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Abstract

The Licklider Transmission Protocol (LTP) provides a reliable

datagram convergence layer for the Delay/Disruption Tolerant

Networking (DTN) Bundle Protocol. In common practice, LTP is often

configured over UDP/IP sockets and inherits its maximum segment size

from the maximum-sized UDP/IP datagram, however when this size

exceeds the maximum IP packet size for the path a service known as

IP fragmentation must be employed. This document discusses LTP

interactions with IP fragmentation and mitigations for managing the

amount of IP fragmentation employed.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 May 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

2.  Terminology

3.  IP Fragmentation Issues

4.  LTP Fragmentation

5.  Beyond "sendmmsg()"

6.  LTP Performance Enhancement Using GSO/GRO

6.1.  LTP and GSO

6.2.  LTP and GRO

6.3.  LTP GSO/GRO Over OMNI Interfaces

6.4.  IPv4/IPv6 Protocol Considerations

7.  Implementation Status

8.  IANA Considerations

9.  Security Considerations

10. Acknowledgements

11. References

11.1.  Normative References

11.2.  Informative References

Author's Address

1. Introduction

The Licklider Transmission Protocol (LTP) [RFC5326] provides a

reliable datagram convergence layer for the Delay/Disruption

Tolerant Networking (DTN) Bundle Protocol (BP) [I-D.ietf-dtn-bpbis].

In common practice, LTP is often configured over the User Datagram

Protocol (UDP) [RFC0768] and Internet Protocol (IP) [RFC0791] using

the "socket" abstraction. LTP inherits its maximum segment size from

the maximum-sized UDP/IP datagram (i.e. 64KB minus header sizes),

however when that size exceeds the maximum IP packet size for the

path a service known as IP fragmentation must be employed.

LTP breaks BP bundles into "blocks", then further breaks these

blocks into "segments". The segment size is a configurable option

and represents the largest atomic portion of data that LTP will

require underlying layers to deliver as a single unit. The segment

size is therefore also known as the "retransmission unit", since

each lost segment must be retransmitted in its entirety.

Experimental and operational evidence has shown that on robust

networks increasing the LTP segment size (up to the maximum UDP/IP

datagram size of slightly less than 64KB) can result in substantial

performance increases over smaller segment sizes. However, the

performance increases must be tempered with the amount of IP

fragmentation invoked as discussed below.
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When LTP presents a segment to the operating system kernel (e.g.,

via a sendmsg() system call), the UDP layer prepends a UDP header to

create a UDP datagram. The UDP layer then presents the resulting

datagram to the IP layer for packet framing and transmission over a

networked path. The path is further characterized by the path

Maximum Transmission Unit (Path-MTU) which is a measure of the

smallest link MTU (Link-MTU) among all links in the path.

When LTP presents a segment to the kernel that is larger than the

Path-MTU, the resulting UDP datagram is presented to the IP layer

which in turn performs IP fragmentation to break the datagram into

fragments that are no larger than the Path-MTU. For example, if the

LTP segment size is 64KB and the Path-MTU is 1280 bytes IP

fragmentation results in 50+ fragments that are transmitted as

individual IP packets. (Note that for IPv4 [RFC0791], fragmentation

may occur either in the source host or in a router in the network

path, while for IPv6 [RFC8200] only the source host may perform

fragmentation.)

Each IP fragment is subject to the same best-effort delivery service

offered by the network according to current congestion and/or link

signal quality conditions; therefore, the IP fragment size becomes

known as the "loss unit". Especially when the packet loss rate is

non-negligible, however, performance can suffer dramatically when

the loss unit is significantly smaller than the retransmission unit.

In particular, if even a single IP fragment of a fragmented LTP

segment is lost then the entire LTP segment is deemed lost and must

be retransmitted. Since LTP does not support flow control or

congestion control, this can result in cascading communication

failure when fragments are systematically lost in transit.

This document discusses LTP interactions with IP fragmentation and

mitigations for managing the amount of IP fragmentation employed. It

further discusses methods for increasing LTP performance both with

and without the aid of IP fragmentation.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. IP Fragmentation Issues

IP fragmentation is a fundamental service of the Internet Protocol,

yet it has long been understood that its use can be problematic in

some environments. Beginning as early as 1987, "Fragmentation
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Considered Harmful" [FRAG] outlined multiple issues with the service

including a performance-crippling condition that can occur at high

data rates when the loss unit is considerably smaller than the

retransmission unit during intermittent and/or steady-state loss

conditions.

Later investigations also identified the possibility for undetected

corruption at high data rates due to a condition known as "ID

wraparound" when the 16-bit IP identification field (aka the "IP

ID") increments such that new fragments overlap with existing

fragments still alive in the network and with identical ID values 

[RFC4963][RFC6864]. Although this issue occurs only in the IPv4

protocol (and not in IPv6 where the IP ID is 32-bits in length), the

IPv4 concerns along with the fact that IPv6 does not permit routers

to perform "network fragmentation" have led many to discourage the

use of fragmentation whenever possible.

Even in the modern era, investigators have seen fit to declare "IP

Fragmentation Considered Fragile" in an Internet Engineering Task

Force (IETF) Best Current Practice (BCP) reference [RFC8900].

Indeed, the BCP recommendations cite the Bundle Protocol LTP

convergence layer as a user of IP fragmentation that depends on some

of its properties to realize greater performance. However, the BCP

summarizes by saying:

"Rather than deprecating IP fragmentation, this document

recommends that upper-layer protocols address the problem of

fragmentation at their layer, reducing their reliance on IP

fragmentation to the greatest degree possible."

While the performance implications are considerable and have serious

implications for real-world applications, our goal in this document

is neither to condemn nor embrace IP fragmentation as it pertains to

the Bundle Protocol LTP convergence layer operating over UDP/IP

sockets. Instead, we examine ways in which the benefits of IP

fragmentation can be realized while avoiding the pitfalls. We

therefore next discuss our systematic approach to LTP fragmentation.

4. LTP Fragmentation

In common LTP implementations over UDP/IP (e.g., the Interplanetary

Overlay Network (ION)), performance is greatly dependent on the LTP

segment size. This is due to the fact that a larger segment

presented to UDP/IP as a single unit incurs only a single system

call and a single data copy from application to kernel space via the

sendmsg() system call. Once inside the kernel, the segment incurs

UDP/IP encapsulation and IP fragmentation which again results in a

loss unit smaller than the retransmission unit. However, during

fragmentation, each fragment is transmitted immediately following
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the previous without delay so that the fragments appear as a "burst"

of consecutive packets over the network path resulting in high

network utilization during the burst period. Additionally, the use

of IP fragmentation with a larger segment size conserves header

framing bytes since the upper layer headers only appear in the first

IP fragment as opposed to appearing in all fragments.

In order to avoid retransmission congestion (i.e., especially when

the loss probability is non-negligible), the natural choice would be

to set the LTP segment size to a size that is no larger than the

Path-MTU. Assuming the minimum IPv4 MTU of 576 bytes, however,

transmission of 64KB of data using a 576B segment size would require

well over 100 independent sendmsg() system calls and data copies as

opposed to just one when the largest segment size is used. This

greatly reduces the bandwidth advantage offered by IP fragmentation

bursts. Therefore, a means for providing the best aspects of both

large segment fragment bursting and small segment retransmission

efficiency is needed.

Common operating systems such as linux provide the sendmmsg() ("send

multiple messages") system call that allows the LTP application to

present the kernel with a vector of up to 1024 segments instead of

just a single segment. This theoretically affords the bursting

behavior of IP fragmentation coupled with the retransmission

efficiency of employing small segment sizes. (Note that LTP

receivers can also use the recvmmsg() ("receive multiple messages")

system call to receive a vector of segments from the kernel in case

multiple recent packet arrivals can be combined.)

This work therefore recommends implementations of LTP to employ a

large block size, a conservative segment size and a new

configuration option known as the "Burst-Limit" which determines the

number of segments that can be presented in a single sendmmsg()

system call. When the implementation receives an LTP block, it

carves Burst-Limit-many segments from the block and presents the

vector of segments to sendmmsg(). The kernel will prepare each

segment as an independent UDP/IP packet and transmit them into the

network as a burst in a fashion that parallels IP fragmentation. The

loss unit and retransmission unit will be the same, therefore loss

of a single segment does not result in a retransmission congestion

event.

It should be noted that the Burst-Limit is bounded only by the LTP

block size and not by the maximum UDP/IP datagram size. Therefore,

each burst can in practice convey significantly more data than a

single IP fragmentation event. It should also be noted that the

segment size can still be made larger than the Path-MTU in low-loss

environments without danger of triggering retransmission storms due

to loss of IP fragments. This would result in combined large UDP/IP
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message transmission and IP fragmentation bursting for increased

network utilization in more robust environments. Finally, both the

Burst-Limit and UDP/IP message sizes need not be static values, and

can be tuned to adaptively increase or decrease according to time

varying network conditions.

5. Beyond "sendmmsg()"

Implementation experience with the ION-DTN distribution along with

two recent studies have demonstrated modest performance increases

for employing sendmmsg() for transmission over UDP/IP sockets. A

first study used sendmmsg() as part of an integrated solution to

produce 1M packets per second assuming only raw data transmission

conditions [MPPS], while a second study focused on performance

improvements for the QUIC reliable transport service [QUIC]. In both

studies, the use of sendmmsg() alone produced observable increases

but complimentary enhancements were identified that (when combined

with sendmmsg()) produced considerable additional increases.

In [MPPS], additional enhancements such as using recvmmsg() and

configuring multiple receive queues at the receiver were introduced

in an attempt to achieve greater parallelism and engage multiple

processors and threads. However, the system was still limited to a

single thread until multiple receiving processes were introduced

using the "SO_REUSEPORT" socket option. By having multiple receiving

processes (each with its own socket buffer), the performance

advantages of parallel processing were employed to achieve the 1M

packets per second goal.

In [QUIC], a new feature available in recent linux kernel versions

was employed. The feature, known as "Generic Segmentation Offload

(GSO) / Generic Receive Offload (GRO)" allows an application to

provide the kernel with a "super-buffer" containing up to 64

separate upper layer protocol segments. When the application

presents the super-buffer to the kernel, GSO segmentation then sends

up to 64 separate UDP/IP packets in a burst. (Note that GSO requires

each UDP/IP packet to be no larger than the path MTU so that

receivers can invoke GRO without interactions with IP reassembly.)

The GSO facility can be invoked by either sendmsg() (i.e., a single

super-buffer) or sendmmsg() (i.e., multiple super-buffers), and the

study showed a substantial performance increase over using just

sendmsg() and sendmmsg() alone.

For LTP fragmentation, our ongoing efforts explore using these

techniques in a manner that parallels the effort undertaken for

QUIC. Using these higher-layer segmentation management facilities is

¶

¶

¶

¶



consistent with the guidance in "IP Fragmentation Considered

Fragile" that states:

"Rather than deprecating IP fragmentation, this document

recommends that upper-layer protocols address the problem of

fragmentation at their layer, reducing their reliance on IP

fragmentation to the greatest degree possible."

By addressing fragmentation at their layer, the LTP/UDP functions

can then be tuned to minimize IP fragmentation in environments where

it may be problematic or to adaptively engage IP fragmentation in

environments where performance gains can be realized without risking

sustained loss and/or data corruption.

6. LTP Performance Enhancement Using GSO/GRO

Some modern operating systems include Generic Segment Offload (GSO)

and Generic Receive Offload (GRO) services. For example, GSO/GRO

support has been included in linux beginning with kernel version

4.18. Some network drivers and network hardware also support GSO/GRO

at or below the operating system network device driver interface

layer to provide benefits of delayed segmentation and/or early

reassembly. The following sections discuss LTP interactions with GSO

and GRO.

6.1. LTP and GSO

GSO allows LTP implementations to present the sendmsg() or

sendmmsg() system calls with "super-buffers" that include up to 64

LTP segments which the kernel will subdivide into individual UDP/IP

datagrams. LTP implementations enable GSO either on a per-socket

basis using the "setsockopt()" system call or on a per-message basis

for sendmsg()/sendmmsg() as follows:

Implementations must set SEGSIZE to a value no larger than the path

MTU via the underlying network interface, minus the header sizes

(see: Section 6.4); this ensures that UDP/IP datagrams generated
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  /* Set LTP segment size */

  unsigned integer gso_size = SEGSIZE;

  ...

  /* Enable GSO for all messages sent on the socket */

  setsockopt(fd, SOL_UDP, UDP_SEGMENT, &gso_size, sizeof(gso_size)));

  ...

  /* Alternatively, set per-message GSO control */

  cm = CMSG_FIRSTHDR(&msg);

  cm->cmsg_level = SOL_UDP;

  cm->cmsg_type = UDP_SEGMENT;

  cm->cmsg_len = CMSG_LEN(sizeof(uint16_t));

  *((uint16_t *) CMSG_DATA(cm)) = gso_size;

¶



during GSO segmentation will not incur local IP fragmentation prior

to transmission (NB: the linux kernel returns EINVAL if SEGSIZE is

set to a value that would exceed the path MTU.)

Implementations should therefore dynamically determine SEGSIZE for

paths that traverse multiple links through Packetization Layer Path

MTU Discovery for Datagram Transports [RFC8899] (DPMTUD).

Implementations should set an initial SEGSIZE to either a known

minimum MTU for the path or to the protocol-defined minimum path MTU

(i.e., 576 for IPv4 or 1280 for IPv6). Implementations may then

dynamically increase SEGSIZE without service interruption if the

discovered path MTU is larger.

6.2. LTP and GRO

GRO allows the kernel to return "super-buffers" that contain

multiple concatenated received segments to the LTP implementation in

recvmsg() or recvmmsg() system calls, where each concatenated

segment is distinguished by an LTP segment header per [RFC5326]. LTP

implementations enable GRO on a per-socket basis using the

"setsockopt()" system call as follows:

Implementations include a pointer to a gro_size variable as a

boolean indication to the kernel using any arbitrary initialization

value (e.g., '0'), as GRO will accept received segments of any size;

the only interoperability requirement therefore is that each UDP/IP

packet includes an integral number of properly-formed LTP segments.

The kernel and/or underlying network hardware will first coalesce

multiple received segments into a larger single segment whenever

possible and/or return multiple coalesced or singular segments to

the LTP implementation so as to maximize the amount of data returned

in a single system call.

Implementations that invoke recvmsg( ) and/or recvmmsg() will

therefore receive "super-buffers" that include one or more

concatenated received LTP segments. The LTP implementation accepts

all received LTP segments and identifies any segments that may be

missing. The LTP protocol then engages segment report procedures if

necessary to request retransmission of any missing segments.

6.3. LTP GSO/GRO Over OMNI Interfaces

LTP engines produce UDP/IP packets that can be forwarded over an

underlying network interface as the head-end of a "link-layer

service that transits IP packets". UDP/IP packets that enter the

link near-end are deterministically delivered to the link-far end
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  /* Enable GRO */

  unsigned integer gro_size = 0;

  setsockopt(fd, SOL_UDP, UDP_GRO, &gro_size, sizeof(gro_size)));

¶

¶

¶



modulo loss due to corruption, congestion or disruption. The link-

layer service is associated with an MTU that deterministically

establishes the maximum packet size that can transit the link. The

link-layer service may further support a segmentation and reassembly

function with fragment retransmissions at a layer below IP; in many

cases, these timely link-layer retransmissions can reduce dependency

on (slow) end-to-end retransmissions.

LTP engines that connect to networks traversed by paths consisting

of multiple concatenated links must be prepared to adapt their

segment sizes to match the minimum MTU of all links in the path.

This could result in a small SEGSIZE that would interfere with the

benefits of GSO/GRO layering. However, nodes that configure LTP

engines can also establish an Overlay Multilink Network Interface

(OMNI) [I-D.templin-6man-omni] that spans the multiple concatenated

links while presenting an assured (64KB-1) MTU to the LTP engine.

The OMNI interface internally uses IPv6 fragmentation as an OMNI

Adaptation Layer (OAL) service not visible to the LTP engine to

allow timely link-layer retransmissions of lost fragments where the

retransmission unit matches the loss unit. The LTP engine can then

dynamically vary its SEGSIZE (up to a maximum value of (64KB-1)

minus headers) to determine the size that produces the best

performance at the current time by engaging the combined operational

factors at all layers of the multi-layer architecture. This dynamic

factoring coupled with the ideal link properties provided by the

OMNI interface support an effective layering solution for many DTN

networks.

When an LTP/UDP/IP packet is transmitted over an OMNI interface, the

OAL inserts an IPv6 header and performs IPv6 fragmentation to

produce fragments small enough to fit within the path MTU. The OAL

then replaces the IPv6 encapsulation headers with OMNI Compressed

Headers, Type 0 and 1 (OCH-0/1) which are significantly smaller that

their uncompressed IPv6 header counterparts and even smaller than

the IPv4 headers would have been had the packet been sent directly

over a physical interface such as Ethernet using IPv4 fragmentation.

The end result is that the first fragment produced by the OAL will

include a small amount of additional overhead to accommodate the

OCH-0 encapsulation header while all additional fragments will

include only an OCH-1 header which is significantly smaller than

even an IPv4 header. The act of forwarding the large LTP/UDP/IP

packet over the OMNI interface will therefore produce a considerable

overhead savings in comparison with direct Ethernet transmission.

Using the OMNI interface with its OAL service in addition to the

GSO/GRO mechanism, an LTP engine can therefore present concatenated

LTP segments in a "super-buffer" of up to (64 * ((64KB-1) minus
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headers)) octets for transmission in a single sendmsg() system call,

and may present multiple such "super-buffers" in a single system

call when sendmmsg() is used. In the future, this service may

realize even greater benefits through the use of IPv6 Jumbograms 

[RFC2675] over paths that support them.

6.4. IPv4/IPv6 Protocol Considerations

LTP/UDP/IP peers can communicate either via IPv4 or IPv6 addressing

when both peers configure a unique address of the same protocol

version on the OMNI interface. The IPv4 Total Length field includes

the length of both the UDP header and base IPv4 header, while the

IPv6 Payload Length field includes the length of the UDP header but

not the base IPv6 header.

Therefore, unless header extensions are included, each maximum-sized

LTP/UDP/IPv6 packet would contain 20 octets more actual LTP data

than a maximum-sized LTP/UDP/IPv4 packet can contain for the price

of including only 20 additional header octets for IPv6. The overhead

percentage for carrying this additional 20 header octets in maximum-

sized packets is therefore insignificant and becomes smaller still

when IPv6 header compression is used.

7. Implementation Status

Supporting code for invoking the sendmmsg() facility is included in

the official ION source code distribution, beginning with release

ion-4.0.1.

Working code for GSO/GRO has been incorporated into a pre-release of

ION and scheduled for integration following the next major release.

8. IANA Considerations

This document introduces no IANA considerations.

9. Security Considerations

Communications networking security is necessary to preserve

confidentiality, integrity and availability.
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