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Abstract

   This document specifies the operation of IP over tunnel virtual links
   using Asymmetric Extended Route Optimization (AERO).  Nodes attached
   to AERO links can exchange packets via trusted intermediate routers
   that provide forwarding services to reach off-link destinations and
   route optimization services for improved performance.  AERO provides
   an IPv6 link-local address format that supports operation of the IPv6
   Neighbor Discovery (ND) protocol and links IPv6 ND to IP forwarding.
   Admission control and address/prefix provisioning are supported by
   the Dynamic Host Configuration Protocol for IPv6 (DHCPv6), while
   mobility management, quality of service signaling and route
   optimization are naturally supported through dynamic neighbor cache
   updates.  AERO is a widely-applicable tunneling solution especially
   well suited to mobile Virtual Private Networks (VPNs) and other
   applications as described in this document.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 16, 2018.
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1.  Introduction

   This document specifies the operation of IP over tunnel virtual links
   using Asymmetric Extended Route Optimization (AERO).  The AERO link
   can be used for tunneling between neighboring nodes over either IPv6
   or IPv4 networks, i.e., AERO views the IPv6 and IPv4 networks as
   equivalent links for tunneling.  Nodes attached to AERO links can
   exchange packets via trusted intermediate routers that provide
   forwarding services to reach off-link destinations and route
   optimization services for improved performance [RFC5522].

   AERO provides an IPv6 link-local address format that supports
   operation of the IPv6 Neighbor Discovery (ND) [RFC4861] protocol and
   links IPv6 ND to IP forwarding.  Admission control and address/prefix
   provisioning are supported by the Dynamic Host Configuration Protocol
   for IPv6 (DHCPv6) [RFC3315], while mobility management, quality of
   service signaling and route optimization are naturally supported
   through dynamic neighbor cache updates.

   A node's AERO interface can be configured over multiple underlying
   interfaces.  From the standpoint of IPv6 ND, AERO interface neighbors
   therefore may appear to have multiple link-layer addresses.  Each
   link-layer address is subject to change due to mobility, and link-
   layer address changes are signaled by IPv6 ND messaging the same as
   for any IPv6 link.

   AERO is applicable to a wide variety of use cases.  For example, it
   can be used to coordinate the Virtual Private Network (VPN) links of
   mobile nodes (e.g., cellphones, tablets, laptop computers, etc.) that
   connect into a home enterprise network via public access networks
   using services such as OpenVPN [OVPN].  AERO is also applicable to
   aviation applications for both manned and unmanned aircraft where the
   aircraft is treated as a mobile node that can connect an Internet of
   Things (IoT).  Other applicable use cases are also in scope.

   The remainder of this document presents the AERO specification.

2.  Terminology

   The terminology in the normative references applies; the following
   terms are defined within the scope of this document:

   AERO link
      a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
      configured over a node's attached IPv6 and/or IPv4 networks.  All
      nodes on the AERO link appear as single-hop neighbors from the
      perspective of the virtual overlay even though they may be
      separated by many underlying network hops.  The AERO mechanisms

https://datatracker.ietf.org/doc/html/rfc5522
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3315
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      can also operate over native link types (e.g., Ethernet, WiFi
      etc.) when a tunnel virtual overlay is not needed.

   AERO interface
      a node's attachment to an AERO link.  Since the addresses assigned
      to an AERO interface are managed for uniqueness, AERO interfaces
      do not require Duplicate Address Detection (DAD) and therefore set
      the administrative variable DupAddrDetectTransmits to zero
      [RFC4862].

   AERO address
      an IPv6 link-local address constructed as specified in

Section 3.4.

   AERO node
      a node that is connected to an AERO link.

   AERO Client ("Client")
      a node that issues DHCPv6 messages to receive IP Prefix
      Delegations (PDs) from one or more AERO Servers.  Following PD,
      the Client assigns an AERO address to the AERO interface for use
      in IPv6 ND exchanges with other AERO nodes.  A node that acts as
      an AERO Client on one AERO interface can also act as an AERO
      Server on a different AERO interface.

   AERO Server ("Server")
      a node that configures an AERO interface to provide default
      forwarding services for AERO Clients.  The Server assigns an
      administratively provisioned IPv6 link-local unicast address to
      the AERO interface to support the operation of DHCPv6 and the IPv6
      ND protocol.  An AERO Server can also act as an AERO Relay.

   AERO Relay ("Relay")
      a node that configures an AERO interface to relay IP packets
      between nodes on the same AERO link and/or forward IP packets
      between the AERO link and the native Internetwork.  The Relay
      assigns an administratively provisioned IPv6 link-local unicast
      address to the AERO interface the same as for a Server.  An AERO
      Relay can also act as an AERO Server.

   AERO Proxy ("Proxy")
      a node that provides proxying services for Clients that cannot
      associate directly with Servers, e.g., when the Client is located
      in a secured internal enclave and the Server is located in the
      exteranal Internetwork.  The AERO Proxy is a conduit between the
      secured enclave and the outside world, i.e., in the same manner as
      for common web proxies.

https://datatracker.ietf.org/doc/html/rfc4862
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   ingress tunnel endpoint (ITE)
      an AERO interface endpoint that injects encapsulated packets into
      an AERO link.

   egress tunnel endpoint (ETE)
      an AERO interface endpoint that receives encapsulated packets from
      an AERO link.

   underlying network
      a connected IPv6 or IPv4 network routing region over which the
      tunnel virtual overlay is configured.

   underlying interface
      an AERO node's interface point of attachment to an underlying
      network.

   link-layer address
      an IP address assigned to an AERO node's underlying interface.
      When UDP encapsulation is used, the UDP port number is also
      considered as part of the link-layer address.  Link-layer
      addresses are used as the encapsulation header source and
      destination addresses.

   network layer address
      the source or destination address of the encapsulated IP packet.

   end user network (EUN)
      an internal virtual or external edge IP network that an AERO
      Client connects to the rest of the network via the AERO interface.
      The Client sees each EUN as a "downstream" network and sees the
      AERO interface as its point of attachment to the "upstream"
      network.

   AERO Service Prefix (ASP)
      an IP prefix associated with the AERO link and from which more-
      specific AERO Client Prefixes (ACPs) are derived.

   AERO Client Prefix (ACP)
      an IP prefix derived from an ASP and delegated to a Client, where
      the ACP prefix length must be no shorter than the ASP prefix
      length and must be no longer than 64 for IPv6 or 32 for IPv4.

   base AERO address
      the lowest-numbered AERO address from the first ACP delegated to
      the Client (see Section 3.4).

   Throughout the document, the simple terms "Client", "Server", "Relay"
   and "Proxy" refer to "AERO Client", "AERO Server", "AERO Relay" and



Templin                   Expires June 16, 2018                 [Page 6]



Internet-Draft                    AERO                     December 2017

   "AERO Proxy", respectively.  Capitalization is used to distinguish
   these terms from DHCPv6 client/server/relay [RFC3315].

   The terminology of DHCPv6 [RFC3315] and IPv6 ND [RFC4861] (including
   the names of node variables and protocol constants) applies to this
   document.  Also throughout the document, the term "IP" is used to
   generically refer to either Internet Protocol version (i.e., IPv4 or
   IPv6).

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].  Lower case
   uses of these words are not to be interpreted as carrying RFC2119
   significance.

3.  Asymmetric Extended Route Optimization (AERO)

   The following sections specify the operation of IP over Asymmetric
   Extended Route Optimization (AERO) links:

3.1.  AERO Link Reference Model

https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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                              .-(::::::::)
                           .-(:::: IP ::::)-.
                          (:: Internetwork ::)
                           `-(::::::::::::)-'
                              `-(::::::)-'
                                   |
       +--------------+   +--------+-------+   +--------------+
       |AERO Server S1|   | AERO Relay R1  |   |AERO Server S2|
       |  Nbr: C1; R1 |   |   Nbr: S1; S2  |   |  Nbr: C2; R1 |
       |  default->R1 |   |(P1->S1; P2->S2)|   |  default->R1 |
       |    X1->C1    |   |      ASP A1    |   |    X2->C2    |
       +-------+------+   +--------+-------+   +------+-------+
               |    AERO Link      |                  |
       X---+---+-----------------+-+------------------+---+---X
           |                     |                        |
     +-----+--------+      +-----+--------+      +--------+-----+
     |AERO Client C1|      |AERO Proxy P1 |      |AERO Client C2|
     |    Nbr: S1   |      | Nbr: S1, S2  |      |   Nbr: S2    |
     | default->S1  |      | default->R1  |      | default->S2  |
     |    ACP X1    |      +-------+------+      |    ACP X2    |
     +------+-------+     .--------|-------.     +-----+--------+
            |           (- Proxied Clients -)          |
           .-.            `---------------'           .-.
        ,-(  _)-.                                  ,-(  _)-.
     .-(_  IP   )-.   +-------+     +-------+    .-(_  IP   )-.
   (__    EUN      )--|Host H1|     |Host H2|--(__    EUN      )
      `-(______)-'    +-------+     +-------+     `-(______)-'

                    Figure 1: AERO Link Reference Model

   Figure 1 presents the AERO link reference model.  In this model:

   o  AERO Relay R1 aggregates AERO Service Prefix (ASP) A1, acts as a
      default router for its associated Servers and Proxies (S1, S2 and
      P1), and connects the AERO link to the rest of the IP
      Internetwork.

   o  AERO Servers S1 and S2 associate with Relay R1 and also act as
      default routers for their associated Clients C1 and C2.

   o  AERO Clients C1 and C2 associate with Servers S1 and S2,
      respectively.  They receive AERO Client Prefix (ACP) delegations
      X1 and X2, and also act as default routers for their associated
      physical or internal virtual EUNs.  Simple hosts H1 and H2 attach
      to the EUNs served by Clients C1 and C2, respectively.

   o  AERO Proxy P1 associates with Relay R1 as a default router and
      Servers S1 and S2 as neighbors.  P1 provides proxy services for
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      AERO Clients in secured enclaves that cannot associate directly
      with Servers in the outside world.

   Each node on the AERO link maintains an AERO interface neighbor cache
   and an IP forwarding table the same as for any link.  In common
   operational practice, there may be many additional Relays, Servers,
   Proxies and Clients.

3.2.  AERO Node Types

   AERO Relays provide default forwarding services to AERO Servers.
   Each Relay also peers with Servers and other Relays in a dynamic
   routing protocol instance to discover the list of active ACPs (see

Section 3.3).  Relays forward packets between neighbors connected to
   the same AERO link and also forward packets between the AERO link and
   the native IP Internetwork.  Relays present the AERO link to the
   native Internetwork as a set of one or more AERO Service Prefixes
   (ASPs) and serve as a gateway between the AERO link and the
   Internetwork.  Relays maintain AERO interface neighbor cache entries
   for Servers, and maintain an IP forwarding table entry for each AERO
   Client Prefix (ACP).  AERO Relays can also be configured to act as
   AERO Servers.

   AERO Servers provide default forwarding services to AERO Clients.
   Each Server also peers with Relays in a dynamic routing protocol
   instance to advertise its list of associated ACPs (see Section 3.3).
   Servers configure a DHCPv6 server function and act as delegating
   routers to facilitate Prefix Delegation (PD) exchanges with Clients.
   Each delegated prefix becomes an ACP taken from an ASP.  Servers
   forward packets between AERO interface neighbors, and maintain an
   AERO interface neighbor cache entry for each Relay.  They also
   maintain both neighbor cache entries and IP forwarding table entries
   for each of their associated Clients.  AERO Servers can also be
   configured to act as AERO Relays.

   AERO Clients act as requesting routers to receive ACPs through DHCPv6
   PD exchanges with AERO Servers over the AERO link.  Each Client can
   associate with a single Server or with multiple Servers, e.g., for
   fault tolerance, load balancing, etc.  Each IPv6 Client receives at
   least a /64 IPv6 ACP, and may receive even shorter prefixes.
   Similarly, each IPv4 Client receives at least a /32 IPv4 ACP (i.e., a
   singleton IPv4 address), and may receive even shorter prefixes.
   Clients maintain an AERO interface neighbor cache entry for each of
   their associated Servers as well as for each of their correspondent
   Clients.

   AERO Proxies provide a conduit for AERO Clients located in secured
   enclaves to assocaite with Servers located in the outside
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   Internetwork.  The Proxy can either be explicit or transparent.  In
   the explicit case, the Client sends all of its control plane messages
   addressed to the Server to the link-layer address of the Proxy.  In
   the transparent case, the Client sends all of its control plane
   messages to the Server's link-layer address and the Proxy intercepts
   them before they leave the secured enclave.  In both cases, the Proxy
   forwards the Client's control plane messages to the Server, forwards
   the Client's outbound data plane messages to a Relay and accepts
   inbound data plane messages from the Client's current Server(s).  The
   Proxy may also discover a more direct route toward a target
   destination via AERO route optimization, in which case future packets
   would be forwarded via the more direct route instead of via a Relay.
   The Proxy function is discussed in more detail in Section 4.

3.3.  AERO Routing System

   The AERO routing system comprises a private instance of the Border
   Gateway Protocol (BGP) [RFC4271] that is coordinated between Relays
   and Servers and does not interact with either the public Internet BGP
   routing system or the native IP Internetwork interior routing system.
   Relays advertise only a small and unchanging set of ASPs to the
   native routing system instead of the full dynamically changing set of
   ACPs.

   In a reference deployment, each AERO Server is configured as an
   Autonomous System Border Router (ASBR) for a stub Autonomous System
   (AS) using an AS Number (ASN) that is unique within the BGP instance,
   and each Server further uses eBGP to peer with one or more Relays but
   does not peer with other Servers.  All Relays are members of the same
   hub AS using a common ASN, and use iBGP to maintain a consistent view
   of all active ACPs currently in service.

   Each Server maintains a working set of associated ACPs, and
   dynamically announces new ACPs and withdraws departed ACPs in its
   eBGP updates to Relays.  Clients are expected to remain associated
   with their current Servers for extended timeframes, however Servers
   SHOULD selectively suppress updates for impatient Clients that
   repeatedly associate and disassociate with them in order to dampen
   routing churn.

   Each Relay configures a black-hole route for each of its ASPs.  By
   black-holing the ASPs, the Relay will maintain forwarding table
   entries only for the ACPs that are currently active, and packets
   destined to all other ACPs will correctly incur Destination
   Unreachable messages due to the black hole route.  Relays do not send
   eBGP updates for ACPs to Servers, but instead originate a default
   route.  In this way, Servers have only partial topology knowledge
   (i.e., they know only about the ACPs of their directly associated

https://datatracker.ietf.org/doc/html/rfc4271
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   Clients) and they forward all other packets to Relays which have full
   topology knowledge.

   Scaling properties of the AERO routing system are limited by the
   number of BGP routes that can be carried by Relays.  At the time of
   this writing, the global public Internet BGP routing system manages
   more than 500K routes with linear growth and no signs of router
   resource exhaustion [BGP].  Network emulation studies have also shown
   that a single Relay can accommodate at least 1M dynamically changing
   BGP routes even on a lightweight virtual machine, i.e., and without
   requiring high-end dedicated router hardware.

   Therefore, assuming each Relay can carry 1M or more routes, this
   means that at least 1M Clients can be serviced by a single set of
   Relays.  A means of increasing scaling would be to assign a different
   set of Relays for each set of ASPs.  In that case, each Server still
   peers with one or more Relays, but the Server institutes route
   filters so that it only sends BGP updates to the specific set of
   Relays that aggregate the ASP.  For example, if the ASP for the AERO
   link is 2001:db8::/32, a first set of Relays could service the ASP
   segment 2001:db8::/40, a second set of Relays could service
   2001:db8:0100::/40, a third set could service 2001:db8:0200::/40,
   etc.

   Assuming up to 1K sets of Relays, the AERO routing system can then
   accommodate 1B or more ACPs with no additional overhead for Servers
   and Relays (for example, it should be possible to service 1B /64 ACPs
   taken from a /34 ASP and even more for shorter prefixes).  In this
   way, each set of Relays services a specific set of ASPs that they
   advertise to the native routing system, and each Server configures
   ASP-specific routes that list the correct set of Relays as next hops.
   This arrangement also allows for natural incremental deployment, and
   can support small scale initial deployments followed by dynamic
   deployment of additional Clients, Servers and Relays without
   disturbing the already-deployed base.

   Note that in an alternate routing arrangement each set of Relays
   could advertise an aggregated ASP for the link into the native
   routing system even though each Relay services only smaller segments
   of the ASP.  In that case, a Relay upon receiving a packet with a
   destination address covered by the ASP segment of another Relay can
   simply tunnel the packet to the other Relay.  The tradeoff then is
   the penalty for Relay-to-Relay tunneling compared with reduced
   routing information in the native routing system.
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3.4.  AERO Interface Link-local Addresses

   AERO interface link-local address types include administratively-
   provisioned addresses and AERO addresses.

   Administratively-provisioned addresses are allocated from the range
   fe80::/96 and assigned to a Server or Relay's AERO interface.
   Administratively-provisioned addresses MUST be managed for uniqueness
   by the administrative authority for the AERO link.  (Note that fe80::
   is the IPv6 link-local subnet router anycast address, and
   fe80::ffff:ffff is the address used by Clients to bootstrap AERO
   address autoconfiguration.  These special addresses are therefore not
   available for assignment.)

   An AERO address is an IPv6 link-local address with an embedded prefix
   based on an ACP and associated with a Client's AERO interface.  AERO
   addresses remain stable as the Client moves between topological
   locations, i.e., even if its link-layer addresses change.

   For IPv6, AERO addresses begin with the prefix fe80::/64 and include
   in the interface identifier (i.e., the lower 64 bits) a 64-bit prefix
   taken from one of the Client's IPv6 ACPs.  For example, if the AERO
   Client receives the IPv6 ACP:

      2001:db8:1000:2000::/56

   it constructs its corresponding AERO addresses as:

      fe80::2001:db8:1000:2000

      fe80::2001:db8:1000:2001

      fe80::2001:db8:1000:2002

      ... etc. ...

      fe80::2001:db8:1000:20ff

   For IPv4, AERO addresses are based on an IPv4-mapped IPv6 address
   [RFC4291] formed from an IPv4 ACP and with a Prefix Length of 96 plus
   the ACP prefix length.  For example, for the IPv4 ACP 192.0.2.32/28
   the IPv4-mapped IPv6 ACP is:

      0:0:0:0:0:FFFF:192.0.2.16/124

   The Client then constructs its AERO addresses with the prefix
   fe80::/64 and with the lower 64 bits of the IPv4-mapped IPv6 address
   in the interface identifier as:

https://datatracker.ietf.org/doc/html/rfc4291
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      fe80::FFFF:192.0.2.16

      fe80::FFFF:192.0.2.17

      fe80::FFFF:192.0.2.18

      ... etc. ...

      fe80:FFFF:192.0.2.31

   When the Server delegates ACPs to the Client, both the Server and
   Client use the lowest-numbered AERO address from the first ACP
   delegation as the "base" AERO address.  (For example, for the ACP
   2001:db8:1000:2000::/56 the base address is 2001:db8:1000:2000.)  The
   Client then assigns the base AERO address to the AERO interface and
   uses it for the purpose of maintaining the neighbor cache entry.  If
   the Client has multiple AERO addresses (i.e., when there are multiple
   ACPs and/or ACPs with short prefix lengths), the Client originates
   IPv6 ND messages using the base AERO address as the source address
   and accepts and responds to IPv6 ND messages destined to any of its
   AERO addresses as equivalent to the base AERO address.  In this way,
   the Client maintains a single neighbor cache entry that may include
   multiple AERO addresses.

3.5.  AERO Interface Characteristics

   AERO interfaces use encapsulation (see: Section 3.9) to exchange
   packets with neighbors attached to the AERO link.

   AERO interfaces maintain a neighbor cache, and use both DHCPv6 and
   IPv6 ND control messaging to manage the creation, modification and
   deletion of neighbor cache entries.  AERO interfaces use standard
   DHCPv6 messaging for prefix delegation, and use unicast IPv6 ND
   Neighbor Solicitation (NS), Neighbor Advertisement (NA), Router
   Solicitation (RS), Router Advertisement (RA) and Redirect messages
   for neighbor cache management the same as for any IPv6 link.  AERO
   interfaces include routing information in IPv6 ND messages to support
   route optimization.

   AERO interface ND messages include one or more Source/Target Link-
   Layer Address Options (S/TLLAOs) formatted as shown in Figure 2:
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        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |      Type     |   Length = 5  |          Reserved             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |          Interface ID         |        UDP Port Number        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       +                                                               +
       |                                                               |
       +                          IP Address                           +
       |                                                               |
       +                                                               +
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |P00|P01|P02|P03|P04|P05|P06|P07|P08|P09|P10|P11|P12|P13|P14|P15|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |P16|P17|P18|P19|P20|P21|P22|P23|P24|P25|P26|P27|P28|P29|P30|P31|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |P32|P33|P34|P35|P36|P37|P38|P39|P40|P41|P42|P43|P44|P45|P46|P47|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |P48|P49|P50|P51|P52|P53|P54|P55|P56|P57|P58|P59|P60|P61|P62|P63|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 2: AERO Source/Target Link-Layer Address Option (S/TLLAO)
                                  Format

   In this format:

   o  Type is set to '1' for SLLAO or '2' for TLLAO the same as for IPv6
      ND.

   o  Length is set to the constant value '5' (i.e., 5 units of 8
      octets).

   o  Reserved is set to the value '0' on transmission and ignored on
      receipt.

   o  Interface ID is set to an integer value between 0 and 65535
      corresponding to an underlying interface of the AERO node.

   o  UDP Port Number and IP Address are set to the addresses used by
      the AERO node when it sends encapsulated packets over the
      underlying interface.  When UDP is not used as part of the
      encapsulation, UDP Port Number is set to the value '0'.  When the
      encapsulation IP address family is IPv4, IP Address is formed as
      an IPv4-mapped IPv6 address as specified in Section 3.4.
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   o  P[i] is a set of 64 Preference values that correspond to the 64
      Differentiated Service Code Point (DSCP) values [RFC2474].  Each
      P(i) is set to the value '0' ("disabled"), '1' ("low"), '2'
      ("medium") or '3' ("high") to indicate a preference level for
      packet forwarding purposes.

   AERO interfaces may be configured over multiple underlying
   interfaces.  For example, common mobile handheld devices have both
   wireless local area network ("WLAN") and cellular wireless links.
   These links are typically used "one at a time" with low-cost WLAN
   preferred and highly-available cellular wireless as a standby.  In a
   more complex example, aircraft frequently have many wireless data
   link types (e.g. satellite-based, cellular, terrestrial, air-to-air
   directional, etc.) with diverse performance and cost properties.

   If a Client's multiple underlying interfaces are used "one at a time"
   (i.e., all other interfaces are in standby mode while one interface
   is active), then IPv6 ND messages include only a single S/TLLAO with
   Interface ID set to a constant value.  In that case, the Client would
   appear to have a single underlying interface but with a dynamically
   changing link-layer address.

   If the Client has multiple active underlying interfaces, then from
   the perspective of IPv6 ND it would appear to have multiple link-
   layer addresses.  In that case, IPv6 ND messages MAY include multiple
   S/TLLAOs -- each with an Interface ID that corresponds to a specific
   underlying interface of the AERO node.

   When an IPv6 ND message includes multiple S/TLLAOs, the first S/TLLAO
   MUST correspond to the Client's underlying interface used to transmit
   the message.

3.6.  AERO Interface Initialization

3.6.1.  AERO Relay Behavior

   When a Relay enables an AERO interface, it first assigns an
   administratively-provisioned link-local address fe80::ID to the
   interface.  Each fe80::ID address MUST be unique among all AERO nodes
   on the link, and is taken from the range fe80::/96 but excluding the
   special addresses fe80:: and fe80::ffff:ffff.  The Relay then engages
   in a dynamic routing protocol session with Servers on the link (see:

Section 3.3), and advertises its assigned ASPs into the native IP
   Internetwork.

   Each Relay subsequently maintains an IP forwarding table entry for
   each active ACP covered by its ASP(s), and maintains neighbor cache
   entries for Servers on the link.  Relays exchange NS/NA messages with

https://datatracker.ietf.org/doc/html/rfc2474
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   AERO link neighbors the same as for any AERO node, however they need
   not perform explicit Neighbor Unreachability Detection (NUD) (see:

Section 3.16) since the dynamic routing protocol already provides
   reachability confirmation.

3.6.2.  AERO Server Behavior

   When a Server enables an AERO interface, it assigns an
   administratively-provisioned link-local address fe80::ID the same as
   for Relays.  The Server further configures a DHCPv6 server function
   to facilitate DHCPv6 PD exchanges with AERO Clients.  The Server
   maintains neighbor cache entries for Relays on the link, and manages
   per-Client neighbor cache entries and IP forwarding table entries
   based on control message exchanges.  Each Server also engages in a
   dynamic routing protocol with Relays on the link (see: Section 3.3).

   When the Server receives an NS/RS message from a Client on the AERO
   interface it returns an NA/RA message.  The Server further provides a
   simple link-layer conduit between AERO interface neighbors.  In
   particular, when a packet sent by a source Client arrives on the
   Server's AERO interface and is destined to another AERO node, the
   Server forwards the packet from within the AERO interface driver at
   the link layer without ever disturbing the network layer.

3.6.3.  AERO Client Behavior

   When a Client enables an AERO interface, it uses the special
   administratively-provisioned link-local address fe80::ffff:ffff as
   the source network-layer address in an RS message with an embedded
   DHCPv6 PD Solicit message per [I-D.templin-6man-dhcpv6-ndopt] to
   obtain one or more ACPs from one or more AERO Servers.  Each Server
   processes the message and returns an RA message with an embedded
   DHCPv6 PD Reply message with the destination network-layer address
   set to the base AERO address.  In this way, the combined RS/RA and
   DHCPv6 PD message exchange securely performs all autoconfiguration
   operations in a single message exchange.

   After the initial DHCPv6 message exchange, the Client can register
   additional links with the Server by sending an RS message over each
   link without including a DHCPv6 option.  The Server will update its
   neighbor cache entry for the Client and return an RA message.

   The Client maintains a neighbor cache entry for each of its Servers
   and each of its active correspondent Clients.  When the Client
   receives IPv6 ND messages on the AERO interface it updates or creates
   neighbor cache entries, including link-layer address information.
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3.6.4.  AERO Proxy Behavior

   When a Proxy enables an AERO interface, it assigns an
   administratively-provisioned link-local address fe80::ID the same as
   for Servers and Relays.  The Proxy maintains neighbor cache entries
   for Relays and Servers on the link, and manages per-Client neighbor
   cache entries and IP forwarding table entries based on control
   message exchanges.  Proxies use Relays as default routers for
   forwarding packets before a route-optimized path via a target is
   discovered.  Proxies accept packets that are destined for one of
   their associated Clients.

   When the Proxy receives an RS message from a Client in the secured
   enclave, it caches the RS and forwards it to a Server selected by the
   Client while using its own link-layer address as the source address.
   When the Server returns an RA message, the Proxy caches the
   autoconfiguration information in the RA and forwards the RA to the
   Client while using its own link-layer address as the source address.
   Both the Client and Proxy will then have the necessary state for
   managing the AERO interface association with the Server.

3.7.  AERO Interface Neighbor Cache Maintenace

   Each AERO interface maintains a conceptual neighbor cache that
   includes an entry for each neighbor it communicates with on the AERO
   link, the same as for any IPv6 interface [RFC4861].  AERO interface
   neighbor cache entires are said to be one of "permanent", "static" or
   "dynamic".

   Permanent neighbor cache entries are created through explicit
   administrative action; they have no timeout values and remain in
   place until explicitly deleted.  AERO Relays and Proxies maintain
   permanent neighbor cache entries for Servers on the link, and AERO
   Servers maintain permanent neighbor cache entry for Proxies and
   Relays.  Each entry maintains the mapping between the neighbor's
   fe80::ID network-layer address and corresponding link-layer address.

   Static neighbor cache entries are created and maintained through
   prefix delegation exchanges as specified in Section 3.14, and remain
   in place for durations bounded by prefix delegation lifetimes.  AERO
   Servers and Proxies maintain static neighbor cache entries for each
   of their associated Clients, and AERO Clients maintain static
   neighbor cache entries for each of their associated Servers.

   Dynamic neighbor cache entries are created or updated based on
   receipt of route optimization messages as specified in Section 3.15,
   and are garbage-collected when keepalive timers expire.  AERO Clients

https://datatracker.ietf.org/doc/html/rfc4861
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   maintain dynamic neighbor cache entries for each of their active
   correspondents with lifetimes based on IPv6 ND messaging constants.

   When an AERO Client receives a valid NS message , it creates or
   updates a dynamic neighbor cache entry for the source network-layer
   and link-layer addresses.  The node then sets an "AcceptTime"
   variable in the neighbor cache entry to ACCEPT_TIME seconds and uses
   this value to determine whether packets received from the
   correspondent can be accepted.  The node resets AcceptTime when it
   receives a new IPv6 ND message, and otherwise decrements AcceptTime
   while no IPv6 ND messages have been received.  It is RECOMMENDED that
   ACCEPT_TIME be set to the default constant value 40 seconds to allow
   a 10 second window so that the AERO route optimization procedure can
   converge before AcceptTime decrements below FORWARD_TIME (see below).

   When an AERO Client receives a valid NA message that matches its NS
   message, it creates or updates a dynamic neighbor cache entry for the
   target network-layer and link-layer addresses.  The Client then sets
   a "ForwardTime" variable in the neighbor cache entry to FORWARD_TIME
   seconds and uses this value to determine whether packets can be sent
   directly to the correspondent.  The node resets ForwardTime when it
   receives a new NA, and otherwise decrements ForwardTime while no
   further NA messages have been received.  It is RECOMMENDED that
   FORWARD_TIME be set to the default constant value 30 seconds to match
   the default REACHABLE_TIME value specified for IPv6 ND [RFC4861].

   The Client also sets a "MaxRetry" variable to MAX_RETRY to limit the
   number of keepalives sent when a correspondent may have gone
   unreachable.  It is RECOMMENDED that MAX_RETRY be set to 3 the same
   as described for IPv6 ND address resolution in Section 7.3.3 of
   [RFC4861].

   Different values for ACCEPT_TIME, FORWARD_TIME and MAX_RETRY MAY be
   administratively set, if necessary, to better match the AERO link's
   performance characteristics; however, if different values are chosen,
   all nodes on the link MUST consistently configure the same values.
   Most importantly, ACCEPT_TIME SHOULD be set to a value that is
   sufficiently longer than FORWARD_TIME to allow the AERO route
   optimization procedure to converge.

   When there may be a Network Address Translator (NAT) between the
   Client and the Server, or if the path from the Client to the Server
   should be tested for reachability, the Client can send periodic RS
   messages to the Server without a DHCPv6 option to receive RA replies.
   The RS/RA messaging will keep NAT state alive and test Server
   reachability without disturbing the DHCPv6 server.

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3


Templin                   Expires June 16, 2018                [Page 18]



Internet-Draft                    AERO                     December 2017

3.8.  AERO Interface Forwarding Algorithm

   IP packets enter a node's AERO interface either from the network
   layer (i.e., from a local application or the IP forwarding system) or
   from the link layer (i.e., from the AERO tunnel virtual link).
   Packets that enter the AERO interface from the network layer are
   encapsulated and forwarded into the AERO link, i.e., they are
   tunnelled to an AERO interface neighbor.  Packets that enter the AERO
   interface from the link layer are either re-admitted into the AERO
   link or forwarded to the network layer where they are subject to
   either local delivery or IP forwarding.  In all cases, the AERO
   interface itself MUST NOT decrement the network layer TTL/Hop-count
   since its forwarding actions occur below the network layer.

   AERO interfaces may have multiple underlying interfaces and/or
   neighbor cache entries for neighbors with multiple Interface ID
   registrations (see Section 3.5).  The AERO node uses each packet's
   DSCP value to select an outgoing underlying interface based on the
   node's own preference values, and also to select a destination link-
   layer address based on the neighbor's underlying interface with the
   highest preference value.  If multiple outgoing interfaces and/or
   neighbor interfaces have a preference of "high", the AERO node sends
   one copy of the packet via each of the (outgoing / neighbor)
   interface pairs; otherwise, the node sends a single copy of the
   packet.

   The following sections discuss the AERO interface forwarding
   algorithms for Clients, Servers and Relays.  In the following
   discussion, a packet's destination address is said to "match" if it
   is a non-link-local address with a prefix covered by an ASP/ACP, or
   if it is an AERO address that embeds an ACP, or if it is the same as
   an administratively-provisioned link-local address.

3.8.1.  Client Forwarding Algorithm

   When an IP packet enters a Client's AERO interface from the network
   layer the Client searches for a dynamic neighbor cache entry that
   matches the destination.  If there is a match, the Client uses one or
   more link-layer addresses in the entry as the link-layer addresses
   for encapsulation and admits the packet into the AERO link.
   Otherwise, the Client uses the link-layer address in a static
   neighbor cache entry for a Server as the encapsulation address
   (noting that the Server may be behind a Proxy).

   When an IP packet enters a Client's AERO interface from the link-
   layer, if the destination matches one of the Client's ACPs or link-
   local addresses the Client decapsulates the packet and delivers it to
   the network layer.  Otherwise, the Client drops the packet silently.
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3.8.2.  Proxy Forwarding Algorithm

   When the Proxy receives a packet from a Client within the secured
   enclave, the Proxy searches for a remote Client's route that matches
   the destination.  If there is a match, the Proxy uses the link-layer
   address of a Server that services the remote Client as the link-layer
   address for encapsulation and admits the packet into the AERO link.
   Otherwise, the Proxy uses the link-layer address in a permanent
   neighbor cache entry for a Relay as the encapsulation address.

   When the Proxy receives a packet from a Server, it searches for a
   local Client's route that matches the destination.  If there is a
   match, the Proxy forwards the packet to the local Client within the
   secured enclave.  Otherwise, the Proxy drops the packet silently.

3.8.3.  Server Forwarding Algorithm

   When an IP packet enters a Server's AERO interface from the network
   layer, the Server searches for a neighbor cache entry for a Client or
   Proxy that matches the destination.  If there is a match, the Server
   uses one or more link-layer addresses in the entry as the link-layer
   addresses for encapsulation and admits the packet into the AERO link.
   Otherwise, the Server uses the link-layer address in a neighbor cache
   entry for a Relay (selected through longest-prefix match) as the
   link-layer address for encapsulation.

   When an IP packet enters a Server's AERO interface from the link
   layer, the Server processes the packet as follows:

   o  if the destination matches one of the Server's own addresses the
      Server decapsulates the packet and forwards it to the network
      layer for local delivery.

   o  else, if the destination matches a neighbor cache entry for a
      Client or Proxy the Server first determines whether the neighbor
      is the same as the one it received the packet from.  If so, the
      Server MUST drop the packet silently to avoid looping; otherwise,
      the Server uses the neighbor's link-layer address(es) as the
      destination for encapsulation and re-admits the packet into the
      AERO link.

   o  else, the Server uses the link-layer address in a permanent
      neighbor cache entry for a Relay (selected through longest-prefix
      match) as the link-layer address for encapsulation.
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3.8.4.  Relay Forwarding Algorithm

   When an IP packet enters a Relay's AERO interface from the network
   layer, the Relay searches its IP forwarding table for an ACP entry
   that matches the destination and otherwise searches for a neighbor
   cache entry that matches the destination.  If there is a match, the
   Relay uses the link-layer address in the corresponding neighbor cache
   entry as the link-layer address for encapsulation and forwards the
   packet into the AERO link.  Otherwise, the Relay drops the packet and
   (for non-link-local addresses) returns an ICMP Destination
   Unreachable message subject to rate limiting (see: Section 3.13).

   When an IP packet enters a Relay's AERO interface from the link-
   layer, the Relay processes the packet as follows:

   o  if the destination does not match an ASP, or if the destination
      matches one of the Relay's own addresses, the Relay decapsulates
      the packet and forwards it to the network layer where it will be
      subject to either local delivery or IP forwarding.

   o  else, if the destination matches an ACP entry in the IP forwarding
      table, or if the destination matches the link-local address in a
      permanent neighbor cache entry, the Relay first determines whether
      the neighbor is the same as the one it received the packet from.
      If so the Relay MUST drop the packet silently to avoid looping;
      otherwise, the Relay uses the neighbor's link-layer address as the
      destination for encapsulation and re-admits the packet into the
      AERO link.

   o  else, the Relay drops the packet and (for non-link-local
      addresses) returns an ICMP Destination Unreachable message subject
      to rate limiting (see: Section 3.13).

3.9.  AERO Interface Encapsulation and Re-encapsulation

   AERO interfaces encapsulate IP packets according to whether they are
   entering the AERO interface from the network layer or if they are
   being re-admitted into the same AERO link they arrived on.  This
   latter form of encapsulation is known as "re-encapsulation".

   The AERO interface encapsulates packets per the Generic UDP
   Encapsulation (GUE) procedures in
   [I-D.ietf-nvo3-gue][I-D.herbert-gue-fragmentation], or through an
   alternate encapsulation format (see: Appendix A).  For packets
   entering the AERO interface from the network layer, the AERO
   interface copies the "TTL/Hop Limit", "Type of Service/Traffic Class"
   [RFC2983], "Flow Label"[RFC6438].(for IPv6) and "Congestion
   Experienced" [RFC3168] values in the packet's IP header into the

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc3168
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   corresponding fields in the encapsulation IP header.  For packets
   undergoing re-encapsulation, the AERO interface instead copies these
   values from the original encapsulation IP header into the new
   encapsulation header, i.e., the values are transferred between
   encapsulation headers and *not* copied from the encapsulated packet's
   network-layer header.  (Note especially that by copying the TTL/Hop
   Limit between encapsulation headers the value will eventually
   decrement to 0 if there is a (temporary) routing loop.)  For IPv4
   encapsulation/re-encapsulation, the AERO interface sets the DF bit as
   discussed in Section 3.12.

   When GUE encapsulation is used, the AERO interface next sets the UDP
   source port to a constant value that it will use in each successive
   packet it sends, and sets the UDP length field to the length of the
   encapsulated packet plus 8 bytes for the UDP header itself plus the
   length of the GUE header (or 0 if GUE direct IP encapsulation is
   used).  For packets sent to a Server or Relay, the AERO interface
   sets the UDP destination port to 8060, i.e., the IANA-registered port
   number for AERO.  For packets sent to a Client, the AERO interface
   sets the UDP destination port to the port value stored in the
   neighbor cache entry for this Client.  The AERO interface then either
   includes or omits the UDP checksum according to the GUE
   specification.

3.10.  AERO Interface Decapsulation

   AERO interfaces decapsulate packets destined either to the AERO node
   itself or to a destination reached via an interface other than the
   AERO interface the packet was received on.  Decapsulation is per the
   procedures specified for the appropriate encapsulation format.

3.11.  AERO Interface Data Origin Authentication

   AERO nodes employ simple data origin authentication procedures for
   encapsulated packets they receive from other nodes on the AERO link.
   In particular:

   o  AERO Servers, Relays and Proxies accept encapsulated packets with
      a link-layer source address that matches a permanent neighbor
      cache entry.

   o  AERO Servers accept authentic encapsulated DHCPv6 and IPv6 ND
      messages from Clients, and create or update a static neighbor
      cache entry for the Client based on the specific message type.

   o  AERO Clients and Servers accept encapsulated packets if there is a
      static neighbor cache entry with a link-layer address that matches
      the packet's link-layer source address.
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   o  AERO Clients and Servers accept encapsulated packets if there is a
      dynamic neighbor cache entry with an AERO address that matches the
      packet's network-layer source address, with a link-layer address
      that matches the packet's link-layer source address, and with a
      non-zero AcceptTime.

   Note that this simple data origin authentication is effective in
   environments in which link-layer addresses cannot be spoofed.  In
   other environments, each AERO message must include a signature that
   the recipient can use to authenticate the message origin, e.g., as
   for common VPN systems such as OpenVPN [OVPN].  In environments where
   end systems use end-to-end security, however, it may be sufficient to
   require signatures only for AERO DHCPv6, IPv6 ND and ICMP control
   plane messages and omit signatures for data plane messages.

3.12.  AERO Interface Packet Size Issues

   The AERO interface is the node's attachment to the AERO link.  The
   AERO interface acts as a tunnel ingress when it sends a packet to an
   AERO link neighbor and as a tunnel egress when it receives a packet
   from an AERO link neighbor.  AERO interfaces observe the packet
   sizing considerations for tunnels discussed in
   [I-D.ietf-intarea-tunnels] and as specified below.

   The Internet Protocol expects that IP packets will either be
   delivered to the destination or a suitable Packet Too Big (PTB)
   message returned to support the process known as IP Path MTU
   Discovery (PMTUD) [RFC1191][RFC1981].  However, PTB messages may be
   crafted for malicious purposes such as denial of service, or lost in
   the network [RFC2923].  This can be especially problematic for
   tunnels, where a condition known as a PMTUD "black hole" can result.
   For these reasons, AERO interfaces employ operational procedures that
   avoid interactions with PMTUD, including the use of fragmentation
   when necessary.

   AERO interfaces observe two different types of fragmentation.  Source
   fragmentation occurs when the AERO interface (acting as a tunnel
   ingress) fragments the encapsulated packet into multiple fragments
   before admitting each fragment into the tunnel.  Network
   fragmentation occurs when an encapsulated packet admitted into the
   tunnel by the ingress is fragmented by an IPv4 router on the path to
   the egress.  Note that a packet that incurs source fragmentation may
   also incur network fragmentation.

   IPv6 specifies a minimum link Maximum Transmission Unit (MTU) of 1280
   bytes [RFC2460].  Although IPv4 specifies a smaller minimum link MTU
   of 68 bytes [RFC0791], AERO interfaces also observe the IPv6 minimum

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0791
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   for IPv4 even if encapsulated packets may incur network
   fragmentation.

   IPv6 specifies a minimum Maximum Reassembly Unit (MRU) of 1500 bytes
   [RFC2460], while the minimum MRU for IPv4 is only 576 bytes [RFC1122]
   (note that common IPv6 over IPv4 tunnels already assume a larger MRU
   than the IPv4 minimum).

   AERO interfaces therefore configure an MTU that MUST NOT be smaller
   than 1280 bytes, MUST NOT be larger than the minimum MRU among all
   nodes on the AERO link minus the encapsulation overhead ("ENCAPS"),
   and SHOULD NOT be smaller than 1500 bytes.  AERO interfaces also
   configure a Maximum Segment Unit (MSU) as the maximum-sized
   encapsulated packet that the ingress can inject into the tunnel
   without source fragmentation.  The MSU value MUST NOT be larger than
   (MTU+ENCAPS) and MUST NOT be larger than 1280 bytes unless there is
   operational assurance that a larger size can traverse the link along
   all paths.

   All AERO nodes MUST configure the same MTU/MSU values for reasons
   cited in [RFC3819][RFC4861]; in particular, multicast support
   requires a common MTU value among all nodes on the link.  All AERO
   nodes MUST configure an MRU large enough to reassemble packets up to
   (MTU+ENCAPS) bytes in length; nodes that cannot configure a large-
   enough MRU MUST NOT enable an AERO interface.

   The network layer proceeds as follow when it presents an IP packet to
   the AERO interface.  For each IPv4 packet that is larger than the
   AERO interface MTU and with the DF bit set to 0, the network layer
   uses IPv4 fragmentation to break the packet into a minimum number of
   non-overlapping fragments where the first fragment is no larger than
   the MTU and the remaining fragments are no larger than the first.
   For all other IP packets, if the packet is larger than the AERO
   interface MTU, the network layer drops the packet and returns a PTB
   message to the original source.  Otherwise, the network layer admits
   each IP packet or fragment into the AERO interface.

   For each IP packet admitted into the AERO interface, the interface
   (acting as a tunnel ingress) encapsulates the packet.  If the
   encapsulated packet is larger than the AERO interface MSU the ingress
   source-fragments the encapsulated packet into a minimum number of
   non-overlapping fragments where the first fragment is no larger than
   the MSU and the remaining fragments are no larger than the first.
   The ingress then admits each encapsulated packet or fragment into the
   tunnel, and for IPv4 sets the DF bit to 0 in the IP encapsulation
   header in case any network fragmentation is necessary.  The
   encapsulated packets will be delivered to the egress, which
   reassembles them into a whole packet if necessary.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3819
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   Several factors must be considered when fragmentation is needed.  For
   AERO links over IPv4, the IP ID field is only 16 bits in length,
   meaning that fragmentation at high data rates could result in data
   corruption due to reassembly misassociations [RFC6864][RFC4963].  For
   AERO links over both IPv4 and IPv6, studies have also shown that IP
   fragments are dropped unconditionally over some network paths [I-
   D.taylor-v6ops-fragdrop].  In environments where IP fragmentation
   issues could result in operational problems, the ingress SHOULD
   employ intermediate-layer source fragmentation (see: [RFC2764] and
   [I-D.herbert-gue-fragmentation]) before appending the outer
   encapsulation headers to each fragment.  Since the encapsulation
   fragment header reduces the room available for packet data, but the
   original source has no way to control its insertion, the ingress MUST
   include the fragment header length in the ENCAPS length even for
   packets in which the header is absent.

3.13.  AERO Interface Error Handling

   When an AERO node admits encapsulated packets into the AERO
   interface, it may receive link-layer or network-layer error
   indications.

   A link-layer error indication is an ICMP error message generated by a
   router on the path to the neighbor or by the neighbor itself.  The
   message includes an IP header with the address of the node that
   generated the error as the source address and with the link-layer
   address of the AERO node as the destination address.

   The IP header is followed by an ICMP header that includes an error
   Type, Code and Checksum.  Valid type values include "Destination
   Unreachable", "Time Exceeded" and "Parameter Problem"
   [RFC0792][RFC4443].  (AERO interfaces ignore all link-layer IPv4
   "Fragmentation Needed" and IPv6 "Packet Too Big" messages since they
   only emit packets that are guaranteed to be no larger than the IP
   minimum link MTU as discussed in Section 3.12.)

   The ICMP header is followed by the leading portion of the packet that
   generated the error, also known as the "packet-in-error".  For
   ICMPv6, [RFC4443] specifies that the packet-in-error includes: "As
   much of invoking packet as possible without the ICMPv6 packet
   exceeding the minimum IPv6 MTU" (i.e., no more than 1280 bytes).  For
   ICMPv4, [RFC0792] specifies that the packet-in-error includes:
   "Internet Header + 64 bits of Original Data Datagram", however

[RFC1812] Section 4.3.2.3 updates this specification by stating: "the
   ICMP datagram SHOULD contain as much of the original datagram as
   possible without the length of the ICMP datagram exceeding 576
   bytes".

https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc2764
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812#section-4.3.2.3
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   The link-layer error message format is shown in Figure 3 (where, "L2"
   and "L3" refer to link-layer and network-layer, respectively):

        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        ~                               ~
        |        L2 IP Header of        |
        |         error message         |
        ~                               ~
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |         L2 ICMP Header        |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
        ~                               ~   P
        |   IP and other encapsulation  |   a
        | headers of original L3 packet |   c
        ~                               ~   k
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   e
        ~                               ~   t
        |        IP header of           |
        |      original L3 packet       |   i
        ~                               ~   n
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        ~                               ~   e
        |    Upper layer headers and    |   r
        |    leading portion of body    |   r
        |   of the original L3 packet   |   o
        ~                               ~   r
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

         Figure 3: AERO Interface Link-Layer Error Message Format

   The AERO node rules for processing these link-layer error messages
   are as follows:

   o  When an AERO node receives a link-layer Parameter Problem message,
      it processes the message the same as described as for ordinary
      ICMP errors in the normative references [RFC0792][RFC4443].

   o  When an AERO node receives persistent link-layer Time Exceeded
      messages, the IP ID field may be wrapping before earlier fragments
      awaiting reassembly have been processed.  In that case, the node
      SHOULD begin including integrity checks and/or institute rate
      limits for subsequent packets.

   o  When an AERO node receives persistent link-layer Destination
      Unreachable messages in response to encapsulated packets that it
      sends to one of its dynamic neighbor correspondents, the node
      SHOULD test the path to the correspondent using Neighbor
      Unreachability Detection (NUD) (see Section 3.16).  If NUD fails,

https://datatracker.ietf.org/doc/html/rfc0792
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      the node SHOULD set ForwardTime for the corresponding dynamic
      neighbor cache entry to 0 and allow future packets destined to the
      correspondent to flow through a default route.

   o  When an AERO Client receives persistent link-layer Destination
      Unreachable messages in response to encapsulated packets that it
      sends to one of its static neighbor Servers, the Client SHOULD
      test the path to the Server using NUD.  If NUD fails, the Client
      SHOULD associate with a new Server and send a DHCPv6 Release
      message to the old Server as specified in Section 3.17.6.

   o  When an AERO Server receives persistent link-layer Destination
      Unreachable messages in response to encapsulated packets that it
      sends to one of its static neighbor Clients, the Server SHOULD
      test the path to the Client using NUD.  If NUD fails, the Server
      SHOULD cancel the Client's ACP prefix delegation, withdraw its
      route for the ACP from the AERO routing system and delete the
      neighbor cache entry (see Section 3.16 and Section 3.17).

   o  When an AERO Relay or Server receives link-layer Destination
      Unreachable messages in response to an encapsulated packet that it
      sends to one of its permanent neighbors, it treats the messages as
      an indication that the path to the neighbor may be failing.
      However, neighbor reachability will be determined by the dynamic
      routing protocol.

   When an AERO Relay receives a packet for which the network-layer
   destination address is covered by an ASP, if there is no more-
   specific routing information for the destination the Relay drops the
   packet and returns a network-layer Destination Unreachable message
   subject to rate limiting.  The Relay first writes the network-layer
   source address of the original packet as the destination address of
   the message and determines the next hop to the destination.  If the
   next hop is reached via the AERO interface, the Relay uses the IPv6
   address "::" or the IPv4 address "0.0.0.0" as the source address of
   the message, then encapsulates the message and forwards it to the
   next hop within the AERO interface.  Otherwise, the Relay uses one of
   its non link-local addresses as the source address of the message and
   forwards it via a link outside the AERO interface.

   When an AERO node receives an encapsulated packet for which the
   reassembly buffer it too small, it drops the packet and returns an
   network-layer Packet Too Big (PTB) message.  The node first writes
   the MRU value into the PTB message MTU field, writes the network-
   layer source address of the original packet as the destination
   address of the message and determines the next hop to the
   destination.  If the next hop is reached via the AERO interface, the
   node uses the IPv6 address "::" or the IPv4 address "0.0.0.0" as the
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   source address of the message, then encapsulates the message and
   forwards it to the next hop within the AERO interface.  Otherwise,
   the node uses one of its non link-local addresses as the source
   address of the message and forwards it via a link outside the AERO
   interface.

   When an AERO node receives any network-layer error message via the
   AERO interface, it examines the network-layer destination address.
   If the next hop toward the destination is via the AERO interface, the
   node re-encapsulates and forwards the message to the next hop within
   the AERO interface.  Otherwise, if the network-layer source address
   is the IPv6 address "::" or the IPv4 address "0.0.0.0", the node
   writes one of its non link-local addresses as the source address,
   recalculates the IP and/or ICMP checksums then forwards the message
   via a link outside the AERO interface.

3.14.  AERO Router Discovery, Prefix Delegation and Autoconfiguration

   AERO Router Discovery, Prefix Delegation and Autoconfiguration are
   coordinated by the DHCPv6 and IPv6 ND control messaging protocols as
   discussed in the following Sections.

3.14.1.  AERO DHCPv6 and IPv6 ND Service Model

   Each AERO Server configures a DHCPv6 server function to facilitate PD
   requests from Clients.  Each Server is provisioned with a database of
   ACP-to-Client ID mappings for all Clients enrolled in the AERO
   system, as well as any information necessary to authenticate each
   Client.  The Client database is maintained by a central
   administrative authority for the AERO link and securely distributed
   to all Servers, e.g., via the Lightweight Directory Access Protocol
   (LDAP) [RFC4511], via static configuration, etc.

   Therefore, no Server-to-Server DHCPv6 PD state synchronization is
   necessary, and Clients can optionally hold separate PDs for the same
   ACPs from multiple Servers.  In this way, Clients can associate with
   multiple Servers, and can receive new PDs from new Servers before
   deprecating PDs received from existing Servers.  This provides the
   Client with a natural fault-tolerance and/or load balancing profile.

   AERO Clients and Servers use unicast IPv6 ND messages to maintain
   neighbor cache entries the same as for any link.  AERO Servers
   configure their AERO interfaces as advertising interfaces, and
   therefore send unicast RA messages with configuration information in
   response to a Client's RS message.

   The following sections specify the Client and Server behavior.

https://datatracker.ietf.org/doc/html/rfc4511
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3.14.2.  AERO Client Behavior

   AERO Clients discover the link-layer addresses of AERO Servers via
   static configuration (e.g., from a flat-file map of Server addresses
   and locations), or through an automated means such as DNS name
   resolution.  In the absence of other information, the Client resolves
   the FQDN "linkupnetworks.[domainname]" where "linkupnetworks" is a
   constant text string and "[domainname]" is a DNS suffix for the
   Client's underlying network (e.g., "example.com").  After discovering
   the link-layer addresses, the Client associates with one or more of
   the corresponding Servers.

   To associate with a Server, the Client acts as a requesting router to
   request ACPs through a DHCPv6 PD exchange [RFC3315][RFC3633] in
   conjunction with standard IPv6 ND Router Discovery.  The Client
   prepares an RS message with an embedded DHCPv6 Solicit message per
   [I-D.templin-6man-dhcpv6-ndopt] with fe80::ffff:ffff as the IPv6
   source address, All-Routers multicast as the IPv6 destination
   address, the address of the Client's underlying interface as the
   link-layer source address and the link-layer address of the Server as
   the link-layer destination address.

   In the embedded DHCPv6 Solicit message, the Client includes a Client
   Identifier option with the Client's DUID, and an Identity Association
   for Prefix Delegation (IA_PD) option.  If the Client is pre-
   provisioned with ACPs associated with the AERO service, it MAY also
   include the ACPs in the IA_PD to indicate its preferences to the
   DHCPv6 server.  The Client finally includes any additional DHCPv6
   options, including any necessary authentication options to identify
   itself to the DHCPv6 server.

   The Client next includes one or more SLLAOs in the RS formatted as
   described in Section 3.5 to register its link-layer address(es) with
   the Server.  The first SLLAO MUST correspond to the underlying
   interface over which the Client will send the RS/DHCPv6 message.  The
   Client MAY include additional SLLAOs specific to other underlying
   interfaces, but if so it MUST have assurance that there will be no
   NATs on the paths to the Server via those interfaces.  (Otherwise,
   the Client can register additional link-layer addresses with the
   Server by sending subsequent NS/RS messages via different underlying
   interfaces after the initial RS/RA exchange).  The Server will use
   the SLLAOs to populate its link-layer address information for the
   Client.

   The Client then sends the combined RS/DHCPv6 message to the AERO
   Server and waits for an RA reply (see Section 3.14.3) while retrying
   MAX_RETRY times until an RA is received.  If no RA is received, or if
   the RA includes a zero Router Lifetime, the Client SHOULD discontinue

https://datatracker.ietf.org/doc/html/rfc3315
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   autoconfiguration attempts through this Server and try another
   Server.  Otherwise, the Client processes the embedded DHCPv6 Reply
   message and verifies that the message contains valid ACPs in IA_PD
   options.

   Next, the Client creates a static neighbor cache entry with the
   Server's link-local address as the network-layer address and the
   Server's encapsulation source address as the link-layer address.  The
   Client then autoconfigures AERO addresses for each of the delegated
   ACPs and assigns the base AERO addresses to the AERO interface.

   The Client next examines the Code value in the RA message; if Code
   was 1 the Client can assume there was a NAT on the path to the
   Server.  The Client also caches any ASPs included in Route
   Information Options (RIOs) [RFC4191] as ASPs to associate with the
   AERO link, and assigns the MTU/MSU values in the MTU options to its
   AERO interface while configuring an appropriate MRU.  This
   configuration information applies to the AERO link as a whole, and
   all AERO nodes will use the same values.

   Following autoconfiguration, the Client sub-delegates the ACPs to its
   attached EUNs and/or the Client's own internal virtual interfaces as
   described in [I-D.templin-v6ops-pdhost].  The Client subsequently
   renews its ACP delegations through each of its Servers by sending RS/
   DHCPv6 Renew messages.

   After the Client registers its Interface IDs and their associated
   UDP/IP addresses and 'P(i)' values, it may wish to change one or more
   Interface ID registrations, e.g., if an underlying interface becomes
   unavailable, if quality of service profiles change, etc.  To do so,
   the Client prepares an unsolicited NA message to send over any
   available underlying interface.  The NA MUST include a TLLAO specific
   to the selected available underlying interface as the first TLLAO and
   MAY include any additional TLLAOs specific to other underlying
   interfaces.  The Client includes fresh 'P(i)' values in each TLLAO to
   update the Server's neighbor cache entry.  If the Client wishes to
   disable some or all DSCPs for an underlying interface, it includes an
   TLLAO with 'P(i)' values set to 0 ("disabled").

   If the Client wishes to discontinue use of a Server it issues an RS
   with an embedded DHCPv6 Release message.  When the Server processes
   the message, it releases the DHCPv6 PD, deletes its neighbor cache
   entry for the Client, withdraws the IP route from the routing system
   and returns an RA response with Router Lifetime set to 0.

https://datatracker.ietf.org/doc/html/rfc4191
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3.14.3.  AERO Server Behavior

   AERO Servers act as IPv6 routers and configure a DHCPv6 server
   function on their AERO links.  AERO Servers arrange to add their
   encapsulation layer IP addresses (i.e., their link-layer addresses)
   to a static map of Server addresses for the link and/or the DNS
   resource records for the FQDN "linkupnetworks.[domainname]" before
   entering service.

   When an AERO Server receives a prospective Client's RS with embedded
   DHCPv6 Solicit message on its AERO interface, and the Server is too
   busy, it SHOULD return an RA with Router Lifetime set to 0.
   Otherwise, the Server processes the embedded DHCPv6 Solicit message.
   If authentication succeeds, the Server determines the correct ACPs to
   delegate to the Client by searching the Client database.  When the
   Server delegates the ACPs, it also creates an IP forwarding table
   entry for each ACP so that the AERO BGP-based routing system will
   propagate the ACPs to the Relays that aggregate the corresponding ASP
   (see: Section 3.3).

   Next, the Server prepares a DHCPv6 Reply message with IA_PD options
   with the delegated ACPs.  For IPv4 ACPs, the prefix included in the
   IA_PD option is in IPv4-mapped IPv6 address format and with prefix
   length set as specified in Section 3.4.  The Server then prepares a
   unicast RA message using its link-local address (i.e., fe80::ID) as
   the network-layer source address, the Client's base AERO address as
   the network-layer destination address, the Server's link-layer
   address as the source link-layer address, and the source link-layer
   address of the RS message as the destination link-layer address.  In
   the RA message, if the actual encapsulation source address in the RS
   message was the same as that in the first SLLAO (see above), the
   Server sets the Code field to 0; otherwise it sets Code to 1.  The
   Server then includes one or more RIOs that encode the ASPs for the
   AERO link.  The Server also includes two MTU options - the first MTU
   option includes the MTU for the link and the second MTU option
   includes the MSU for the link (see Section 3.12).  The Server finally
   embeds the body of the DHCPv6 Reply message in the RA, then sends the
   RA to the Client.

   The Server next creates a static neighbor cache entry for the Client
   using the base AERO address as the network-layer address and with
   lifetime set to no more than the smallest PD lifetime.  Next, the
   Server updates the neighbor cache entry link-layer address(es) by
   recording the information in each SLLAO option indexed by the
   Interface ID and including the UDP port number, IP address and P(i)
   values.  For the first SLLAO in the list, however, the Server records
   the actual encapsulation source UDP and IP addresses instead of those
   that appear in the SLLAO in case there was a NAT in the path.
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   After the initial RS/RA/DHCPv6 exchange, the AERO Server maintains
   the neighbor cache entry for the Client until the PD lifetimes
   expire.  If the Client issues a Renew, the Server extends the PD
   lifetimes.  If the Client issues a Release, or if the Client does not
   issue a Renew before the lifetime expires, the Server deletes the
   neighbor cache entry for the Client and withdraws the IP routes from
   the AERO routing system.

3.14.3.1.  Lightweight DHCPv6 Relay Agent (LDRA)

   AERO Clients and Servers are always on the same link (i.e., the AERO
   link) from the perspective of DHCPv6.  However, in some
   implementations the DHCPv6 server and IPv6 ND function may be located
   in separate modules.  In that case, the Server's AERO interface
   driver module can act as a Lightweight DHCPv6 Relay Agent
   (LDRA)[RFC6221] to relay DHCPv6 messages to and from the DHCPv6
   server module.

   When the LDRA receives an RS/DHCPv6 message, it extracts the DHCPv6
   message and wraps it in IPv6/UDP headers.  It sets the IPv6 source
   address to the source address of the RS message, sets the IPv6
   destination address to 'All_DHCP_Relay_Agents_and_Servers' and sets
   the UDP fields to values that will be understood by the DHCPv6
   server.

   The LDRA then wraps the message in a Relay-Forward message header and
   includes an Interface-ID option that includes enough information to
   allow the LDRA to forward the resulting Reply message back to the
   Client (e.g., the Client's link-layer addresses, a security
   association identifier, etc).  The LDRA also wraps the information in
   all of the SLLAO options from the RS message into the Interface-ID
   option, then forwards the message to the DHCPv6 server.

   When the DHCPv6 server prepares a Reply message, it wraps the message
   in a Relay-Reply message and echoes the Interface-ID option.  The
   DHCPv6 server then delivers the Relay-Reply message to the LDRA,
   which discards the Relay-Reply wrapper and delivers the DHCPv6
   message to be wrapped into an RA response to the Client.  The Server
   uses the information in the Interface ID option to prepare the RA
   message and to cache the link-layer addresses taken from the SLLAOs
   echoed in the Interface-ID option.

3.15.  AERO Interface Route Optimization

   When a source Client forwards packets to a prospective correspondent
   Client within the same AERO link domain (i.e., one for which the
   packet's destination address is covered by an ASP), the source Client
   MAY initiate an AERO link route optimization procedure.  The

https://datatracker.ietf.org/doc/html/rfc6221


Templin                   Expires June 16, 2018                [Page 32]



Internet-Draft                    AERO                     December 2017

   procedure is based on an exchange of IPv6 ND messages using a chain
   of AERO Servers and Relays as a trust basis.

   Although the Client is responsible for initiating route optimization,
   the Server is the policy enforcement point that determines whether
   route optimization is permitted.  For example, on some AERO links
   route optimization would allow traffic to circumvent critical
   network-based traffic interception points.  In those cases, the
   Server can simply discard any route optimization messages instead of
   forwarding them.

   The following sections specify the AERO link route optimization
   procedure.

3.15.1.  Reference Operational Scenario

   Figure 4 depicts the AERO link route optimization reference
   operational scenario, using IPv6 addressing as the example (while not
   shown, a corresponding example for IPv4 addressing can be easily
   constructed).  The figure shows an AERO Relay ('R1'), two AERO
   Servers ('S1', 'S2'), two AERO Clients ('C1', 'C2') and two ordinary
   IPv6 hosts ('H1', 'H2'):

            +--------------+  +--------------+  +--------------+
            |   Server S1  |  |    Relay R1  |  |   Server S2  |
            +--------------+  +--------------+  +--------------+
                fe80::2            fe80::1           fe80::3
                 L2(S1)             L2(R1)            L2(S2)
                   |                  |                 |
       X-----+-----+------------------+-----------------+----+----X
             |       AERO Link                               |
           L2(C1)                                          L2(C2)
    fe80::2001:db8:0:0                               fe80::2001:db8:1:0
     +--------------+                                 +--------------+
     |AERO Client C1|                                 |AERO Client C2|
     +--------------+                                 +--------------+
     2001:DB8:0::/48                                  2001:DB8:1::/48
             |                                                |
            .-.                                              .-.
         ,-(  _)-.   2001:db8:0::1      2001:db8:1::1     ,-(  _)-.
      .-(_  IP   )-.   +-------+          +-------+    .-(_  IP   )-.
    (__    EUN      )--|Host H1|          |Host H2|--(__    EUN      )
       `-(______)-'    +-------+          +-------+     `-(______)-'

               Figure 4: AERO Reference Operational Scenario

   In Figure 4, Relay ('R1') assigns the administratively-provisioned
   link-local address fe80::1 to its AERO interface with link-layer
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   address L2(R1), Server ('S1') assigns the address fe80::2 with link-
   layer address L2(S1),and Server ('S2') assigns the address fe80::3
   with link-layer address L2(S2).  Servers ('S1') and ('S2') next
   arrange to add their link-layer addresses to a published list of
   valid Servers for the AERO link.

   AERO Client ('C1') receives the ACP 2001:db8:0::/48 in a DHCPv6 PD
   exchange via AERO Server ('S1') then assigns the address
   fe80::2001:db8:0:0 to its AERO interface with link-layer address
   L2(C1).  Client ('C1') configures a default route and neighbor cache
   entry via the AERO interface with next-hop address fe80::2 and link-
   layer address L2(S1), then sub-delegates the ACP to its attached
   EUNs.  IPv6 host ('H1') connects to the EUN, and configures the
   address 2001:db8:0::1.

   AERO Client ('C2') receives the ACP 2001:db8:1::/48 in a DHCPv6 PD
   exchange via AERO Server ('S2') then assigns the address
   fe80::2001:db8:1:0 to its AERO interface with link-layer address
   L2(C2).  Client ('C2') configures a default route and neighbor cache
   entry via the AERO interface with next-hop address fe80::3 and link-
   layer address L2(S2), then sub-delegates the ACP to its attached
   EUNs.  IPv6 host ('H2') connects to the EUN, and configures the
   address 2001:db8:1::1.

3.15.2.  Concept of Operations

   Again, with reference to Figure 4, when source host ('H1') sends a
   packet to destination host ('H2'), the packet is first forwarded over
   the source host's attached EUN to Client ('C1').  Client ('C1') then
   forwards the packet via its AERO interface to Server ('S1') and also
   sends an NS message toward Client ('C2') via Server ('S1').  Server
   ('S1') then re-encapsulates and forwards both the packet and the NS
   message out the same AERO interface toward Client ('C2') via Relay
   ('R1').

   When Relay ('R1') receives the packet and NS message, it consults its
   forwarding table to discover Server ('S2') as the next hop toward
   Client ('C2').  Relay ('R1') then forwards both the packet and the NS
   message to Server ('S2'), which then forwards them to Client ('C2').

   After Client ('C2') receives the NS message, it process the message
   and returns an NA message toward Client ('C1') via Server ('S2').
   During the process, Client ('C2') also creates or updates a dynamic
   neighbor cache entry for Client ('C1').

   When Server ('S2') receives the NA message, it re-encapsulates the
   message and forwards it on to Relay ('R1'), which forwards the
   message on to Server ('S1') which forwards the message on to Client
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   ('C1').  After Client ('C1') receives the NA message, it processes
   the message and creates or updates a dynamic neighbor cache entry for
   Client ('C2').

   Following the above NS/NA message exchange, forwarding of packets
   from Client ('C1') to Client ('C2') without involving any
   intermediate nodes is enabled.  The mechanisms that support this
   exchange are specified in the following sections.

3.15.3.  Sending NS Messages

   When a Client forwards a packet with a source address from one of its
   ACPs toward a destination address covered by an ASP (i.e., toward
   another AERO Client connected to the same AERO link), the source
   Client MAY send an NS message forward toward the destination Client
   via the Server.

   In the reference operational scenario, when Client ('C1') forwards a
   packet toward Client ('C2'), it MAY also send an NS message forward
   toward Client ('C2'), subject to rate limiting (see Section 8.2 of
   [RFC4861]).  Client ('C1') prepares the NS message as follows:

   o  the link-layer source address is set to 'L2(C1)' (i.e., the link-
      layer address of Client ('C1')).

   o  the link-layer destination address is set to 'L2(S1)' (i.e., the
      link-layer address of Server ('S1')).

   o  the network-layer source address is set to fe80::2001:db8:0:0
      (i.e., the base AERO address of Client ('C1')).

   o  the network-layer destination address is set to the AERO address
      corresponding to the destination address of Client ('C2').

   o  the Type is set to 135.

   o  the Target Address is set to the destination address of the packet
      that triggered route optimization.

   o  the message includes one or more SLLAOs set to appropriate values
      for Client ('C1')'s underlying interfaces.

   o  the message includes one or more RIOs that include Client ('C1')'s
      ACPs [I-D.templin-6man-rio-redirect].

   o  the message SHOULD include a Timestamp option and a Nonce option.

https://datatracker.ietf.org/doc/html/rfc4861#section-8.2
https://datatracker.ietf.org/doc/html/rfc4861#section-8.2
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   Note that the act of sending NS messages is cited as "MAY", since
   Client ('C1') may have advanced knowledge that the direct path to
   Client ('C2') would be unusable or otherwise undesirable.  If the
   direct path later becomes unusable after the initial route
   optimization, Client ('C1') simply allows packets to again flow
   through Server ('S1').

3.15.4.  Re-encapsulating and Relaying the NS

   When Server ('S1') receives an NS message from Client ('C1'), it
   first verifies that the SLLAOs in the NS are a proper subset of the
   link-layer addresses in Client ('C1')'s neighbor cache entry.  If the
   Client's SLLAOs are not acceptable, Server ('S1') discards the
   message.  Otherwise, Server ('S1') verifies that Client ('C1') is
   authorized to use the ACPs encoded in the RIOs of the NS.  If
   validation fails, Server ('S1') discards the NS; otherwise, it copies
   the correct UDP Port number and IP Address for Client ('C1')'s
   underlying link into the first SLLAO in case the addresses have been
   subject to NAT.

   Server ('S1') then examines the network-layer destination address of
   the NS to determine the next hop toward Client ('C2') by searching
   for the AERO address in the neighbor cache.  Since Client ('C2') is
   not one of its neighbors, Server ('S1') re-encapsulates the NS and
   relays it via Relay ('R1') by changing the link-layer source address
   of the message to 'L2(S1)' and changing the link-layer destination
   address to 'L2(R1)'.  Server ('S1') finally forwards the re-
   encapsulated message to Relay ('R1') without decrementing the
   network-layer TTL/Hop Limit field.

   When Relay ('R1') receives the NS message from Server ('S1') it
   determines that Server ('S2') is the next hop toward Client ('C2') by
   consulting its forwarding table.  Relay ('R1') then re-encapsulates
   the NS while changing the link-layer source address to 'L2(R1)' and
   changing the link-layer destination address to 'L2(S2)'.  Relay
   ('R1') then relays the NS via Server ('S2').

   When Server ('S2') receives the NS message from Relay ('R1') it
   determines that Client ('C2') is a neighbor by consulting its
   neighbor cache.  Server ('S2') then re-encapsulates the NS while
   changing the link-layer source address to 'L2(S2)' and changing the
   link-layer destination address to 'L2(C2)'.  Server ('S2') then
   forwards the message to Client ('C2').
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3.15.5.  Processing NSs and Sending NAs

   When Client ('C2') receives the NS message, it accepts the NS only if
   the message has a link-layer source address of one of its Servers
   (e.g., L2(S2)).  Client ('C2') further accepts the message only if it
   is willing to serve as a route optimization target.

   In the reference operational scenario, when Client ('C2') receives a
   valid NS message, it either creates or updates a dynamic neighbor
   cache entry that stores the source address of the message as the
   network-layer address of Client ('C1') , stores the link-layer
   addresses found in the TLLAOs as the link-layer addresses of Client
   ('C1'), and stores the ACPs encoded in the RIOs of the NS as the ACPs
   for Client ('C1').  Client ('C2') then sets AcceptTime for the
   neighbor cache entry to ACCEPT_TIME.

   After processing the message, Client ('C2') prepares an NA message
   response as follows:

   o  the link-layer source address is set to 'L2(C2)' (i.e., the link-
      layer address of Client ('C2')).

   o  the link-layer destination address is set to 'L2(S2)' (i.e., the
      link-layer address of Server ('S2')).

   o  the network-layer source address is set to fe80::2001:db8:1:0
      (i.e., the base AERO address of Client ('C2')).

   o  the network-layer destination address is set to fe80::2001:db8:0:0
      (i.e., the base AERO address of Client ('C1')).

   o  the Type is set to 136.

   o  The Target Addrress is set to the Target Address field in the NS
      message.

   o  the message includes one or more TLLAOs set to appropriate values
      for Client ('C2')'s underlying interfaces.

   o  the message includes one or more RIOs that include Client ('C2')'s
      ACPs [I-D.templin-6man-rio-redirect].

   o  the message SHOULD include a Timestamp option and MUST echo the
      Nonce option received in the NS (i.e., if a Nonce option is
      included).

   After Client ('C2') prepares the NA message, it sends the message to
   Server ('S2').
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3.15.6.  Re-encapsulating and Relaying NAs

   When Server ('S2') receives an NA message from Client ('C2'), it
   first verifies that the TLLAOs in the NA are a proper subset of the
   Interface IDs in Client ('C2')'s neighbor cache entry.  If the
   Client's TLLAOs are not acceptable, Server ('S2') discards the
   message.  Otherwise, Server ('S2') verifies that Client ('C2') is
   authorized to use the ACPs encoded in the RIOs of the NA message.  If
   validation fails, Server ('S2') discards the NA; otherwise, it copies
   the correct UDP Port number and IP Address for Client ('C2')'s
   underlying link into the first TLLAO in case the addresses have been
   subject to NAT.

   Server ('S2') then examines the network-layer destination address of
   the NA to determine the next hop toward Client ('C1') by searching
   for the AERO address in the neighbor cache.  Since Client ('C1') is
   not a neighbor, Server ('S2') re-encapsulates the NA and relays it
   via Relay ('R1') by changing the link-layer source address of the
   message to 'L2(S2)' and changing the link-layer destination address
   to 'L2(R1)'.  Server ('S2') finally forwards the re-encapsulated
   message to Relay ('R1') without decrementing the network-layer TTL/
   Hop Limit field.

   When Relay ('R1') receives the NA message from Server ('S2') it
   determines that Server ('S1') is the next hop toward Client ('C1') by
   consulting its forwarding table.  Relay ('R1') then re-encapsulates
   the NA while changing the link-layer source address to 'L2(R1)' and
   changing the link-layer destination address to 'L2(S1)'.  Relay
   ('R1') then relays the NA via Server ('S1').

   When Server ('S1') receives the NA message from Relay ('R1') it
   determines that Client ('C1') is a neighbor by consulting its
   neighbor cache.  Server ('S1') then re-encapsulates the NA while
   changing the link-layer source address to 'L2(S1)' and changing the
   link-layer destination address to 'L2(C1)'.  Server ('S1') then
   forwards the message to Client ('C1').

3.15.7.  Processing NAs

   When Client ('C1') receives the NA message, it accepts the message
   only if it has a link-layer source address of one of its Servers
   (e.g., 'L2(S1)').  Client ('C1') then processes the message as
   follows.

   In the reference operational scenario, when Client ('C1') receives
   the NA message, it either creates or updates a dynamic neighbor cache
   entry that stores the source address of the message as the network-
   layer address of Client ('C2'), stores the link-layer addresses found
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   in the TLLAOs as the link-layer addresses of Client ('C2') and stores
   the ACPs encoded in the RIOs of the NA as the ACPs for Client ('C2').
   Client ('C1') then sets ForwardTime for the neighbor cache entry to
   FORWARD_TIME.

   Now, Client ('C1') has a neighbor cache entry with a valid
   ForwardTime value, while Client ('C2') has a neighbor cache entry
   with a valid AcceptTime value.  Thereafter, Client ('C1') may forward
   ordinary network-layer data packets directly to Client ('C2') without
   involving any intermediate nodes, and Client ('C2') can verify that
   the packets came from an acceptable source.  (In order for Client
   ('C2') to forward packets to Client ('C1'), a corresponding NS/NA
   message exchange is required in the reverse direction; hence, the
   mechanism is asymmetric.)

3.15.8.  Server-to-Client and Client-to-Server Route Optimization

   In some environments, the Server nearest the target Client may need
   to serve as a route optimization target, e.g., if direct Client-to-
   Client communications are not possible.  In that case, when the
   source Client sends an NS message the target Server prepares a
   corresponding NA the same as if it were the target Client (see:

Section 3.15.5), except that it writes its own link-layer address in
   the TLLAO option.  The Server must then maintain a dynamic neighbor
   cache entry for the source Client.

   Similarly, when the source Client must send all packets via its own
   Server and cannot act on a route optimization request, the source
   Server can send an NS message toward the target Client.  The target
   Client then prepares a corresponding NA message the same as for
   Client-to-Client route optimization and sends the NA message back to
   the source Server.

   Thereafter, if the target Client moves to a new Server, the old
   Server sends unsolicited NA messages with no TLLAOs (subject to rate
   limiting) in response to data packets received from a correspondent
   node while forwarding the packets themselves to a Relay.  The Relay
   will then either forward the packets to the new Server if the target
   Client has moved, or drop the packets if the target Client is no
   longer in the network.  The source Client (or Server) then allows
   future packets destined to the target Client to again flow through
   its own Server (or Relay).  Note however that the old Server retains
   the neighbor cache entry with its associated AcceptTime since there
   may be many packets in flight.  When the old Server receives these
   packets, it forwards them to a Relay which will forward them to the
   departed Client's new Server.  AcceptTime will then eventually
   decrement to 0 once the correspondent node processes and acts on the
   unsolicited NAs.
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   In any case, a Server MUST NOT send a BGP update to its Relays for
   Clients discovered through dynamic route optimization.  BGP updates
   are only to be sent for the Server's working set of statically-
   associated Clients.

3.15.9.  Server-to-Server Route Optimization

   If neither the source nor target Clients are capable of sending
   packets other than via their own Servers, a Server-to-Server route
   optimization can still be employed.  In that case, the source
   Client's Server can send an NS message via a Relay to the AERO
   address of the target Client, and the Relay will forward the message
   to the target Client's Server.  The target Server prepares the NA
   message the same as if it were the target Client, except that it
   writes its own link-layer address in the TLLAO option then sends the
   NA back to the source Server.  (The target Server can send the NA
   message back to the source Server either directly or via the Relay
   according to the security model.)

   Thereafter, if the target Client moves to a new Server, the old
   Server sends unsolicited NA messages with no TLLAOs (subject to rate
   limiting) in response to data packets received from a correspondent
   node while forwarding the packets themselves to a Relay.  The Relay
   will then either forward the packets to the new Server if the target
   Client has moved, or drop the packets if the target Client is no
   longer in the network.  The source Server then allows future packets
   destined to the target Client to again flow through a Relay.  Note
   however that the old Server retains the neighbor cache entry with its
   associated AcceptTime since there may be many packets in flight.
   When the old Server receives these packets, it forwards them to a
   Relay which will forward them to the departed Client's new Server.
   AcceptTime will then eventually decrement to 0 once the correspondent
   node processes and acts on the unsolicited NAs.

   In any case, a Server MUST NOT send a BGP update to its Relays for
   correspondents discovered through dynamic route optimization.  BGP
   updates are only to be sent for the Server's working set of
   statically-associated Clients..

3.16.  Neighbor Unreachability Detection (NUD)

   AERO nodes perform Neighbor Unreachability Detection (NUD) by sending
   unicast NS messages with SLLAOs to elicit solicited NA messages from
   neighbors the same as described in [RFC4861].  NUD is performed
   either reactively in response to persistent L2 errors (see

Section 3.13) or proactively to update neighbor cache entry timers
   and/or link-layer address information.

https://datatracker.ietf.org/doc/html/rfc4861
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   When an AERO node sends an NS/NA message, it MUST use one of its
   link-local addresses as the IPv6 source address and a link-local
   address of the neighbor as the IPv6 destination address.  When an
   AERO node receives an NS message or a solicited NA message, it
   accepts the message if it has a neighbor cache entry for the
   neighbor; otherwise, it ignores the message.

   When a source AERO node is redirected to a target AERO node it SHOULD
   proactively test the direct path by sending an initial NS message to
   elicit a solicited NA response.  While testing the path, the source
   node can optionally continue sending packets via its default router,
   maintain a small queue of packets until target reachability is
   confirmed, or (optimistically) allow packets to flow directly to the
   target.

   While data packets are still flowing, the source node thereafter
   periodically tests the direct path to the target node (see

Section 7.3 of [RFC4861]) in order to keep dynamic neighbor cache
   entries alive.  When the target node receives a valid NS message, it
   resets AcceptTime to ACCEPT_TIME and updates its cached link-layer
   addresses (if necessary).  When the source node receives a solicited
   NA message, it resets ForwardTime to FORWARD_TIME and updates its
   cached link-layer addresses (if necessary).  If the source node is
   unable to elicit a solicited NA response from the target node after
   MaxRetry attempts, it SHOULD set ForwardTime to 0.  Otherwise, the
   source node considers the path usable and SHOULD thereafter process
   any link-layer errors as a hint that the direct path to the target
   node has either failed or has become intermittent.

   When ForwardTime for a dynamic neighbor cache entry expires, the
   source node resumes sending any subsequent packets via a Server (or
   Relay) and may (eventually) attempt to re-initiate the AERO route
   optimization process.  When AcceptTime for a dynamic neighbor cache
   entry expires, the target node discards any subsequent packets
   received directly from the source node.  When both ForwardTime and
   AcceptTime for a dynamic neighbor cache entry expire, the node
   deletes the neighbor cache entry.

3.17.  Mobility Management and Quality of Service

3.17.1.  Forwarding Packets on Behalf of Departed Clients

   When a Server receives packets with destination addresses that do not
   match one of its static neighbor cache Clients, it forwards the
   packets packets to a Relay and also returns an unsolicited NA message
   to sender with no TLLAO.  The packets will be delivered to the target
   Client's new location, and the sender will realize that it needs to

https://datatracker.ietf.org/doc/html/rfc4861#section-7.3
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   deprecate its routing inforrmation that associated the target with
   this Server.

3.17.2.  Announcing Link-Layer Address and Quality of Service Changes

   When a Client needs to change its link-layer addresses, e.g., due to
   a mobility event, it sends unsolicited NAs to its neighbors using the
   new link-layer address as the source address and with TLLAOs that
   include the updated Client link-layer information.

   Note that this same mechanism is used to change the Client's quality
   of service parameters even if the Client's link-layer address itself
   is unchanged.  The Client can include TLLAOs with P[i] values that
   have changed even if the link-layer address is unchanged.

   The Client MAY send up to MaxRetry unsolicited NA messages in
   parallel with sending actual data packets in case one or more NAs are
   lost.  If all NAs are lost, the Client will eventually invoke NUD by
   sending NS messages that include SLLAOs.

3.17.3.  Bringing New Links Into Service

   When a Client needs to bring new underlying interfaces into service
   (e.g., when it activates a new data link), it sends unsolicited NAs
   to its neighbors using the new link-layer address as the source
   address and with TLLAOs that include the new Client link-layer
   information.

3.17.4.  Removing Existing Links from Service

   When a Client needs to remove existing underlying interfaces from
   service (e.g., when it de-activates an existing data link), it sends
   unsolicited NAs to its neighbors with TLLAOs with UDP Port and IP
   Address set to 0, and with all P(i) values set to "disabled".

   If the Client needs to send the unsolicited NAs over a link other
   than the one being removed from service, it MUST include a TLLAO for
   the sending link as the first TLLAO and include the TLLAO for the
   link being removed from service as an additional TLLAO.

3.17.5.  Implicit Mobility Management

   AERO interface neighbors MAY include a configuration knob that allows
   them to perform implicit mobility management in which no IPv6 ND
   messaging is used.  In that case, the Client only transmits packets
   over a single interface at a time, and the neighbor always observes
   packets arriving from the Client from the same link-layer source
   address.
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   If the Client's underlying interface address changes (either due to a
   readdressing of the original interface or switching to a new
   interface) the neighbor immediately updates the neighbor cache entry
   for the Client and begins accepting and sending packets to the
   Client's new link-layer address.  This implicit mobility method
   applies to use cases such as cellphones with both WiFi and Cellular
   interfaces where only one of the interfaces is active at a given
   time, and the Client automatically switches over to the backup
   interface if the primary interface fails.

3.17.6.  Moving to a New Server

   When a Client associates with a new Server, it performs the Client
   procedures specified in Section 3.14.2.

   When a Client disassociates with an existing Server, it sends a
   DHCPv6 Release message via a new Server with its base AERO address as
   the network-layer source address and the unicast link-local address
   of the old Server as the network-layer destination address.  The new
   Server then encapsulates the Release message in a DHCPv6 Relay-
   Forward message header, writes the Client's source address in the
   'peer-address' field, and writes its own link-local address in the IP
   source address (i.e., the new Server acts as a DHCPv6 relay agent).
   The new Server then forwards the message to a Relay, which forwards
   the message to the old Server based on the network-layer destination
   address.

   When the old Server receives the Release, it first authenticates the
   message then releases the DHCPv6 PDs and deletes the Client's ACP
   routes.  The old Server then deletes the Client's neighbor cache
   entry so that any in-flight packets will be forwarded via a Relay to
   the new Server, which will forward them to the Client.  The old
   Server finally returns a DHCPv6 Relay-Reply message via a Relay to
   the new Server, which will decapsulate the DHCPv6 Reply message and
   forward it to the Client.

   When the new Server forwards the Reply message, the Client can delete
   both the default route and the neighbor cache entry for the old
   Server.  (Note that since Release/Reply messages may be lost in the
   network the Client SHOULD retry until it gets a Reply indicating that
   the Release was successful.  If the Client does not receive a Reply
   after MaxRetry attempts, the old Server may have failed and the
   Client should discontinue its Release attempts.)

   Note that this DHCPv6 relay-chaining approach is provided to avoid
   failures, e.g., due to temporary routing fluctuations.  In
   particular, the Client should always be able to forward messages via
   its new Server but may not always be able to send messages directly
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   to an old Server.  But, the new Server and Old Server should always
   be able to exchange messages with one another.

   Finally, Clients SHOULD NOT move rapidly between Servers in order to
   avoid causing excessive oscillations in the AERO routing system.
   Such oscillations could result in intermittent reachability for the
   Client itself, while causing little harm to the network.  Examples of
   when a Client might wish to change to a different Server include a
   Server that has gone unreachable, topological movements of
   significant distance, etc.

3.17.7.  Alternate Mobility Security Model

   In some environments, an AERO node may have no way of authenticating
   any unsolicited NA messages it receives.  In that case, the target
   AERO node SHOULD ignore any unsolicited NA messages it receives, and
   the source AERO node SHOULD inform the target of its new link-layer
   addresses by sending a fresh NS message via its Server (or Relay).
   The target AERO node can then accept the NS message and update its
   link-layer addresses based on the NS SLLAOs.

3.17.8.  Packet Queueing for Mobility

   AERO Clients and Servers should maintain a small queue of packets
   they have recently sent to an AERO neighbor, e.g., a 1 second window.
   If the AERO neighbor moves, the AERO node MAY retransmit the queued
   packets to ensure that they are delivered to the AERO neighbor's new
   location.

   Note that this may have performance implications for asymmetric
   paths.  For example, if the AERO neighbor moves from a 50Mbps link to
   a 128Kbps link, retransmitting a 1 second window could cause
   significant congestion.  However, any retransmission bursts will
   subside after the 1 second window.

3.18.  Multicast Considerations

   When the underlying network does not support multicast, AERO Clients
   map link-scoped multicast addresses to the link-layer address of a
   Server, which acts as a multicast forwarding agent.  The AERO Client
   also serves as an IGMP/MLD Proxy for its EUNs and/or hosted
   applications per [RFC4605] while using the link-layer address of the
   Server as the link-layer address for all multicast packets.

   When the underlying network supports multicast, AERO nodes use the
   multicast address mapping specification found in [RFC2529] for IPv4
   underlying networks and use a TBD site-scoped multicast mapping for
   IPv6 underlying networks.  In that case, border routers must ensure

https://datatracker.ietf.org/doc/html/rfc4605
https://datatracker.ietf.org/doc/html/rfc2529
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   that the encapsulated site-scoped multicast packets do not leak
   outside of the site spanned by the AERO link.

4.  The AERO Proxy

   In some environments, AERO Clients may be located in secured enclaves
   (e.g., a corporate enterprise network) that does not allow direct
   communications from the Client to the outside world.  This is the
   same consideration as for web proxies commonly used in enterprise
   networks.

   The AERO Proxy is located at the secured enclave perimeter and sets a
   default route via one or more external Relays in the same way that a
   Server would, except the Proxy does not establish BGP peering session
   since the Relays will never send packets directly to the Proxy.  The
   Proxy listens for RS/RA/DHCv6 messages originating from or destined
   to AERO Clients located within the enclave and acts on the messages
   as follows:

   o  when the Proxy receives an RS/DHCPv6 message from a Client within
      the secured enclave, it caches the message locally.  The Proxy
      then forwards the message to the external Server indicated by the
      destination link-layer address in the packet while substituting
      its own external address as the source link-layer address

   o  when the Proxy receives an RA/DHCPv6 message from an external
      Server, it matches the RA with the RS message that it cached
      previously.  The Proxy then caches the route information in the
      message as a mapping from the Client's ACPs to the Client's
      address within the secured enclave.  The Proxy then forwards the
      message to the Client.

   After the initial RS/RA/DHCPv6 handshake is concluded, the Proxy can
   send unsolicited NA messages to the Client's chosen Server to update
   the Server's neighbor cache entry for the Client (e.g., to update the
   Client's quality of service parameters).  The Proxy also orwards all
   data packets originating from the Client to one of its default router
   Relays in the external network.  At the same time, for destination
   addresses that match an ASP the Proxy sends an NS message via the
   Relay to solicit an NA message from a Server that is currently
   serving the target Client.  When the Proxy receives the NA message,
   it configures routing information that associates the source of the
   NA message as the next-hop toward the routes adveritsed in the NA
   RIOs.

   From the perspective of the target Server, the Proxy that sent the
   route optimization NS message will appear as if it is an ordinary
   AERO Client.  However, the target Server must deliver the NA message
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   directly to the Proxy (i.e., instead of relaying through the backward
   chain of Relays and Servers) since the backwards chain could deliver
   the NA to a different Proxy besides the one that produced the NS.
   For this reason, when a Proxy sends a route optimization NS message
   it must set the "Proxy" bit in the message (TBD).  When the target
   Server receives the NS message, if the Proxy bit is set it returns
   the NA message directly to the address of the Proxy.

   After the NS/NA exchange, the Proxy may receive unsolicited NA
   messages without TLLAOs from the target Server in response to data
   packets destined to a Client that is no longer associated with the
   target.  In that case, the Proxy deletes the routes associated with
   the NA Target Address and allows future packets to flow through a
   Relay.  It can then re-initialize route optimization as above to
   discover the new Server for the target Client.

5.  Operation on AERO Links with /64 ASPs

   IPv6 AERO links typically have ASPs that cover many candidate ACPs of
   length /64 or shorter.  However, in some cases it may be desirable to
   use AERO over links that have only a /64 ASP.  This can be
   accommodated by treating all Clients on the AERO link as simple hosts
   that receive /128 prefix delegations.

   In that case, the Client sends an RS/DHCPv6 PD message to the Server
   the same as for ordinary AERO links.  The Server responds with an RA/
   DHCPv6 message that includes one or more /128 prefixes (i.e.,
   singleton addresses) that include the /64 ASP prefix along with an
   interface identifier portion to be assigned to the Client.  The
   Client and Server then configure their AERO addresses based on the
   interface identifier portions of the /128s (i.e., the lower 64 bits)
   and not based on the /64 prefix (i.e., the upper 64 bits).

   For example, if the ASP for the host-only IPv6 AERO link is
   2001:db8:1000:2000::/64, each Client will receive one or more /128
   IPv6 prefix delegations such as 2001:db8:1000:2000::1/128,
   2001:db8:1000:2000::2/128, etc.  When the Client receives the prefix
   delegations, it assigns the AERO addresses fe80::1, fe80::2, etc. to
   the AERO interface, and assigns the global IPv6 addresses (i.e., the
   /128s) to either the AERO interface or an internal virtual interface
   such as a loopback.  In this arrangement, the Client conducts route
   optimization in the same sense as discussed in Section 3.15.

   This specification has applicability for nodes that act as a Client
   on an "upstream" AERO link, but also act as a Server on "downstream"
   AERO links.  More specifically, if the node acts as a Client to
   receive a /64 prefix from the upstream AERO link it can then act as a
   Server to provision /128s to Clients on downstream AERO links.
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   Note that, due to the nature of the AERO address format, valid IPv6
   ACP lengths are either /64 or shorter, or exactly /128 (i.e., prefix
   lengths between /65 and /127 cannot be accommodated).

6.  Implementation Status

   An AERO implementation based on OpenVPN (https://openvpn.net/) was
   cleared for public release on December 13, 2017.

   An initial public release of the AERO proof-of-concept source code
   was announced on the intarea mailing list on August 21, 2015, and a
   pointer to the code is available in the list archives.

7.  IANA Considerations

   The IANA has assigned a 4-octet Private Enterprise Number "45282" for
   AERO in the "enterprise-numbers" registry.

   The IANA has assigned the UDP port number "8060" for an earlier
   experimental version of AERO [RFC6706].  This document obsoletes
   [RFC6706] and claims the UDP port number "8060" for all future use.

   No further IANA actions are required.

8.  Security Considerations

   AERO link security considerations are the same as for standard IPv6
   Neighbor Discovery [RFC4861] except that AERO improves on some
   aspects.  In particular, AERO uses a trust basis between Clients and
   Servers, where the Clients only engage in the AERO mechanism when it
   is facilitated by a trust anchor.

   NS and NA messages SHOULD include a Timestamp option (see Section 5.3
   of [RFC3971]) that other AERO nodes can use to verify the message
   time of origin.  NS and RS messages SHOULD include a Nonce option
   (see Section 5.3 of [RFC3971]) that recipients echo back in
   corresponding responses.  In cases where spoofing cannot be mitigated
   through other means, however, all AERO IPv6 ND messages should employ
   Secure Neighbor Discovery (SeND) [RFC3971].

   AERO links must be protected against link-layer address spoofing
   attacks in which an attacker on the link pretends to be a trusted
   neighbor.  Links that provide link-layer securing mechanisms (e.g.,
   IEEE 802.1X WLANs) and links that provide physical security (e.g.,
   enterprise network wired LANs) provide a first line of defense,
   however AERO nodes SHOULD also use IPv6 ND and/or DHCPv6 securing
   services for Client authentication and network admission control.
   Following authenticated DHCPv6 PD procedures, AERO nodes MUST ensure

https://openvpn.net/
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
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   that the source of data packets corresponds to the node to which the
   prefixes were delegated.

   AERO Clients MUST ensure that their connectivity is not used by
   unauthorized nodes on their EUNs to gain access to a protected
   network, i.e., AERO Clients that act as routers MUST NOT provide
   routing services for unauthorized nodes.  (This concern is no
   different than for ordinary hosts that receive an IP address
   delegation but then "share" the address with other nodes via some
   form of Internet connection sharing.)

   AERO Clients, Servers and Relays on the open Internet are susceptible
   to the same attack profiles as for any Internet nodes.  For this
   reason, IP security SHOULD be used when AERO is employed over
   unmanaged/unsecured links using securing mechanisms such as IPsec
   [RFC4301], IKE [RFC5996] and/or TLS [RFC5246].  In some environments,
   however, the use of end-to-end security from Clients to correspondent
   nodes (i.e., other Clients and/or Internet nodes) could obviate the
   need for IP security between AERO Clients, Servers and Relays.

   AERO Servers and Relays present targets for traffic amplification DoS
   attacks.  This concern is no different than for widely-deployed VPN
   security gateways in the Internet, where attackers could send spoofed
   packets to the gateways at high data rates.  This can be mitigated by
   connecting Relays and Servers over dedicated links with no
   connections to the Internet and/or when connections to the Internet
   are only permitted through well-managed firewalls.

   Traffic amplification DoS attacks can also target an AERO Client's
   low data rate links.  This is a concern not only for Clients located
   on the open Internet but also for Clients in secured enclaves.  AERO
   Servers can institute rate limits that protect Clients from receiving
   packet floods that could DoS low data rate links.
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Appendix A.  AERO Alternate Encapsulations

   When GUE encapsulation is not needed, AERO can use common
   encapsulations such as IP-in-IP [RFC2003][RFC2473][RFC4213], Generic
   Routing Encapsulation (GRE) [RFC2784][RFC2890] and others.  The
   encapsulation is therefore only differentiated from non-AERO tunnels
   through the application of AERO control messaging and not through,
   e.g., a well-known UDP port number.

   As for GUE encapsulation, alternate AERO encapsulation formats may
   require encapsulation layer fragmentation.  For simple IP-in-IP
   encapsulation, an IPv6 fragment header is inserted directly between
   the inner and outer IP headers when needed, i.e., even if the outer
   header is IPv4.  The IPv6 Fragment Header is identified to the outer
   IP layer by its IP protocol number, and the Next Header field in the
   IPv6 Fragment Header identifies the inner IP header version.  For GRE
   encapsulation, a GRE fragment header is inserted within the GRE
   header [I-D.templin-intarea-grefrag].

   Figure 5 shows the AERO IP-in-IP encapsulation format before any
   fragmentation is applied:
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        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |     Outer IPv4 Header     |      |    Outer IPv6 Header      |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |IPv6 Frag Header (optional)|      |IPv6 Frag Header (optional)|
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |      Inner IP Header      |      |       Inner IP Header     |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |                           |      |                           |
        ~                           ~      ~                           ~
        ~    Inner Packet Body      ~      ~     Inner Packet Body     ~
        ~                           ~      ~                           ~
        |                           |      |                           |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Minimal Encapsulation in IPv4      Minimal Encapsulation in IPv6

           Figure 5: Minimal Encapsulation Format using IP-in-IP

   Figure 6 shows the AERO GRE encapsulation format before any
   fragmentation is applied:

        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |        Outer IP Header        |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |          GRE Header           |
        | (with checksum, key, etc..)   |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        | GRE Fragment Header (optional)|
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |        Inner IP Header        |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |                               |
        ~                               ~
        ~      Inner Packet Body        ~
        ~                               ~
        |                               |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 6: Minimal Encapsulation Using GRE

   Alternate encapsulation may be preferred in environments where GUE
   encapsulation would add unnecessary overhead.  For example, certain
   low-bandwidth wireless data links may benefit from a reduced
   encapsulation overhead.



Templin                   Expires June 16, 2018                [Page 59]



Internet-Draft                    AERO                     December 2017

   GUE encapsulation can traverse network paths that are inaccessible to
   non-UDP encapsulations, e.g., for crossing Network Address
   Translators (NATs).  More and more, network middleboxes are also
   being configured to discard packets that include anything other than
   a well-known IP protocol such as UDP and TCP.  It may therefore be
   necessary to determine the potential for middlebox filtering before
   enabling alternate encapsulation in a given environment.

   In addition to IP-in-IP, GRE and GUE, AERO can also use security
   encapsulations such as IPsec and SSL/TLS.  In that case, AERO control
   messaging and route determination occur before security encapsulation
   is applied for outgoing packets and after security decapsulation is
   applied for incoming packets.

   AERO is especially well suited for use with VPN system encapsulations
   such as OpenVPN [OVPN].

Appendix B.  When to Insert an Encapsulation Fragment Header

   An encapsulation fragment header is inserted when the AERO tunnel
   ingress needs to apply fragmentation to accommodate packets that must
   be delivered without loss due to a size restriction.  Fragmentation
   is performed on the inner packet while encapsulating each inner
   packet fragment in outer IP and encapsulation layer headers that
   differ only in the fragment header fields.

   The fragment header can also be inserted in order to include a
   coherent Identification value with each packet, e.g., to aid in
   Duplicate Packet Detection (DPD).  In this way, network nodes can
   cache the Identification values of recently-seen packets and use the
   cached values to determine whether a newly-arrived packet is in fact
   a duplicate.  The Identification value within each packet could
   further provide a rough indicator of packet reordering, e.g., in
   cases when the tunnel egress wishes to discard packets that are
   grossly out of order.

   In some use cases, there may be operational assurance that no
   fragmentation of any kind will be necessary, or that only occasional
   large control messages will require fragmentation.  In that case, the
   encapsulation fragment header can be omitted and ordinary
   fragmentation of the outer IP protocol version can be applied when
   necessary.

Appendix C.  Autoconfiguration for Constrained Platforms

   On some platforms (e.g., popular cell phone operating systems), the
   act of assigning a default IPv6 route and/or assigning an address to
   an interface may not be permitted from a user application due to
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   security policy.  Typically, those platforms include a TUN/TAP
   interface [TUNTAP] that acts as a point-to-point conduit between user
   applications and the AERO interface.  In that case, the Client can
   instead generate a "synthesized RA" message.  The message conforms to
   [RFC4861] and is prepared as follows:

   o  the IPv6 source address is the Client's AERO address

   o  the IPv6 destination address is all-nodes multicast

   o  the Router Lifetime is set to a time that is no longer than the
      ACP DHCPv6 lifetime

   o  the message does not include a Source Link Layer Address Option
      (SLLAO)

   o  the message includes a Prefix Information Option (PIO) with a /64
      prefix taken from the ACP as the prefix for autoconfiguration

   The Client then sends the synthesized RA message via the TUN/TAP
   interface, where the operating system kernel will interpret it as
   though it were generated by an actual router.  The operating system
   will then install a default route and use StateLess Address
   AutoConfiguration (SLAAC) to configure an IPv6 address on the TUN/TAP
   interface.  Methods for similarly installing an IPv4 default route
   and IPv4 address on the TUN/TAP interface are based on synthesized
   DHCPv4 messages [RFC2131].

Appendix D.  Operational Deployment Alternatives

   AERO can be used in many different variations based on the specific
   use case.  The following sections discuss variations that adhere to
   the AERO principles while allowing selective application of AERO
   components.

D.1.  Operation on AERO Links Without DHCPv6 Services

   When Servers on the AERO link do not provide DHCPv6 services,
   operation can still be accommodated through administrative
   configuration of ACPs on AERO Clients.  In that case, administrative
   configurations of AERO interface neighbor cache entries on both the
   Server and Client are also necessary.  However, this may interfere
   with the ability for Clients to dynamically change to new Servers,
   and can expose the AERO link to misconfigurations unless the
   administrative configurations are carefully coordinated.
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D.2.  Operation on Server-less AERO Links

   In some AERO link scenarios, there may be no Servers on the link and/
   or no need for Clients to use a Server as an intermediary trust
   anchor.  In that case, each Client acts as a Server unto itself to
   establish neighbor cache entries by performing direct Client-to-
   Client IPv6 ND message exchanges, and some other form of trust basis
   must be applied so that each Client can verify that the prospective
   neighbor is authorized to use its claimed ACP.

   When there is no Server on the link, Clients must arrange to receive
   ACPs and publish them via a secure alternate PD authority through
   some means outside the scope of this document.

D.3.  Operation on Client-less AERO Links

   In some environments, the AERO service may be useful for mobile nodes
   that do not implement the AERO Client function and do not perform
   encapsulation.  For example, if the mobile node has a way of
   injecting its ACP into the access subnetwork routing system an AERO
   Server connected to the same access network can accept the ACP prefix
   injection as an indication that a new mobile node has come onto the
   subnetwork.  The Server can then inject the ACP into the BGP routing
   system the same as if an AERO Client/Server DHCPv6 PD exchange had
   occurred.  If the mobile node subsequently withdraws the ACP from the
   access network routing system, the Server can then withdraw the ACP
   from the BGP routing system.

   In this arrangement, AERO Servers and Relays are used in exactly the
   same ways as for environments where DHCPv6 Client/Server exchanges
   are supported.  However, the access subnetwork routing systems must
   be capable of accommodating rapid ACP injections and withdrawals from
   mobile nodes with the understanding that the information must be
   propagated to all routers in the system.  Operational experience has
   shown that this kind of routing system "churn" can lead to overall
   instability and routing system inconsistency.

D.4.  Manually-Configured AERO Tunnels

   In addition to the dynamic neighbor discovery procedures for AERO
   link neighbors described above, AERO encapsulation can be applied to
   manually-configured tunnels.  In that case, the tunnel endpoints use
   an administratively-provisioned link-local address and exchange NS/NA
   messages the same as for dynamically-established tunnels.
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D.5.  Encapsulation Avoidance on Relay-Server Dedicated Links

   In some environments, AERO Servers and Relays may be connected by
   dedicated point-to-point links, e.g., high speed fiberoptic leased
   lines.  In that case, the Servers and Relays can participate in the
   AERO link the same as specified above but can avoid encapsulation
   over the dedicated links.  In that case, however, the links would be
   dedicated for AERO and could not be multiplexed for both AERO and
   non-AERO communications.

D.6.  Encapsulation Protocol Version Considerations

   A source Client may connect only to an IPvX underlying network, while
   the target Client connects only to an IPvY underlying network.  In
   that case, the target and source Clients have no means for reaching
   each other directly (since they connect to underlying networks of
   different IP protocol versions) and so must ignore any route
   optimization messages and continue to send packets via their Servers.

D.7.  Extending AERO Links Through Security Gateways

   When an enterprise mobile node moves from a campus LAN connection to
   a public Internet link, it must re-enter the enterprise via a
   security gateway that has both a physical interface connection to the
   Internet and a physical interface connection to the enterprise
   internetwork.  This most often entails the establishment of a Virtual
   Private Network (VPN) link over the public Internet from the mobile
   node to the security gateway.  During this process, the mobile node
   supplies the security gateway with its public Internet address as the
   link-layer address for the VPN.  The mobile node then acts as an AERO
   Client to negotiate with the security gateway to obtain its ACP.

   In order to satisfy this need, the security gateway also operates as
   an AERO Server with support for AERO Client proxying.  In particular,
   when a mobile node (i.e., the Client) connects via the security
   gateway (i.e., the Server), the Server provides the Client with an
   ACP in a DHCPv6 PD exchange the same as if it were attached to an
   enterprise campus access link.  The Server then replaces the Client's
   link-layer source address with the Server's enterprise-facing link-
   layer address in all AERO messages the Client sends toward neighbors
   on the AERO link.  The AERO messages are then delivered to other
   nodes on the AERO link as if they were originated by the security
   gateway instead of by the AERO Client.  In the reverse direction, the
   AERO messages sourced by nodes within the enterprise network can be
   forwarded to the security gateway, which then replaces the link-layer
   destination address with the Client's link-layer address and replaces
   the link-layer source address with its own (Internet-facing) link-
   layer address.
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   After receiving the ACP, the Client can send IP packets that use an
   address taken from the ACP as the network layer source address, the
   Client's link-layer address as the link-layer source address, and the
   Server's Internet-facing link-layer address as the link-layer
   destination address.  The Server will then rewrite the link-layer
   source address with the Server's own enterprise-facing link-layer
   address and rewrite the link-layer destination address with the
   target AERO node's link-layer address, and the packets will enter the
   enterprise network as though they were sourced from a node located
   within the enterprise.  In the reverse direction, when a packet
   sourced by a node within the enterprise network uses a destination
   address from the Client's ACP, the packet will be delivered to the
   security gateway which then rewrites the link-layer destination
   address to the Client's link-layer address and rewrites the link-
   layer source address to the Server's Internet-facing link-layer
   address.  The Server then delivers the packet across the VPN to the
   AERO Client.  In this way, the AERO virtual link is essentially
   extended *through* the security gateway to the point at which the VPN
   link and AERO link are effectively grafted together by the link-layer
   address rewriting performed by the security gateway.  All AERO
   messaging services (including route optimization and mobility
   signaling) are therefore extended to the Client.

   In order to support this virtual link grafting, the security gateway
   (acting as an AERO Server) must keep static neighbor cache entries
   for all of its associated Clients located on the public Internet.
   The neighbor cache entry is keyed by the AERO Client's AERO address
   the same as if the Client were located within the enterprise
   internetwork.  The neighbor cache is then managed in all ways as
   though the Client were an ordinary AERO Client.  This includes the
   AERO IPv6 ND messaging signaling for Route Optimization and Neighbor
   Unreachability Detection.

   Note that the main difference between a security gateway acting as an
   AERO Server and an enterprise-internal AERO Server is that the
   security gateway has at least one enterprise-internal physical
   interface and at least one public Internet physical interface.
   Conversely, the enterprise-internal AERO Server has only enterprise-
   internal physical interfaces.  For this reason security gateway
   proxying is needed to ensure that the public Internet link-layer
   addressing space is kept separate from the enterprise-internal link-
   layer addressing space.  This is afforded through a natural extension
   of the security association caching already performed for each VPN
   client by the security gateway.
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Appendix E.  Change Log

   Changes from -76 to -77:

   o  Now using IPv6 ND NS/NA messaging for route optimization (no
      longer using Predirect/Redirect)

   o  Now using combined IPv6 ND/DHCPv6 messaging so autoconfiguration
      can be conducted in a single message exchange

   o  Introduced the AERO Proxy construct.  Critical for applications
      such as ATN/IPS

   Changes from -75 to -76:

   o  Bumped version number ahead of expiration deadline

   Changes from -74 to -75:

   o  Bumped version number ahead of expiration deadline
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