
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320, rfc5558, rfc5720, December 13, 2017

rfc6179, rfc6706 (if
 approved)
Intended status: Standards Track
Expires: June 16, 2018

Asymmetric Extended Route Optimization (AERO)
draft-templin-aerolink-77.txt

Abstract

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). Nodes attached
 to AERO links can exchange packets via trusted intermediate routers
 that provide forwarding services to reach off-link destinations and
 route optimization services for improved performance. AERO provides
 an IPv6 link-local address format that supports operation of the IPv6
 Neighbor Discovery (ND) protocol and links IPv6 ND to IP forwarding.
 Admission control and address/prefix provisioning are supported by
 the Dynamic Host Configuration Protocol for IPv6 (DHCPv6), while
 mobility management, quality of service signaling and route
 optimization are naturally supported through dynamic neighbor cache
 updates. AERO is a widely-applicable tunneling solution especially
 well suited to mobile Virtual Private Networks (VPNs) and other
 applications as described in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 16, 2018.

Templin Expires June 16, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft AERO December 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Asymmetric Extended Route Optimization (AERO) 7
3.1. AERO Link Reference Model 7
3.2. AERO Node Types . 9
3.3. AERO Routing System 10
3.4. AERO Interface Link-local Addresses 12
3.5. AERO Interface Characteristics 13
3.6. AERO Interface Initialization 15
3.6.1. AERO Relay Behavior 15
3.6.2. AERO Server Behavior 16
3.6.3. AERO Client Behavior 16
3.6.4. AERO Proxy Behavior 17

3.7. AERO Interface Neighbor Cache Maintenace 17
3.8. AERO Interface Forwarding Algorithm 19
3.8.1. Client Forwarding Algorithm 19
3.8.2. Proxy Forwarding Algorithm 20
3.8.3. Server Forwarding Algorithm 20
3.8.4. Relay Forwarding Algorithm 21

3.9. AERO Interface Encapsulation and Re-encapsulation 21
3.10. AERO Interface Decapsulation 22
3.11. AERO Interface Data Origin Authentication 22
3.12. AERO Interface Packet Size Issues 23
3.13. AERO Interface Error Handling 25

 3.14. AERO Router Discovery, Prefix Delegation and
 Autoconfiguration . 28

3.14.1. AERO DHCPv6 and IPv6 ND Service Model 28
3.14.2. AERO Client Behavior 29
3.14.3. AERO Server Behavior 31

3.15. AERO Interface Route Optimization 32
3.15.1. Reference Operational Scenario 33

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Templin Expires June 16, 2018 [Page 2]

Internet-Draft AERO December 2017

3.15.2. Concept of Operations 34
3.15.3. Sending NS Messages 35
3.15.4. Re-encapsulating and Relaying the NS 36
3.15.5. Processing NSs and Sending NAs 37
3.15.6. Re-encapsulating and Relaying NAs 38
3.15.7. Processing NAs 38

 3.15.8. Server-to-Client and Client-to-Server Route
 Optimization . 39

3.15.9. Server-to-Server Route Optimization 40
3.16. Neighbor Unreachability Detection (NUD) 40
3.17. Mobility Management and Quality of Service 41
3.17.1. Forwarding Packets on Behalf of Departed Clients . . 41

 3.17.2. Announcing Link-Layer Address and Quality of Service
 Changes . 42

3.17.3. Bringing New Links Into Service 42
3.17.4. Removing Existing Links from Service 42
3.17.5. Implicit Mobility Management 42
3.17.6. Moving to a New Server 43
3.17.7. Alternate Mobility Security Model 44
3.17.8. Packet Queueing for Mobility 44

3.18. Multicast Considerations 44
4. The AERO Proxy . 45
5. Operation on AERO Links with /64 ASPs 46
6. Implementation Status . 47
7. IANA Considerations . 47
8. Security Considerations 47
9. Acknowledgements . 48
10. References . 50
10.1. Normative References 50
10.2. Informative References 51

Appendix A. AERO Alternate Encapsulations 58
Appendix B. When to Insert an Encapsulation Fragment Header . . 60
Appendix C. Autoconfiguration for Constrained Platforms 60
Appendix D. Operational Deployment Alternatives 61
D.1. Operation on AERO Links Without DHCPv6 Services 61
D.2. Operation on Server-less AERO Links 62
D.3. Operation on Client-less AERO Links 62
D.4. Manually-Configured AERO Tunnels 62

 D.5. Encapsulation Avoidance on Relay-Server Dedicated Links . 63
D.6. Encapsulation Protocol Version Considerations 63
D.7. Extending AERO Links Through Security Gateways 63

Appendix E. Change Log . 65
 Author's Address . 65

Templin Expires June 16, 2018 [Page 3]

Internet-Draft AERO December 2017

1. Introduction

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). The AERO link
 can be used for tunneling between neighboring nodes over either IPv6
 or IPv4 networks, i.e., AERO views the IPv6 and IPv4 networks as
 equivalent links for tunneling. Nodes attached to AERO links can
 exchange packets via trusted intermediate routers that provide
 forwarding services to reach off-link destinations and route
 optimization services for improved performance [RFC5522].

 AERO provides an IPv6 link-local address format that supports
 operation of the IPv6 Neighbor Discovery (ND) [RFC4861] protocol and
 links IPv6 ND to IP forwarding. Admission control and address/prefix
 provisioning are supported by the Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6) [RFC3315], while mobility management, quality of
 service signaling and route optimization are naturally supported
 through dynamic neighbor cache updates.

 A node's AERO interface can be configured over multiple underlying
 interfaces. From the standpoint of IPv6 ND, AERO interface neighbors
 therefore may appear to have multiple link-layer addresses. Each
 link-layer address is subject to change due to mobility, and link-
 layer address changes are signaled by IPv6 ND messaging the same as
 for any IPv6 link.

 AERO is applicable to a wide variety of use cases. For example, it
 can be used to coordinate the Virtual Private Network (VPN) links of
 mobile nodes (e.g., cellphones, tablets, laptop computers, etc.) that
 connect into a home enterprise network via public access networks
 using services such as OpenVPN [OVPN]. AERO is also applicable to
 aviation applications for both manned and unmanned aircraft where the
 aircraft is treated as a mobile node that can connect an Internet of
 Things (IoT). Other applicable use cases are also in scope.

 The remainder of this document presents the AERO specification.

2. Terminology

 The terminology in the normative references applies; the following
 terms are defined within the scope of this document:

 AERO link
 a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
 configured over a node's attached IPv6 and/or IPv4 networks. All
 nodes on the AERO link appear as single-hop neighbors from the
 perspective of the virtual overlay even though they may be
 separated by many underlying network hops. The AERO mechanisms

https://datatracker.ietf.org/doc/html/rfc5522
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3315

Templin Expires June 16, 2018 [Page 4]

Internet-Draft AERO December 2017

 can also operate over native link types (e.g., Ethernet, WiFi
 etc.) when a tunnel virtual overlay is not needed.

 AERO interface
 a node's attachment to an AERO link. Since the addresses assigned
 to an AERO interface are managed for uniqueness, AERO interfaces
 do not require Duplicate Address Detection (DAD) and therefore set
 the administrative variable DupAddrDetectTransmits to zero
 [RFC4862].

 AERO address
 an IPv6 link-local address constructed as specified in

Section 3.4.

 AERO node
 a node that is connected to an AERO link.

 AERO Client ("Client")
 a node that issues DHCPv6 messages to receive IP Prefix
 Delegations (PDs) from one or more AERO Servers. Following PD,
 the Client assigns an AERO address to the AERO interface for use
 in IPv6 ND exchanges with other AERO nodes. A node that acts as
 an AERO Client on one AERO interface can also act as an AERO
 Server on a different AERO interface.

 AERO Server ("Server")
 a node that configures an AERO interface to provide default
 forwarding services for AERO Clients. The Server assigns an
 administratively provisioned IPv6 link-local unicast address to
 the AERO interface to support the operation of DHCPv6 and the IPv6
 ND protocol. An AERO Server can also act as an AERO Relay.

 AERO Relay ("Relay")
 a node that configures an AERO interface to relay IP packets
 between nodes on the same AERO link and/or forward IP packets
 between the AERO link and the native Internetwork. The Relay
 assigns an administratively provisioned IPv6 link-local unicast
 address to the AERO interface the same as for a Server. An AERO
 Relay can also act as an AERO Server.

 AERO Proxy ("Proxy")
 a node that provides proxying services for Clients that cannot
 associate directly with Servers, e.g., when the Client is located
 in a secured internal enclave and the Server is located in the
 exteranal Internetwork. The AERO Proxy is a conduit between the
 secured enclave and the outside world, i.e., in the same manner as
 for common web proxies.

https://datatracker.ietf.org/doc/html/rfc4862

Templin Expires June 16, 2018 [Page 5]

Internet-Draft AERO December 2017

 ingress tunnel endpoint (ITE)
 an AERO interface endpoint that injects encapsulated packets into
 an AERO link.

 egress tunnel endpoint (ETE)
 an AERO interface endpoint that receives encapsulated packets from
 an AERO link.

 underlying network
 a connected IPv6 or IPv4 network routing region over which the
 tunnel virtual overlay is configured.

 underlying interface
 an AERO node's interface point of attachment to an underlying
 network.

 link-layer address
 an IP address assigned to an AERO node's underlying interface.
 When UDP encapsulation is used, the UDP port number is also
 considered as part of the link-layer address. Link-layer
 addresses are used as the encapsulation header source and
 destination addresses.

 network layer address
 the source or destination address of the encapsulated IP packet.

 end user network (EUN)
 an internal virtual or external edge IP network that an AERO
 Client connects to the rest of the network via the AERO interface.
 The Client sees each EUN as a "downstream" network and sees the
 AERO interface as its point of attachment to the "upstream"
 network.

 AERO Service Prefix (ASP)
 an IP prefix associated with the AERO link and from which more-
 specific AERO Client Prefixes (ACPs) are derived.

 AERO Client Prefix (ACP)
 an IP prefix derived from an ASP and delegated to a Client, where
 the ACP prefix length must be no shorter than the ASP prefix
 length and must be no longer than 64 for IPv6 or 32 for IPv4.

 base AERO address
 the lowest-numbered AERO address from the first ACP delegated to
 the Client (see Section 3.4).

 Throughout the document, the simple terms "Client", "Server", "Relay"
 and "Proxy" refer to "AERO Client", "AERO Server", "AERO Relay" and

Templin Expires June 16, 2018 [Page 6]

Internet-Draft AERO December 2017

 "AERO Proxy", respectively. Capitalization is used to distinguish
 these terms from DHCPv6 client/server/relay [RFC3315].

 The terminology of DHCPv6 [RFC3315] and IPv6 ND [RFC4861] (including
 the names of node variables and protocol constants) applies to this
 document. Also throughout the document, the term "IP" is used to
 generically refer to either Internet Protocol version (i.e., IPv4 or
 IPv6).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. Lower case
 uses of these words are not to be interpreted as carrying RFC2119
 significance.

3. Asymmetric Extended Route Optimization (AERO)

 The following sections specify the operation of IP over Asymmetric
 Extended Route Optimization (AERO) links:

3.1. AERO Link Reference Model

https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires June 16, 2018 [Page 7]

Internet-Draft AERO December 2017

 .-(::::::::)
 .-(:::: IP ::::)-.
 (:: Internetwork ::)
 `-(::::::::::::)-'
 `-(::::::)-'
 |
 +--------------+ +--------+-------+ +--------------+
 |AERO Server S1| | AERO Relay R1 | |AERO Server S2|
 | Nbr: C1; R1 | | Nbr: S1; S2 | | Nbr: C2; R1 |
 | default->R1 | |(P1->S1; P2->S2)| | default->R1 |
 | X1->C1 | | ASP A1 | | X2->C2 |
 +-------+------+ +--------+-------+ +------+-------+
 | AERO Link | |
 X---+---+-----------------+-+------------------+---+---X
 | | |
 +-----+--------+ +-----+--------+ +--------+-----+
 |AERO Client C1| |AERO Proxy P1 | |AERO Client C2|
 | Nbr: S1 | | Nbr: S1, S2 | | Nbr: S2 |
 | default->S1 | | default->R1 | | default->S2 |
 | ACP X1 | +-------+------+ | ACP X2 |
 +------+-------+ .--------|-------. +-----+--------+
 | (- Proxied Clients -) |
 .-. `---------------' .-.
 ,-(_)-. ,-(_)-.
 .-(_ IP)-. +-------+ +-------+ .-(_ IP)-.
 (__ EUN)--|Host H1| |Host H2|--(__ EUN)
 `-(______)-' +-------+ +-------+ `-(______)-'

 Figure 1: AERO Link Reference Model

 Figure 1 presents the AERO link reference model. In this model:

 o AERO Relay R1 aggregates AERO Service Prefix (ASP) A1, acts as a
 default router for its associated Servers and Proxies (S1, S2 and
 P1), and connects the AERO link to the rest of the IP
 Internetwork.

 o AERO Servers S1 and S2 associate with Relay R1 and also act as
 default routers for their associated Clients C1 and C2.

 o AERO Clients C1 and C2 associate with Servers S1 and S2,
 respectively. They receive AERO Client Prefix (ACP) delegations
 X1 and X2, and also act as default routers for their associated
 physical or internal virtual EUNs. Simple hosts H1 and H2 attach
 to the EUNs served by Clients C1 and C2, respectively.

 o AERO Proxy P1 associates with Relay R1 as a default router and
 Servers S1 and S2 as neighbors. P1 provides proxy services for

Templin Expires June 16, 2018 [Page 8]

Internet-Draft AERO December 2017

 AERO Clients in secured enclaves that cannot associate directly
 with Servers in the outside world.

 Each node on the AERO link maintains an AERO interface neighbor cache
 and an IP forwarding table the same as for any link. In common
 operational practice, there may be many additional Relays, Servers,
 Proxies and Clients.

3.2. AERO Node Types

 AERO Relays provide default forwarding services to AERO Servers.
 Each Relay also peers with Servers and other Relays in a dynamic
 routing protocol instance to discover the list of active ACPs (see

Section 3.3). Relays forward packets between neighbors connected to
 the same AERO link and also forward packets between the AERO link and
 the native IP Internetwork. Relays present the AERO link to the
 native Internetwork as a set of one or more AERO Service Prefixes
 (ASPs) and serve as a gateway between the AERO link and the
 Internetwork. Relays maintain AERO interface neighbor cache entries
 for Servers, and maintain an IP forwarding table entry for each AERO
 Client Prefix (ACP). AERO Relays can also be configured to act as
 AERO Servers.

 AERO Servers provide default forwarding services to AERO Clients.
 Each Server also peers with Relays in a dynamic routing protocol
 instance to advertise its list of associated ACPs (see Section 3.3).
 Servers configure a DHCPv6 server function and act as delegating
 routers to facilitate Prefix Delegation (PD) exchanges with Clients.
 Each delegated prefix becomes an ACP taken from an ASP. Servers
 forward packets between AERO interface neighbors, and maintain an
 AERO interface neighbor cache entry for each Relay. They also
 maintain both neighbor cache entries and IP forwarding table entries
 for each of their associated Clients. AERO Servers can also be
 configured to act as AERO Relays.

 AERO Clients act as requesting routers to receive ACPs through DHCPv6
 PD exchanges with AERO Servers over the AERO link. Each Client can
 associate with a single Server or with multiple Servers, e.g., for
 fault tolerance, load balancing, etc. Each IPv6 Client receives at
 least a /64 IPv6 ACP, and may receive even shorter prefixes.
 Similarly, each IPv4 Client receives at least a /32 IPv4 ACP (i.e., a
 singleton IPv4 address), and may receive even shorter prefixes.
 Clients maintain an AERO interface neighbor cache entry for each of
 their associated Servers as well as for each of their correspondent
 Clients.

 AERO Proxies provide a conduit for AERO Clients located in secured
 enclaves to assocaite with Servers located in the outside

Templin Expires June 16, 2018 [Page 9]

Internet-Draft AERO December 2017

 Internetwork. The Proxy can either be explicit or transparent. In
 the explicit case, the Client sends all of its control plane messages
 addressed to the Server to the link-layer address of the Proxy. In
 the transparent case, the Client sends all of its control plane
 messages to the Server's link-layer address and the Proxy intercepts
 them before they leave the secured enclave. In both cases, the Proxy
 forwards the Client's control plane messages to the Server, forwards
 the Client's outbound data plane messages to a Relay and accepts
 inbound data plane messages from the Client's current Server(s). The
 Proxy may also discover a more direct route toward a target
 destination via AERO route optimization, in which case future packets
 would be forwarded via the more direct route instead of via a Relay.
 The Proxy function is discussed in more detail in Section 4.

3.3. AERO Routing System

 The AERO routing system comprises a private instance of the Border
 Gateway Protocol (BGP) [RFC4271] that is coordinated between Relays
 and Servers and does not interact with either the public Internet BGP
 routing system or the native IP Internetwork interior routing system.
 Relays advertise only a small and unchanging set of ASPs to the
 native routing system instead of the full dynamically changing set of
 ACPs.

 In a reference deployment, each AERO Server is configured as an
 Autonomous System Border Router (ASBR) for a stub Autonomous System
 (AS) using an AS Number (ASN) that is unique within the BGP instance,
 and each Server further uses eBGP to peer with one or more Relays but
 does not peer with other Servers. All Relays are members of the same
 hub AS using a common ASN, and use iBGP to maintain a consistent view
 of all active ACPs currently in service.

 Each Server maintains a working set of associated ACPs, and
 dynamically announces new ACPs and withdraws departed ACPs in its
 eBGP updates to Relays. Clients are expected to remain associated
 with their current Servers for extended timeframes, however Servers
 SHOULD selectively suppress updates for impatient Clients that
 repeatedly associate and disassociate with them in order to dampen
 routing churn.

 Each Relay configures a black-hole route for each of its ASPs. By
 black-holing the ASPs, the Relay will maintain forwarding table
 entries only for the ACPs that are currently active, and packets
 destined to all other ACPs will correctly incur Destination
 Unreachable messages due to the black hole route. Relays do not send
 eBGP updates for ACPs to Servers, but instead originate a default
 route. In this way, Servers have only partial topology knowledge
 (i.e., they know only about the ACPs of their directly associated

https://datatracker.ietf.org/doc/html/rfc4271

Templin Expires June 16, 2018 [Page 10]

Internet-Draft AERO December 2017

 Clients) and they forward all other packets to Relays which have full
 topology knowledge.

 Scaling properties of the AERO routing system are limited by the
 number of BGP routes that can be carried by Relays. At the time of
 this writing, the global public Internet BGP routing system manages
 more than 500K routes with linear growth and no signs of router
 resource exhaustion [BGP]. Network emulation studies have also shown
 that a single Relay can accommodate at least 1M dynamically changing
 BGP routes even on a lightweight virtual machine, i.e., and without
 requiring high-end dedicated router hardware.

 Therefore, assuming each Relay can carry 1M or more routes, this
 means that at least 1M Clients can be serviced by a single set of
 Relays. A means of increasing scaling would be to assign a different
 set of Relays for each set of ASPs. In that case, each Server still
 peers with one or more Relays, but the Server institutes route
 filters so that it only sends BGP updates to the specific set of
 Relays that aggregate the ASP. For example, if the ASP for the AERO
 link is 2001:db8::/32, a first set of Relays could service the ASP
 segment 2001:db8::/40, a second set of Relays could service
 2001:db8:0100::/40, a third set could service 2001:db8:0200::/40,
 etc.

 Assuming up to 1K sets of Relays, the AERO routing system can then
 accommodate 1B or more ACPs with no additional overhead for Servers
 and Relays (for example, it should be possible to service 1B /64 ACPs
 taken from a /34 ASP and even more for shorter prefixes). In this
 way, each set of Relays services a specific set of ASPs that they
 advertise to the native routing system, and each Server configures
 ASP-specific routes that list the correct set of Relays as next hops.
 This arrangement also allows for natural incremental deployment, and
 can support small scale initial deployments followed by dynamic
 deployment of additional Clients, Servers and Relays without
 disturbing the already-deployed base.

 Note that in an alternate routing arrangement each set of Relays
 could advertise an aggregated ASP for the link into the native
 routing system even though each Relay services only smaller segments
 of the ASP. In that case, a Relay upon receiving a packet with a
 destination address covered by the ASP segment of another Relay can
 simply tunnel the packet to the other Relay. The tradeoff then is
 the penalty for Relay-to-Relay tunneling compared with reduced
 routing information in the native routing system.

Templin Expires June 16, 2018 [Page 11]

Internet-Draft AERO December 2017

3.4. AERO Interface Link-local Addresses

 AERO interface link-local address types include administratively-
 provisioned addresses and AERO addresses.

 Administratively-provisioned addresses are allocated from the range
 fe80::/96 and assigned to a Server or Relay's AERO interface.
 Administratively-provisioned addresses MUST be managed for uniqueness
 by the administrative authority for the AERO link. (Note that fe80::
 is the IPv6 link-local subnet router anycast address, and
 fe80::ffff:ffff is the address used by Clients to bootstrap AERO
 address autoconfiguration. These special addresses are therefore not
 available for assignment.)

 An AERO address is an IPv6 link-local address with an embedded prefix
 based on an ACP and associated with a Client's AERO interface. AERO
 addresses remain stable as the Client moves between topological
 locations, i.e., even if its link-layer addresses change.

 For IPv6, AERO addresses begin with the prefix fe80::/64 and include
 in the interface identifier (i.e., the lower 64 bits) a 64-bit prefix
 taken from one of the Client's IPv6 ACPs. For example, if the AERO
 Client receives the IPv6 ACP:

 2001:db8:1000:2000::/56

 it constructs its corresponding AERO addresses as:

 fe80::2001:db8:1000:2000

 fe80::2001:db8:1000:2001

 fe80::2001:db8:1000:2002

 ... etc. ...

 fe80::2001:db8:1000:20ff

 For IPv4, AERO addresses are based on an IPv4-mapped IPv6 address
 [RFC4291] formed from an IPv4 ACP and with a Prefix Length of 96 plus
 the ACP prefix length. For example, for the IPv4 ACP 192.0.2.32/28
 the IPv4-mapped IPv6 ACP is:

 0:0:0:0:0:FFFF:192.0.2.16/124

 The Client then constructs its AERO addresses with the prefix
 fe80::/64 and with the lower 64 bits of the IPv4-mapped IPv6 address
 in the interface identifier as:

https://datatracker.ietf.org/doc/html/rfc4291

Templin Expires June 16, 2018 [Page 12]

Internet-Draft AERO December 2017

 fe80::FFFF:192.0.2.16

 fe80::FFFF:192.0.2.17

 fe80::FFFF:192.0.2.18

 ... etc. ...

 fe80:FFFF:192.0.2.31

 When the Server delegates ACPs to the Client, both the Server and
 Client use the lowest-numbered AERO address from the first ACP
 delegation as the "base" AERO address. (For example, for the ACP
 2001:db8:1000:2000::/56 the base address is 2001:db8:1000:2000.) The
 Client then assigns the base AERO address to the AERO interface and
 uses it for the purpose of maintaining the neighbor cache entry. If
 the Client has multiple AERO addresses (i.e., when there are multiple
 ACPs and/or ACPs with short prefix lengths), the Client originates
 IPv6 ND messages using the base AERO address as the source address
 and accepts and responds to IPv6 ND messages destined to any of its
 AERO addresses as equivalent to the base AERO address. In this way,
 the Client maintains a single neighbor cache entry that may include
 multiple AERO addresses.

3.5. AERO Interface Characteristics

 AERO interfaces use encapsulation (see: Section 3.9) to exchange
 packets with neighbors attached to the AERO link.

 AERO interfaces maintain a neighbor cache, and use both DHCPv6 and
 IPv6 ND control messaging to manage the creation, modification and
 deletion of neighbor cache entries. AERO interfaces use standard
 DHCPv6 messaging for prefix delegation, and use unicast IPv6 ND
 Neighbor Solicitation (NS), Neighbor Advertisement (NA), Router
 Solicitation (RS), Router Advertisement (RA) and Redirect messages
 for neighbor cache management the same as for any IPv6 link. AERO
 interfaces include routing information in IPv6 ND messages to support
 route optimization.

 AERO interface ND messages include one or more Source/Target Link-
 Layer Address Options (S/TLLAOs) formatted as shown in Figure 2:

Templin Expires June 16, 2018 [Page 13]

Internet-Draft AERO December 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length = 5 | Reserved |
 +-+
 | Interface ID | UDP Port Number |
 +-+
 | |
 + +
 | |
 + IP Address +
 | |
 + +
 | |
 +-+
 |P00|P01|P02|P03|P04|P05|P06|P07|P08|P09|P10|P11|P12|P13|P14|P15|
 +-+
 |P16|P17|P18|P19|P20|P21|P22|P23|P24|P25|P26|P27|P28|P29|P30|P31|
 +-+
 |P32|P33|P34|P35|P36|P37|P38|P39|P40|P41|P42|P43|P44|P45|P46|P47|
 +-+
 |P48|P49|P50|P51|P52|P53|P54|P55|P56|P57|P58|P59|P60|P61|P62|P63|
 +-+

 Figure 2: AERO Source/Target Link-Layer Address Option (S/TLLAO)
 Format

 In this format:

 o Type is set to '1' for SLLAO or '2' for TLLAO the same as for IPv6
 ND.

 o Length is set to the constant value '5' (i.e., 5 units of 8
 octets).

 o Reserved is set to the value '0' on transmission and ignored on
 receipt.

 o Interface ID is set to an integer value between 0 and 65535
 corresponding to an underlying interface of the AERO node.

 o UDP Port Number and IP Address are set to the addresses used by
 the AERO node when it sends encapsulated packets over the
 underlying interface. When UDP is not used as part of the
 encapsulation, UDP Port Number is set to the value '0'. When the
 encapsulation IP address family is IPv4, IP Address is formed as
 an IPv4-mapped IPv6 address as specified in Section 3.4.

Templin Expires June 16, 2018 [Page 14]

Internet-Draft AERO December 2017

 o P[i] is a set of 64 Preference values that correspond to the 64
 Differentiated Service Code Point (DSCP) values [RFC2474]. Each
 P(i) is set to the value '0' ("disabled"), '1' ("low"), '2'
 ("medium") or '3' ("high") to indicate a preference level for
 packet forwarding purposes.

 AERO interfaces may be configured over multiple underlying
 interfaces. For example, common mobile handheld devices have both
 wireless local area network ("WLAN") and cellular wireless links.
 These links are typically used "one at a time" with low-cost WLAN
 preferred and highly-available cellular wireless as a standby. In a
 more complex example, aircraft frequently have many wireless data
 link types (e.g. satellite-based, cellular, terrestrial, air-to-air
 directional, etc.) with diverse performance and cost properties.

 If a Client's multiple underlying interfaces are used "one at a time"
 (i.e., all other interfaces are in standby mode while one interface
 is active), then IPv6 ND messages include only a single S/TLLAO with
 Interface ID set to a constant value. In that case, the Client would
 appear to have a single underlying interface but with a dynamically
 changing link-layer address.

 If the Client has multiple active underlying interfaces, then from
 the perspective of IPv6 ND it would appear to have multiple link-
 layer addresses. In that case, IPv6 ND messages MAY include multiple
 S/TLLAOs -- each with an Interface ID that corresponds to a specific
 underlying interface of the AERO node.

 When an IPv6 ND message includes multiple S/TLLAOs, the first S/TLLAO
 MUST correspond to the Client's underlying interface used to transmit
 the message.

3.6. AERO Interface Initialization

3.6.1. AERO Relay Behavior

 When a Relay enables an AERO interface, it first assigns an
 administratively-provisioned link-local address fe80::ID to the
 interface. Each fe80::ID address MUST be unique among all AERO nodes
 on the link, and is taken from the range fe80::/96 but excluding the
 special addresses fe80:: and fe80::ffff:ffff. The Relay then engages
 in a dynamic routing protocol session with Servers on the link (see:

Section 3.3), and advertises its assigned ASPs into the native IP
 Internetwork.

 Each Relay subsequently maintains an IP forwarding table entry for
 each active ACP covered by its ASP(s), and maintains neighbor cache
 entries for Servers on the link. Relays exchange NS/NA messages with

https://datatracker.ietf.org/doc/html/rfc2474

Templin Expires June 16, 2018 [Page 15]

Internet-Draft AERO December 2017

 AERO link neighbors the same as for any AERO node, however they need
 not perform explicit Neighbor Unreachability Detection (NUD) (see:

Section 3.16) since the dynamic routing protocol already provides
 reachability confirmation.

3.6.2. AERO Server Behavior

 When a Server enables an AERO interface, it assigns an
 administratively-provisioned link-local address fe80::ID the same as
 for Relays. The Server further configures a DHCPv6 server function
 to facilitate DHCPv6 PD exchanges with AERO Clients. The Server
 maintains neighbor cache entries for Relays on the link, and manages
 per-Client neighbor cache entries and IP forwarding table entries
 based on control message exchanges. Each Server also engages in a
 dynamic routing protocol with Relays on the link (see: Section 3.3).

 When the Server receives an NS/RS message from a Client on the AERO
 interface it returns an NA/RA message. The Server further provides a
 simple link-layer conduit between AERO interface neighbors. In
 particular, when a packet sent by a source Client arrives on the
 Server's AERO interface and is destined to another AERO node, the
 Server forwards the packet from within the AERO interface driver at
 the link layer without ever disturbing the network layer.

3.6.3. AERO Client Behavior

 When a Client enables an AERO interface, it uses the special
 administratively-provisioned link-local address fe80::ffff:ffff as
 the source network-layer address in an RS message with an embedded
 DHCPv6 PD Solicit message per [I-D.templin-6man-dhcpv6-ndopt] to
 obtain one or more ACPs from one or more AERO Servers. Each Server
 processes the message and returns an RA message with an embedded
 DHCPv6 PD Reply message with the destination network-layer address
 set to the base AERO address. In this way, the combined RS/RA and
 DHCPv6 PD message exchange securely performs all autoconfiguration
 operations in a single message exchange.

 After the initial DHCPv6 message exchange, the Client can register
 additional links with the Server by sending an RS message over each
 link without including a DHCPv6 option. The Server will update its
 neighbor cache entry for the Client and return an RA message.

 The Client maintains a neighbor cache entry for each of its Servers
 and each of its active correspondent Clients. When the Client
 receives IPv6 ND messages on the AERO interface it updates or creates
 neighbor cache entries, including link-layer address information.

Templin Expires June 16, 2018 [Page 16]

Internet-Draft AERO December 2017

3.6.4. AERO Proxy Behavior

 When a Proxy enables an AERO interface, it assigns an
 administratively-provisioned link-local address fe80::ID the same as
 for Servers and Relays. The Proxy maintains neighbor cache entries
 for Relays and Servers on the link, and manages per-Client neighbor
 cache entries and IP forwarding table entries based on control
 message exchanges. Proxies use Relays as default routers for
 forwarding packets before a route-optimized path via a target is
 discovered. Proxies accept packets that are destined for one of
 their associated Clients.

 When the Proxy receives an RS message from a Client in the secured
 enclave, it caches the RS and forwards it to a Server selected by the
 Client while using its own link-layer address as the source address.
 When the Server returns an RA message, the Proxy caches the
 autoconfiguration information in the RA and forwards the RA to the
 Client while using its own link-layer address as the source address.
 Both the Client and Proxy will then have the necessary state for
 managing the AERO interface association with the Server.

3.7. AERO Interface Neighbor Cache Maintenace

 Each AERO interface maintains a conceptual neighbor cache that
 includes an entry for each neighbor it communicates with on the AERO
 link, the same as for any IPv6 interface [RFC4861]. AERO interface
 neighbor cache entires are said to be one of "permanent", "static" or
 "dynamic".

 Permanent neighbor cache entries are created through explicit
 administrative action; they have no timeout values and remain in
 place until explicitly deleted. AERO Relays and Proxies maintain
 permanent neighbor cache entries for Servers on the link, and AERO
 Servers maintain permanent neighbor cache entry for Proxies and
 Relays. Each entry maintains the mapping between the neighbor's
 fe80::ID network-layer address and corresponding link-layer address.

 Static neighbor cache entries are created and maintained through
 prefix delegation exchanges as specified in Section 3.14, and remain
 in place for durations bounded by prefix delegation lifetimes. AERO
 Servers and Proxies maintain static neighbor cache entries for each
 of their associated Clients, and AERO Clients maintain static
 neighbor cache entries for each of their associated Servers.

 Dynamic neighbor cache entries are created or updated based on
 receipt of route optimization messages as specified in Section 3.15,
 and are garbage-collected when keepalive timers expire. AERO Clients

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires June 16, 2018 [Page 17]

Internet-Draft AERO December 2017

 maintain dynamic neighbor cache entries for each of their active
 correspondents with lifetimes based on IPv6 ND messaging constants.

 When an AERO Client receives a valid NS message , it creates or
 updates a dynamic neighbor cache entry for the source network-layer
 and link-layer addresses. The node then sets an "AcceptTime"
 variable in the neighbor cache entry to ACCEPT_TIME seconds and uses
 this value to determine whether packets received from the
 correspondent can be accepted. The node resets AcceptTime when it
 receives a new IPv6 ND message, and otherwise decrements AcceptTime
 while no IPv6 ND messages have been received. It is RECOMMENDED that
 ACCEPT_TIME be set to the default constant value 40 seconds to allow
 a 10 second window so that the AERO route optimization procedure can
 converge before AcceptTime decrements below FORWARD_TIME (see below).

 When an AERO Client receives a valid NA message that matches its NS
 message, it creates or updates a dynamic neighbor cache entry for the
 target network-layer and link-layer addresses. The Client then sets
 a "ForwardTime" variable in the neighbor cache entry to FORWARD_TIME
 seconds and uses this value to determine whether packets can be sent
 directly to the correspondent. The node resets ForwardTime when it
 receives a new NA, and otherwise decrements ForwardTime while no
 further NA messages have been received. It is RECOMMENDED that
 FORWARD_TIME be set to the default constant value 30 seconds to match
 the default REACHABLE_TIME value specified for IPv6 ND [RFC4861].

 The Client also sets a "MaxRetry" variable to MAX_RETRY to limit the
 number of keepalives sent when a correspondent may have gone
 unreachable. It is RECOMMENDED that MAX_RETRY be set to 3 the same
 as described for IPv6 ND address resolution in Section 7.3.3 of
 [RFC4861].

 Different values for ACCEPT_TIME, FORWARD_TIME and MAX_RETRY MAY be
 administratively set, if necessary, to better match the AERO link's
 performance characteristics; however, if different values are chosen,
 all nodes on the link MUST consistently configure the same values.
 Most importantly, ACCEPT_TIME SHOULD be set to a value that is
 sufficiently longer than FORWARD_TIME to allow the AERO route
 optimization procedure to converge.

 When there may be a Network Address Translator (NAT) between the
 Client and the Server, or if the path from the Client to the Server
 should be tested for reachability, the Client can send periodic RS
 messages to the Server without a DHCPv6 option to receive RA replies.
 The RS/RA messaging will keep NAT state alive and test Server
 reachability without disturbing the DHCPv6 server.

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3

Templin Expires June 16, 2018 [Page 18]

Internet-Draft AERO December 2017

3.8. AERO Interface Forwarding Algorithm

 IP packets enter a node's AERO interface either from the network
 layer (i.e., from a local application or the IP forwarding system) or
 from the link layer (i.e., from the AERO tunnel virtual link).
 Packets that enter the AERO interface from the network layer are
 encapsulated and forwarded into the AERO link, i.e., they are
 tunnelled to an AERO interface neighbor. Packets that enter the AERO
 interface from the link layer are either re-admitted into the AERO
 link or forwarded to the network layer where they are subject to
 either local delivery or IP forwarding. In all cases, the AERO
 interface itself MUST NOT decrement the network layer TTL/Hop-count
 since its forwarding actions occur below the network layer.

 AERO interfaces may have multiple underlying interfaces and/or
 neighbor cache entries for neighbors with multiple Interface ID
 registrations (see Section 3.5). The AERO node uses each packet's
 DSCP value to select an outgoing underlying interface based on the
 node's own preference values, and also to select a destination link-
 layer address based on the neighbor's underlying interface with the
 highest preference value. If multiple outgoing interfaces and/or
 neighbor interfaces have a preference of "high", the AERO node sends
 one copy of the packet via each of the (outgoing / neighbor)
 interface pairs; otherwise, the node sends a single copy of the
 packet.

 The following sections discuss the AERO interface forwarding
 algorithms for Clients, Servers and Relays. In the following
 discussion, a packet's destination address is said to "match" if it
 is a non-link-local address with a prefix covered by an ASP/ACP, or
 if it is an AERO address that embeds an ACP, or if it is the same as
 an administratively-provisioned link-local address.

3.8.1. Client Forwarding Algorithm

 When an IP packet enters a Client's AERO interface from the network
 layer the Client searches for a dynamic neighbor cache entry that
 matches the destination. If there is a match, the Client uses one or
 more link-layer addresses in the entry as the link-layer addresses
 for encapsulation and admits the packet into the AERO link.
 Otherwise, the Client uses the link-layer address in a static
 neighbor cache entry for a Server as the encapsulation address
 (noting that the Server may be behind a Proxy).

 When an IP packet enters a Client's AERO interface from the link-
 layer, if the destination matches one of the Client's ACPs or link-
 local addresses the Client decapsulates the packet and delivers it to
 the network layer. Otherwise, the Client drops the packet silently.

Templin Expires June 16, 2018 [Page 19]

Internet-Draft AERO December 2017

3.8.2. Proxy Forwarding Algorithm

 When the Proxy receives a packet from a Client within the secured
 enclave, the Proxy searches for a remote Client's route that matches
 the destination. If there is a match, the Proxy uses the link-layer
 address of a Server that services the remote Client as the link-layer
 address for encapsulation and admits the packet into the AERO link.
 Otherwise, the Proxy uses the link-layer address in a permanent
 neighbor cache entry for a Relay as the encapsulation address.

 When the Proxy receives a packet from a Server, it searches for a
 local Client's route that matches the destination. If there is a
 match, the Proxy forwards the packet to the local Client within the
 secured enclave. Otherwise, the Proxy drops the packet silently.

3.8.3. Server Forwarding Algorithm

 When an IP packet enters a Server's AERO interface from the network
 layer, the Server searches for a neighbor cache entry for a Client or
 Proxy that matches the destination. If there is a match, the Server
 uses one or more link-layer addresses in the entry as the link-layer
 addresses for encapsulation and admits the packet into the AERO link.
 Otherwise, the Server uses the link-layer address in a neighbor cache
 entry for a Relay (selected through longest-prefix match) as the
 link-layer address for encapsulation.

 When an IP packet enters a Server's AERO interface from the link
 layer, the Server processes the packet as follows:

 o if the destination matches one of the Server's own addresses the
 Server decapsulates the packet and forwards it to the network
 layer for local delivery.

 o else, if the destination matches a neighbor cache entry for a
 Client or Proxy the Server first determines whether the neighbor
 is the same as the one it received the packet from. If so, the
 Server MUST drop the packet silently to avoid looping; otherwise,
 the Server uses the neighbor's link-layer address(es) as the
 destination for encapsulation and re-admits the packet into the
 AERO link.

 o else, the Server uses the link-layer address in a permanent
 neighbor cache entry for a Relay (selected through longest-prefix
 match) as the link-layer address for encapsulation.

Templin Expires June 16, 2018 [Page 20]

Internet-Draft AERO December 2017

3.8.4. Relay Forwarding Algorithm

 When an IP packet enters a Relay's AERO interface from the network
 layer, the Relay searches its IP forwarding table for an ACP entry
 that matches the destination and otherwise searches for a neighbor
 cache entry that matches the destination. If there is a match, the
 Relay uses the link-layer address in the corresponding neighbor cache
 entry as the link-layer address for encapsulation and forwards the
 packet into the AERO link. Otherwise, the Relay drops the packet and
 (for non-link-local addresses) returns an ICMP Destination
 Unreachable message subject to rate limiting (see: Section 3.13).

 When an IP packet enters a Relay's AERO interface from the link-
 layer, the Relay processes the packet as follows:

 o if the destination does not match an ASP, or if the destination
 matches one of the Relay's own addresses, the Relay decapsulates
 the packet and forwards it to the network layer where it will be
 subject to either local delivery or IP forwarding.

 o else, if the destination matches an ACP entry in the IP forwarding
 table, or if the destination matches the link-local address in a
 permanent neighbor cache entry, the Relay first determines whether
 the neighbor is the same as the one it received the packet from.
 If so the Relay MUST drop the packet silently to avoid looping;
 otherwise, the Relay uses the neighbor's link-layer address as the
 destination for encapsulation and re-admits the packet into the
 AERO link.

 o else, the Relay drops the packet and (for non-link-local
 addresses) returns an ICMP Destination Unreachable message subject
 to rate limiting (see: Section 3.13).

3.9. AERO Interface Encapsulation and Re-encapsulation

 AERO interfaces encapsulate IP packets according to whether they are
 entering the AERO interface from the network layer or if they are
 being re-admitted into the same AERO link they arrived on. This
 latter form of encapsulation is known as "re-encapsulation".

 The AERO interface encapsulates packets per the Generic UDP
 Encapsulation (GUE) procedures in
 [I-D.ietf-nvo3-gue][I-D.herbert-gue-fragmentation], or through an
 alternate encapsulation format (see: Appendix A). For packets
 entering the AERO interface from the network layer, the AERO
 interface copies the "TTL/Hop Limit", "Type of Service/Traffic Class"
 [RFC2983], "Flow Label"[RFC6438].(for IPv6) and "Congestion
 Experienced" [RFC3168] values in the packet's IP header into the

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc3168

Templin Expires June 16, 2018 [Page 21]

Internet-Draft AERO December 2017

 corresponding fields in the encapsulation IP header. For packets
 undergoing re-encapsulation, the AERO interface instead copies these
 values from the original encapsulation IP header into the new
 encapsulation header, i.e., the values are transferred between
 encapsulation headers and *not* copied from the encapsulated packet's
 network-layer header. (Note especially that by copying the TTL/Hop
 Limit between encapsulation headers the value will eventually
 decrement to 0 if there is a (temporary) routing loop.) For IPv4
 encapsulation/re-encapsulation, the AERO interface sets the DF bit as
 discussed in Section 3.12.

 When GUE encapsulation is used, the AERO interface next sets the UDP
 source port to a constant value that it will use in each successive
 packet it sends, and sets the UDP length field to the length of the
 encapsulated packet plus 8 bytes for the UDP header itself plus the
 length of the GUE header (or 0 if GUE direct IP encapsulation is
 used). For packets sent to a Server or Relay, the AERO interface
 sets the UDP destination port to 8060, i.e., the IANA-registered port
 number for AERO. For packets sent to a Client, the AERO interface
 sets the UDP destination port to the port value stored in the
 neighbor cache entry for this Client. The AERO interface then either
 includes or omits the UDP checksum according to the GUE
 specification.

3.10. AERO Interface Decapsulation

 AERO interfaces decapsulate packets destined either to the AERO node
 itself or to a destination reached via an interface other than the
 AERO interface the packet was received on. Decapsulation is per the
 procedures specified for the appropriate encapsulation format.

3.11. AERO Interface Data Origin Authentication

 AERO nodes employ simple data origin authentication procedures for
 encapsulated packets they receive from other nodes on the AERO link.
 In particular:

 o AERO Servers, Relays and Proxies accept encapsulated packets with
 a link-layer source address that matches a permanent neighbor
 cache entry.

 o AERO Servers accept authentic encapsulated DHCPv6 and IPv6 ND
 messages from Clients, and create or update a static neighbor
 cache entry for the Client based on the specific message type.

 o AERO Clients and Servers accept encapsulated packets if there is a
 static neighbor cache entry with a link-layer address that matches
 the packet's link-layer source address.

Templin Expires June 16, 2018 [Page 22]

Internet-Draft AERO December 2017

 o AERO Clients and Servers accept encapsulated packets if there is a
 dynamic neighbor cache entry with an AERO address that matches the
 packet's network-layer source address, with a link-layer address
 that matches the packet's link-layer source address, and with a
 non-zero AcceptTime.

 Note that this simple data origin authentication is effective in
 environments in which link-layer addresses cannot be spoofed. In
 other environments, each AERO message must include a signature that
 the recipient can use to authenticate the message origin, e.g., as
 for common VPN systems such as OpenVPN [OVPN]. In environments where
 end systems use end-to-end security, however, it may be sufficient to
 require signatures only for AERO DHCPv6, IPv6 ND and ICMP control
 plane messages and omit signatures for data plane messages.

3.12. AERO Interface Packet Size Issues

 The AERO interface is the node's attachment to the AERO link. The
 AERO interface acts as a tunnel ingress when it sends a packet to an
 AERO link neighbor and as a tunnel egress when it receives a packet
 from an AERO link neighbor. AERO interfaces observe the packet
 sizing considerations for tunnels discussed in
 [I-D.ietf-intarea-tunnels] and as specified below.

 The Internet Protocol expects that IP packets will either be
 delivered to the destination or a suitable Packet Too Big (PTB)
 message returned to support the process known as IP Path MTU
 Discovery (PMTUD) [RFC1191][RFC1981]. However, PTB messages may be
 crafted for malicious purposes such as denial of service, or lost in
 the network [RFC2923]. This can be especially problematic for
 tunnels, where a condition known as a PMTUD "black hole" can result.
 For these reasons, AERO interfaces employ operational procedures that
 avoid interactions with PMTUD, including the use of fragmentation
 when necessary.

 AERO interfaces observe two different types of fragmentation. Source
 fragmentation occurs when the AERO interface (acting as a tunnel
 ingress) fragments the encapsulated packet into multiple fragments
 before admitting each fragment into the tunnel. Network
 fragmentation occurs when an encapsulated packet admitted into the
 tunnel by the ingress is fragmented by an IPv4 router on the path to
 the egress. Note that a packet that incurs source fragmentation may
 also incur network fragmentation.

 IPv6 specifies a minimum link Maximum Transmission Unit (MTU) of 1280
 bytes [RFC2460]. Although IPv4 specifies a smaller minimum link MTU
 of 68 bytes [RFC0791], AERO interfaces also observe the IPv6 minimum

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0791

Templin Expires June 16, 2018 [Page 23]

Internet-Draft AERO December 2017

 for IPv4 even if encapsulated packets may incur network
 fragmentation.

 IPv6 specifies a minimum Maximum Reassembly Unit (MRU) of 1500 bytes
 [RFC2460], while the minimum MRU for IPv4 is only 576 bytes [RFC1122]
 (note that common IPv6 over IPv4 tunnels already assume a larger MRU
 than the IPv4 minimum).

 AERO interfaces therefore configure an MTU that MUST NOT be smaller
 than 1280 bytes, MUST NOT be larger than the minimum MRU among all
 nodes on the AERO link minus the encapsulation overhead ("ENCAPS"),
 and SHOULD NOT be smaller than 1500 bytes. AERO interfaces also
 configure a Maximum Segment Unit (MSU) as the maximum-sized
 encapsulated packet that the ingress can inject into the tunnel
 without source fragmentation. The MSU value MUST NOT be larger than
 (MTU+ENCAPS) and MUST NOT be larger than 1280 bytes unless there is
 operational assurance that a larger size can traverse the link along
 all paths.

 All AERO nodes MUST configure the same MTU/MSU values for reasons
 cited in [RFC3819][RFC4861]; in particular, multicast support
 requires a common MTU value among all nodes on the link. All AERO
 nodes MUST configure an MRU large enough to reassemble packets up to
 (MTU+ENCAPS) bytes in length; nodes that cannot configure a large-
 enough MRU MUST NOT enable an AERO interface.

 The network layer proceeds as follow when it presents an IP packet to
 the AERO interface. For each IPv4 packet that is larger than the
 AERO interface MTU and with the DF bit set to 0, the network layer
 uses IPv4 fragmentation to break the packet into a minimum number of
 non-overlapping fragments where the first fragment is no larger than
 the MTU and the remaining fragments are no larger than the first.
 For all other IP packets, if the packet is larger than the AERO
 interface MTU, the network layer drops the packet and returns a PTB
 message to the original source. Otherwise, the network layer admits
 each IP packet or fragment into the AERO interface.

 For each IP packet admitted into the AERO interface, the interface
 (acting as a tunnel ingress) encapsulates the packet. If the
 encapsulated packet is larger than the AERO interface MSU the ingress
 source-fragments the encapsulated packet into a minimum number of
 non-overlapping fragments where the first fragment is no larger than
 the MSU and the remaining fragments are no larger than the first.
 The ingress then admits each encapsulated packet or fragment into the
 tunnel, and for IPv4 sets the DF bit to 0 in the IP encapsulation
 header in case any network fragmentation is necessary. The
 encapsulated packets will be delivered to the egress, which
 reassembles them into a whole packet if necessary.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3819

Templin Expires June 16, 2018 [Page 24]

Internet-Draft AERO December 2017

 Several factors must be considered when fragmentation is needed. For
 AERO links over IPv4, the IP ID field is only 16 bits in length,
 meaning that fragmentation at high data rates could result in data
 corruption due to reassembly misassociations [RFC6864][RFC4963]. For
 AERO links over both IPv4 and IPv6, studies have also shown that IP
 fragments are dropped unconditionally over some network paths [I-
 D.taylor-v6ops-fragdrop]. In environments where IP fragmentation
 issues could result in operational problems, the ingress SHOULD
 employ intermediate-layer source fragmentation (see: [RFC2764] and
 [I-D.herbert-gue-fragmentation]) before appending the outer
 encapsulation headers to each fragment. Since the encapsulation
 fragment header reduces the room available for packet data, but the
 original source has no way to control its insertion, the ingress MUST
 include the fragment header length in the ENCAPS length even for
 packets in which the header is absent.

3.13. AERO Interface Error Handling

 When an AERO node admits encapsulated packets into the AERO
 interface, it may receive link-layer or network-layer error
 indications.

 A link-layer error indication is an ICMP error message generated by a
 router on the path to the neighbor or by the neighbor itself. The
 message includes an IP header with the address of the node that
 generated the error as the source address and with the link-layer
 address of the AERO node as the destination address.

 The IP header is followed by an ICMP header that includes an error
 Type, Code and Checksum. Valid type values include "Destination
 Unreachable", "Time Exceeded" and "Parameter Problem"
 [RFC0792][RFC4443]. (AERO interfaces ignore all link-layer IPv4
 "Fragmentation Needed" and IPv6 "Packet Too Big" messages since they
 only emit packets that are guaranteed to be no larger than the IP
 minimum link MTU as discussed in Section 3.12.)

 The ICMP header is followed by the leading portion of the packet that
 generated the error, also known as the "packet-in-error". For
 ICMPv6, [RFC4443] specifies that the packet-in-error includes: "As
 much of invoking packet as possible without the ICMPv6 packet
 exceeding the minimum IPv6 MTU" (i.e., no more than 1280 bytes). For
 ICMPv4, [RFC0792] specifies that the packet-in-error includes:
 "Internet Header + 64 bits of Original Data Datagram", however

[RFC1812] Section 4.3.2.3 updates this specification by stating: "the
 ICMP datagram SHOULD contain as much of the original datagram as
 possible without the length of the ICMP datagram exceeding 576
 bytes".

https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc2764
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812#section-4.3.2.3

Templin Expires June 16, 2018 [Page 25]

Internet-Draft AERO December 2017

 The link-layer error message format is shown in Figure 3 (where, "L2"
 and "L3" refer to link-layer and network-layer, respectively):

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~
 | L2 IP Header of |
 | error message |
 ~ ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | L2 ICMP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 ~ ~ P
 | IP and other encapsulation | a
 | headers of original L3 packet | c
 ~ ~ k
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ e
 ~ ~ t
 | IP header of |
 | original L3 packet | i
 ~ ~ n
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~ e
 | Upper layer headers and | r
 | leading portion of body | r
 | of the original L3 packet | o
 ~ ~ r
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 3: AERO Interface Link-Layer Error Message Format

 The AERO node rules for processing these link-layer error messages
 are as follows:

 o When an AERO node receives a link-layer Parameter Problem message,
 it processes the message the same as described as for ordinary
 ICMP errors in the normative references [RFC0792][RFC4443].

 o When an AERO node receives persistent link-layer Time Exceeded
 messages, the IP ID field may be wrapping before earlier fragments
 awaiting reassembly have been processed. In that case, the node
 SHOULD begin including integrity checks and/or institute rate
 limits for subsequent packets.

 o When an AERO node receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its dynamic neighbor correspondents, the node
 SHOULD test the path to the correspondent using Neighbor
 Unreachability Detection (NUD) (see Section 3.16). If NUD fails,

https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires June 16, 2018 [Page 26]

Internet-Draft AERO December 2017

 the node SHOULD set ForwardTime for the corresponding dynamic
 neighbor cache entry to 0 and allow future packets destined to the
 correspondent to flow through a default route.

 o When an AERO Client receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its static neighbor Servers, the Client SHOULD
 test the path to the Server using NUD. If NUD fails, the Client
 SHOULD associate with a new Server and send a DHCPv6 Release
 message to the old Server as specified in Section 3.17.6.

 o When an AERO Server receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its static neighbor Clients, the Server SHOULD
 test the path to the Client using NUD. If NUD fails, the Server
 SHOULD cancel the Client's ACP prefix delegation, withdraw its
 route for the ACP from the AERO routing system and delete the
 neighbor cache entry (see Section 3.16 and Section 3.17).

 o When an AERO Relay or Server receives link-layer Destination
 Unreachable messages in response to an encapsulated packet that it
 sends to one of its permanent neighbors, it treats the messages as
 an indication that the path to the neighbor may be failing.
 However, neighbor reachability will be determined by the dynamic
 routing protocol.

 When an AERO Relay receives a packet for which the network-layer
 destination address is covered by an ASP, if there is no more-
 specific routing information for the destination the Relay drops the
 packet and returns a network-layer Destination Unreachable message
 subject to rate limiting. The Relay first writes the network-layer
 source address of the original packet as the destination address of
 the message and determines the next hop to the destination. If the
 next hop is reached via the AERO interface, the Relay uses the IPv6
 address "::" or the IPv4 address "0.0.0.0" as the source address of
 the message, then encapsulates the message and forwards it to the
 next hop within the AERO interface. Otherwise, the Relay uses one of
 its non link-local addresses as the source address of the message and
 forwards it via a link outside the AERO interface.

 When an AERO node receives an encapsulated packet for which the
 reassembly buffer it too small, it drops the packet and returns an
 network-layer Packet Too Big (PTB) message. The node first writes
 the MRU value into the PTB message MTU field, writes the network-
 layer source address of the original packet as the destination
 address of the message and determines the next hop to the
 destination. If the next hop is reached via the AERO interface, the
 node uses the IPv6 address "::" or the IPv4 address "0.0.0.0" as the

Templin Expires June 16, 2018 [Page 27]

Internet-Draft AERO December 2017

 source address of the message, then encapsulates the message and
 forwards it to the next hop within the AERO interface. Otherwise,
 the node uses one of its non link-local addresses as the source
 address of the message and forwards it via a link outside the AERO
 interface.

 When an AERO node receives any network-layer error message via the
 AERO interface, it examines the network-layer destination address.
 If the next hop toward the destination is via the AERO interface, the
 node re-encapsulates and forwards the message to the next hop within
 the AERO interface. Otherwise, if the network-layer source address
 is the IPv6 address "::" or the IPv4 address "0.0.0.0", the node
 writes one of its non link-local addresses as the source address,
 recalculates the IP and/or ICMP checksums then forwards the message
 via a link outside the AERO interface.

3.14. AERO Router Discovery, Prefix Delegation and Autoconfiguration

 AERO Router Discovery, Prefix Delegation and Autoconfiguration are
 coordinated by the DHCPv6 and IPv6 ND control messaging protocols as
 discussed in the following Sections.

3.14.1. AERO DHCPv6 and IPv6 ND Service Model

 Each AERO Server configures a DHCPv6 server function to facilitate PD
 requests from Clients. Each Server is provisioned with a database of
 ACP-to-Client ID mappings for all Clients enrolled in the AERO
 system, as well as any information necessary to authenticate each
 Client. The Client database is maintained by a central
 administrative authority for the AERO link and securely distributed
 to all Servers, e.g., via the Lightweight Directory Access Protocol
 (LDAP) [RFC4511], via static configuration, etc.

 Therefore, no Server-to-Server DHCPv6 PD state synchronization is
 necessary, and Clients can optionally hold separate PDs for the same
 ACPs from multiple Servers. In this way, Clients can associate with
 multiple Servers, and can receive new PDs from new Servers before
 deprecating PDs received from existing Servers. This provides the
 Client with a natural fault-tolerance and/or load balancing profile.

 AERO Clients and Servers use unicast IPv6 ND messages to maintain
 neighbor cache entries the same as for any link. AERO Servers
 configure their AERO interfaces as advertising interfaces, and
 therefore send unicast RA messages with configuration information in
 response to a Client's RS message.

 The following sections specify the Client and Server behavior.

https://datatracker.ietf.org/doc/html/rfc4511

Templin Expires June 16, 2018 [Page 28]

Internet-Draft AERO December 2017

3.14.2. AERO Client Behavior

 AERO Clients discover the link-layer addresses of AERO Servers via
 static configuration (e.g., from a flat-file map of Server addresses
 and locations), or through an automated means such as DNS name
 resolution. In the absence of other information, the Client resolves
 the FQDN "linkupnetworks.[domainname]" where "linkupnetworks" is a
 constant text string and "[domainname]" is a DNS suffix for the
 Client's underlying network (e.g., "example.com"). After discovering
 the link-layer addresses, the Client associates with one or more of
 the corresponding Servers.

 To associate with a Server, the Client acts as a requesting router to
 request ACPs through a DHCPv6 PD exchange [RFC3315][RFC3633] in
 conjunction with standard IPv6 ND Router Discovery. The Client
 prepares an RS message with an embedded DHCPv6 Solicit message per
 [I-D.templin-6man-dhcpv6-ndopt] with fe80::ffff:ffff as the IPv6
 source address, All-Routers multicast as the IPv6 destination
 address, the address of the Client's underlying interface as the
 link-layer source address and the link-layer address of the Server as
 the link-layer destination address.

 In the embedded DHCPv6 Solicit message, the Client includes a Client
 Identifier option with the Client's DUID, and an Identity Association
 for Prefix Delegation (IA_PD) option. If the Client is pre-
 provisioned with ACPs associated with the AERO service, it MAY also
 include the ACPs in the IA_PD to indicate its preferences to the
 DHCPv6 server. The Client finally includes any additional DHCPv6
 options, including any necessary authentication options to identify
 itself to the DHCPv6 server.

 The Client next includes one or more SLLAOs in the RS formatted as
 described in Section 3.5 to register its link-layer address(es) with
 the Server. The first SLLAO MUST correspond to the underlying
 interface over which the Client will send the RS/DHCPv6 message. The
 Client MAY include additional SLLAOs specific to other underlying
 interfaces, but if so it MUST have assurance that there will be no
 NATs on the paths to the Server via those interfaces. (Otherwise,
 the Client can register additional link-layer addresses with the
 Server by sending subsequent NS/RS messages via different underlying
 interfaces after the initial RS/RA exchange). The Server will use
 the SLLAOs to populate its link-layer address information for the
 Client.

 The Client then sends the combined RS/DHCPv6 message to the AERO
 Server and waits for an RA reply (see Section 3.14.3) while retrying
 MAX_RETRY times until an RA is received. If no RA is received, or if
 the RA includes a zero Router Lifetime, the Client SHOULD discontinue

https://datatracker.ietf.org/doc/html/rfc3315

Templin Expires June 16, 2018 [Page 29]

Internet-Draft AERO December 2017

 autoconfiguration attempts through this Server and try another
 Server. Otherwise, the Client processes the embedded DHCPv6 Reply
 message and verifies that the message contains valid ACPs in IA_PD
 options.

 Next, the Client creates a static neighbor cache entry with the
 Server's link-local address as the network-layer address and the
 Server's encapsulation source address as the link-layer address. The
 Client then autoconfigures AERO addresses for each of the delegated
 ACPs and assigns the base AERO addresses to the AERO interface.

 The Client next examines the Code value in the RA message; if Code
 was 1 the Client can assume there was a NAT on the path to the
 Server. The Client also caches any ASPs included in Route
 Information Options (RIOs) [RFC4191] as ASPs to associate with the
 AERO link, and assigns the MTU/MSU values in the MTU options to its
 AERO interface while configuring an appropriate MRU. This
 configuration information applies to the AERO link as a whole, and
 all AERO nodes will use the same values.

 Following autoconfiguration, the Client sub-delegates the ACPs to its
 attached EUNs and/or the Client's own internal virtual interfaces as
 described in [I-D.templin-v6ops-pdhost]. The Client subsequently
 renews its ACP delegations through each of its Servers by sending RS/
 DHCPv6 Renew messages.

 After the Client registers its Interface IDs and their associated
 UDP/IP addresses and 'P(i)' values, it may wish to change one or more
 Interface ID registrations, e.g., if an underlying interface becomes
 unavailable, if quality of service profiles change, etc. To do so,
 the Client prepares an unsolicited NA message to send over any
 available underlying interface. The NA MUST include a TLLAO specific
 to the selected available underlying interface as the first TLLAO and
 MAY include any additional TLLAOs specific to other underlying
 interfaces. The Client includes fresh 'P(i)' values in each TLLAO to
 update the Server's neighbor cache entry. If the Client wishes to
 disable some or all DSCPs for an underlying interface, it includes an
 TLLAO with 'P(i)' values set to 0 ("disabled").

 If the Client wishes to discontinue use of a Server it issues an RS
 with an embedded DHCPv6 Release message. When the Server processes
 the message, it releases the DHCPv6 PD, deletes its neighbor cache
 entry for the Client, withdraws the IP route from the routing system
 and returns an RA response with Router Lifetime set to 0.

https://datatracker.ietf.org/doc/html/rfc4191

Templin Expires June 16, 2018 [Page 30]

Internet-Draft AERO December 2017

3.14.3. AERO Server Behavior

 AERO Servers act as IPv6 routers and configure a DHCPv6 server
 function on their AERO links. AERO Servers arrange to add their
 encapsulation layer IP addresses (i.e., their link-layer addresses)
 to a static map of Server addresses for the link and/or the DNS
 resource records for the FQDN "linkupnetworks.[domainname]" before
 entering service.

 When an AERO Server receives a prospective Client's RS with embedded
 DHCPv6 Solicit message on its AERO interface, and the Server is too
 busy, it SHOULD return an RA with Router Lifetime set to 0.
 Otherwise, the Server processes the embedded DHCPv6 Solicit message.
 If authentication succeeds, the Server determines the correct ACPs to
 delegate to the Client by searching the Client database. When the
 Server delegates the ACPs, it also creates an IP forwarding table
 entry for each ACP so that the AERO BGP-based routing system will
 propagate the ACPs to the Relays that aggregate the corresponding ASP
 (see: Section 3.3).

 Next, the Server prepares a DHCPv6 Reply message with IA_PD options
 with the delegated ACPs. For IPv4 ACPs, the prefix included in the
 IA_PD option is in IPv4-mapped IPv6 address format and with prefix
 length set as specified in Section 3.4. The Server then prepares a
 unicast RA message using its link-local address (i.e., fe80::ID) as
 the network-layer source address, the Client's base AERO address as
 the network-layer destination address, the Server's link-layer
 address as the source link-layer address, and the source link-layer
 address of the RS message as the destination link-layer address. In
 the RA message, if the actual encapsulation source address in the RS
 message was the same as that in the first SLLAO (see above), the
 Server sets the Code field to 0; otherwise it sets Code to 1. The
 Server then includes one or more RIOs that encode the ASPs for the
 AERO link. The Server also includes two MTU options - the first MTU
 option includes the MTU for the link and the second MTU option
 includes the MSU for the link (see Section 3.12). The Server finally
 embeds the body of the DHCPv6 Reply message in the RA, then sends the
 RA to the Client.

 The Server next creates a static neighbor cache entry for the Client
 using the base AERO address as the network-layer address and with
 lifetime set to no more than the smallest PD lifetime. Next, the
 Server updates the neighbor cache entry link-layer address(es) by
 recording the information in each SLLAO option indexed by the
 Interface ID and including the UDP port number, IP address and P(i)
 values. For the first SLLAO in the list, however, the Server records
 the actual encapsulation source UDP and IP addresses instead of those
 that appear in the SLLAO in case there was a NAT in the path.

Templin Expires June 16, 2018 [Page 31]

Internet-Draft AERO December 2017

 After the initial RS/RA/DHCPv6 exchange, the AERO Server maintains
 the neighbor cache entry for the Client until the PD lifetimes
 expire. If the Client issues a Renew, the Server extends the PD
 lifetimes. If the Client issues a Release, or if the Client does not
 issue a Renew before the lifetime expires, the Server deletes the
 neighbor cache entry for the Client and withdraws the IP routes from
 the AERO routing system.

3.14.3.1. Lightweight DHCPv6 Relay Agent (LDRA)

 AERO Clients and Servers are always on the same link (i.e., the AERO
 link) from the perspective of DHCPv6. However, in some
 implementations the DHCPv6 server and IPv6 ND function may be located
 in separate modules. In that case, the Server's AERO interface
 driver module can act as a Lightweight DHCPv6 Relay Agent
 (LDRA)[RFC6221] to relay DHCPv6 messages to and from the DHCPv6
 server module.

 When the LDRA receives an RS/DHCPv6 message, it extracts the DHCPv6
 message and wraps it in IPv6/UDP headers. It sets the IPv6 source
 address to the source address of the RS message, sets the IPv6
 destination address to 'All_DHCP_Relay_Agents_and_Servers' and sets
 the UDP fields to values that will be understood by the DHCPv6
 server.

 The LDRA then wraps the message in a Relay-Forward message header and
 includes an Interface-ID option that includes enough information to
 allow the LDRA to forward the resulting Reply message back to the
 Client (e.g., the Client's link-layer addresses, a security
 association identifier, etc). The LDRA also wraps the information in
 all of the SLLAO options from the RS message into the Interface-ID
 option, then forwards the message to the DHCPv6 server.

 When the DHCPv6 server prepares a Reply message, it wraps the message
 in a Relay-Reply message and echoes the Interface-ID option. The
 DHCPv6 server then delivers the Relay-Reply message to the LDRA,
 which discards the Relay-Reply wrapper and delivers the DHCPv6
 message to be wrapped into an RA response to the Client. The Server
 uses the information in the Interface ID option to prepare the RA
 message and to cache the link-layer addresses taken from the SLLAOs
 echoed in the Interface-ID option.

3.15. AERO Interface Route Optimization

 When a source Client forwards packets to a prospective correspondent
 Client within the same AERO link domain (i.e., one for which the
 packet's destination address is covered by an ASP), the source Client
 MAY initiate an AERO link route optimization procedure. The

https://datatracker.ietf.org/doc/html/rfc6221

Templin Expires June 16, 2018 [Page 32]

Internet-Draft AERO December 2017

 procedure is based on an exchange of IPv6 ND messages using a chain
 of AERO Servers and Relays as a trust basis.

 Although the Client is responsible for initiating route optimization,
 the Server is the policy enforcement point that determines whether
 route optimization is permitted. For example, on some AERO links
 route optimization would allow traffic to circumvent critical
 network-based traffic interception points. In those cases, the
 Server can simply discard any route optimization messages instead of
 forwarding them.

 The following sections specify the AERO link route optimization
 procedure.

3.15.1. Reference Operational Scenario

 Figure 4 depicts the AERO link route optimization reference
 operational scenario, using IPv6 addressing as the example (while not
 shown, a corresponding example for IPv4 addressing can be easily
 constructed). The figure shows an AERO Relay ('R1'), two AERO
 Servers ('S1', 'S2'), two AERO Clients ('C1', 'C2') and two ordinary
 IPv6 hosts ('H1', 'H2'):

 +--------------+ +--------------+ +--------------+
 | Server S1 | | Relay R1 | | Server S2 |
 +--------------+ +--------------+ +--------------+
 fe80::2 fe80::1 fe80::3
 L2(S1) L2(R1) L2(S2)
 | | |
 X-----+-----+------------------+-----------------+----+----X
 | AERO Link |
 L2(C1) L2(C2)
 fe80::2001:db8:0:0 fe80::2001:db8:1:0
 +--------------+ +--------------+
 |AERO Client C1| |AERO Client C2|
 +--------------+ +--------------+
 2001:DB8:0::/48 2001:DB8:1::/48
 | |
 .-. .-.
 ,-(_)-. 2001:db8:0::1 2001:db8:1::1 ,-(_)-.
 .-(_ IP)-. +-------+ +-------+ .-(_ IP)-.
 (__ EUN)--|Host H1| |Host H2|--(__ EUN)
 `-(______)-' +-------+ +-------+ `-(______)-'

 Figure 4: AERO Reference Operational Scenario

 In Figure 4, Relay ('R1') assigns the administratively-provisioned
 link-local address fe80::1 to its AERO interface with link-layer

Templin Expires June 16, 2018 [Page 33]

Internet-Draft AERO December 2017

 address L2(R1), Server ('S1') assigns the address fe80::2 with link-
 layer address L2(S1),and Server ('S2') assigns the address fe80::3
 with link-layer address L2(S2). Servers ('S1') and ('S2') next
 arrange to add their link-layer addresses to a published list of
 valid Servers for the AERO link.

 AERO Client ('C1') receives the ACP 2001:db8:0::/48 in a DHCPv6 PD
 exchange via AERO Server ('S1') then assigns the address
 fe80::2001:db8:0:0 to its AERO interface with link-layer address
 L2(C1). Client ('C1') configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::2 and link-
 layer address L2(S1), then sub-delegates the ACP to its attached
 EUNs. IPv6 host ('H1') connects to the EUN, and configures the
 address 2001:db8:0::1.

 AERO Client ('C2') receives the ACP 2001:db8:1::/48 in a DHCPv6 PD
 exchange via AERO Server ('S2') then assigns the address
 fe80::2001:db8:1:0 to its AERO interface with link-layer address
 L2(C2). Client ('C2') configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::3 and link-
 layer address L2(S2), then sub-delegates the ACP to its attached
 EUNs. IPv6 host ('H2') connects to the EUN, and configures the
 address 2001:db8:1::1.

3.15.2. Concept of Operations

 Again, with reference to Figure 4, when source host ('H1') sends a
 packet to destination host ('H2'), the packet is first forwarded over
 the source host's attached EUN to Client ('C1'). Client ('C1') then
 forwards the packet via its AERO interface to Server ('S1') and also
 sends an NS message toward Client ('C2') via Server ('S1'). Server
 ('S1') then re-encapsulates and forwards both the packet and the NS
 message out the same AERO interface toward Client ('C2') via Relay
 ('R1').

 When Relay ('R1') receives the packet and NS message, it consults its
 forwarding table to discover Server ('S2') as the next hop toward
 Client ('C2'). Relay ('R1') then forwards both the packet and the NS
 message to Server ('S2'), which then forwards them to Client ('C2').

 After Client ('C2') receives the NS message, it process the message
 and returns an NA message toward Client ('C1') via Server ('S2').
 During the process, Client ('C2') also creates or updates a dynamic
 neighbor cache entry for Client ('C1').

 When Server ('S2') receives the NA message, it re-encapsulates the
 message and forwards it on to Relay ('R1'), which forwards the
 message on to Server ('S1') which forwards the message on to Client

Templin Expires June 16, 2018 [Page 34]

Internet-Draft AERO December 2017

 ('C1'). After Client ('C1') receives the NA message, it processes
 the message and creates or updates a dynamic neighbor cache entry for
 Client ('C2').

 Following the above NS/NA message exchange, forwarding of packets
 from Client ('C1') to Client ('C2') without involving any
 intermediate nodes is enabled. The mechanisms that support this
 exchange are specified in the following sections.

3.15.3. Sending NS Messages

 When a Client forwards a packet with a source address from one of its
 ACPs toward a destination address covered by an ASP (i.e., toward
 another AERO Client connected to the same AERO link), the source
 Client MAY send an NS message forward toward the destination Client
 via the Server.

 In the reference operational scenario, when Client ('C1') forwards a
 packet toward Client ('C2'), it MAY also send an NS message forward
 toward Client ('C2'), subject to rate limiting (see Section 8.2 of
 [RFC4861]). Client ('C1') prepares the NS message as follows:

 o the link-layer source address is set to 'L2(C1)' (i.e., the link-
 layer address of Client ('C1')).

 o the link-layer destination address is set to 'L2(S1)' (i.e., the
 link-layer address of Server ('S1')).

 o the network-layer source address is set to fe80::2001:db8:0:0
 (i.e., the base AERO address of Client ('C1')).

 o the network-layer destination address is set to the AERO address
 corresponding to the destination address of Client ('C2').

 o the Type is set to 135.

 o the Target Address is set to the destination address of the packet
 that triggered route optimization.

 o the message includes one or more SLLAOs set to appropriate values
 for Client ('C1')'s underlying interfaces.

 o the message includes one or more RIOs that include Client ('C1')'s
 ACPs [I-D.templin-6man-rio-redirect].

 o the message SHOULD include a Timestamp option and a Nonce option.

https://datatracker.ietf.org/doc/html/rfc4861#section-8.2
https://datatracker.ietf.org/doc/html/rfc4861#section-8.2

Templin Expires June 16, 2018 [Page 35]

Internet-Draft AERO December 2017

 Note that the act of sending NS messages is cited as "MAY", since
 Client ('C1') may have advanced knowledge that the direct path to
 Client ('C2') would be unusable or otherwise undesirable. If the
 direct path later becomes unusable after the initial route
 optimization, Client ('C1') simply allows packets to again flow
 through Server ('S1').

3.15.4. Re-encapsulating and Relaying the NS

 When Server ('S1') receives an NS message from Client ('C1'), it
 first verifies that the SLLAOs in the NS are a proper subset of the
 link-layer addresses in Client ('C1')'s neighbor cache entry. If the
 Client's SLLAOs are not acceptable, Server ('S1') discards the
 message. Otherwise, Server ('S1') verifies that Client ('C1') is
 authorized to use the ACPs encoded in the RIOs of the NS. If
 validation fails, Server ('S1') discards the NS; otherwise, it copies
 the correct UDP Port number and IP Address for Client ('C1')'s
 underlying link into the first SLLAO in case the addresses have been
 subject to NAT.

 Server ('S1') then examines the network-layer destination address of
 the NS to determine the next hop toward Client ('C2') by searching
 for the AERO address in the neighbor cache. Since Client ('C2') is
 not one of its neighbors, Server ('S1') re-encapsulates the NS and
 relays it via Relay ('R1') by changing the link-layer source address
 of the message to 'L2(S1)' and changing the link-layer destination
 address to 'L2(R1)'. Server ('S1') finally forwards the re-
 encapsulated message to Relay ('R1') without decrementing the
 network-layer TTL/Hop Limit field.

 When Relay ('R1') receives the NS message from Server ('S1') it
 determines that Server ('S2') is the next hop toward Client ('C2') by
 consulting its forwarding table. Relay ('R1') then re-encapsulates
 the NS while changing the link-layer source address to 'L2(R1)' and
 changing the link-layer destination address to 'L2(S2)'. Relay
 ('R1') then relays the NS via Server ('S2').

 When Server ('S2') receives the NS message from Relay ('R1') it
 determines that Client ('C2') is a neighbor by consulting its
 neighbor cache. Server ('S2') then re-encapsulates the NS while
 changing the link-layer source address to 'L2(S2)' and changing the
 link-layer destination address to 'L2(C2)'. Server ('S2') then
 forwards the message to Client ('C2').

Templin Expires June 16, 2018 [Page 36]

Internet-Draft AERO December 2017

3.15.5. Processing NSs and Sending NAs

 When Client ('C2') receives the NS message, it accepts the NS only if
 the message has a link-layer source address of one of its Servers
 (e.g., L2(S2)). Client ('C2') further accepts the message only if it
 is willing to serve as a route optimization target.

 In the reference operational scenario, when Client ('C2') receives a
 valid NS message, it either creates or updates a dynamic neighbor
 cache entry that stores the source address of the message as the
 network-layer address of Client ('C1') , stores the link-layer
 addresses found in the TLLAOs as the link-layer addresses of Client
 ('C1'), and stores the ACPs encoded in the RIOs of the NS as the ACPs
 for Client ('C1'). Client ('C2') then sets AcceptTime for the
 neighbor cache entry to ACCEPT_TIME.

 After processing the message, Client ('C2') prepares an NA message
 response as follows:

 o the link-layer source address is set to 'L2(C2)' (i.e., the link-
 layer address of Client ('C2')).

 o the link-layer destination address is set to 'L2(S2)' (i.e., the
 link-layer address of Server ('S2')).

 o the network-layer source address is set to fe80::2001:db8:1:0
 (i.e., the base AERO address of Client ('C2')).

 o the network-layer destination address is set to fe80::2001:db8:0:0
 (i.e., the base AERO address of Client ('C1')).

 o the Type is set to 136.

 o The Target Addrress is set to the Target Address field in the NS
 message.

 o the message includes one or more TLLAOs set to appropriate values
 for Client ('C2')'s underlying interfaces.

 o the message includes one or more RIOs that include Client ('C2')'s
 ACPs [I-D.templin-6man-rio-redirect].

 o the message SHOULD include a Timestamp option and MUST echo the
 Nonce option received in the NS (i.e., if a Nonce option is
 included).

 After Client ('C2') prepares the NA message, it sends the message to
 Server ('S2').

Templin Expires June 16, 2018 [Page 37]

Internet-Draft AERO December 2017

3.15.6. Re-encapsulating and Relaying NAs

 When Server ('S2') receives an NA message from Client ('C2'), it
 first verifies that the TLLAOs in the NA are a proper subset of the
 Interface IDs in Client ('C2')'s neighbor cache entry. If the
 Client's TLLAOs are not acceptable, Server ('S2') discards the
 message. Otherwise, Server ('S2') verifies that Client ('C2') is
 authorized to use the ACPs encoded in the RIOs of the NA message. If
 validation fails, Server ('S2') discards the NA; otherwise, it copies
 the correct UDP Port number and IP Address for Client ('C2')'s
 underlying link into the first TLLAO in case the addresses have been
 subject to NAT.

 Server ('S2') then examines the network-layer destination address of
 the NA to determine the next hop toward Client ('C1') by searching
 for the AERO address in the neighbor cache. Since Client ('C1') is
 not a neighbor, Server ('S2') re-encapsulates the NA and relays it
 via Relay ('R1') by changing the link-layer source address of the
 message to 'L2(S2)' and changing the link-layer destination address
 to 'L2(R1)'. Server ('S2') finally forwards the re-encapsulated
 message to Relay ('R1') without decrementing the network-layer TTL/
 Hop Limit field.

 When Relay ('R1') receives the NA message from Server ('S2') it
 determines that Server ('S1') is the next hop toward Client ('C1') by
 consulting its forwarding table. Relay ('R1') then re-encapsulates
 the NA while changing the link-layer source address to 'L2(R1)' and
 changing the link-layer destination address to 'L2(S1)'. Relay
 ('R1') then relays the NA via Server ('S1').

 When Server ('S1') receives the NA message from Relay ('R1') it
 determines that Client ('C1') is a neighbor by consulting its
 neighbor cache. Server ('S1') then re-encapsulates the NA while
 changing the link-layer source address to 'L2(S1)' and changing the
 link-layer destination address to 'L2(C1)'. Server ('S1') then
 forwards the message to Client ('C1').

3.15.7. Processing NAs

 When Client ('C1') receives the NA message, it accepts the message
 only if it has a link-layer source address of one of its Servers
 (e.g., 'L2(S1)'). Client ('C1') then processes the message as
 follows.

 In the reference operational scenario, when Client ('C1') receives
 the NA message, it either creates or updates a dynamic neighbor cache
 entry that stores the source address of the message as the network-
 layer address of Client ('C2'), stores the link-layer addresses found

Templin Expires June 16, 2018 [Page 38]

Internet-Draft AERO December 2017

 in the TLLAOs as the link-layer addresses of Client ('C2') and stores
 the ACPs encoded in the RIOs of the NA as the ACPs for Client ('C2').
 Client ('C1') then sets ForwardTime for the neighbor cache entry to
 FORWARD_TIME.

 Now, Client ('C1') has a neighbor cache entry with a valid
 ForwardTime value, while Client ('C2') has a neighbor cache entry
 with a valid AcceptTime value. Thereafter, Client ('C1') may forward
 ordinary network-layer data packets directly to Client ('C2') without
 involving any intermediate nodes, and Client ('C2') can verify that
 the packets came from an acceptable source. (In order for Client
 ('C2') to forward packets to Client ('C1'), a corresponding NS/NA
 message exchange is required in the reverse direction; hence, the
 mechanism is asymmetric.)

3.15.8. Server-to-Client and Client-to-Server Route Optimization

 In some environments, the Server nearest the target Client may need
 to serve as a route optimization target, e.g., if direct Client-to-
 Client communications are not possible. In that case, when the
 source Client sends an NS message the target Server prepares a
 corresponding NA the same as if it were the target Client (see:

Section 3.15.5), except that it writes its own link-layer address in
 the TLLAO option. The Server must then maintain a dynamic neighbor
 cache entry for the source Client.

 Similarly, when the source Client must send all packets via its own
 Server and cannot act on a route optimization request, the source
 Server can send an NS message toward the target Client. The target
 Client then prepares a corresponding NA message the same as for
 Client-to-Client route optimization and sends the NA message back to
 the source Server.

 Thereafter, if the target Client moves to a new Server, the old
 Server sends unsolicited NA messages with no TLLAOs (subject to rate
 limiting) in response to data packets received from a correspondent
 node while forwarding the packets themselves to a Relay. The Relay
 will then either forward the packets to the new Server if the target
 Client has moved, or drop the packets if the target Client is no
 longer in the network. The source Client (or Server) then allows
 future packets destined to the target Client to again flow through
 its own Server (or Relay). Note however that the old Server retains
 the neighbor cache entry with its associated AcceptTime since there
 may be many packets in flight. When the old Server receives these
 packets, it forwards them to a Relay which will forward them to the
 departed Client's new Server. AcceptTime will then eventually
 decrement to 0 once the correspondent node processes and acts on the
 unsolicited NAs.

Templin Expires June 16, 2018 [Page 39]

Internet-Draft AERO December 2017

 In any case, a Server MUST NOT send a BGP update to its Relays for
 Clients discovered through dynamic route optimization. BGP updates
 are only to be sent for the Server's working set of statically-
 associated Clients.

3.15.9. Server-to-Server Route Optimization

 If neither the source nor target Clients are capable of sending
 packets other than via their own Servers, a Server-to-Server route
 optimization can still be employed. In that case, the source
 Client's Server can send an NS message via a Relay to the AERO
 address of the target Client, and the Relay will forward the message
 to the target Client's Server. The target Server prepares the NA
 message the same as if it were the target Client, except that it
 writes its own link-layer address in the TLLAO option then sends the
 NA back to the source Server. (The target Server can send the NA
 message back to the source Server either directly or via the Relay
 according to the security model.)

 Thereafter, if the target Client moves to a new Server, the old
 Server sends unsolicited NA messages with no TLLAOs (subject to rate
 limiting) in response to data packets received from a correspondent
 node while forwarding the packets themselves to a Relay. The Relay
 will then either forward the packets to the new Server if the target
 Client has moved, or drop the packets if the target Client is no
 longer in the network. The source Server then allows future packets
 destined to the target Client to again flow through a Relay. Note
 however that the old Server retains the neighbor cache entry with its
 associated AcceptTime since there may be many packets in flight.
 When the old Server receives these packets, it forwards them to a
 Relay which will forward them to the departed Client's new Server.
 AcceptTime will then eventually decrement to 0 once the correspondent
 node processes and acts on the unsolicited NAs.

 In any case, a Server MUST NOT send a BGP update to its Relays for
 correspondents discovered through dynamic route optimization. BGP
 updates are only to be sent for the Server's working set of
 statically-associated Clients..

3.16. Neighbor Unreachability Detection (NUD)

 AERO nodes perform Neighbor Unreachability Detection (NUD) by sending
 unicast NS messages with SLLAOs to elicit solicited NA messages from
 neighbors the same as described in [RFC4861]. NUD is performed
 either reactively in response to persistent L2 errors (see

Section 3.13) or proactively to update neighbor cache entry timers
 and/or link-layer address information.

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires June 16, 2018 [Page 40]

Internet-Draft AERO December 2017

 When an AERO node sends an NS/NA message, it MUST use one of its
 link-local addresses as the IPv6 source address and a link-local
 address of the neighbor as the IPv6 destination address. When an
 AERO node receives an NS message or a solicited NA message, it
 accepts the message if it has a neighbor cache entry for the
 neighbor; otherwise, it ignores the message.

 When a source AERO node is redirected to a target AERO node it SHOULD
 proactively test the direct path by sending an initial NS message to
 elicit a solicited NA response. While testing the path, the source
 node can optionally continue sending packets via its default router,
 maintain a small queue of packets until target reachability is
 confirmed, or (optimistically) allow packets to flow directly to the
 target.

 While data packets are still flowing, the source node thereafter
 periodically tests the direct path to the target node (see

Section 7.3 of [RFC4861]) in order to keep dynamic neighbor cache
 entries alive. When the target node receives a valid NS message, it
 resets AcceptTime to ACCEPT_TIME and updates its cached link-layer
 addresses (if necessary). When the source node receives a solicited
 NA message, it resets ForwardTime to FORWARD_TIME and updates its
 cached link-layer addresses (if necessary). If the source node is
 unable to elicit a solicited NA response from the target node after
 MaxRetry attempts, it SHOULD set ForwardTime to 0. Otherwise, the
 source node considers the path usable and SHOULD thereafter process
 any link-layer errors as a hint that the direct path to the target
 node has either failed or has become intermittent.

 When ForwardTime for a dynamic neighbor cache entry expires, the
 source node resumes sending any subsequent packets via a Server (or
 Relay) and may (eventually) attempt to re-initiate the AERO route
 optimization process. When AcceptTime for a dynamic neighbor cache
 entry expires, the target node discards any subsequent packets
 received directly from the source node. When both ForwardTime and
 AcceptTime for a dynamic neighbor cache entry expire, the node
 deletes the neighbor cache entry.

3.17. Mobility Management and Quality of Service

3.17.1. Forwarding Packets on Behalf of Departed Clients

 When a Server receives packets with destination addresses that do not
 match one of its static neighbor cache Clients, it forwards the
 packets packets to a Relay and also returns an unsolicited NA message
 to sender with no TLLAO. The packets will be delivered to the target
 Client's new location, and the sender will realize that it needs to

https://datatracker.ietf.org/doc/html/rfc4861#section-7.3

Templin Expires June 16, 2018 [Page 41]

Internet-Draft AERO December 2017

 deprecate its routing inforrmation that associated the target with
 this Server.

3.17.2. Announcing Link-Layer Address and Quality of Service Changes

 When a Client needs to change its link-layer addresses, e.g., due to
 a mobility event, it sends unsolicited NAs to its neighbors using the
 new link-layer address as the source address and with TLLAOs that
 include the updated Client link-layer information.

 Note that this same mechanism is used to change the Client's quality
 of service parameters even if the Client's link-layer address itself
 is unchanged. The Client can include TLLAOs with P[i] values that
 have changed even if the link-layer address is unchanged.

 The Client MAY send up to MaxRetry unsolicited NA messages in
 parallel with sending actual data packets in case one or more NAs are
 lost. If all NAs are lost, the Client will eventually invoke NUD by
 sending NS messages that include SLLAOs.

3.17.3. Bringing New Links Into Service

 When a Client needs to bring new underlying interfaces into service
 (e.g., when it activates a new data link), it sends unsolicited NAs
 to its neighbors using the new link-layer address as the source
 address and with TLLAOs that include the new Client link-layer
 information.

3.17.4. Removing Existing Links from Service

 When a Client needs to remove existing underlying interfaces from
 service (e.g., when it de-activates an existing data link), it sends
 unsolicited NAs to its neighbors with TLLAOs with UDP Port and IP
 Address set to 0, and with all P(i) values set to "disabled".

 If the Client needs to send the unsolicited NAs over a link other
 than the one being removed from service, it MUST include a TLLAO for
 the sending link as the first TLLAO and include the TLLAO for the
 link being removed from service as an additional TLLAO.

3.17.5. Implicit Mobility Management

 AERO interface neighbors MAY include a configuration knob that allows
 them to perform implicit mobility management in which no IPv6 ND
 messaging is used. In that case, the Client only transmits packets
 over a single interface at a time, and the neighbor always observes
 packets arriving from the Client from the same link-layer source
 address.

Templin Expires June 16, 2018 [Page 42]

Internet-Draft AERO December 2017

 If the Client's underlying interface address changes (either due to a
 readdressing of the original interface or switching to a new
 interface) the neighbor immediately updates the neighbor cache entry
 for the Client and begins accepting and sending packets to the
 Client's new link-layer address. This implicit mobility method
 applies to use cases such as cellphones with both WiFi and Cellular
 interfaces where only one of the interfaces is active at a given
 time, and the Client automatically switches over to the backup
 interface if the primary interface fails.

3.17.6. Moving to a New Server

 When a Client associates with a new Server, it performs the Client
 procedures specified in Section 3.14.2.

 When a Client disassociates with an existing Server, it sends a
 DHCPv6 Release message via a new Server with its base AERO address as
 the network-layer source address and the unicast link-local address
 of the old Server as the network-layer destination address. The new
 Server then encapsulates the Release message in a DHCPv6 Relay-
 Forward message header, writes the Client's source address in the
 'peer-address' field, and writes its own link-local address in the IP
 source address (i.e., the new Server acts as a DHCPv6 relay agent).
 The new Server then forwards the message to a Relay, which forwards
 the message to the old Server based on the network-layer destination
 address.

 When the old Server receives the Release, it first authenticates the
 message then releases the DHCPv6 PDs and deletes the Client's ACP
 routes. The old Server then deletes the Client's neighbor cache
 entry so that any in-flight packets will be forwarded via a Relay to
 the new Server, which will forward them to the Client. The old
 Server finally returns a DHCPv6 Relay-Reply message via a Relay to
 the new Server, which will decapsulate the DHCPv6 Reply message and
 forward it to the Client.

 When the new Server forwards the Reply message, the Client can delete
 both the default route and the neighbor cache entry for the old
 Server. (Note that since Release/Reply messages may be lost in the
 network the Client SHOULD retry until it gets a Reply indicating that
 the Release was successful. If the Client does not receive a Reply
 after MaxRetry attempts, the old Server may have failed and the
 Client should discontinue its Release attempts.)

 Note that this DHCPv6 relay-chaining approach is provided to avoid
 failures, e.g., due to temporary routing fluctuations. In
 particular, the Client should always be able to forward messages via
 its new Server but may not always be able to send messages directly

Templin Expires June 16, 2018 [Page 43]

Internet-Draft AERO December 2017

 to an old Server. But, the new Server and Old Server should always
 be able to exchange messages with one another.

 Finally, Clients SHOULD NOT move rapidly between Servers in order to
 avoid causing excessive oscillations in the AERO routing system.
 Such oscillations could result in intermittent reachability for the
 Client itself, while causing little harm to the network. Examples of
 when a Client might wish to change to a different Server include a
 Server that has gone unreachable, topological movements of
 significant distance, etc.

3.17.7. Alternate Mobility Security Model

 In some environments, an AERO node may have no way of authenticating
 any unsolicited NA messages it receives. In that case, the target
 AERO node SHOULD ignore any unsolicited NA messages it receives, and
 the source AERO node SHOULD inform the target of its new link-layer
 addresses by sending a fresh NS message via its Server (or Relay).
 The target AERO node can then accept the NS message and update its
 link-layer addresses based on the NS SLLAOs.

3.17.8. Packet Queueing for Mobility

 AERO Clients and Servers should maintain a small queue of packets
 they have recently sent to an AERO neighbor, e.g., a 1 second window.
 If the AERO neighbor moves, the AERO node MAY retransmit the queued
 packets to ensure that they are delivered to the AERO neighbor's new
 location.

 Note that this may have performance implications for asymmetric
 paths. For example, if the AERO neighbor moves from a 50Mbps link to
 a 128Kbps link, retransmitting a 1 second window could cause
 significant congestion. However, any retransmission bursts will
 subside after the 1 second window.

3.18. Multicast Considerations

 When the underlying network does not support multicast, AERO Clients
 map link-scoped multicast addresses to the link-layer address of a
 Server, which acts as a multicast forwarding agent. The AERO Client
 also serves as an IGMP/MLD Proxy for its EUNs and/or hosted
 applications per [RFC4605] while using the link-layer address of the
 Server as the link-layer address for all multicast packets.

 When the underlying network supports multicast, AERO nodes use the
 multicast address mapping specification found in [RFC2529] for IPv4
 underlying networks and use a TBD site-scoped multicast mapping for
 IPv6 underlying networks. In that case, border routers must ensure

https://datatracker.ietf.org/doc/html/rfc4605
https://datatracker.ietf.org/doc/html/rfc2529

Templin Expires June 16, 2018 [Page 44]

Internet-Draft AERO December 2017

 that the encapsulated site-scoped multicast packets do not leak
 outside of the site spanned by the AERO link.

4. The AERO Proxy

 In some environments, AERO Clients may be located in secured enclaves
 (e.g., a corporate enterprise network) that does not allow direct
 communications from the Client to the outside world. This is the
 same consideration as for web proxies commonly used in enterprise
 networks.

 The AERO Proxy is located at the secured enclave perimeter and sets a
 default route via one or more external Relays in the same way that a
 Server would, except the Proxy does not establish BGP peering session
 since the Relays will never send packets directly to the Proxy. The
 Proxy listens for RS/RA/DHCv6 messages originating from or destined
 to AERO Clients located within the enclave and acts on the messages
 as follows:

 o when the Proxy receives an RS/DHCPv6 message from a Client within
 the secured enclave, it caches the message locally. The Proxy
 then forwards the message to the external Server indicated by the
 destination link-layer address in the packet while substituting
 its own external address as the source link-layer address

 o when the Proxy receives an RA/DHCPv6 message from an external
 Server, it matches the RA with the RS message that it cached
 previously. The Proxy then caches the route information in the
 message as a mapping from the Client's ACPs to the Client's
 address within the secured enclave. The Proxy then forwards the
 message to the Client.

 After the initial RS/RA/DHCPv6 handshake is concluded, the Proxy can
 send unsolicited NA messages to the Client's chosen Server to update
 the Server's neighbor cache entry for the Client (e.g., to update the
 Client's quality of service parameters). The Proxy also orwards all
 data packets originating from the Client to one of its default router
 Relays in the external network. At the same time, for destination
 addresses that match an ASP the Proxy sends an NS message via the
 Relay to solicit an NA message from a Server that is currently
 serving the target Client. When the Proxy receives the NA message,
 it configures routing information that associates the source of the
 NA message as the next-hop toward the routes adveritsed in the NA
 RIOs.

 From the perspective of the target Server, the Proxy that sent the
 route optimization NS message will appear as if it is an ordinary
 AERO Client. However, the target Server must deliver the NA message

Templin Expires June 16, 2018 [Page 45]

Internet-Draft AERO December 2017

 directly to the Proxy (i.e., instead of relaying through the backward
 chain of Relays and Servers) since the backwards chain could deliver
 the NA to a different Proxy besides the one that produced the NS.
 For this reason, when a Proxy sends a route optimization NS message
 it must set the "Proxy" bit in the message (TBD). When the target
 Server receives the NS message, if the Proxy bit is set it returns
 the NA message directly to the address of the Proxy.

 After the NS/NA exchange, the Proxy may receive unsolicited NA
 messages without TLLAOs from the target Server in response to data
 packets destined to a Client that is no longer associated with the
 target. In that case, the Proxy deletes the routes associated with
 the NA Target Address and allows future packets to flow through a
 Relay. It can then re-initialize route optimization as above to
 discover the new Server for the target Client.

5. Operation on AERO Links with /64 ASPs

 IPv6 AERO links typically have ASPs that cover many candidate ACPs of
 length /64 or shorter. However, in some cases it may be desirable to
 use AERO over links that have only a /64 ASP. This can be
 accommodated by treating all Clients on the AERO link as simple hosts
 that receive /128 prefix delegations.

 In that case, the Client sends an RS/DHCPv6 PD message to the Server
 the same as for ordinary AERO links. The Server responds with an RA/
 DHCPv6 message that includes one or more /128 prefixes (i.e.,
 singleton addresses) that include the /64 ASP prefix along with an
 interface identifier portion to be assigned to the Client. The
 Client and Server then configure their AERO addresses based on the
 interface identifier portions of the /128s (i.e., the lower 64 bits)
 and not based on the /64 prefix (i.e., the upper 64 bits).

 For example, if the ASP for the host-only IPv6 AERO link is
 2001:db8:1000:2000::/64, each Client will receive one or more /128
 IPv6 prefix delegations such as 2001:db8:1000:2000::1/128,
 2001:db8:1000:2000::2/128, etc. When the Client receives the prefix
 delegations, it assigns the AERO addresses fe80::1, fe80::2, etc. to
 the AERO interface, and assigns the global IPv6 addresses (i.e., the
 /128s) to either the AERO interface or an internal virtual interface
 such as a loopback. In this arrangement, the Client conducts route
 optimization in the same sense as discussed in Section 3.15.

 This specification has applicability for nodes that act as a Client
 on an "upstream" AERO link, but also act as a Server on "downstream"
 AERO links. More specifically, if the node acts as a Client to
 receive a /64 prefix from the upstream AERO link it can then act as a
 Server to provision /128s to Clients on downstream AERO links.

Templin Expires June 16, 2018 [Page 46]

Internet-Draft AERO December 2017

 Note that, due to the nature of the AERO address format, valid IPv6
 ACP lengths are either /64 or shorter, or exactly /128 (i.e., prefix
 lengths between /65 and /127 cannot be accommodated).

6. Implementation Status

 An AERO implementation based on OpenVPN (https://openvpn.net/) was
 cleared for public release on December 13, 2017.

 An initial public release of the AERO proof-of-concept source code
 was announced on the intarea mailing list on August 21, 2015, and a
 pointer to the code is available in the list archives.

7. IANA Considerations

 The IANA has assigned a 4-octet Private Enterprise Number "45282" for
 AERO in the "enterprise-numbers" registry.

 The IANA has assigned the UDP port number "8060" for an earlier
 experimental version of AERO [RFC6706]. This document obsoletes
 [RFC6706] and claims the UDP port number "8060" for all future use.

 No further IANA actions are required.

8. Security Considerations

 AERO link security considerations are the same as for standard IPv6
 Neighbor Discovery [RFC4861] except that AERO improves on some
 aspects. In particular, AERO uses a trust basis between Clients and
 Servers, where the Clients only engage in the AERO mechanism when it
 is facilitated by a trust anchor.

 NS and NA messages SHOULD include a Timestamp option (see Section 5.3
 of [RFC3971]) that other AERO nodes can use to verify the message
 time of origin. NS and RS messages SHOULD include a Nonce option
 (see Section 5.3 of [RFC3971]) that recipients echo back in
 corresponding responses. In cases where spoofing cannot be mitigated
 through other means, however, all AERO IPv6 ND messages should employ
 Secure Neighbor Discovery (SeND) [RFC3971].

 AERO links must be protected against link-layer address spoofing
 attacks in which an attacker on the link pretends to be a trusted
 neighbor. Links that provide link-layer securing mechanisms (e.g.,
 IEEE 802.1X WLANs) and links that provide physical security (e.g.,
 enterprise network wired LANs) provide a first line of defense,
 however AERO nodes SHOULD also use IPv6 ND and/or DHCPv6 securing
 services for Client authentication and network admission control.
 Following authenticated DHCPv6 PD procedures, AERO nodes MUST ensure

https://openvpn.net/
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971

Templin Expires June 16, 2018 [Page 47]

Internet-Draft AERO December 2017

 that the source of data packets corresponds to the node to which the
 prefixes were delegated.

 AERO Clients MUST ensure that their connectivity is not used by
 unauthorized nodes on their EUNs to gain access to a protected
 network, i.e., AERO Clients that act as routers MUST NOT provide
 routing services for unauthorized nodes. (This concern is no
 different than for ordinary hosts that receive an IP address
 delegation but then "share" the address with other nodes via some
 form of Internet connection sharing.)

 AERO Clients, Servers and Relays on the open Internet are susceptible
 to the same attack profiles as for any Internet nodes. For this
 reason, IP security SHOULD be used when AERO is employed over
 unmanaged/unsecured links using securing mechanisms such as IPsec
 [RFC4301], IKE [RFC5996] and/or TLS [RFC5246]. In some environments,
 however, the use of end-to-end security from Clients to correspondent
 nodes (i.e., other Clients and/or Internet nodes) could obviate the
 need for IP security between AERO Clients, Servers and Relays.

 AERO Servers and Relays present targets for traffic amplification DoS
 attacks. This concern is no different than for widely-deployed VPN
 security gateways in the Internet, where attackers could send spoofed
 packets to the gateways at high data rates. This can be mitigated by
 connecting Relays and Servers over dedicated links with no
 connections to the Internet and/or when connections to the Internet
 are only permitted through well-managed firewalls.

 Traffic amplification DoS attacks can also target an AERO Client's
 low data rate links. This is a concern not only for Clients located
 on the open Internet but also for Clients in secured enclaves. AERO
 Servers can institute rate limits that protect Clients from receiving
 packet floods that could DoS low data rate links.

9. Acknowledgements

 Discussions both on IETF lists and in private exchanges helped shape
 some of the concepts in this work. Individuals who contributed
 insights include Mikael Abrahamsson, Mark Andrews, Fred Baker, Bob
 Braden, Stewart Bryant, Brian Carpenter, Wojciech Dec, Ralph Droms,
 Adrian Farrel, Sri Gundavelli, Brian Haberman, Joel Halpern, Tom
 Herbert, Sascha Hlusiak, Lee Howard, Andre Kostur, Ted Lemon, Andy
 Malis, Satoru Matsushima, Tomek Mrugalski, Alexandru Petrescu, Behcet
 Saikaya, Joe Touch, Bernie Volz, Ryuji Wakikawa and Lloyd Wood.
 Members of the IESG also provided valuable input during their review
 process that greatly improved the document. Discussions on the v6ops
 list in the December 2015 through January 2016 timeframe further
 helped clarify AERO multi-addressing capabilities. Special thanks go

https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc5246

Templin Expires June 16, 2018 [Page 48]

Internet-Draft AERO December 2017

 to Stewart Bryant, Joel Halpern and Brian Haberman for their
 shepherding guidance during the publication of the AERO first
 edition.

 This work has further been encouraged and supported by Boeing
 colleagues including Kyle Bae, M. Wayne Benson, Dave Bernhardt, Cam
 Brodie, Balaguruna Chidambaram, Irene Chin, Bruce Cornish, Claudiu
 Danilov, Wen Fang, Anthony Gregory, Jeff Holland, Ed King, Gene
 MacLean III, Rob Muszkiewicz, Sean O'Sullivan, Kent Shuey, Brian
 Skeen, Mike Slane, Carrie Spiker, Brendan Williams, Julie Wulff,
 Yueli Yang, Eric Yeh and other members of the BR&T and BIT mobile
 networking teams. Wayne Benson is especially acknowledged for
 converting the AERO proof-of-concept implementation into production-
 ready code for OpenVPN.

 Earlier works on NBMA tunneling approaches are found in
 [RFC2529][RFC5214][RFC5569].

 Many of the constructs presented in this second edition of AERO are
 based on the author's earlier works, including:

 o The Internet Routing Overlay Network (IRON)
 [RFC6179][I-D.templin-ironbis]

 o Virtual Enterprise Traversal (VET)
 [RFC5558][I-D.templin-intarea-vet]

 o The Subnetwork Encapsulation and Adaptation Layer (SEAL)
 [RFC5320][I-D.templin-intarea-seal]

 o AERO, First Edition [RFC6706]

 Note that these works cite numerous earlier efforts that are not also
 cited here due to space limitations. The authors of those earlier
 works are acknowledged for their insights.

 This work is aligned with the NASA Safe Autonomous Systems Operation
 (SASO) program under NASA contract number NNA16BD84C.

 This work is aligned with the FAA as per the SE2025 contract number
 DTFAWA-15-D-00030.

 This work is aligned with the Boeing Information Technology (BIT)
 MobileNet program.

 This work is aligned with the Boeing Research and Technology (BR&T)
 autonomous systems networking program.

https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc5569
https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc6706

Templin Expires June 16, 2018 [Page 49]

Internet-Draft AERO December 2017

10. References

10.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, DOI 10.17487/RFC0792, September 1981,

 <https://www.rfc-editor.org/info/rfc792>.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 DOI 10.17487/RFC2003, October 1996,
 <https://www.rfc-editor.org/info/rfc2003>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <https://www.rfc-editor.org/info/rfc2473>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <https://www.rfc-editor.org/info/rfc3315>.

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 DOI 10.17487/RFC3633, December 2003,
 <https://www.rfc-editor.org/info/rfc3633>.

https://datatracker.ietf.org/doc/html/rfc768
https://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc791
https://www.rfc-editor.org/info/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://www.rfc-editor.org/info/rfc792
https://datatracker.ietf.org/doc/html/rfc2003
https://www.rfc-editor.org/info/rfc2003
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc2473
https://www.rfc-editor.org/info/rfc2473
https://datatracker.ietf.org/doc/html/rfc2474
https://www.rfc-editor.org/info/rfc2474
https://datatracker.ietf.org/doc/html/rfc3315
https://www.rfc-editor.org/info/rfc3315
https://datatracker.ietf.org/doc/html/rfc3633
https://www.rfc-editor.org/info/rfc3633

Templin Expires June 16, 2018 [Page 50]

Internet-Draft AERO December 2017

 [RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971,
 DOI 10.17487/RFC3971, March 2005,
 <https://www.rfc-editor.org/info/rfc3971>.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,
 November 2005, <https://www.rfc-editor.org/info/rfc4191>.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213,
 DOI 10.17487/RFC4213, October 2005,
 <https://www.rfc-editor.org/info/rfc4213>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <https://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node
 Requirements", RFC 6434, DOI 10.17487/RFC6434, December
 2011, <https://www.rfc-editor.org/info/rfc6434>.

10.2. Informative References

 [BGP] Huston, G., "BGP in 2015, http://potaroo.net", January
 2016.

 [I-D.herbert-gue-fragmentation]
 Herbert, T. and F. Templin, "Fragmentation option for
 Generic UDP Encapsulation", draft-herbert-gue-

fragmentation-02 (work in progress), October 2015.

 [I-D.ietf-dhc-sedhcpv6]
 Li, L., Jiang, S., Cui, Y., Jinmei, T., Lemon, T., and D.
 Zhang, "Secure DHCPv6", draft-ietf-dhc-sedhcpv6-21 (work
 in progress), February 2017.

 [I-D.ietf-intarea-tunnels]
 Touch, J. and M. Townsley, "IP Tunnels in the Internet
 Architecture", draft-ietf-intarea-tunnels-07 (work in
 progress), June 2017.

https://datatracker.ietf.org/doc/html/rfc3971
https://www.rfc-editor.org/info/rfc3971
https://datatracker.ietf.org/doc/html/rfc4191
https://www.rfc-editor.org/info/rfc4191
https://datatracker.ietf.org/doc/html/rfc4213
https://www.rfc-editor.org/info/rfc4213
https://datatracker.ietf.org/doc/html/rfc4861
https://www.rfc-editor.org/info/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://datatracker.ietf.org/doc/html/rfc6434
https://www.rfc-editor.org/info/rfc6434
http://potaroo
https://datatracker.ietf.org/doc/html/draft-herbert-gue-fragmentation-02
https://datatracker.ietf.org/doc/html/draft-herbert-gue-fragmentation-02
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-sedhcpv6-21
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-tunnels-07

Templin Expires June 16, 2018 [Page 51]

Internet-Draft AERO December 2017

 [I-D.ietf-nvo3-gue]
 Herbert, T., Yong, L., and O. Zia, "Generic UDP
 Encapsulation", draft-ietf-nvo3-gue-05 (work in progress),
 October 2016.

 [I-D.templin-6man-dhcpv6-ndopt]
 Templin, F., "The DHCPv6 Option for IPv6 Neighbor
 Discovery", draft-templin-6man-dhcpv6-ndopt-00 (work in
 progress), November 2017.

 [I-D.templin-6man-rio-redirect]
 Templin, F. and j. woodyatt, "Route Information Options in
 IPv6 Neighbor Discovery", draft-templin-6man-rio-

redirect-05 (work in progress), October 2017.

 [I-D.templin-intarea-grefrag]
 Templin, F., "GRE Tunnel Level Fragmentation", draft-

templin-intarea-grefrag-04 (work in progress), July 2016.

 [I-D.templin-intarea-seal]
 Templin, F., "The Subnetwork Encapsulation and Adaptation
 Layer (SEAL)", draft-templin-intarea-seal-68 (work in
 progress), January 2014.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)", draft-

templin-intarea-vet-40 (work in progress), May 2013.

 [I-D.templin-ironbis]
 Templin, F., "The Interior Routing Overlay Network
 (IRON)", draft-templin-ironbis-16 (work in progress),
 March 2014.

 [I-D.templin-v6ops-pdhost]
 Templin, F., "IPv6 Prefix Delegation Models", draft-

templin-v6ops-pdhost-16 (work in progress), November 2017.

 [OVPN] OpenVPN, O., "http://openvpn.net", October 2016.

 [RFC0879] Postel, J., "The TCP Maximum Segment Size and Related
 Topics", RFC 879, DOI 10.17487/RFC0879, November 1983,
 <https://www.rfc-editor.org/info/rfc879>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-gue-05
https://datatracker.ietf.org/doc/html/draft-templin-6man-dhcpv6-ndopt-00
https://datatracker.ietf.org/doc/html/draft-templin-6man-rio-redirect-05
https://datatracker.ietf.org/doc/html/draft-templin-6man-rio-redirect-05
https://datatracker.ietf.org/doc/html/draft-templin-intarea-grefrag-04
https://datatracker.ietf.org/doc/html/draft-templin-intarea-grefrag-04
https://datatracker.ietf.org/doc/html/draft-templin-intarea-seal-68
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-ironbis-16
https://datatracker.ietf.org/doc/html/draft-templin-v6ops-pdhost-16
https://datatracker.ietf.org/doc/html/draft-templin-v6ops-pdhost-16
https://datatracker.ietf.org/doc/html/rfc879
https://www.rfc-editor.org/info/rfc879
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035

Templin Expires June 16, 2018 [Page 52]

Internet-Draft AERO December 2017

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <https://www.rfc-editor.org/info/rfc1812>.

 [RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation,
 selection, and registration of an Autonomous System (AS)",

BCP 6, RFC 1930, DOI 10.17487/RFC1930, March 1996,
 <https://www.rfc-editor.org/info/rfc1930>.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <https://www.rfc-editor.org/info/rfc1981>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
RFC 2131, DOI 10.17487/RFC2131, March 1997,

 <https://www.rfc-editor.org/info/rfc2131>.

 [RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529,
 DOI 10.17487/RFC2529, March 1999,
 <https://www.rfc-editor.org/info/rfc2529>.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, DOI 10.17487/RFC2675, August 1999,

 <https://www.rfc-editor.org/info/rfc2675>.

 [RFC2764] Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, DOI 10.17487/RFC2764, February 2000,
 <https://www.rfc-editor.org/info/rfc2764>.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 DOI 10.17487/RFC2784, March 2000,
 <https://www.rfc-editor.org/info/rfc2784>.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,

 <https://www.rfc-editor.org/info/rfc2890>.

https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
https://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/bcp6
https://datatracker.ietf.org/doc/html/rfc1930
https://www.rfc-editor.org/info/rfc1930
https://datatracker.ietf.org/doc/html/rfc1981
https://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/rfc2131
https://www.rfc-editor.org/info/rfc2131
https://datatracker.ietf.org/doc/html/rfc2529
https://www.rfc-editor.org/info/rfc2529
https://datatracker.ietf.org/doc/html/rfc2675
https://www.rfc-editor.org/info/rfc2675
https://datatracker.ietf.org/doc/html/rfc2764
https://www.rfc-editor.org/info/rfc2764
https://datatracker.ietf.org/doc/html/rfc2784
https://www.rfc-editor.org/info/rfc2784
https://datatracker.ietf.org/doc/html/rfc2890
https://www.rfc-editor.org/info/rfc2890

Templin Expires June 16, 2018 [Page 53]

Internet-Draft AERO December 2017

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, DOI 10.17487/RFC2923, September 2000,

 <https://www.rfc-editor.org/info/rfc2923>.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
RFC 2983, DOI 10.17487/RFC2983, October 2000,

 <https://www.rfc-editor.org/info/rfc2983>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi,
 "DNS Extensions to Support IP Version 6", STD 88,

RFC 3596, DOI 10.17487/RFC3596, October 2003,
 <https://www.rfc-editor.org/info/rfc3596>.

 [RFC3819] Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, DOI 10.17487/RFC3819, July 2004,
 <https://www.rfc-editor.org/info/rfc3819>.

 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,

RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, DOI 10.17487/RFC4459, April
 2006, <https://www.rfc-editor.org/info/rfc4459>.

https://datatracker.ietf.org/doc/html/rfc2923
https://www.rfc-editor.org/info/rfc2923
https://datatracker.ietf.org/doc/html/rfc2983
https://www.rfc-editor.org/info/rfc2983
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3596
https://www.rfc-editor.org/info/rfc3596
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://www.rfc-editor.org/info/rfc3819
https://datatracker.ietf.org/doc/html/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://datatracker.ietf.org/doc/html/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/rfc4459
https://www.rfc-editor.org/info/rfc4459

Templin Expires June 16, 2018 [Page 54]

Internet-Draft AERO December 2017

 [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access
 Protocol (LDAP): The Protocol", RFC 4511,
 DOI 10.17487/RFC4511, June 2006,
 <https://www.rfc-editor.org/info/rfc4511>.

 [RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,
 <https://www.rfc-editor.org/info/rfc4555>.

 [RFC4592] Lewis, E., "The Role of Wildcards in the Domain Name
 System", RFC 4592, DOI 10.17487/RFC4592, July 2006,
 <https://www.rfc-editor.org/info/rfc4592>.

 [RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding
 ("IGMP/MLD Proxying")", RFC 4605, DOI 10.17487/RFC4605,
 August 2006, <https://www.rfc-editor.org/info/rfc4605>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <https://www.rfc-editor.org/info/rfc4963>.

 [RFC4994] Zeng, S., Volz, B., Kinnear, K., and J. Brzozowski,
 "DHCPv6 Relay Agent Echo Request Option", RFC 4994,
 DOI 10.17487/RFC4994, September 2007,
 <https://www.rfc-editor.org/info/rfc4994>.

 [RFC5213] Gundavelli, S., Ed., Leung, K., Devarapalli, V.,
 Chowdhury, K., and B. Patil, "Proxy Mobile IPv6",

RFC 5213, DOI 10.17487/RFC5213, August 2008,
 <https://www.rfc-editor.org/info/rfc5213>.

 [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
 Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
 DOI 10.17487/RFC5214, March 2008,
 <https://www.rfc-editor.org/info/rfc5214>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

https://datatracker.ietf.org/doc/html/rfc4511
https://www.rfc-editor.org/info/rfc4511
https://datatracker.ietf.org/doc/html/rfc4555
https://www.rfc-editor.org/info/rfc4555
https://datatracker.ietf.org/doc/html/rfc4592
https://www.rfc-editor.org/info/rfc4592
https://datatracker.ietf.org/doc/html/rfc4605
https://www.rfc-editor.org/info/rfc4605
https://datatracker.ietf.org/doc/html/rfc4821
https://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc4963
https://www.rfc-editor.org/info/rfc4963
https://datatracker.ietf.org/doc/html/rfc4994
https://www.rfc-editor.org/info/rfc4994
https://datatracker.ietf.org/doc/html/rfc5213
https://www.rfc-editor.org/info/rfc5213
https://datatracker.ietf.org/doc/html/rfc5214
https://www.rfc-editor.org/info/rfc5214
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246

Templin Expires June 16, 2018 [Page 55]

Internet-Draft AERO December 2017

 [RFC5320] Templin, F., Ed., "The Subnetwork Encapsulation and
 Adaptation Layer (SEAL)", RFC 5320, DOI 10.17487/RFC5320,
 February 2010, <https://www.rfc-editor.org/info/rfc5320>.

 [RFC5494] Arkko, J. and C. Pignataro, "IANA Allocation Guidelines
 for the Address Resolution Protocol (ARP)", RFC 5494,
 DOI 10.17487/RFC5494, April 2009,
 <https://www.rfc-editor.org/info/rfc5494>.

 [RFC5522] Eddy, W., Ivancic, W., and T. Davis, "Network Mobility
 Route Optimization Requirements for Operational Use in
 Aeronautics and Space Exploration Mobile Networks",

RFC 5522, DOI 10.17487/RFC5522, October 2009,
 <https://www.rfc-editor.org/info/rfc5522>.

 [RFC5558] Templin, F., Ed., "Virtual Enterprise Traversal (VET)",
RFC 5558, DOI 10.17487/RFC5558, February 2010,

 <https://www.rfc-editor.org/info/rfc5558>.

 [RFC5569] Despres, R., "IPv6 Rapid Deployment on IPv4
 Infrastructures (6rd)", RFC 5569, DOI 10.17487/RFC5569,
 January 2010, <https://www.rfc-editor.org/info/rfc5569>.

 [RFC5720] Templin, F., "Routing and Addressing in Networks with
 Global Enterprise Recursion (RANGER)", RFC 5720,
 DOI 10.17487/RFC5720, February 2010,
 <https://www.rfc-editor.org/info/rfc5720>.

 [RFC5844] Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy
 Mobile IPv6", RFC 5844, DOI 10.17487/RFC5844, May 2010,
 <https://www.rfc-editor.org/info/rfc5844>.

 [RFC5949] Yokota, H., Chowdhury, K., Koodli, R., Patil, B., and F.
 Xia, "Fast Handovers for Proxy Mobile IPv6", RFC 5949,
 DOI 10.17487/RFC5949, September 2010,
 <https://www.rfc-editor.org/info/rfc5949>.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC 5996, DOI 10.17487/RFC5996, September 2010,
 <https://www.rfc-editor.org/info/rfc5996>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <https://www.rfc-editor.org/info/rfc6146>.

https://datatracker.ietf.org/doc/html/rfc5320
https://www.rfc-editor.org/info/rfc5320
https://datatracker.ietf.org/doc/html/rfc5494
https://www.rfc-editor.org/info/rfc5494
https://datatracker.ietf.org/doc/html/rfc5522
https://www.rfc-editor.org/info/rfc5522
https://datatracker.ietf.org/doc/html/rfc5558
https://www.rfc-editor.org/info/rfc5558
https://datatracker.ietf.org/doc/html/rfc5569
https://www.rfc-editor.org/info/rfc5569
https://datatracker.ietf.org/doc/html/rfc5720
https://www.rfc-editor.org/info/rfc5720
https://datatracker.ietf.org/doc/html/rfc5844
https://www.rfc-editor.org/info/rfc5844
https://datatracker.ietf.org/doc/html/rfc5949
https://www.rfc-editor.org/info/rfc5949
https://datatracker.ietf.org/doc/html/rfc5996
https://www.rfc-editor.org/info/rfc5996
https://datatracker.ietf.org/doc/html/rfc6146
https://www.rfc-editor.org/info/rfc6146

Templin Expires June 16, 2018 [Page 56]

Internet-Draft AERO December 2017

 [RFC6179] Templin, F., Ed., "The Internet Routing Overlay Network
 (IRON)", RFC 6179, DOI 10.17487/RFC6179, March 2011,
 <https://www.rfc-editor.org/info/rfc6179>.

 [RFC6204] Singh, H., Beebee, W., Donley, C., Stark, B., and O.
 Troan, Ed., "Basic Requirements for IPv6 Customer Edge
 Routers", RFC 6204, DOI 10.17487/RFC6204, April 2011,
 <https://www.rfc-editor.org/info/rfc6204>.

 [RFC6221] Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A.
 Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221,
 DOI 10.17487/RFC6221, May 2011,
 <https://www.rfc-editor.org/info/rfc6221>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6275] Perkins, C., Ed., Johnson, D., and J. Arkko, "Mobility
 Support in IPv6", RFC 6275, DOI 10.17487/RFC6275, July
 2011, <https://www.rfc-editor.org/info/rfc6275>.

 [RFC6355] Narten, T. and J. Johnson, "Definition of the UUID-Based
 DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355,
 DOI 10.17487/RFC6355, August 2011,
 <https://www.rfc-editor.org/info/rfc6355>.

 [RFC6422] Lemon, T. and Q. Wu, "Relay-Supplied DHCP Options",
RFC 6422, DOI 10.17487/RFC6422, December 2011,

 <https://www.rfc-editor.org/info/rfc6422>.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,
 <https://www.rfc-editor.org/info/rfc6438>.

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
RFC 6691, DOI 10.17487/RFC6691, July 2012,

 <https://www.rfc-editor.org/info/rfc6691>.

 [RFC6706] Templin, F., Ed., "Asymmetric Extended Route Optimization
 (AERO)", RFC 6706, DOI 10.17487/RFC6706, August 2012,
 <https://www.rfc-editor.org/info/rfc6706>.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, DOI 10.17487/RFC6864, February 2013,

 <https://www.rfc-editor.org/info/rfc6864>.

https://datatracker.ietf.org/doc/html/rfc6179
https://www.rfc-editor.org/info/rfc6179
https://datatracker.ietf.org/doc/html/rfc6204
https://www.rfc-editor.org/info/rfc6204
https://datatracker.ietf.org/doc/html/rfc6221
https://www.rfc-editor.org/info/rfc6221
https://datatracker.ietf.org/doc/html/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc6275
https://www.rfc-editor.org/info/rfc6275
https://datatracker.ietf.org/doc/html/rfc6355
https://www.rfc-editor.org/info/rfc6355
https://datatracker.ietf.org/doc/html/rfc6422
https://www.rfc-editor.org/info/rfc6422
https://datatracker.ietf.org/doc/html/rfc6438
https://www.rfc-editor.org/info/rfc6438
https://datatracker.ietf.org/doc/html/rfc6691
https://www.rfc-editor.org/info/rfc6691
https://datatracker.ietf.org/doc/html/rfc6706
https://www.rfc-editor.org/info/rfc6706
https://datatracker.ietf.org/doc/html/rfc6864
https://www.rfc-editor.org/info/rfc6864

Templin Expires June 16, 2018 [Page 57]

Internet-Draft AERO December 2017

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935,
 DOI 10.17487/RFC6935, April 2013,
 <https://www.rfc-editor.org/info/rfc6935>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <https://www.rfc-editor.org/info/rfc6936>.

 [RFC6939] Halwasia, G., Bhandari, S., and W. Dec, "Client Link-Layer
 Address Option in DHCPv6", RFC 6939, DOI 10.17487/RFC6939,
 May 2013, <https://www.rfc-editor.org/info/rfc6939>.

 [RFC6980] Gont, F., "Security Implications of IPv6 Fragmentation
 with IPv6 Neighbor Discovery", RFC 6980,
 DOI 10.17487/RFC6980, August 2013,
 <https://www.rfc-editor.org/info/rfc6980>.

 [RFC7078] Matsumoto, A., Fujisaki, T., and T. Chown, "Distributing
 Address Selection Policy Using DHCPv6", RFC 7078,
 DOI 10.17487/RFC7078, January 2014,
 <https://www.rfc-editor.org/info/rfc7078>.

 [TUNTAP] Wikipedia, W., "http://en.wikipedia.org/wiki/TUN/TAP",
 October 2014.

Appendix A. AERO Alternate Encapsulations

 When GUE encapsulation is not needed, AERO can use common
 encapsulations such as IP-in-IP [RFC2003][RFC2473][RFC4213], Generic
 Routing Encapsulation (GRE) [RFC2784][RFC2890] and others. The
 encapsulation is therefore only differentiated from non-AERO tunnels
 through the application of AERO control messaging and not through,
 e.g., a well-known UDP port number.

 As for GUE encapsulation, alternate AERO encapsulation formats may
 require encapsulation layer fragmentation. For simple IP-in-IP
 encapsulation, an IPv6 fragment header is inserted directly between
 the inner and outer IP headers when needed, i.e., even if the outer
 header is IPv4. The IPv6 Fragment Header is identified to the outer
 IP layer by its IP protocol number, and the Next Header field in the
 IPv6 Fragment Header identifies the inner IP header version. For GRE
 encapsulation, a GRE fragment header is inserted within the GRE
 header [I-D.templin-intarea-grefrag].

 Figure 5 shows the AERO IP-in-IP encapsulation format before any
 fragmentation is applied:

https://datatracker.ietf.org/doc/html/rfc6935
https://www.rfc-editor.org/info/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
https://www.rfc-editor.org/info/rfc6936
https://datatracker.ietf.org/doc/html/rfc6939
https://www.rfc-editor.org/info/rfc6939
https://datatracker.ietf.org/doc/html/rfc6980
https://www.rfc-editor.org/info/rfc6980
https://datatracker.ietf.org/doc/html/rfc7078
https://www.rfc-editor.org/info/rfc7078
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2784

Templin Expires June 16, 2018 [Page 58]

Internet-Draft AERO December 2017

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IPv4 Header | | Outer IPv6 Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |IPv6 Frag Header (optional)| |IPv6 Frag Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header | | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | |
 ~ ~ ~ ~
 ~ Inner Packet Body ~ ~ Inner Packet Body ~
 ~ ~ ~ ~
 | | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Minimal Encapsulation in IPv4 Minimal Encapsulation in IPv6

 Figure 5: Minimal Encapsulation Format using IP-in-IP

 Figure 6 shows the AERO GRE encapsulation format before any
 fragmentation is applied:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Header |
 | (with checksum, key, etc..) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Fragment Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 ~ ~
 ~ Inner Packet Body ~
 ~ ~
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 6: Minimal Encapsulation Using GRE

 Alternate encapsulation may be preferred in environments where GUE
 encapsulation would add unnecessary overhead. For example, certain
 low-bandwidth wireless data links may benefit from a reduced
 encapsulation overhead.

Templin Expires June 16, 2018 [Page 59]

Internet-Draft AERO December 2017

 GUE encapsulation can traverse network paths that are inaccessible to
 non-UDP encapsulations, e.g., for crossing Network Address
 Translators (NATs). More and more, network middleboxes are also
 being configured to discard packets that include anything other than
 a well-known IP protocol such as UDP and TCP. It may therefore be
 necessary to determine the potential for middlebox filtering before
 enabling alternate encapsulation in a given environment.

 In addition to IP-in-IP, GRE and GUE, AERO can also use security
 encapsulations such as IPsec and SSL/TLS. In that case, AERO control
 messaging and route determination occur before security encapsulation
 is applied for outgoing packets and after security decapsulation is
 applied for incoming packets.

 AERO is especially well suited for use with VPN system encapsulations
 such as OpenVPN [OVPN].

Appendix B. When to Insert an Encapsulation Fragment Header

 An encapsulation fragment header is inserted when the AERO tunnel
 ingress needs to apply fragmentation to accommodate packets that must
 be delivered without loss due to a size restriction. Fragmentation
 is performed on the inner packet while encapsulating each inner
 packet fragment in outer IP and encapsulation layer headers that
 differ only in the fragment header fields.

 The fragment header can also be inserted in order to include a
 coherent Identification value with each packet, e.g., to aid in
 Duplicate Packet Detection (DPD). In this way, network nodes can
 cache the Identification values of recently-seen packets and use the
 cached values to determine whether a newly-arrived packet is in fact
 a duplicate. The Identification value within each packet could
 further provide a rough indicator of packet reordering, e.g., in
 cases when the tunnel egress wishes to discard packets that are
 grossly out of order.

 In some use cases, there may be operational assurance that no
 fragmentation of any kind will be necessary, or that only occasional
 large control messages will require fragmentation. In that case, the
 encapsulation fragment header can be omitted and ordinary
 fragmentation of the outer IP protocol version can be applied when
 necessary.

Appendix C. Autoconfiguration for Constrained Platforms

 On some platforms (e.g., popular cell phone operating systems), the
 act of assigning a default IPv6 route and/or assigning an address to
 an interface may not be permitted from a user application due to

Templin Expires June 16, 2018 [Page 60]

Internet-Draft AERO December 2017

 security policy. Typically, those platforms include a TUN/TAP
 interface [TUNTAP] that acts as a point-to-point conduit between user
 applications and the AERO interface. In that case, the Client can
 instead generate a "synthesized RA" message. The message conforms to
 [RFC4861] and is prepared as follows:

 o the IPv6 source address is the Client's AERO address

 o the IPv6 destination address is all-nodes multicast

 o the Router Lifetime is set to a time that is no longer than the
 ACP DHCPv6 lifetime

 o the message does not include a Source Link Layer Address Option
 (SLLAO)

 o the message includes a Prefix Information Option (PIO) with a /64
 prefix taken from the ACP as the prefix for autoconfiguration

 The Client then sends the synthesized RA message via the TUN/TAP
 interface, where the operating system kernel will interpret it as
 though it were generated by an actual router. The operating system
 will then install a default route and use StateLess Address
 AutoConfiguration (SLAAC) to configure an IPv6 address on the TUN/TAP
 interface. Methods for similarly installing an IPv4 default route
 and IPv4 address on the TUN/TAP interface are based on synthesized
 DHCPv4 messages [RFC2131].

Appendix D. Operational Deployment Alternatives

 AERO can be used in many different variations based on the specific
 use case. The following sections discuss variations that adhere to
 the AERO principles while allowing selective application of AERO
 components.

D.1. Operation on AERO Links Without DHCPv6 Services

 When Servers on the AERO link do not provide DHCPv6 services,
 operation can still be accommodated through administrative
 configuration of ACPs on AERO Clients. In that case, administrative
 configurations of AERO interface neighbor cache entries on both the
 Server and Client are also necessary. However, this may interfere
 with the ability for Clients to dynamically change to new Servers,
 and can expose the AERO link to misconfigurations unless the
 administrative configurations are carefully coordinated.

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2131

Templin Expires June 16, 2018 [Page 61]

Internet-Draft AERO December 2017

D.2. Operation on Server-less AERO Links

 In some AERO link scenarios, there may be no Servers on the link and/
 or no need for Clients to use a Server as an intermediary trust
 anchor. In that case, each Client acts as a Server unto itself to
 establish neighbor cache entries by performing direct Client-to-
 Client IPv6 ND message exchanges, and some other form of trust basis
 must be applied so that each Client can verify that the prospective
 neighbor is authorized to use its claimed ACP.

 When there is no Server on the link, Clients must arrange to receive
 ACPs and publish them via a secure alternate PD authority through
 some means outside the scope of this document.

D.3. Operation on Client-less AERO Links

 In some environments, the AERO service may be useful for mobile nodes
 that do not implement the AERO Client function and do not perform
 encapsulation. For example, if the mobile node has a way of
 injecting its ACP into the access subnetwork routing system an AERO
 Server connected to the same access network can accept the ACP prefix
 injection as an indication that a new mobile node has come onto the
 subnetwork. The Server can then inject the ACP into the BGP routing
 system the same as if an AERO Client/Server DHCPv6 PD exchange had
 occurred. If the mobile node subsequently withdraws the ACP from the
 access network routing system, the Server can then withdraw the ACP
 from the BGP routing system.

 In this arrangement, AERO Servers and Relays are used in exactly the
 same ways as for environments where DHCPv6 Client/Server exchanges
 are supported. However, the access subnetwork routing systems must
 be capable of accommodating rapid ACP injections and withdrawals from
 mobile nodes with the understanding that the information must be
 propagated to all routers in the system. Operational experience has
 shown that this kind of routing system "churn" can lead to overall
 instability and routing system inconsistency.

D.4. Manually-Configured AERO Tunnels

 In addition to the dynamic neighbor discovery procedures for AERO
 link neighbors described above, AERO encapsulation can be applied to
 manually-configured tunnels. In that case, the tunnel endpoints use
 an administratively-provisioned link-local address and exchange NS/NA
 messages the same as for dynamically-established tunnels.

Templin Expires June 16, 2018 [Page 62]

Internet-Draft AERO December 2017

D.5. Encapsulation Avoidance on Relay-Server Dedicated Links

 In some environments, AERO Servers and Relays may be connected by
 dedicated point-to-point links, e.g., high speed fiberoptic leased
 lines. In that case, the Servers and Relays can participate in the
 AERO link the same as specified above but can avoid encapsulation
 over the dedicated links. In that case, however, the links would be
 dedicated for AERO and could not be multiplexed for both AERO and
 non-AERO communications.

D.6. Encapsulation Protocol Version Considerations

 A source Client may connect only to an IPvX underlying network, while
 the target Client connects only to an IPvY underlying network. In
 that case, the target and source Clients have no means for reaching
 each other directly (since they connect to underlying networks of
 different IP protocol versions) and so must ignore any route
 optimization messages and continue to send packets via their Servers.

D.7. Extending AERO Links Through Security Gateways

 When an enterprise mobile node moves from a campus LAN connection to
 a public Internet link, it must re-enter the enterprise via a
 security gateway that has both a physical interface connection to the
 Internet and a physical interface connection to the enterprise
 internetwork. This most often entails the establishment of a Virtual
 Private Network (VPN) link over the public Internet from the mobile
 node to the security gateway. During this process, the mobile node
 supplies the security gateway with its public Internet address as the
 link-layer address for the VPN. The mobile node then acts as an AERO
 Client to negotiate with the security gateway to obtain its ACP.

 In order to satisfy this need, the security gateway also operates as
 an AERO Server with support for AERO Client proxying. In particular,
 when a mobile node (i.e., the Client) connects via the security
 gateway (i.e., the Server), the Server provides the Client with an
 ACP in a DHCPv6 PD exchange the same as if it were attached to an
 enterprise campus access link. The Server then replaces the Client's
 link-layer source address with the Server's enterprise-facing link-
 layer address in all AERO messages the Client sends toward neighbors
 on the AERO link. The AERO messages are then delivered to other
 nodes on the AERO link as if they were originated by the security
 gateway instead of by the AERO Client. In the reverse direction, the
 AERO messages sourced by nodes within the enterprise network can be
 forwarded to the security gateway, which then replaces the link-layer
 destination address with the Client's link-layer address and replaces
 the link-layer source address with its own (Internet-facing) link-
 layer address.

Templin Expires June 16, 2018 [Page 63]

Internet-Draft AERO December 2017

 After receiving the ACP, the Client can send IP packets that use an
 address taken from the ACP as the network layer source address, the
 Client's link-layer address as the link-layer source address, and the
 Server's Internet-facing link-layer address as the link-layer
 destination address. The Server will then rewrite the link-layer
 source address with the Server's own enterprise-facing link-layer
 address and rewrite the link-layer destination address with the
 target AERO node's link-layer address, and the packets will enter the
 enterprise network as though they were sourced from a node located
 within the enterprise. In the reverse direction, when a packet
 sourced by a node within the enterprise network uses a destination
 address from the Client's ACP, the packet will be delivered to the
 security gateway which then rewrites the link-layer destination
 address to the Client's link-layer address and rewrites the link-
 layer source address to the Server's Internet-facing link-layer
 address. The Server then delivers the packet across the VPN to the
 AERO Client. In this way, the AERO virtual link is essentially
 extended *through* the security gateway to the point at which the VPN
 link and AERO link are effectively grafted together by the link-layer
 address rewriting performed by the security gateway. All AERO
 messaging services (including route optimization and mobility
 signaling) are therefore extended to the Client.

 In order to support this virtual link grafting, the security gateway
 (acting as an AERO Server) must keep static neighbor cache entries
 for all of its associated Clients located on the public Internet.
 The neighbor cache entry is keyed by the AERO Client's AERO address
 the same as if the Client were located within the enterprise
 internetwork. The neighbor cache is then managed in all ways as
 though the Client were an ordinary AERO Client. This includes the
 AERO IPv6 ND messaging signaling for Route Optimization and Neighbor
 Unreachability Detection.

 Note that the main difference between a security gateway acting as an
 AERO Server and an enterprise-internal AERO Server is that the
 security gateway has at least one enterprise-internal physical
 interface and at least one public Internet physical interface.
 Conversely, the enterprise-internal AERO Server has only enterprise-
 internal physical interfaces. For this reason security gateway
 proxying is needed to ensure that the public Internet link-layer
 addressing space is kept separate from the enterprise-internal link-
 layer addressing space. This is afforded through a natural extension
 of the security association caching already performed for each VPN
 client by the security gateway.

Templin Expires June 16, 2018 [Page 64]

Internet-Draft AERO December 2017

Appendix E. Change Log

 Changes from -76 to -77:

 o Now using IPv6 ND NS/NA messaging for route optimization (no
 longer using Predirect/Redirect)

 o Now using combined IPv6 ND/DHCPv6 messaging so autoconfiguration
 can be conducted in a single message exchange

 o Introduced the AERO Proxy construct. Critical for applications
 such as ATN/IPS

 Changes from -75 to -76:

 o Bumped version number ahead of expiration deadline

 Changes from -74 to -75:

 o Bumped version number ahead of expiration deadline

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

Templin Expires June 16, 2018 [Page 65]

