the network.

 The Server also includes an ALREP option that includes configuration
 information pertaining to the Client's ALREQ. (Note that if the
 Client did not include an ALREQ option in its DHCPv6 message, the
 Server MUST still include an ALREP option in the corresponding
 reply.)The ALREP option is formatted as shown in Figure 5:

https://datatracker.ietf.org/doc/html/rfc3633

Templin Expires January 23, 2017 [Page 29]

Internet-Draft AERO July 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_VENDOR_OPTS | option-len (1) |
 +-+
 | enterprise-number = 45282 |
 +-+
 | opt-code = OPTION_ALREP (1) | option-len (2) |
 +-+
 | Link ID | Reserved | UDP Port Number |
 +-+
 | |
 + +
 | |
 + IP Address +
 | |
 + +
 | |
 +-+
 | Reserved |Maximum Transmission Unit (MTU)|
 +-+
 | |
 + AERO Service Prefix (ASP) #1 +-+-+-+-+-+-+-+-+
 | | Prefix Len |
 +-+
 | |
 + AERO Service Prefix (ASP) #2 +-+-+-+-+-+-+-+-+
 | | Prefix Len |
 +-+
 ~ ~
 ~ ~

 Figure 5: AERO Link-registration Reply (ALREP) Option

 In the ALREP, the Server sets 'option-code' to OPTION_VENDOR_OPTS,
 sets 'option-length (1)' to the length of the option, sets
 'enterprise-number' to 45282 (see: "IANA Considerations"), sets opt-
 code to OPTION_ALREP (1), and sets 'option-len (2)' to the length of
 the remainder of the option. Next, the Server sets 'Link ID' to the
 same value that appeared in the ALREQ (or '0' if the Client did not
 include an ALREQ), sets Reserved to 0 and sets 'UDP Port Number' and
 'IP address' to the link-layer address observed in the Client's
 DHCPv6 message.

 The Server next sets Reserved2 to 0, and sets MTU to the maximum
 transmission unit the Client must apply to the AERO interface. The
 Server MUST set an MTU value no smaller than 1280 bytes, SHOULD set

Templin Expires January 23, 2017 [Page 30]

Internet-Draft AERO July 2016

 an MTU value of no smaller than 1500 bytes, and MUST set an MTU value
 (plus encapsulation overhead) that is no larger than the minimum
 reassembly buffer size among all prospective Clients.

 The Server finally includes one or more ASP with the IP prefix as it
 would appear in the interface identifier portion of the corresponding
 AERO address (see: Section 3.3), except that the low-order 8 bits of
 the ASP field encode the prefix length instead of the low-order 8
 bits of the prefix. The longest prefix that can therefore appear as
 an ASP is /56 for IPv6 or /24 for IPv4.

 When the Server admits the Reply message into the AERO interface, it
 creates a static neighbor cache entry for the Client based on the
 DUID and AERO addresses with lifetime set to no more than the
 delegation lifetimes and the Client's link-layer address as the link-
 layer address for the Link ID specified in the ALREQ. The Server
 then uses the Client link-layer address information in the ALREQ
 option as the link-layer address for encapsulation based on the
 (DSCP, Prf) information.

 After the initial DHCPv6 PD exchange, the AERO Server maintains the
 neighbor cache entry for the Client until the delegation lifetimes
 expire. If the Client issues a Renew, the Server extends the
 lifetimes. If the Client issues a Release, or if the Client does not
 issue a Renew before the lifetime expires, the Server deletes the
 neighbor cache entry for the Client and withdraws the IP routes from
 the AERO routing system.

3.15.3.1. Lightweight DHCPv6 Relay Agent (LDRA)

 AERO Clients and Servers are always on the same link (i.e., the AERO
 link) from the perspective of DHCPv6. However, in some
 implementations the DHCPv6 server and AERO interface driver may be
 located in separate modules. In that case, the Server's AERO
 interface driver module can act as a Lightweight DHCPv6 Relay Agent
 (LDRA)[RFC6221] to relay DHCPv6 messages to and from the DHCPv6
 server module.

 When the LDRA receives a DHCPv6 message from a client, it prepares an
 ALREP option the same as described above then wraps the option in a
 Relay-Supplied DHCP Option option (RSOO) [RFC6422]. The LDRA then
 incorporates the option into the Relay-Forward message and forwards
 the message to the DHCPv6 server.

 When the DHCPv6 server receives the Relay-Forward message, it caches
 the ALREP option and authenticates the encapsulated DHCPv6 message.
 The DHCPv6 server subsequently ignores the ALREQ option itself, since
 the relay has already included the ALREP option.

https://datatracker.ietf.org/doc/html/rfc6221
https://datatracker.ietf.org/doc/html/rfc6422

Templin Expires January 23, 2017 [Page 31]

Internet-Draft AERO July 2016

 When the DHCPv6 server prepares a Reply message, it then includes the
 ALREP option in the body of the message along with any other options,
 then wraps the message in a Relay-Reply message. The DHCPv6 server
 then delivers the Relay-Reply message to the LDRA, which discards the
 Relay-Reply wrapper and delivers the DHCPv6 message to the Client.

3.15.4. Deleting Link Registrations

 After an AERO Client registers its Link IDs and their associated
 (DSCP,Prf) values with the AERO Server, the Client may wish to delete
 one or more Link registrations, e.g., if an underlying link becomes
 unavailable. To do so, the Client prepares a Rebind message that
 includes an AERO Link-registration Delete (ALDEL) option and sends
 the Rebind message to the Server over any available underlying link.
 The ALDEL option is formatted as shown in Figure 6:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_VENDOR_OPTS | option-len (1) |
 +-+
 | enterprise-number = 45282 |
 +-+
 | opt-code = OPTION_ALDEL (2) | option-len (2) |
 +-+
 | Link ID #1 | Link ID #2 | Link ID #3 | ...
 +-

 Figure 6: AERO Link-registration Delete (ALDEL) Option

 In the ALDEL, the Client sets 'option-code' to OPTION_VENDOR_OPTS,
 sets 'option-length (1)' to the length of the option, sets
 'enterprise-number' to 45282 (see: "IANA Considerations"), sets
 optcode to OPTION_ALDEL (2), and sets 'option-len (2)' to the length
 of the remainder of the option. Next, the Server includes each 'Link
 ID' value that it wishes to delete.

 If the Client wishes to discontinue use of a Server and thereby
 delete all of its Link ID associations, it must issue a Release to
 delete the entire neighbor cache entry, i.e., instead of issuing a
 Rebind with one or more ALDEL options.

3.16. AERO Forwarding Agent Behavior

 AERO Servers MAY associate with one or more companion AERO Forwarding
 Agents as platforms for offloading high-speed data plane traffic.
 When an AERO Server receives a Client's Solicit/Renew/Rebind/Release

Templin Expires January 23, 2017 [Page 32]

Internet-Draft AERO July 2016

 message, it services the message then forwards the corresponding
 Reply message to the Forwarding Agent. When the Forwarding Agent
 receives the Reply message, it creates, updates or deletes a neighbor
 cache entry with the Client's AERO address and link-layer information
 included in the Reply message. The Forwarding Agent then forwards
 the Reply message back to the AERO Server, which forwards the message
 to the Client. In this way, Forwarding Agent state is managed in
 conjunction with Server state, with the Client responsible for
 reliability.

 When an AERO Server receives a data packet on an AERO interface with
 a network layer destination address for which it has distributed
 forwarding information to a Forwarding Agent, the Server returns a
 Redirect message to the source neighbor (subject to rate limiting)
 then forwards the data packet as usual. The Redirect message
 includes a TLLAO with the link-layer address of the Forwarding
 Engine.

 When the source neighbor receives the Redirect message, it SHOULD
 record the link-layer address in the TLLAO as the encapsulation
 addresses to use for sending subsequent data packets. However, the
 source MUST continue to use the primary link-layer address of the
 Server as the encapsulation address for sending control messages.

3.17. AERO Intradomain Route Optimization

 When a source Client forwards packets to a prospective correspondent
 Client within the same AERO link domain (i.e., one for which the
 packet's destination address is covered by an ASP), the source Client
 MAY initiate an intra-domain AERO route optimization procedure. It
 is important to note that this procedure is initiated by the Client;
 if the procedure were initiated by the Server, the Server would have
 no way of knowing whether the Client was actually able to contact the
 correspondent over the route-optimized path.

 The procedure is based on an exchange of IPv6 ND messages using a
 chain of AERO Servers and Relays as a trust basis. This procedure is
 in contrast to the Return Routability procedure required for route
 optimization to a correspondent Client located in the Internet as
 described in Section 3.22. The following sections specify the AERO
 intradomain route optimization procedure.

3.17.1. Reference Operational Scenario

 Figure 7 depicts the AERO intradomain route optimization reference
 operational scenario, using IPv6 addressing as the example (while not
 shown, a corresponding example for IPv4 addressing can be easily
 constructed). The figure shows an AERO Relay ('R1'), two AERO

Templin Expires January 23, 2017 [Page 33]

Internet-Draft AERO July 2016

 Servers ('S1', 'S2'), two AERO Clients ('C1', 'C2') and two ordinary
 IPv6 hosts ('H1', 'H2'):

 +--------------+ +--------------+ +--------------+
 | Server S1 | | Relay R1 | | Server S2 |
 +--------------+ +--------------+ +--------------+
 fe80::2 fe80::1 fe80::3
 L2(S1) L2(R1) L2(S2)
 | | |
 X-----+-----+------------------+-----------------+----+----X
 | AERO Link |
 L2(A) L2(B)
 fe80::2001:db8:0:0 fe80::2001:db8:1:0
 +--------------+ +--------------+
 |AERO Client C1| |AERO Client C2|
 +--------------+ +--------------+
 2001:DB8:0::/48 2001:DB8:1::/48
 | |
 .-. .-.
 ,-(_)-. 2001:db8:0::1 2001:db8:1::1 ,-(_)-.
 .-(_ IP)-. +---------+ +---------+ .-(_ IP)-.
 (__ EUN)--| Host H1 | | Host H2 |--(__ EUN)
 `-(______)-' +---------+ +---------+ `-(______)-'

 Figure 7: AERO Reference Operational Scenario

 In Figure 7, Relay ('R1') assigns the address fe80::1 to its AERO
 interface with link-layer address L2(R1), Server ('S1') assigns the
 address fe80::2 with link-layer address L2(S1),and Server ('S2')
 assigns the address fe80::3 with link-layer address L2(S2). Servers
 ('S1') and ('S2') next arrange to add their link-layer addresses to a
 published list of valid Servers for the AERO link.

 AERO Client ('C1') receives the ACP 2001:db8:0::/48 in a DHCPv6 PD
 exchange via AERO Server ('S1') then assigns the address
 fe80::2001:db8:0:0 to its AERO interface with link-layer address
 L2(C1). Client ('C1') configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::2 and link-
 layer address L2(S1), then sub-delegates the ACP to its attached
 EUNs. IPv6 host ('H1') connects to the EUN, and configures the
 address 2001:db8:0::1.

 AERO Client ('C2') receives the ACP 2001:db8:1::/48 in a DHCPv6 PD
 exchange via AERO Server ('S2') then assigns the address
 fe80::2001:db8:1:0 to its AERO interface with link-layer address
 L2(C2). Client ('C2') configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::3 and link-
 layer address L2(S2), then sub-delegates the ACP to its attached

Templin Expires January 23, 2017 [Page 34]

Internet-Draft AERO July 2016

 EUNs. IPv6 host ('H2') connects to the EUN, and configures the
 address 2001:db8:1::1.

3.17.2. Concept of Operations

 Again, with reference to Figure 7, when source host ('H1') sends a
 packet to destination host ('H2'), the packet is first forwarded over
 the source host's attached EUN to Client ('C1'). Client ('C1') then
 forwards the packet via its AERO interface to Server ('S1') and also
 sends a Predirect message toward Client ('C2') via Server ('S1').
 Server ('S1') then re-encapsulates and forwards both the packet and
 the Predirect message out the same AERO interface toward Client
 ('C2') via Relay ('R1').

 When Relay ('R1') receives the packet and Predirect message, it
 consults its forwarding table to discover Server ('S2') as the next
 hop toward Client ('C2'). Relay ('R1') then forwards both the packet
 and the Predirect message to Server ('S2'), which then forwards them
 to Client ('C2').

 After Client ('C2') receives the Predirect message, it process the
 message and returns a Redirect message toward Client ('C1') via
 Server ('S2'). During the process, Client ('C2') also creates or
 updates a dynamic neighbor cache entry for Client ('C1').

 When Server ('S2') receives the Redirect message, it re-encapsulates
 the message and forwards it on to Relay ('R1'), which forwards the
 message on to Server ('S1') which forwards the message on to Client
 ('C1'). After Client ('C1') receives the Redirect message, it
 processes the message and creates or updates a dynamic neighbor cache
 entry for Client ('C2').

 Following the above Predirect/Redirect message exchange, forwarding
 of packets from Client ('C1') to Client ('C2') without involving any
 intermediate nodes is enabled. The mechanisms that support this
 exchange are specified in the following sections.

3.17.3. Message Format

 AERO Redirect/Predirect messages use the same format as for IPv6 ND
 Redirect messages depicted in Section 4.5 of [RFC4861], but also
 include a new "Prefix Length" field taken from the low-order 8 bits
 of the Redirect message Reserved field. For IPv6, valid values for
 the Prefix Length field are 0 through 64; for IPv4, valid values are
 0 through 32. The Redirect/Predirect messages are formatted as shown
 in Figure 8:

https://datatracker.ietf.org/doc/html/rfc4861#section-4.5

Templin Expires January 23, 2017 [Page 35]

Internet-Draft AERO July 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (=137) | Code (=0/1) | Checksum |
 +-+
 | Reserved | Prefix Length |
 +-+
 | |
 + +
 | |
 + Target Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+
 | Options ...
 +-+-+-+-+-+-+-+-+-+-+-+-

 Figure 8: AERO Redirect/Predirect Message Format

3.17.4. Sending Predirects

 When a Client forwards a packet with a source address from one of its
 ACPs toward a destination address covered by an ASP (i.e., toward
 another AERO Client connected to the same AERO link), the source
 Client MAY send a Predirect message forward toward the destination
 Client via the Server.

 In the reference operational scenario, when Client ('C1') forwards a
 packet toward Client ('C2'), it MAY also send a Predirect message
 forward toward Client ('C2'), subject to rate limiting (see

Section 8.2 of [RFC4861]). Client ('C1') prepares the Predirect
 message as follows:

 o the link-layer source address is set to 'L2(C1)' (i.e., the link-
 layer address of Client ('C1')).

 o the link-layer destination address is set to 'L2(S1)' (i.e., the
 link-layer address of Server ('S1')).

https://datatracker.ietf.org/doc/html/rfc4861#section-8.2

Templin Expires January 23, 2017 [Page 36]

Internet-Draft AERO July 2016

 o the network-layer source address is set to fe80::2001:db8:0:0
 (i.e., the AERO address of Client ('C1')).

 o the network-layer destination address is set to fe80::2001:db8:1:0
 (i.e., the AERO address of Client ('C2')).

 o the Type is set to 137.

 o the Code is set to 1 to indicate "Predirect".

 o the Prefix Length is set to the length of the prefix to be
 assigned to the Target Address.

 o the Target Address is set to fe80::2001:db8:0:0 (i.e., the AERO
 address of Client ('C1')).

 o the Destination Address is set to the source address of the
 originating packet that triggered the Predirection event. (If the
 originating packet is an IPv4 packet, the address is constructed
 in IPv4-compatible IPv6 address format).

 o the message includes one or more TLLAOs with Link ID and DSCPs set
 to appropriate values for Client ('C1')'s underlying interfaces,
 and with UDP Port Number and IP Address set to 0'.

 o the message SHOULD include a Timestamp option and a Nonce option.

 o the message includes a Redirected Header Option (RHO) that
 contains the originating packet truncated if necessary to ensure
 that at least the network-layer header is included but the size of
 the message does not exceed 1280 bytes.

 Note that the act of sending Predirect messages is cited as "MAY",
 since Client ('C1') may have advanced knowledge that the direct path
 to Client ('C2') would be unusable or otherwise undesirable. If the
 direct path later becomes unusable after the initial route
 optimization, Client ('C1') simply allows packets to again flow
 through Server ('S1').

3.17.5. Re-encapsulating and Relaying Predirects

 When Server ('S1') receives a Predirect message from Client ('C1'),
 it first verifies that the TLLAOs in the Predirect are a proper
 subset of the Link IDs in Client ('C1')'s neighbor cache entry. If
 the Client's TLLAOs are not acceptable, Server ('S1') discards the
 message. Otherwise, Server ('S1') validates the message according to
 the Redirect message validation rules in Section 8.1 of [RFC4861],
 except that the Predirect has Code=1. Server ('S1') also verifies

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires January 23, 2017 [Page 37]

Internet-Draft AERO July 2016

 that Client ('C1') is authorized to use the Prefix Length in the
 Predirect when applied to the AERO address in the network-layer
 source address by searching for the AERO address in the neighbor
 cache. If validation fails, Server ('S1') discards the Predirect;
 otherwise, it copies the correct UDP Port numbers and IP Addresses
 for Client ('C1')'s links into the (previously empty) TLLAOs.

 Server ('S1') then examines the network-layer destination address of
 the Predirect to determine the next hop toward Client ('C2') by
 searching for the AERO address in the neighbor cache. Since Client
 ('C2') is not one of its neighbors, Server ('S1') re-encapsulates the
 Predirect and relays it via Relay ('R1') by changing the link-layer
 source address of the message to 'L2(S1)' and changing the link-layer
 destination address to 'L2(R1)'. Server ('S1') finally forwards the
 re-encapsulated message to Relay ('R1') without decrementing the
 network-layer TTL/Hop Limit field.

 When Relay ('R1') receives the Predirect message from Server ('S1')
 it determines that Server ('S2') is the next hop toward Client ('C2')
 by consulting its forwarding table. Relay ('R1') then re-
 encapsulates the Predirect while changing the link-layer source
 address to 'L2(R1)' and changing the link-layer destination address
 to 'L2(S2)'. Relay ('R1') then relays the Predirect via Server
 ('S2').

 When Server ('S2') receives the Predirect message from Relay ('R1')
 it determines that Client ('C2') is a neighbor by consulting its
 neighbor cache. Server ('S2') then re-encapsulates the Predirect
 while changing the link-layer source address to 'L2(S2)' and changing
 the link-layer destination address to 'L2(C2)'. Server ('S2') then
 forwards the message to Client ('C2').

3.17.6. Processing Predirects and Sending Redirects

 When Client ('C2') receives the Predirect message, it accepts the
 Predirect only if the message has a link-layer source address of one
 of its Servers (e.g., L2(S2)). Client ('C2') further accepts the
 message only if it is willing to serve as a redirection target.
 Next, Client ('C2') validates the message according to the Redirect
 message validation rules in Section 8.1 of [RFC4861], except that it
 accepts the message even though Code=1 and even though the network-
 layer source address is not that of it's current first-hop router.

 In the reference operational scenario, when Client ('C2') receives a
 valid Predirect message, it either creates or updates a dynamic
 neighbor cache entry that stores the Target Address of the message as
 the network-layer address of Client ('C1') , stores the link-layer
 addresses found in the TLLAOs as the link-layer addresses of Client

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires January 23, 2017 [Page 38]

Internet-Draft AERO July 2016

 ('C1') and stores the Prefix Length as the length to be applied to
 the network-layer address for forwarding purposes. Client ('C2')
 then sets AcceptTime for the neighbor cache entry to ACCEPT_TIME.

 After processing the message, Client ('C2') prepares a Redirect
 message response as follows:

 o the link-layer source address is set to 'L2(C2)' (i.e., the link-
 layer address of Client ('C2')).

 o the link-layer destination address is set to 'L2(S2)' (i.e., the
 link-layer address of Server ('S2')).

 o the network-layer source address is set to fe80::2001:db8:1:0
 (i.e., the AERO address of Client ('C2')).

 o the network-layer destination address is set to fe80::2001:db8:0:0
 (i.e., the AERO address of Client ('C1')).

 o the Type is set to 137.

 o the Code is set to 0 to indicate "Redirect".

 o the Prefix Length is set to the length of the prefix to be applied
 to the Target Address.

 o the Target Address is set to fe80::2001:db8:1:0 (i.e., the AERO
 address of Client ('C2')).

 o the Destination Address is set to the destination address of the
 originating packet that triggered the Redirection event. (If the
 originating packet is an IPv4 packet, the address is constructed
 in IPv4-compatible IPv6 address format).

 o the message includes one or more TLLAOs with Link ID and DSCPs set
 to appropriate values for Client ('C2')'s underlying interfaces,
 and with UDP Port Number and IP Address set to '0'.

 o the message SHOULD include a Timestamp option and MUST echo the
 Nonce option received in the Predirect (i.e., if a Nonce option is
 included).

 o the message includes as much of the RHO copied from the
 corresponding Predirect message as possible such that at least the
 network-layer header is included but the size of the message does
 not exceed 1280 bytes.

Templin Expires January 23, 2017 [Page 39]

Internet-Draft AERO July 2016

 After Client ('C2') prepares the Redirect message, it sends the
 message to Server ('S2').

3.17.7. Re-encapsulating and Relaying Redirects

 When Server ('S2') receives a Redirect message from Client ('C2'), it
 first verifies that the TLLAOs in the Redirect are a proper subset of
 the Link IDs in Client ('C2')'s neighbor cache entry. If the
 Client's TLLAOs are not acceptable, Server ('S2') discards the
 message. Otherwise, Server ('S2') validates the message according to
 the Redirect message validation rules in Section 8.1 of [RFC4861].
 Server ('S2') also verifies that Client ('C2') is authorized to use
 the Prefix Length in the Redirect when applied to the AERO address in
 the network-layer source address by searching for the AERO address in
 the neighbor cache. If validation fails, Server ('S2') discards the
 Redirect; otherwise, it copies the correct UDP Port numbers and IP
 Addresses for Client ('C2')'s links into the (previously empty)
 TLLAOs.

 Server ('S2') then examines the network-layer destination address of
 the Redirect to determine the next hop toward Client ('C1') by
 searching for the AERO address in the neighbor cache. Since Client
 ('C1') is not a neighbor, Server ('S2') re-encapsulates the Redirect
 and relays it via Relay ('R1') by changing the link-layer source
 address of the message to 'L2(S2)' and changing the link-layer
 destination address to 'L2(R1)'. Server ('S2') finally forwards the
 re-encapsulated message to Relay ('R1') without decrementing the
 network-layer TTL/Hop Limit field.

 When Relay ('R1') receives the Redirect message from Server ('S2') it
 determines that Server ('S1') is the next hop toward Client ('C1') by
 consulting its forwarding table. Relay ('R1') then re-encapsulates
 the Redirect while changing the link-layer source address to 'L2(R1)'
 and changing the link-layer destination address to 'L2(S1)'. Relay
 ('R1') then relays the Redirect via Server ('S1').

 When Server ('S1') receives the Redirect message from Relay ('R1') it
 determines that Client ('C1') is a neighbor by consulting its
 neighbor cache. Server ('S1') then re-encapsulates the Redirect
 while changing the link-layer source address to 'L2(S1)' and changing
 the link-layer destination address to 'L2(C1)'. Server ('S1') then
 forwards the message to Client ('C1').

3.17.8. Processing Redirects

 When Client ('C1') receives the Redirect message, it accepts the
 message only if it has a link-layer source address of one of its
 Servers (e.g., ''L2(S1)'). Next, Client ('C1') validates the message

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires January 23, 2017 [Page 40]

Internet-Draft AERO July 2016

 according to the Redirect message validation rules in Section 8.1 of
 [RFC4861], except that it accepts the message even though the
 network-layer source address is not that of it's current first-hop
 router. Following validation, Client ('C1') then processes the
 message as follows.

 In the reference operational scenario, when Client ('C1') receives
 the Redirect message, it either creates or updates a dynamic neighbor
 cache entry that stores the Target Address of the message as the
 network-layer address of Client ('C2'), stores the link-layer
 addresses found in the TLLAOs as the link-layer addresses of Client
 ('C2') and stores the Prefix Length as the length to be applied to
 the network-layer address for forwarding purposes. Client ('C1')
 then sets ForwardTime for the neighbor cache entry to FORWARD_TIME.

 Now, Client ('C1') has a neighbor cache entry with a valid
 ForwardTime value, while Client ('C2') has a neighbor cache entry
 with a valid AcceptTime value. Thereafter, Client ('C1') may forward
 ordinary network-layer data packets directly to Client ('C2') without
 involving any intermediate nodes, and Client ('C2') can verify that
 the packets came from an acceptable source. (In order for Client
 ('C2') to forward packets to Client ('C1'), a corresponding
 Predirect/Redirect message exchange is required in the reverse
 direction; hence, the mechanism is asymmetric.)

3.17.9. Server-Oriented Redirection

 In some environments, the Server nearest the target Client may need
 to serve as the redirection target, e.g., if direct Client-to-Client
 communications are not possible. In that case, the Server prepares
 the Redirect message the same as if it were the destination Client
 (see: Section 3.17.6), except that it writes its own link-layer
 address in the TLLAO option. The Server must then maintain a dynamic
 neighbor cache entry for the redirected source Client.

3.17.10. Route Optimization Policy

 Although the Client is responsible for initiating route optimization
 through the transmission of Predirect messages, the Server is the
 policy enforcement point that determines whether route optimization
 is permitted. For example, on some AERO links route optimization
 would allow traffic to circumvent critical network-based traffic
 interception points. In those cases, the Server can deny route
 optimization requests by simply discarding any Predirect messages
 instead of forwarding them.

https://datatracker.ietf.org/doc/html/rfc4861#section-8.1
https://datatracker.ietf.org/doc/html/rfc4861#section-8.1

Templin Expires January 23, 2017 [Page 41]

Internet-Draft AERO July 2016

3.17.11. Route Optimization and Multiple ACPs

 Clients that receive multiple non-contiguous ACP delegations must
 perform route optimization for each of the individual ACPs based on
 demand of traffic with source addresses taken from those prefixes.
 For example, if Client C1 has already performed route optimization
 for destination ACP X on behalf of its source ACP Y, it must also
 perform route optimization for X on behalf of its source ACP Z. As a
 result, source route optimization state cannot be shared between non-
 contiguous ACPs and must be managed separately.

3.18. Neighbor Unreachability Detection (NUD)

 AERO nodes perform Neighbor Unreachability Detection (NUD) by sending
 unicast NS messages to elicit solicited NA messages from neighbors
 the same as described in [RFC4861]. NUD is performed either
 reactively in response to persistent L2 errors (see Section 3.14) or
 proactively to test existing neighbor cache entries.

 When an AERO node sends an NS/NA message, it MUST use its link-local
 address as the IPv6 source address and the link-local address of the
 neighbor as the IPv6 destination address. When an AERO node receives
 an NS message or a solicited NA message, it accepts the message if it
 has a neighbor cache entry for the neighbor; otherwise, it ignores
 the message.

 When a source Client is redirected to a target Client it SHOULD
 proactively test the direct path by sending an initial NS message to
 elicit a solicited NA response. While testing the path, the source
 Client can optionally continue sending packets via the Server,
 maintain a small queue of packets until target reachability is
 confirmed, or (optimistically) allow packets to flow directly to the
 target. The source Client SHOULD thereafter continue to test the
 direct path to the target Client (see Section 7.3 of [RFC4861])
 periodically in order to keep dynamic neighbor cache entries alive.

 In particular, while the source Client is actively sending packets to
 the target Client it SHOULD also send NS messages separated by
 RETRANS_TIMER milliseconds in order to receive solicited NA messages.
 If the source Client is unable to elicit a solicited NA response from
 the target Client after MAX_RETRY attempts, it SHOULD set ForwardTime
 to 0 and resume sending packets via one of its Servers. Otherwise,
 the source Client considers the path usable and SHOULD thereafter
 process any link-layer errors as a hint that the direct path to the
 target Client has either failed or has become intermittent.

 When ForwardTime for a dynamic neighbor cache entry expires, the
 source Client resumes sending any subsequent packets via a Server and

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3

Templin Expires January 23, 2017 [Page 42]

Internet-Draft AERO July 2016

 may (eventually) attempt to re-initiate the AERO redirection process.
 When AcceptTime for a dynamic neighbor cache entry expires, the
 target Client discards any subsequent packets received directly from
 the source Client. When both ForwardTime and AcceptTime for a
 dynamic neighbor cache entry expire, the Client deletes the neighbor
 cache entry.

3.19. Mobility Management

3.19.1. Announcing Link-Layer Address Changes

 When a Client needs to change its link-layer address, e.g., due to a
 mobility event, it issues an immediate Rebind to each of its Servers
 using the new link-layer address as the source address and with an
 ALREQ that includes the correct Link ID and DSCP values. If
 authentication succeeds, the Server then updates its neighbor cache
 and sends a Reply. Note that if the Client does not issue a Rebind
 before the prefix delegation lifetime expires (e.g., if the Client
 has been out of touch with the Server for a considerable amount of
 time), the Server's Reply will report NoBinding and the Client must
 re-initiate the DHCPv6 PD procedure.

 Next, the Client sends Predirect messages to each of its
 correspondent Client neighbors using the same procedures as specified
 in Section 3.17.4. The Client sends the Predirect messages via a
 Server the same as if it was performing the initial route
 optimization procedure with the correspondent. The Predirect message
 will update the correspondent' link layer address mapping for the
 Client.

3.19.2. Bringing New Links Into Service

 When a Client needs to bring a new underlying interface into service
 (e.g., when it activates a new data link), it issues an immediate
 Rebind to each of its Servers using the new link-layer address as the
 source address and with an ALREQ that includes the new Link ID and
 DSCP values. If authentication succeeds, the Server then updates its
 neighbor cache and sends a Reply. The Client MAY then send Predirect
 messages to each of its correspondent Clients to inform them of the
 new link-layer address as described in Section 3.19.1.

3.19.3. Removing Existing Links from Service

 When a Client needs to remove an existing underlying interface from
 service (e.g., when it de-activates an existing data link), it issues
 an immediate Rebind to each of its Servers over any available link
 with an ALDEL that includes the deprecated Link ID. If
 authentication succeeds, the Server then updates its neighbor cache

Templin Expires January 23, 2017 [Page 43]

Internet-Draft AERO July 2016

 and sends a Reply. The Client SHOULD then send Predirect messages to
 each of its correspondent Clients to inform them of the deprecated
 link-layer address as described in Section 3.19.1.

3.19.4. Moving to a New Server

 When a Client associates with a new Server, it performs the Client
 procedures specified in Section 3.15.2.

 When a Client disassociates with an existing Server, it sends a
 Release message via a new Server to the unicast link-local network
 layer address of the old Server. The new Server then writes its own
 link-layer address in the Release message IP source address and
 forwards the message to the old Server.

 When the old Server receives the Release, it first authenticates the
 message. Next, it resets the Client's neighbor cache entry lifetime
 to 3 seconds, rewrites the link-layer address in the neighbor cache
 entry to the address of the new Server, then returns a Reply message
 to the Client via the old Server. When the lifetime expires, the old
 Server withdraws the IP route from the AERO routing system and
 deletes the neighbor cache entry for the Client. The Client can then
 use the Reply message to verify that the termination signal has been
 processed, and can delete both the default route and the neighbor
 cache entry for the old Server. (Note that since Release/Reply
 messages may be lost in the network the Client MUST retry until it
 gets a Reply indicating that the Release was successful. If the
 Client does not receive a Reply after MAX_RETRY attempts, the old
 Server may have failed and the Client should discontinue its Release
 attempts.)

 Clients SHOULD NOT move rapidly between Servers in order to avoid
 causing excessive oscillations in the AERO routing system. Such
 oscillations could result in intermittent reachability for the Client
 itself, while causing little harm to the network. Examples of when a
 Client might wish to change to a different Server include a Server
 that has gone unreachable, topological movements of significant
 distance, etc.

3.19.5. Packet Queueing for Mobility

 AERO Clients and Servers should maintain a samll queue of packets
 they have recently sent to an AERO neighbor, e.g., a 1 second window.
 If the AERO neighbor moves, the AERO node MAY retransmit the queued
 packets to ensure that they are delviered to the AERO neighbor's new
 location.

Templin Expires January 23, 2017 [Page 44]

Internet-Draft AERO July 2016

 Note that this may have performance implications for asymmetric
 paths. For example, if the AERO neighbor moves from a 50mbps link to
 a 128kbps link, retransmitting a 1 second window could lead to
 significant congestion.

3.20. Proxy AERO

 Proxy Mobile IPv6 (PMIPv6) [RFC5213][RFC5844][RFC5949] presents a
 network-based localized mobility management scheme for use within an
 access network domain. It is typically used in WiFi and cellular
 wireless access networks, and allows Mobile Nodes (MNs) to receive
 and retain an IP address that remains stable within the access
 network domain without needing to implement any special mobility
 protocols. In the PMIPv6 architecture, access network devices known
 as Mobility Access Gateways (MAGs) provide MNs with an access link
 abstraction and receive prefixes for the MNs from a Local Mobility
 Anchor (LMA).

 In a proxy AERO domain, a proxy AERO Client (acting as a MAG) can
 similarly provide proxy services for MNs that do not participate in
 AERO messaging. The proxy Client presents an access link abstraction
 to MNs, and performs DHCPv6 PD exchanges over the AERO interface with
 an AERO Server (acting as an LMA) to receive ACPs for address
 provisioning of new MNs that come onto an access link. This scheme
 assumes that proxy Clients act as fixed (non-mobile) infrastructure
 elements under the same administrative trust basis as for Relays and
 Servers.

 When an MN comes onto an access link within a proxy AERO domain for
 the first time, the proxy Client authenticates the MN and obtains a
 unique identifier that it can use as a DHCPv6 DUID then sends a
 Solicit message to its Server. When the Server delegates an ACP and
 returns a Reply, the proxy Client creates an AERO address for the MN
 and assigns the ACP to the MN's access link. The proxy Client then
 configures itself as a default router for the MN and provides address
 autoconfiguration services (e.g., SLAAC, DHCPv6, DHCPv4, etc.) for
 provisioning MN addresses from the ACP over the access link. Since
 the proxy Client may serve many such MNs simultaneously, it may
 receive multiple ACP prefix delegations and configure multiple AERO
 addresses, i.e., one for each MN.

 When two MNs are associated with the same proxy Client, the Client
 can forward traffic between the MNs without involving a Server since
 it configures the AERO addresses of both MNs and therefore also has
 the necessary routing information. When two MNs are associated with
 different proxy Clients, the source MN's Client can initiate standard
 AERO intradomain route optimization to discover a direct path to the

https://datatracker.ietf.org/doc/html/rfc5213
https://datatracker.ietf.org/doc/html/rfc5949

Templin Expires January 23, 2017 [Page 45]

Internet-Draft AERO July 2016

 target MN's Client through the exchange of Predirect/Redirect
 messages.

 When an MN in a proxy AERO domain leaves an access link provided by
 an old proxy Client, the MN issues an access link-specific "leave"
 message that informs the old Client of the link-layer address of a
 new Client on the planned new access link. This is known as a
 "predictive handover". When an MN comes onto an access link provided
 by a new proxy Client, the MN issues an access link-specific "join"
 message that informs the new Client of the link-layer address of the
 old Client on the actual old access link. This is known as a
 "reactive handover".

 Upon receiving a predictive handover indication, the old proxy Client
 sends a Solicit message directly to the new Client and queues any
 arriving data packets addressed to the departed MN. The Solicit
 message includes the MN's ID as the DUID, the ACP in an IA_PD option,
 the old Client's address as the link-layer source address and the new
 Client's address as the link-layer destination address. When the new
 Client receives the Solicit message, it changes the link-layer source
 address to its own address, changes the link-layer destination
 address to the address of its Server, and forwards the message to the
 Server. At the same time, the new Client creates access link state
 for the ACP in anticipation of the MN's arrival (while queuing any
 data packets until the MN arrives), creates a neighbor cache entry
 for the old Client with AcceptTime set to ACCEPT_TIME, then sends a
 Redirect message back to the old Client. When the old Client
 receives the Redirect message, it creates a neighbor cache entry for
 the new Client with ForwardTime set to FORWARD_TIME, then forwards
 any queued data packets to the new Client. At the same time, the old
 Client sends a Release message to its Server. Finally, the old
 Client sends unsolicited Redirect messages to any of the ACP's
 correspondents with a TLLAO containing the link-layer address of the
 new Client.

 Upon receiving a reactive handover indication, the new proxy Client
 creates access link state for the MN's ACP, sends a Solicit message
 to its Server, and sends a Release message directly to the old
 Client. The Release message includes the MN's ID as the DUID, the
 ACP in an IA_PD option, the new Client's address as the link-layer
 source address and the old Client's address as the link-layer
 destination address. When the old Client receives the Release
 message, it changes the link-layer source address to its own address,
 changes the link-layer destination address to the address of its
 Server, and forwards the message to the Server. At the same time,
 the old Client sends a Predirect message back to the new Client and
 queues any arriving data packets addressed to the departed MN. When
 the new Client receives the Predirect, it creates a neighbor cache

Templin Expires January 23, 2017 [Page 46]

Internet-Draft AERO July 2016

 entry for the old Client with AcceptTime set to ACCEPT_TIME, then
 sends a Redirect message back to the old Client. When the old Client
 receives the Redirect message, it creates a neighbor cache entry for
 the new Client with ForwardTime set to FORWARD_TIME, then forwards
 any queued data packets to the new Client. Finally, the old Client
 sends unsolicited Redirect messages to correspondents the same as for
 the predictive case.

 When a Server processes a Solicit message, it creates a neighbor
 cache entry for this ACP if none currently exists. If a neighbor
 cache entry already exists, however, the Server changes the link-
 layer address to the address of the new proxy Client (this satisfies
 the case of both the old Client and new Client using the same
 Server).

 When a Server processes a Release message, it resets the neighbor
 cache entry lifetime for this ACP to 3 seconds if the cached link-
 layer address matches the old proxy Client's address. Otherwise, the
 Server ignores the Release message (this satisfies the case of both
 the old Client and new Client using the same Server).

 When a correspondent Client receives an unsolicited Redirect message,
 it changes the link-layer address for the ACP's neighbor cache entry
 to the address of the new proxy Client.

 From an architectural perspective, in addition to the use of DHCPv6
 PD and IPv6 ND signaling the AERO approach differs from PMIPv6 in its
 use of the NBMA virtual link model instead of point-to-point tunnels.
 This provides a more agile interface for Client/Server and Client/
 Client coordinations, and also facilitates simple route optimization.
 The AERO routing system is also arranged in such a fashion that
 Clients get the same service from any Server they happen to associate
 with. This provides a natural fault tolerance and load balancing
 capability such as desired for distributed mobility management.

3.21. Extending AERO Links Through Security Gateways

 When an enterprise mobile device moves from a campus LAN connection
 to a public Internet link, it must re-enter the enterprise via a
 security gateway that has both a physical interface connection to the
 Internet and a physical interface connection to the enterprise
 internetwork. This most often entails the establishment of a Virtual
 Private Network (VPN) link over the public Internet from the mobile
 device to the security gateway. During this process, the mobile
 device supplies the security gateway with its public Internet address
 as the link-layer address for the VPN. The mobile device then acts
 as an AERO Client to negotiate with the security gateway to obtain
 its ACP.

Templin Expires January 23, 2017 [Page 47]

Internet-Draft AERO July 2016

 In order to satisfy this need, the security gateway also operates as
 an AERO Server with support for AERO Client proxying. In particular,
 when a mobile device (i.e., the Client) connects via the security
 gateway (i.e., the Server), the Server provides the Client with an
 ACP in a DHCPv6 PD exchange the same as if it were attached to an
 enterprise campus access link. The Server then replaces the Client's
 link-layer source address with the Server's enterprise-facing link-
 layer address in all AERO messages the Client sends toward neighbors
 on the AERO link. The AERO messages are then delivered to other
 devices on the AERO link as if they were originated by the security
 gateway instead of by the AERO Client. In the reverse direction, the
 AERO messages sourced by devices within the enterprise network can be
 forwarded to the security gateway, which then replaces the link-layer
 destination address with the Client's link-layer address and replaces
 the link-layer source address with its own (Internet-facing) link-
 layer address.

 After receiving the ACP, the Client can send IP packets that use an
 address taken from the ACP as the network layer source address, the
 Client's link-layer address as the link-layer source address, and the
 Server's Internet-facing link-layer address as the link-layer
 destination address. The Server will then rewrite the link-layer
 source address with the Server's own enterprise-facing link-layer
 address and rewrite the link-layer destination address with the
 target AERO node's link-layer address, and the packets will enter the
 enterprise network as though they were sourced from a device located
 within the enterprise. In the reverse direction, when a packet
 sourced by a node within the enterprise network uses a destination
 address from the Client's ACP, the packet will be delivered to the
 security gateway which then rewrites the link-layer destination
 address to the Client's link-layer address and rewrites the link-
 layer source address to the Server's Internet-facing link-layer
 address. The Server then delivers the packet across the VPN to the
 AERO Client. In this way, the AERO virtual link is essentially
 extended *through* the security gateway to the point at which the VPN
 link and AERO link are effectively grafted together by the link-layer
 address rewriting performed by the security gateway. All AERO
 messaging services (including route optimization and mobility
 signaling) are therefore extended to the Client.

 In order to support this virtual link grafting, the security gateway
 (acting as an AERO Server) must keep static neighbor cache entries
 for all of its associated Clients located on the public Internet.
 The neighbor cache entry is keyed by the AERO Client's AERO address
 the same as if the Client were located within the enterprise
 internetwork. The neighbor cache is then managed in all ways as
 though the Client were an ordinary AERO Client. This includes the

Templin Expires January 23, 2017 [Page 48]

Internet-Draft AERO July 2016

 AERO IPv6 ND messaging signaling for Route Optimization and Neighbor
 Unreachability Detection.

 Note that the main difference between a security gateway acting as an
 AERO Server and an enterprise-internal AERO Server is that the
 security gateway has at least one enterprise-internal physical
 interface and at least one public Internet physical interface.
 Conversely, the enterprise-internal AERO Server has only enterprise-
 internal physical interfaces. For this reason security gateway
 proxying is needed to ensure that the public Internet link-layer
 addressing space is kept separate from the enterprise-internal link-
 layer addressing space. This is afforded through a natural extension
 of the security association caching already performed for each VPN
 client by the security gateway.

3.22. Extending IPv6 AERO Links to the Internet

 When an IPv6 host ('H1') with an address from an ACP owned by AERO
 Client ('C1') sends packets to a correspondent IPv6 host ('H2'), the
 packets eventually arrive at the IPv6 router that owns ('H2')s
 prefix. This IPv6 router may or may not be an AERO Client ('C2')
 either within the same home network as ('C1') or in a different home
 network.

 If Client ('C1') is currently located outside the boundaries of its
 home network, it will connect back into the home network via a
 security gateway acting as an AERO Server. The packets sent by
 ('H1') via ('C1') will then be forwarded through the security gateway
 then through the home network and finally to ('C2') where they will
 be delivered to ('H2'). This could lead to sub-optimal performance
 when ('C2') could instead be reached via a more direct route without
 involving the security gateway.

 Consider the case when host ('H1') has the IPv6 address
 2001:db8:1::1, and Client ('C1') has the ACP 2001:db8:1::/64 with
 underlying IPv6 Internet address of 2001:db8:1000::1. Also, host
 ('H2') has the IPv6 address 2001:db8:2::1, and Client ('C2') has the
 ACP 2001:db8:2::/64 with underlying IPv6 address of 2001:db8:2000::1.
 Client ('C1') can determine whether 'C2' is indeed also an AERO
 Client willing to serve as a route optimization correspondent by
 resolving the AAAA records for the DNS FQDN that matches ('H2')s
 prefix, i.e.:

 '0.0.0.0.2.0.0.0.8.b.d.0.1.0.0.2.aero.linkupnetworks.net'

 If ('C2') is indeed a candidate correspondent, the FQDN lookup will
 return a PTR resource record that contains the domain name for the
 AERO link that manages ('C2')s ASP. Client ('C1') can then attempt

Templin Expires January 23, 2017 [Page 49]

Internet-Draft AERO July 2016

 route optimization using an approach similar to the Return
 Routability procedure specified for Mobile IPv6 (MIPv6) [RFC6275].
 In order to support this process, both Clients MUST intercept and
 decapsulate packets that have a subnet router anycast address
 corresponding to any of the /64 prefixes covered by their respective
 ACPs.

 To initiate the process, Client ('C1') creates a specially-crafted
 encapsulated Predirect message that will be routed through its home
 network then through ('C2')s home network and finally to ('C2')
 itself. Client ('C1') prepares the initial message in the exchange
 as follows:

 o The encapsulating IPv6 header source address is set to
 2001:db8:1:: (i.e., the IPv6 subnet router anycast address for
 ('C1')s ACP)

 o The encapsulating IPv6 header destination address is set to
 2001:db8:2:: (i.e., the IPv6 subnet router anycast address for
 ('C2')s ACP)

 o The encapsulating IPv6 header is followed by any additional
 encapsulation headers

 o The encapsulated IPv6 header source address is set to
 fe80::2001:db8:1:0 (i.e., the AERO address for ('C1'))

 o The encapsulated IPv6 header destination address is set to
 fe80::2001:db8:2:0 (i.e., the AERO address for ('C2'))

 o The encapsulated Predirect message includes all of the securing
 information that would occur in a MIPv6 "Home Test Init" message
 (format TBD)

 Client ('C1') then further encapsulates the message in the
 encapsulating headers necessary to convey the packet to the security
 gateway (e.g., through IPsec encapsulation) so that the message now
 appears "double-encapsulated". ('C1') then sends the message to the
 security gateway, which re-encapsulates and forwards it over the home
 network from where it will eventually reach ('C2').

 At the same time, ('C1') creates and sends a second encapsulated
 Predirect message that will be routed through the IPv6 Internet
 without involving the security gateway. Client ('C1') prepares the
 message as follows:

 o The encapsulating IPv6 header source address is set to
 2001:db8:1000:1 (i.e., the Internet IPv6 address of ('C1'))

https://datatracker.ietf.org/doc/html/rfc6275

Templin Expires January 23, 2017 [Page 50]

Internet-Draft AERO July 2016

 o The encapsulating IPv6 header destination address is set to
 2001:db8:2:: (i.e., the IPv6 subnet router anycast address for
 ('C2')s ACP)

 o The encapsulating IPv6 header is followed by any additional
 encapsulation headers

 o The encapsulated IPv6 header source address is set to
 fe80::2001:db8:1:0 (i.e., the AERO address for ('C1'))

 o The encapsulated IPv6 header destination address is set to
 fe80::2001:db8:2:0 (i.e., the AERO address for ('C2'))

 o The encapsulated Predirect message includes all of the securing
 information that would occur in a MIPv6 "Care-of Test Init"
 message (format TBD)

 ('C2') will receive both Predirect messages through its home network
 then return a corresponding Redirect for each of the Predirect
 messages with the source and destination addresses in the inner and
 outer headers reversed. The first message includes all of the
 securing information that would occur in a MIPv6 "Home Test" message,
 while the second message includes all of the securing information
 that would occur in a MIPv6 "Care-of Test" message (formats TBD).

 When ('C1') receives the Redirect messages, it performs the necessary
 security procedures per the MIPv6 specification. It then prepares an
 encapsulated NS message that includes the same source and destination
 addresses as for the "Care-of Test Init" Predirect message, and
 includes all of the securing information that would occur in a MIPv6
 "Binding Update" message (format TBD) and sends the message to
 ('C2').

 When ('C2') receives the NS message, if the securing information is
 correct it creates or updates a neighbor cache entry for ('C1') with
 fe80::2001:db8:1:0 as the network-layer address, 2001:db8:1000::1 as
 the link-layer address and with AcceptTime set to ACCEPT_TIME.
 ('C2') then sends an encapsulated NA message back to ('C1') that
 includes the same source and destination addresses as for the "Care-
 of Test" Redirect message, and includes all of the securing
 information that would occur in a MIPv6 "Binding Acknowledgement"
 message (format TBD) and sends the message to ('C1').

 When ('C1') receives the NA message, it creates or updates a neighbor
 cache entry for ('C2') with fe80::2001:db8:2:0 as the network-layer
 address and 2001:db8:2:: as the link-layer address and with
 ForwardTime set to FORWARD_TIME, thus completing the route
 optimization in the forward direction.

Templin Expires January 23, 2017 [Page 51]

Internet-Draft AERO July 2016

 ('C1') subsequently forwards encapsulated packets with outer source
 address 2001:db8:1000::1, with outer destination address
 2001:db8:2::, with inner source address taken from the 2001:db8:1::,
 and with inner destination address taken from 2001:db8:2:: due to the
 fact that it has a securely-established neighbor cache entry with
 non-zero ForwardTime. ('C2') subsequently accepts any such
 encapsulated packets due to the fact that it has a securely-
 established neighbor cache entry with non-zero AcceptTime.

 In order to keep neighbor cache entries alive, ('C1') periodically
 sends additional NS messages to ('C2') and receives any NA responses.
 If ('C1') moves to a different point of attachment after the initial
 route optimization, it sends a new secured NS message to ('C2') as
 above to update ('C2')s neighbor cache.

 If ('C2') has packets to send to ('C1'), it performs a corresponding
 route optimization in the opposite direction following the same
 procedures described above. In the process, the already-established
 unidirectional neighbor cache entries within ('C1') and ('C2') are
 updated to include the now-bidirectional information. In particular,
 the AcceptTime and ForwardTime variables for both neighbor cache
 entries are updated to non-zero values, and the link-layer address
 for ('C1')s neighbor cache entry for ('C2') is reset to
 2001:db8:2000::1.

 Note that two AERO Clients can use full security protocol messaging
 instead of Return Routability, e.g., if strong authentication and/or
 confidentiality are desired. In that case, security protocol key
 exchanges such as specified for MOBIKE [RFC4555] would be used to
 establish security associations and neighbor cache entries between
 the AERO clients. Thereafter, NS/NA messaging can be used to
 maintain neighbor cache entries, test reachability, and to announce
 mobility events. If reachability testing fails, e.g., if both
 Clients move at roughly the same time, the Clients can tear down the
 security association and neighbor cache entries and again allow
 packets to flow through their home network.

3.23. Encapsulation Protocol Version Considerations

 A source Client may connect only to an IPvX underlying network, while
 the target Client connects only to an IPvY underlying network. In
 that case, the target and source Clients have no means for reaching
 each other directly (since they connect to underlying networks of
 different IP protocol versions) and so must ignore any redirection
 messages and continue to send packets via their Servers.

https://datatracker.ietf.org/doc/html/rfc4555

Templin Expires January 23, 2017 [Page 52]

Internet-Draft AERO July 2016

3.24. Multicast Considerations

 When the underlying network does not support multicast, AERO Clients
 map link-scoped multicast addresses to the link-layer address of a
 Server, which acts as a multicast forwarding agent. The AERO Client
 also serves as an IGMP/MLD Proxy for its EUNs and/or hosted
 applications per [RFC4605] while using the link-layer address of the
 Server as the link-layer address for all multicast packets.

 When the underlying network supports multicast, AERO nodes use the
 multicast address mapping specification found in [RFC2529] for IPv4
 underlying networks and use a TBD site-scoped multicast mapping for
 IPv6 underlying networks. In that case, border routers must ensure
 that the encapsulated site-scoped multicast packets do not leak
 outside of the site spanned by the AERO link.

3.25. Operation on AERO Links Without DHCPv6 Services

 When Servers on the AERO link do not provide DHCPv6 services,
 operation can still be accommodated through administrative
 configuration of ACPs on AERO Clients. In that case, administrative
 configurations of AERO interface neighbor cache entries on both the
 Server and Client are also necessary. However, this may interfere
 with the ability for Clients to dynamically change to new Servers,
 and can expose the AERO link to misconfigurations unless the
 administrative configurations are carefully coordinated.

3.26. Operation on Server-less AERO Links

 In some AERO link scenarios, there may be no Servers on the link and/
 or no need for Clients to use a Server as an intermediary trust
 anchor. In that case, each Client acts as a Server unto itself to
 establish neighbor cache entries by performing direct Client-to-
 Client IPv6 ND message exchanges, and some other form of trust basis
 must be applied so that each Client can verify that the prospective
 neighbor is authorized to use its claimed ACP.

 When there is no Server on the link, Clients must arrange to receive
 ACPs and publish them via a secure alternate prefix delegation
 authority through some means outside the scope of this document.

3.27. Manually-Configured AERO Tunnels

 In addition to the dynamic neighbor discovery procedures for AERO
 link neighbors described above, AERO encapsulation can be applied to
 manually-configured tunnels. In that case, the tunnel endpoints use
 an administratively-assigned link-local address and exchange NS/NA
 messages the same as for dynamically-established tunnels.

https://datatracker.ietf.org/doc/html/rfc4605
https://datatracker.ietf.org/doc/html/rfc2529

Templin Expires January 23, 2017 [Page 53]

Internet-Draft AERO July 2016

3.28. Intradomain Routing

 After a tunnel neighbor relationship has been established, neighbors
 can use a traditional dynamic routing protocol over the tunnel to
 exchange routing information without having to inject the routes into
 the AERO routing system.

4. Implementation Status

 User-level and kernel-level AERO implementations have been developed
 and are undergoing internal testing within Boeing.

 An initial public release of the AERO source code was announced on
 the intarea mailing list on August 21, 2015, and a pointer to the
 code is available in the list archives.

5. IANA Considerations

 The IANA has assigned a 4-octet Private Enterprise Number "45282" for
 AERO in the "enterprise-numbers" registry.

 The IANA has assigned the UDP port number "8060" for an earlier
 experimental version of AERO [RFC6706]. This document obsoletes
 [RFC6706] and claims the UDP port number "8060" for all future use.

 No further IANA actions are required.

6. Security Considerations

 AERO link security considerations are the same as for standard IPv6
 Neighbor Discovery [RFC4861] except that AERO improves on some
 aspects. In particular, AERO uses a trust basis between Clients and
 Servers, where the Clients only engage in the AERO mechanism when it
 is facilitated by a trust anchor. Unless there is some other means
 of authenticating the Client's identity (e.g., link-layer security),
 AERO nodes SHOULD also use DHCPv6 securing services (e.g., DHCPv6
 authentication, Secure DHCPv6 [I-D.ietf-dhc-sedhcpv6], etc.) for
 Client authentication and network admission control. In particular,
 Clients SHOULD include authenticating information on each
 Solicit/Rebind/Release message they send, but omit authenticating
 information on Renew messages. Renew messages are exempt due to the
 fact that the Renew must already be checked for having a correct
 link-layer address and does not update any link-layer addresses.
 Therefore, asking the Server to also authenticate the Renew message
 would be unnecessary and could result in excessive processing
 overhead.

https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires January 23, 2017 [Page 54]

Internet-Draft AERO July 2016

 Redirect, Predirect and unsolicited NA messages SHOULD include a
 Timestamp option (see Section 5.3 of [RFC3971]) that other AERO nodes
 can use to verify the message time of origin. Predirect, NS and RS
 messages SHOULD include a Nonce option (see Section 5.3 of [RFC3971])
 that recipients echo back in corresponding responses.

 AERO links must be protected against link-layer address spoofing
 attacks in which an attacker on the link pretends to be a trusted
 neighbor. Links that provide link-layer securing mechanisms (e.g.,
 IEEE 802.1X WLANs) and links that provide physical security (e.g.,
 enterprise network wired LANs) provide a first line of defense that
 is often sufficient. In other instances, additional securing
 mechanisms such as Secure Neighbor Discovery (SeND) [RFC3971], IPsec
 [RFC4301] or TLS [RFC5246] may be necessary.

 AERO Clients MUST ensure that their connectivity is not used by
 unauthorized nodes on their EUNs to gain access to a protected
 network, i.e., AERO Clients that act as routers MUST NOT provide
 routing services for unauthorized nodes. (This concern is no
 different than for ordinary hosts that receive an IP address
 delegation but then "share" the address with unauthorized nodes via
 some form of Internet connection sharing.)

 On some AERO links, establishment and maintenance of a direct path
 between neighbors requires secured coordination such as through the
 Internet Key Exchange (IKEv2) protocol [RFC5996] to establish a
 security association.

 An AERO Client's link-layer address could be rewritten by a link-
 layer switching element on the path from the Client to the Server and
 not detected by the DHCPv6 security mechanism. However, such a
 condition would only be a matter of concern on unmanaged/unsecured
 links where the link-layer switching elements themselves present a
 man-in-the-middle attack threat. For this reason, IP security MUST
 be used when AERO is employed over unmanaged/unsecured links.

7. Acknowledgements

 Discussions both on IETF lists and in private exchanges helped shape
 some of the concepts in this work. Individuals who contributed
 insights include Mikael Abrahamsson, Mark Andrews, Fred Baker,
 Stewart Bryant, Brian Carpenter, Wojciech Dec, Ralph Droms, Adrian
 Farrel, Sri Gundavelli, Brian Haberman, Joel Halpern, Tom Herbert,
 Sascha Hlusiak, Lee Howard, Andre Kostur, Ted Lemon, Andy Malis,
 Satoru Matsushima, Tomek Mrugalski, Alexandru Petrescu, Behcet
 Saikaya, Joe Touch, Bernie Volz, Ryuji Wakikawa and Lloyd Wood.
 Members of the IESG also provided valuable input during their review
 process that greatly improved the document. Discussions on the v6ops

https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5996

Templin Expires January 23, 2017 [Page 55]

Internet-Draft AERO July 2016

 list in the December 2015 through January 2016 timeframe further
 helped clarify AERO multi-addressing capabilities. Special thanks go
 to Stewart Bryant, Joel Halpern and Brian Haberman for their
 shepherding guidance during the publication of the AERO first
 edition.

 This work has further been encouraged and supported by Boeing
 colleagues including M. Wayne Benson, Dave Bernhardt, Cam Brodie,
 Balaguruna Chidambaram, Irene Chin, Bruce Cornish, Claudiu Danilov,
 Wen Fang, Anthony Gregory, Jeff Holland, Ed King, Gen MacLean, Rob
 Muszkiewicz, Sean O'Sullivan, Kent Shuey, Brian Skeen, Mike Slane,
 Brendan Williams, Julie Wulff, Yueli Yang, and other members of the
 BR&T and BIT mobile networking teams. Wayne Benson is especially
 acknowledged for his outstanding work in converting the AERO proof-
 of-concept implementation into production-ready code.

 Earlier works on NBMA tunneling approaches are found in
 [RFC2529][RFC5214][RFC5569].

 Many of the constructs presented in this second edition of AERO are
 based on the author's earlier works, including:

 o The Internet Routing Overlay Network (IRON)
 [RFC6179][I-D.templin-ironbis]

 o Virtual Enterprise Traversal (VET)
 [RFC5558][I-D.templin-intarea-vet]

 o The Subnetwork Encapsulation and Adaptation Layer (SEAL)
 [RFC5320][I-D.templin-intarea-seal]

 o AERO, First Edition [RFC6706]

 Note that these works cite numerous earlier efforts that are not also
 cited here due to space limitations. The authors of those earlier
 works are acknowledged for their insights.

8. References

8.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <http://www.rfc-editor.org/info/rfc791>.

https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc5569
https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc768
http://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc791
http://www.rfc-editor.org/info/rfc791

Templin Expires January 23, 2017 [Page 56]

Internet-Draft AERO July 2016

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, DOI 10.17487/RFC0792, September 1981,

 <http://www.rfc-editor.org/info/rfc792>.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 DOI 10.17487/RFC2003, October 1996,
 <http://www.rfc-editor.org/info/rfc2003>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <http://www.rfc-editor.org/info/rfc2460>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <http://www.rfc-editor.org/info/rfc2473>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <http://www.rfc-editor.org/info/rfc2474>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <http://www.rfc-editor.org/info/rfc3315>.

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 DOI 10.17487/RFC3633, December 2003,
 <http://www.rfc-editor.org/info/rfc3633>.

 [RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971,
 DOI 10.17487/RFC3971, March 2005,
 <http://www.rfc-editor.org/info/rfc3971>.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213,
 DOI 10.17487/RFC4213, October 2005,
 <http://www.rfc-editor.org/info/rfc4213>.

https://datatracker.ietf.org/doc/html/rfc792
http://www.rfc-editor.org/info/rfc792
https://datatracker.ietf.org/doc/html/rfc2003
http://www.rfc-editor.org/info/rfc2003
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
http://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc2473
http://www.rfc-editor.org/info/rfc2473
https://datatracker.ietf.org/doc/html/rfc2474
http://www.rfc-editor.org/info/rfc2474
https://datatracker.ietf.org/doc/html/rfc3315
http://www.rfc-editor.org/info/rfc3315
https://datatracker.ietf.org/doc/html/rfc3633
http://www.rfc-editor.org/info/rfc3633
https://datatracker.ietf.org/doc/html/rfc3971
http://www.rfc-editor.org/info/rfc3971
https://datatracker.ietf.org/doc/html/rfc4213
http://www.rfc-editor.org/info/rfc4213

Templin Expires January 23, 2017 [Page 57]

Internet-Draft AERO July 2016

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <http://www.rfc-editor.org/info/rfc4862>.

 [RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node
 Requirements", RFC 6434, DOI 10.17487/RFC6434, December
 2011, <http://www.rfc-editor.org/info/rfc6434>.

8.2. Informative References

 [I-D.herbert-gue-fragmentation]
 Herbert, T. and F. Templin, "Fragmentation option for
 Generic UDP Encapsulation", draft-herbert-gue-

fragmentation-02 (work in progress), October 2015.

 [I-D.ietf-dhc-sedhcpv6]
 Jiang, S., Li, L., Cui, Y., Jinmei, T., Lemon, T., and D.
 Zhang, "Secure DHCPv6", draft-ietf-dhc-sedhcpv6-13 (work
 in progress), July 2016.

 [I-D.ietf-intarea-tunnels]
 Touch, D. and W. Townsley, "IP Tunnels in the Internet
 Architecture", draft-ietf-intarea-tunnels-03 (work in
 progress), July 2016.

 [I-D.ietf-nvo3-gue]
 Herbert, T., Yong, L., and O. Zia, "Generic UDP
 Encapsulation", draft-ietf-nvo3-gue-04 (work in progress),
 July 2016.

 [I-D.templin-intarea-grefrag]
 Templin, F., "GRE Tunnel Fragmentation", draft-templin-

intarea-grefrag-02 (work in progress), January 2016.

 [I-D.templin-intarea-seal]
 Templin, F., "The Subnetwork Encapsulation and Adaptation
 Layer (SEAL)", draft-templin-intarea-seal-68 (work in
 progress), January 2014.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)", draft-

templin-intarea-vet-40 (work in progress), May 2013.

https://datatracker.ietf.org/doc/html/rfc4861
http://www.rfc-editor.org/info/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
http://www.rfc-editor.org/info/rfc4862
https://datatracker.ietf.org/doc/html/rfc6434
http://www.rfc-editor.org/info/rfc6434
https://datatracker.ietf.org/doc/html/draft-herbert-gue-fragmentation-02
https://datatracker.ietf.org/doc/html/draft-herbert-gue-fragmentation-02
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-sedhcpv6-13
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-tunnels-03
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-gue-04
https://datatracker.ietf.org/doc/html/draft-templin-intarea-grefrag-02
https://datatracker.ietf.org/doc/html/draft-templin-intarea-grefrag-02
https://datatracker.ietf.org/doc/html/draft-templin-intarea-seal-68
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40

Templin Expires January 23, 2017 [Page 58]

Internet-Draft AERO July 2016

 [I-D.templin-ironbis]
 Templin, F., "The Interior Routing Overlay Network
 (IRON)", draft-templin-ironbis-16 (work in progress),
 March 2014.

 [RFC0879] Postel, J., "The TCP Maximum Segment Size and Related
 Topics", RFC 879, DOI 10.17487/RFC0879, November 1983,
 <http://www.rfc-editor.org/info/rfc879>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <http://www.rfc-editor.org/info/rfc1191>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <http://www.rfc-editor.org/info/rfc1812>.

 [RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation,
 selection, and registration of an Autonomous System (AS)",

BCP 6, RFC 1930, DOI 10.17487/RFC1930, March 1996,
 <http://www.rfc-editor.org/info/rfc1930>.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <http://www.rfc-editor.org/info/rfc1981>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
RFC 2131, DOI 10.17487/RFC2131, March 1997,

 <http://www.rfc-editor.org/info/rfc2131>.

 [RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529,
 DOI 10.17487/RFC2529, March 1999,
 <http://www.rfc-editor.org/info/rfc2529>.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, DOI 10.17487/RFC2675, August 1999,

 <http://www.rfc-editor.org/info/rfc2675>.

https://datatracker.ietf.org/doc/html/draft-templin-ironbis-16
https://datatracker.ietf.org/doc/html/rfc879
http://www.rfc-editor.org/info/rfc879
https://datatracker.ietf.org/doc/html/rfc1035
http://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
http://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
http://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/bcp6
https://datatracker.ietf.org/doc/html/rfc1930
http://www.rfc-editor.org/info/rfc1930
https://datatracker.ietf.org/doc/html/rfc1981
http://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/rfc2131
http://www.rfc-editor.org/info/rfc2131
https://datatracker.ietf.org/doc/html/rfc2529
http://www.rfc-editor.org/info/rfc2529
https://datatracker.ietf.org/doc/html/rfc2675
http://www.rfc-editor.org/info/rfc2675

Templin Expires January 23, 2017 [Page 59]

Internet-Draft AERO July 2016

 [RFC2764] Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, DOI 10.17487/RFC2764, February 2000,
 <http://www.rfc-editor.org/info/rfc2764>.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 DOI 10.17487/RFC2784, March 2000,
 <http://www.rfc-editor.org/info/rfc2784>.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,

 <http://www.rfc-editor.org/info/rfc2890>.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, DOI 10.17487/RFC2923, September 2000,

 <http://www.rfc-editor.org/info/rfc2923>.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
RFC 2983, DOI 10.17487/RFC2983, October 2000,

 <http://www.rfc-editor.org/info/rfc2983>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi,
 "DNS Extensions to Support IP Version 6", RFC 3596,
 DOI 10.17487/RFC3596, October 2003,
 <http://www.rfc-editor.org/info/rfc3596>.

 [RFC3819] Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, DOI 10.17487/RFC3819, July 2004,
 <http://www.rfc-editor.org/info/rfc3819>.

 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <http://www.rfc-editor.org/info/rfc4271>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

https://datatracker.ietf.org/doc/html/rfc2764
http://www.rfc-editor.org/info/rfc2764
https://datatracker.ietf.org/doc/html/rfc2784
http://www.rfc-editor.org/info/rfc2784
https://datatracker.ietf.org/doc/html/rfc2890
http://www.rfc-editor.org/info/rfc2890
https://datatracker.ietf.org/doc/html/rfc2923
http://www.rfc-editor.org/info/rfc2923
https://datatracker.ietf.org/doc/html/rfc2983
http://www.rfc-editor.org/info/rfc2983
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3596
http://www.rfc-editor.org/info/rfc3596
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
http://www.rfc-editor.org/info/rfc3819
https://datatracker.ietf.org/doc/html/rfc4271
http://www.rfc-editor.org/info/rfc4271
https://datatracker.ietf.org/doc/html/rfc4291
http://www.rfc-editor.org/info/rfc4291

Templin Expires January 23, 2017 [Page 60]

Internet-Draft AERO July 2016

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <http://www.rfc-editor.org/info/rfc4301>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", RFC 4443,
 DOI 10.17487/RFC4443, March 2006,
 <http://www.rfc-editor.org/info/rfc4443>.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, DOI 10.17487/RFC4459, April
 2006, <http://www.rfc-editor.org/info/rfc4459>.

 [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access
 Protocol (LDAP): The Protocol", RFC 4511,
 DOI 10.17487/RFC4511, June 2006,
 <http://www.rfc-editor.org/info/rfc4511>.

 [RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,
 <http://www.rfc-editor.org/info/rfc4555>.

 [RFC4592] Lewis, E., "The Role of Wildcards in the Domain Name
 System", RFC 4592, DOI 10.17487/RFC4592, July 2006,
 <http://www.rfc-editor.org/info/rfc4592>.

 [RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding
 ("IGMP/MLD Proxying")", RFC 4605, DOI 10.17487/RFC4605,
 August 2006, <http://www.rfc-editor.org/info/rfc4605>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <http://www.rfc-editor.org/info/rfc4821>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <http://www.rfc-editor.org/info/rfc4963>.

 [RFC4994] Zeng, S., Volz, B., Kinnear, K., and J. Brzozowski,
 "DHCPv6 Relay Agent Echo Request Option", RFC 4994,
 DOI 10.17487/RFC4994, September 2007,
 <http://www.rfc-editor.org/info/rfc4994>.

https://datatracker.ietf.org/doc/html/rfc4301
http://www.rfc-editor.org/info/rfc4301
https://datatracker.ietf.org/doc/html/rfc4443
http://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/rfc4459
http://www.rfc-editor.org/info/rfc4459
https://datatracker.ietf.org/doc/html/rfc4511
http://www.rfc-editor.org/info/rfc4511
https://datatracker.ietf.org/doc/html/rfc4555
http://www.rfc-editor.org/info/rfc4555
https://datatracker.ietf.org/doc/html/rfc4592
http://www.rfc-editor.org/info/rfc4592
https://datatracker.ietf.org/doc/html/rfc4605
http://www.rfc-editor.org/info/rfc4605
https://datatracker.ietf.org/doc/html/rfc4821
http://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc4963
http://www.rfc-editor.org/info/rfc4963
https://datatracker.ietf.org/doc/html/rfc4994
http://www.rfc-editor.org/info/rfc4994

Templin Expires January 23, 2017 [Page 61]

Internet-Draft AERO July 2016

 [RFC5213] Gundavelli, S., Ed., Leung, K., Devarapalli, V.,
 Chowdhury, K., and B. Patil, "Proxy Mobile IPv6",

RFC 5213, DOI 10.17487/RFC5213, August 2008,
 <http://www.rfc-editor.org/info/rfc5213>.

 [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
 Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
 DOI 10.17487/RFC5214, March 2008,
 <http://www.rfc-editor.org/info/rfc5214>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5320] Templin, F., Ed., "The Subnetwork Encapsulation and
 Adaptation Layer (SEAL)", RFC 5320, DOI 10.17487/RFC5320,
 February 2010, <http://www.rfc-editor.org/info/rfc5320>.

 [RFC5494] Arkko, J. and C. Pignataro, "IANA Allocation Guidelines
 for the Address Resolution Protocol (ARP)", RFC 5494,
 DOI 10.17487/RFC5494, April 2009,
 <http://www.rfc-editor.org/info/rfc5494>.

 [RFC5522] Eddy, W., Ivancic, W., and T. Davis, "Network Mobility
 Route Optimization Requirements for Operational Use in
 Aeronautics and Space Exploration Mobile Networks",

RFC 5522, DOI 10.17487/RFC5522, October 2009,
 <http://www.rfc-editor.org/info/rfc5522>.

 [RFC5558] Templin, F., Ed., "Virtual Enterprise Traversal (VET)",
RFC 5558, DOI 10.17487/RFC5558, February 2010,

 <http://www.rfc-editor.org/info/rfc5558>.

 [RFC5569] Despres, R., "IPv6 Rapid Deployment on IPv4
 Infrastructures (6rd)", RFC 5569, DOI 10.17487/RFC5569,
 January 2010, <http://www.rfc-editor.org/info/rfc5569>.

 [RFC5720] Templin, F., "Routing and Addressing in Networks with
 Global Enterprise Recursion (RANGER)", RFC 5720,
 DOI 10.17487/RFC5720, February 2010,
 <http://www.rfc-editor.org/info/rfc5720>.

 [RFC5844] Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy
 Mobile IPv6", RFC 5844, DOI 10.17487/RFC5844, May 2010,
 <http://www.rfc-editor.org/info/rfc5844>.

https://datatracker.ietf.org/doc/html/rfc5213
http://www.rfc-editor.org/info/rfc5213
https://datatracker.ietf.org/doc/html/rfc5214
http://www.rfc-editor.org/info/rfc5214
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5320
http://www.rfc-editor.org/info/rfc5320
https://datatracker.ietf.org/doc/html/rfc5494
http://www.rfc-editor.org/info/rfc5494
https://datatracker.ietf.org/doc/html/rfc5522
http://www.rfc-editor.org/info/rfc5522
https://datatracker.ietf.org/doc/html/rfc5558
http://www.rfc-editor.org/info/rfc5558
https://datatracker.ietf.org/doc/html/rfc5569
http://www.rfc-editor.org/info/rfc5569
https://datatracker.ietf.org/doc/html/rfc5720
http://www.rfc-editor.org/info/rfc5720
https://datatracker.ietf.org/doc/html/rfc5844
http://www.rfc-editor.org/info/rfc5844

Templin Expires January 23, 2017 [Page 62]

Internet-Draft AERO July 2016

 [RFC5949] Yokota, H., Chowdhury, K., Koodli, R., Patil, B., and F.
 Xia, "Fast Handovers for Proxy Mobile IPv6", RFC 5949,
 DOI 10.17487/RFC5949, September 2010,
 <http://www.rfc-editor.org/info/rfc5949>.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC 5996, DOI 10.17487/RFC5996, September 2010,
 <http://www.rfc-editor.org/info/rfc5996>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <http://www.rfc-editor.org/info/rfc6146>.

 [RFC6179] Templin, F., Ed., "The Internet Routing Overlay Network
 (IRON)", RFC 6179, DOI 10.17487/RFC6179, March 2011,
 <http://www.rfc-editor.org/info/rfc6179>.

 [RFC6204] Singh, H., Beebee, W., Donley, C., Stark, B., and O.
 Troan, Ed., "Basic Requirements for IPv6 Customer Edge
 Routers", RFC 6204, DOI 10.17487/RFC6204, April 2011,
 <http://www.rfc-editor.org/info/rfc6204>.

 [RFC6221] Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A.
 Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221,
 DOI 10.17487/RFC6221, May 2011,
 <http://www.rfc-editor.org/info/rfc6221>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6275] Perkins, C., Ed., Johnson, D., and J. Arkko, "Mobility
 Support in IPv6", RFC 6275, DOI 10.17487/RFC6275, July
 2011, <http://www.rfc-editor.org/info/rfc6275>.

 [RFC6355] Narten, T. and J. Johnson, "Definition of the UUID-Based
 DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355,
 DOI 10.17487/RFC6355, August 2011,
 <http://www.rfc-editor.org/info/rfc6355>.

 [RFC6422] Lemon, T. and Q. Wu, "Relay-Supplied DHCP Options",
RFC 6422, DOI 10.17487/RFC6422, December 2011,

 <http://www.rfc-editor.org/info/rfc6422>.

https://datatracker.ietf.org/doc/html/rfc5949
http://www.rfc-editor.org/info/rfc5949
https://datatracker.ietf.org/doc/html/rfc5996
http://www.rfc-editor.org/info/rfc5996
https://datatracker.ietf.org/doc/html/rfc6146
http://www.rfc-editor.org/info/rfc6146
https://datatracker.ietf.org/doc/html/rfc6179
http://www.rfc-editor.org/info/rfc6179
https://datatracker.ietf.org/doc/html/rfc6204
http://www.rfc-editor.org/info/rfc6204
https://datatracker.ietf.org/doc/html/rfc6221
http://www.rfc-editor.org/info/rfc6221
https://datatracker.ietf.org/doc/html/rfc6241
http://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc6275
http://www.rfc-editor.org/info/rfc6275
https://datatracker.ietf.org/doc/html/rfc6355
http://www.rfc-editor.org/info/rfc6355
https://datatracker.ietf.org/doc/html/rfc6422
http://www.rfc-editor.org/info/rfc6422

Templin Expires January 23, 2017 [Page 63]

Internet-Draft AERO July 2016

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,
 <http://www.rfc-editor.org/info/rfc6438>.

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
RFC 6691, DOI 10.17487/RFC6691, July 2012,

 <http://www.rfc-editor.org/info/rfc6691>.

 [RFC6706] Templin, F., Ed., "Asymmetric Extended Route Optimization
 (AERO)", RFC 6706, DOI 10.17487/RFC6706, August 2012,
 <http://www.rfc-editor.org/info/rfc6706>.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, DOI 10.17487/RFC6864, February 2013,

 <http://www.rfc-editor.org/info/rfc6864>.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935,
 DOI 10.17487/RFC6935, April 2013,
 <http://www.rfc-editor.org/info/rfc6935>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <http://www.rfc-editor.org/info/rfc6936>.

 [RFC6939] Halwasia, G., Bhandari, S., and W. Dec, "Client Link-Layer
 Address Option in DHCPv6", RFC 6939, DOI 10.17487/RFC6939,
 May 2013, <http://www.rfc-editor.org/info/rfc6939>.

 [RFC6980] Gont, F., "Security Implications of IPv6 Fragmentation
 with IPv6 Neighbor Discovery", RFC 6980,
 DOI 10.17487/RFC6980, August 2013,
 <http://www.rfc-editor.org/info/rfc6980>.

 [RFC7078] Matsumoto, A., Fujisaki, T., and T. Chown, "Distributing
 Address Selection Policy Using DHCPv6", RFC 7078,
 DOI 10.17487/RFC7078, January 2014,
 <http://www.rfc-editor.org/info/rfc7078>.

 [TUNTAP] Wikipedia, W., "http://en.wikipedia.org/wiki/TUN/TAP",
 October 2014.

https://datatracker.ietf.org/doc/html/rfc6438
http://www.rfc-editor.org/info/rfc6438
https://datatracker.ietf.org/doc/html/rfc6691
http://www.rfc-editor.org/info/rfc6691
https://datatracker.ietf.org/doc/html/rfc6706
http://www.rfc-editor.org/info/rfc6706
https://datatracker.ietf.org/doc/html/rfc6864
http://www.rfc-editor.org/info/rfc6864
https://datatracker.ietf.org/doc/html/rfc6935
http://www.rfc-editor.org/info/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
http://www.rfc-editor.org/info/rfc6936
https://datatracker.ietf.org/doc/html/rfc6939
http://www.rfc-editor.org/info/rfc6939
https://datatracker.ietf.org/doc/html/rfc6980
http://www.rfc-editor.org/info/rfc6980
https://datatracker.ietf.org/doc/html/rfc7078
http://www.rfc-editor.org/info/rfc7078

Templin Expires January 23, 2017 [Page 64]

Internet-Draft AERO July 2016

Appendix A. AERO Alternate Encapsulations

 When GUE encapsulation is not needed, AERO can use common
 encapsulations such as IP-in-IP [RFC2003][RFC2473][RFC4213], Generic
 Routing Encapsulation (GRE) [RFC2784][RFC2890] and others. The
 encapsulation is therefore only differentiated from non-AERO tunnels
 through the application of AERO control messaging and not through,
 e.g., a well-known UDP port number.

 As for GUE encapsulation, alternate AERO encapsulation formats may
 require encapsulation layer fragmentation. For simple IP-in-IP
 encapsulation, an IPv6 fragment header is inserted directly between
 the inner and outer IP headers when needed, i.e., even if the outer
 header is IPv4. The IPv6 Fragment Header is identified to the outer
 IP layer by its IP protocol number, and the Next Header field in the
 IPv6 Fragment Header identifies the inner IP header version. For GRE
 encapsulation, a GRE fragment header is inserted within the GRE
 header [I-D.templin-intarea-grefrag].

 Figure 9 shows the AERO IP-in-IP encapsulation format before any
 fragmentation is applied:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IPv4 Header | | Outer IPv6 Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |IPv6 Frag Header (optional)| |IPv6 Frag Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header | | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | |
 ~ ~ ~ ~
 ~ Inner Packet Body ~ ~ Inner Packet Body ~
 ~ ~ ~ ~
 | | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Minimal Encapsulation in IPv4 Minimal Encapsulation in IPv6

 Figure 9: Minimal Encapsulation Format using IP-in-IP

 Figure 10 shows the AERO GRE encapsulation format before any
 fragmentation is applied:

https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2784

Templin Expires January 23, 2017 [Page 65]

Internet-Draft AERO July 2016

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Header |
 | (with checksum, key, etc..) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Fragment Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 ~ ~
 ~ Inner Packet Body ~
 ~ ~
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 10: Minimal Encapsulation Using GRE

 Alternate encapsulation may be preferred in environments where GUE
 encapsulation would add unnecessary overhead. For example, certain
 low-bandwidth wireless data links may benefit from a reduced
 encapsulation overhead.

 GUE encapsulation can traverse network paths that are inaccessible to
 non-UDP encapsulations, e.g., for crossing Network Address
 Translators (NATs). More and more, network middleboxes are also
 being configured to discard packets that include anything other than
 a well-known IP protocol such as UDP and TCP. It may therefore be
 necessary to determine the potential for middlebox filtering before
 enabling alternate encapsulation in a given environment.

 In addition to IP-in-IP, GRE and GUE, AERO can also use security
 encapsulations such as IPsec and SSL/TLS. In that case, AERO control
 messaging and route determination occur before security encapsulation
 is applied for outgoing packets and after security decapsulation is
 applied for incoming packets.

Appendix B. When to Insert an Encapsulation Fragment Header

 An encapsulation fragment header is inserted when the AERO tunnel
 ingress needs to apply fragmentation to accommodate packets that must
 be delivered without loss due to a size restriction. Fragmentation
 is performed on the inner packet while encapsulating each inner
 packet fragment in outer IP and encapsulation layer headers that
 differ only in the fragment header fields.

Templin Expires January 23, 2017 [Page 66]

Internet-Draft AERO July 2016

 The fragment header can also be inserted in order to include a
 coherent Identification value with each packet, e.g., to aid in
 Duplicate Packet Detection (DPD). In this way, network nodes can
 cache the Identification values of recently-seen packets and use the
 cached values to determine whether a newly-arrived packet is in fact
 a duplicate. The Identification value within each packet could
 further provide a rough indicator of packet reordering, e.g., in
 cases when the tunnel egress wishes to discard packets that are
 grossly out of order.

 In some use cases, there may be operational assurance that no
 fragmentation of any kind will be necessary, or that only occasional
 large control messages will require fragmentation. In that case, the
 encapsulation fragment header can be omitted and ordinary
 fragmentation of the outer IP protocol version can be applied when
 necessary.

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

Templin Expires January 23, 2017 [Page 67]

