
Workgroup: Network Working Group

Internet-Draft: draft-templin-dtn-ltpfrag-16

Published: 23 October 2023

Intended Status: Informational

Expires: 25 April 2024

Authors: F. L. Templin, Ed.

Boeing Research & Technology

LTP Fragmentation

Abstract

The Licklider Transmission Protocol (LTP) provides a reliable

datagram convergence layer for the Delay/Disruption Tolerant

Networking (DTN) Bundle Protocol. In common practice, LTP is often

configured over UDP/IP sockets and inherits its maximum segment size

from the maximum-sized UDP/IP datagram, however when this size

exceeds the path maximum transmission unit a service known as IP

fragmentation must be engaged. This document discusses LTP

interactions with IP fragmentation and mitigations for managing the

amount of IP fragmentation employed.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 April 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. IP Fragmentation Issues

4. LTP Fragmentation

5. Beyond "sendmmsg()"

6. Advanced LTP Performance Enhancement

6.1. LTP and GSO

6.2. LTP and GRO

6.3. LTP GSO/GRO Over OMNI Interfaces

6.4. IP Parcels

6.5. IP Fragmentation Revisited

7. Implementation Status

8. IANA Considerations

9. Security Considerations

10. Acknowledgements

11. References

11.1. Normative References

11.2. Informative References

Author's Address

1. Introduction

The Licklider Transmission Protocol (LTP) [RFC5326] provides a

reliable datagram convergence layer for the Delay/Disruption

Tolerant Networking (DTN) Bundle Protocol (BP) [RFC9171]. In common

practice, LTP is often configured over the User Datagram Protocol

(UDP) [RFC0768] and Internet Protocol (IP) [RFC0791] using the

"socket" abstraction. LTP inherits its maximum segment size from the

maximum-sized UDP/IP datagram (i.e., 64KB minus header sizes),

however when that size exceeds the maximum transmission unit the

path can support a service known as IP fragmentation must be

engaged.

LTP breaks BP bundles into "blocks", then further breaks these

blocks into "segments". The segment size is a configurable option

and represents the largest atomic portion of data that LTP will

require underlying layers to deliver as a single unit. The segment

size is therefore also known as the "retransmission unit", since

each lost segment must be retransmitted in its entirety.

Experimental and operational evidence has shown that on robust

networks increasing the LTP segment size (up to the maximum UDP/IP

datagram size of slightly less than 64KB) can result in substantial

performance increases over smaller segment sizes. However, the

¶

¶

performance increases must be tempered with the amount of IP

fragmentation invoked as discussed below.

When LTP presents a segment to the operating system kernel (e.g.,

via a sendmsg() system call), the UDP layer prepends a UDP header to

create a UDP datagram. The UDP layer then presents the resulting

datagram to the IP layer for packet framing and transmission over a

networked path. The path is further characterized by the path

Maximum Transmission Unit (Path-MTU) which is a measure of the

smallest link MTU (Link-MTU) among all links in the path.

When LTP presents a segment to the kernel that is larger than the

Path-MTU, the resulting UDP datagram is presented to the IP layer

which in turn performs IP fragmentation to break the datagram into

fragments that are no larger than the Path-MTU. For example, if the

LTP segment size is 64KB and the Path-MTU is 1280 octets IP

fragmentation results in 50+ fragments that are transmitted as

individual IP packets. (Note that for IPv4 [RFC0791], fragmentation

may occur either in the source host or in a router in the network

path, while for IPv6 [RFC8200] only the source host may perform

fragmentation.)

Each IP fragment is subject to the same best-effort delivery service

offered by the network according to current congestion and/or link

signal quality conditions; therefore, the IP fragment size becomes

known as the "loss unit". Especially when the packet loss rate is

non-negligible, however, performance can suffer dramatically when

the loss unit is significantly smaller than the retransmission unit

during periods of congestion. In particular, if even a single IP

fragment of a fragmented LTP segment is lost then the whole LTP

segment is considered lost and must be retransmitted in its

entirety. Since LTP does not support flow control or congestion

control, this can result in a cascading flood of redundant

information when fragments are systematically lost in transit due to

congestion or disruption.

This document discusses LTP interactions with IP fragmentation and

mitigations for managing the amount of fragmentation employed. It

further discusses methods for increasing LTP performance even when

IP fragmentation is engaged.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

¶

3. IP Fragmentation Issues

IP fragmentation is a fundamental service of the Internet Protocol,

yet it has long been understood that its use can be problematic in

some environments. Beginning as early as 1987, "Fragmentation

Considered Harmful" [FRAG] outlined multiple issues with the service

including a performance-crippling condition that can occur at high

data rates when the loss unit is considerably smaller than the

retransmission unit during intermittent and/or steady-state loss

conditions.

Later investigations also identified the possibility for undetected

corruption at high data rates due to a condition known as "ID

wraparound" when the 16-bit IP identification field (aka the "IP

ID") increments such that new fragments overlap with existing

fragments still alive in the network and with identical ID values

[RFC4963][RFC6864]. Although this condition is most acute for the

IPv4 protocol (and much less so for IPv6 where the IP ID is 32-bits

in length), the IPv4 concerns along with the fact that IPv6 does not

permit routers to perform "network fragmentation" have led many to

discourage the use of fragmentation whenever possible.

Even in the modern era, investigators have seen fit to declare "IP

Fragmentation Considered Fragile" in an Internet Engineering Task

Force (IETF) Best Current Practice (BCP) reference [RFC8900].

Indeed, the BCP recommendations cite the Bundle Protocol LTP

convergence layer as a user of IP fragmentation that depends on some

of its properties to realize greater performance. However, the BCP

summarizes by saying:

"Rather than deprecating IP fragmentation, this document

recommends that upper-layer protocols address the problem of

fragmentation at their layer, reducing their reliance on IP

fragmentation to the greatest degree possible."

This conclusion was based on the historical state of IP

fragmentation and did not seem to consider the opportunity for

forward-looking improvements. With the advent of "Identification

Extension for the Internet Protocol" [I-D.templin-intarea-ipid-ext],

however, the status of IP fragmentation may soon need to be

recharacterized from "fragile" to "robust". We therefore next

discuss our systematic approach to LTP fragmentation while

considering IP fragmentation as a potentially useful tool for

performance maximization.

4. LTP Fragmentation

In common LTP implementations over UDP/IP (e.g., the Interplanetary

Overlay Network (ION)), performance is greatly dependent on the LTP

¶

¶

¶

¶

¶

segment size. This is due to factors including that larger segments

reduce the number of segments LTP has to manage and that larger

segments presented to UDP/IP as single units incur only a single

system call with a single data copy from application to kernel space

via the sendmsg() system call. Once inside the kernel, each segment

incurs UDP/IP encapsulation and IP fragmentation.

During fragmentation, each fragment is transmitted immediately

following the previous without delay so that the fragments appear as

a "burst" of consecutive packets over the network path resulting in

high network utilization during the burst period. Additionally, the

use of IP fragmentation with a larger segment size conserves header

framing octets since the upper layer headers only appear in the

first IP fragment as opposed to appearing in all fragments.

Conventional wisdom has for many decades suggested that in order to

avoid retransmission congestion (i.e., especially when fragment loss

probability is non-negligible) the LTP segment size should be set to

no larger than the Path-MTU. Assuming the minimum IPv4 Effective MTU

to Receive (EMTU_R) of 576 octets, however, transmission of 64KB of

data using a 576B segment size would require well over 100

independent sendmsg() system calls and data copies as opposed to

just one when the largest segment size is used. This greatly reduces

the theoretical bandwidth advantage offered by IP fragmentation

bursts. Therefore, a means for providing the best aspects of both

large segment fragment bursting and small segment retransmission

efficiency would seem beneficial.

Common operating systems such as linux provide the sendmmsg() ("send

multiple messages") system call that allows the LTP application to

present the kernel with a vector of up to 1024 segments instead of

just a single segment. This theoretically affords the bursting

behavior of IP fragmentation coupled with the retransmission

efficiency of employing small segment sizes. (Note that LTP

receivers can also use the recvmmsg() ("receive multiple messages")

system call to receive a vector of segments from the kernel in case

multiple recent packet arrivals can be combined.)

A first approach to performance maximization therefore analyzed

implementations of LTP that employ a large block size, a

conservative segment size and a new configuration option known as

the "Burst-Limit" which determines the number of segments that can

be presented in a single sendmmsg() system call. When the

implementation forwards an LTP block, it carves Burst-Limit-many

segments from the block and presents the vector of segments to

sendmmsg(). The kernel will prepare each segment as an independent

UDP/IP packet and transmit them into the network as a burst in a

fashion that parallels IP fragmentation. The loss unit and

¶

¶

¶

¶

retransmission unit will be the same, therefore loss of a single

segment does not result in a retransmission congestion event.

It should be noted that the Burst-Limit is bounded only by the LTP

block size and not by the maximum UDP/IP datagram size. Therefore,

each burst can in practice convey significantly more data than a

single IP fragmentation event. It should also be noted that the

segment size can still be made larger than the Path-MTU in low-loss

environments without danger of triggering retransmission storms due

to loss of IP fragments. This would result in combined large UDP/IP

message transmission and IP fragmentation bursting for increased

network utilization in more robust environments. Finally, both the

Burst-Limit and UDP/IP message sizes need not be static values, and

can be tuned to adaptively increase or decrease according to time

varying network conditions.

5. Beyond "sendmmsg()"

In actual practice, implementation experience with the ION-DTN

distribution along with two recent studies have demonstrated only

very limited performance increases for employing sendmmsg() for

transmission over UDP/IP sockets. A first study used sendmmsg() as

part of an integrated solution to produce 1M packets per second

assuming only raw data transmission conditions [MPPS], while a

second study focused on performance improvements for the QUIC

reliable transport service [QUIC]. In both studies, the use of

sendmmsg() alone produced modest increases but complimentary

enhancements were identified that when combined with sendmmsg()

produced considerable additional increases.

In [MPPS], additional enhancements such as using recvmmsg() and

configuring multiple receive queues at the receiver were introduced

in an attempt to achieve greater parallelism and engage multiple

processors and threads. However, the system was still limited to a

single thread until multiple receiving processes were introduced

using the "SO_REUSEPORT" socket option. By having multiple receiving

processes (each with its own socket buffer), the performance

advantages of parallel processing were employed to achieve the 1M

packets per second goal.

In [QUIC], a new feature available in recent linux kernel versions

was employed. The feature, known as "Generic Segmentation Offload

(GSO) / Generic Receive Offload (GRO)" allows an application to

provide the kernel with a "super-buffer" containing up to 64

separate upper layer protocol segments. When the application

presents the super-buffer to the kernel, GSO segmentation then sends

up to 64 separate UDP/IP packets in a burst. (Note that GSO requires

each UDP/IP packet to be no larger than the Path-MTU so that

receivers can invoke GRO without interactions with IP reassembly.)

¶

¶

¶

¶

The GSO facility can be invoked by either sendmsg() (i.e., a single

super-buffer) or sendmmsg() (i.e., multiple super-buffers), and the

study showed a substantial performance increase over using just

sendmsg() and sendmmsg() alone.

For LTP fragmentation, our ongoing efforts explore using these

techniques in a manner that parallels the effort undertaken for

QUIC. Using these higher-layer segmentation management facilities is

consistent with the guidance in "IP Fragmentation Considered

Fragile" that states:

"Rather than deprecating IP fragmentation, this document

recommends that upper-layer protocols address the problem of

fragmentation at their layer, reducing their reliance on IP

fragmentation to the greatest degree possible."

By addressing fragmentation at their layer, the LTP/UDP functions

can then be tuned to minimize IP fragmentation in environments where

it may be problematic or to adaptively engage IP fragmentation in

environments where performance gains can be realized without risking

sustained loss and/or data corruption.

6. Advanced LTP Performance Enhancement

Some modern operating systems include Generic Segment Offload (GSO)

and Generic Receive Offload (GRO) services. For example, GSO/GRO

support has been included in linux beginning with kernel version

4.18. Some network drivers and network hardware also support GSO/GRO

at or below the operating system network device driver interface

layer to provide benefits of delayed segmentation and/or early

reassembly. The following sections discuss LTP interactions with GSO

and GRO.

6.1. LTP and GSO

GSO allows LTP implementations to present the sendmsg() or

sendmmsg() system calls with "super-buffers" that include up to 64

LTP segments which the kernel will subdivide into individual UDP/IP

datagrams. LTP implementations enable GSO either on a per-socket

basis using the "setsockopt()" system call or on a per-message basis

for sendmsg()/sendmmsg() as follows:

¶

¶

¶

¶

¶

¶

Implementations must set SEGSIZE to a value no larger than the path

MTU via the underlying network interface, minus header overhead;

this ensures that UDP/IP datagrams generated during GSO segmentation

will not incur local IP fragmentation prior to transmission (Note:

the linux kernel returns EINVAL if SEGSIZE encodes a value that

exceeds the Path-MTU.)

Implementations should therefore dynamically determine SEGSIZE for

paths that traverse multiple links through Packetization Layer Path

MTU Discovery for Datagram Transports [RFC8899] (DPMTUD).

Implementations should set an initial SEGSIZE to either a known

minimum MTU for the path or to the protocol-defined minimum path

MTU. Implementations may then dynamically increase SEGSIZE without

service interruption if the discovered Path-MTU is larger.

6.2. LTP and GRO

GRO allows the kernel to return "super-buffers" that contain

multiple concatenated received segments to the LTP implementation in

recvmsg() or recvmmsg() system calls, where each concatenated

segment is distinguished by an LTP segment header per [RFC5326]. LTP

implementations enable GRO on a per-socket basis using the

"setsockopt()" system call, then optionally set up per receive

message ancillary data to receive the segment length for each

message as follows:

 /* Set LTP segment size */

 unsigned integer gso_size = SEGSIZE;

 ...

 /* Enable GSO for all messages sent on the socket */

 setsockopt(fd, SOL_UDP, UDP_SEGMENT, &gso_size, sizeof(gso_size)));

 ...

 /* Alternatively, set per-message GSO control */

 cm = CMSG_FIRSTHDR(&msg);

 cm->cmsg_level = SOL_UDP;

 cm->cmsg_type = UDP_SEGMENT;

 cm->cmsg_len = CMSG_LEN(sizeof(uint16_t));

 *((uint16_t *) CMSG_DATA(cm)) = gso_size;

¶

¶

¶

¶

Implementations include a pointer to a "use_gro" boolean indication

to the kernel to enable GRO; the only interoperability requirement

therefore is that each UDP/IP packet includes an integral number of

properly-formed LTP segments. The kernel and/or underlying network

hardware will first coalesce multiple received segments into a

larger single segment whenever possible and/or return multiple

coalesced or singular segments to the LTP implementation so as to

maximize the amount of data returned in a single system call. The

"super-buffer" thus prepared MUST contain at most 64 segments where

each non-final segment MUST be equal in length and the final segment

MUST NOT be longer than the non-final segment length.

Implementations that invoke recvmsg() and/or recvmmsg() will

therefore receive "super-buffers" that include one or more

concatenated received LTP segments. The LTP implementation accepts

all received LTP segments and identifies any segments that may be

missing. The LTP protocol then engages segment report procedures if

necessary to request retransmission of any missing segments.

6.3. LTP GSO/GRO Over OMNI Interfaces

LTP engines produce UDP/IP packets that can be forwarded over an

underlying network interface as the head-end of a "link-layer

service that transits IP packets". UDP/IP packets that enter the

link near-end are deterministically delivered to the link-far end

modulo loss due to corruption, congestion or disruption. The link-

layer service is associated with an MTU that deterministically

establishes the maximum packet size that can transit the link. The

link-layer service may further support a segmentation and reassembly

function with fragment retransmissions at a layer below IP; in many

cases, these timely link-layer retransmissions can reduce dependency

on (slow) end-to-end retransmissions.

LTP engines that connect to networks traversed by paths consisting

of multiple concatenated links must be prepared to adapt their

 /* Enable GRO */

 unsigned integer use_gro = 1; /* boolean */

 setsockopt(fd, SOL_UDP, UDP_GRO, &use_gro, sizeof(use_gro)));

 ...

 /* Set per-message GRO control */

 cmsg->cmsg_len = CMSG_LEN(sizeof(int));

 *((int *)CMSG_DATA(cmsg)) = 0;

 cmsg->cmsg_level = SOL_UDP;

 cmsg->cmsg_type = UDP_GRO;

 ...

 /* Receive per-message GRO segment length */

 if ((segmentLength = *((int *)CMSG_DATA(cmsg))) <= 0)

 segmentLength = messageLength;

¶

¶

¶

¶

segment sizes to match the minimum MTU of all links in the path.

This could result in a small SEGSIZE that would interfere with the

benefits of GSO/GRO layering. However, nodes that configure LTP

engines can also establish an Overlay Multilink Network Interface

(OMNI) [I-D.templin-intarea-omni] that spans the multiple

concatenated links while presenting an assured (64KB-1) MTU to the

LTP engine.

The OMNI interface internally uses IPv6 fragmentation as an OMNI

Adaptation Layer (OAL) service invisible to the LTP engine to allow

timely link-layer retransmissions of lost fragments where the

retransmission unit matches the loss unit. The LTP engine can then

dynamically vary its SEGSIZE (up to a maximum value of (64KB-1)

minus headers) to determine the size that produces the best

performance at the current time by engaging the combined operational

factors at all layers of the multi-layer architecture. This dynamic

factoring coupled with the ideal link properties provided by the

OMNI interface support an effective layering solution for many DTN

networks.

When an LTP/UDP/IP packet is transmitted over an OMNI interface, the

OAL inserts an IPv6 header and performs IPv6 fragmentation to

produce fragments small enough to fit within the Path-MTU. The OAL

then replaces the IPv6 encapsulation headers with OMNI Compressed

Headers (OCHs) which are significantly smaller that their

uncompressed IPv6 header counterparts and even smaller than the IPv4

headers would have been had the packet been sent directly over a

physical interface such as Ethernet using IPv4 fragmentation. These

fragments are finally wrapped in lower layer headers to produce

"carrier packets" as necessary to transit the path.

The end result is that the first fragment produced by the OAL will

include a small amount of additional overhead to accommodate the OCH

encapsulation header while all additional fragments will include

only an OCH header which is significantly smaller than even an IPv4

header. The act of forwarding the large LTP/UDP/IP packet over the

OMNI interface will therefore produce a considerable overhead

savings in comparison with direct Ethernet transmission.

Using the OMNI interface with its OAL service in addition to the

GSO/GRO mechanism, an LTP engine can therefore theoretically present

concatenated LTP segments in a "super-buffer" of up to (64 *

((64KB-1) minus headers)) octets for transmission in a single

sendmsg() system call, and may present multiple such "super-buffers"

in a single system call when sendmmsg() is used. (Note however that

existing implementations limit the maximum-sized "super-buffer" to

only 64KB total.) In the future, this service may realize even

greater benefits through the use of advanced IP Jumbograms

¶

¶

¶

¶

("advanced jumbos") [I-D.templin-intarea-parcels] over paths that

support them.

6.4. IP Parcels

The so-called "super-buffers" discussed in the previous sessions can

be applied for GSO/GRO only when the LTP application endpoints are

co-resident with the OAL source and destination, respectively.

However, it may be desirable for the future architecture to support

network forwarding for these "super-buffers" in case the LTP source

and/or destination are located one or more IP networking hops away

from nodes that configure their respective source and destination

OMNI interfaces. Moreover, if the OMNI virtual link spans multiple

OMNI intermediate nodes on the path from the OAL source to the OAL

destination it may be desirable to keep the "super-buffers" together

as much as possible as they traverse the intermediate hops. For this

reason, a new construct known as the "IP Parcel" has been specified

[I-D.templin-intarea-parcels].

An IP parcel is a special form of an IP Jumbogram that includes a

non-zero value in the IP {Total, Payload} Length field. The value

sets the segment size for the first segment included in the parcel,

while the value coded in the Jumbo Payload header provides the full

length of the parcel and determines the number of segments included.

Each segment "shares" a single IP header, and the parcel can be

broken down into sub-parcels if necessary to traverse paths with

length restrictions. The parcel therefore is a "packet-of-packets"

that offers more efficient packaging in the same way that postal

service shipping parcels containing multiple items offer more

efficient shipping.

IP parcels as well as another new form of IP Jumbogram known as the

"advanced jumbo" can also be forwarded as whole packets over paths

that traverse links with sufficiently large MTUs (e.g., space domain

laser links). The source performs path probing to determine whether

IP parcels and/or advanced jumbos are supported, after which it may

begin forwarding packets that employ these new constructs. A full

discussion of IP parcels and advanced jumbos is found in

[I-D.templin-intarea-parcels].

6.5. IP Fragmentation Revisited

More recent studies have demonstrated a clear performance advantage

for LTP/UDP when using conventional segment sizes that significantly

exceed the Path-MTU. For example, widely-deployed LTP/UDP

implementations show a multiplicative performance increase for using

maximum-sized conventional LTP segments in comparison to smaller

segments. Indeed, increasing the LTP segment size in live network

¶

¶

¶

¶

tests over 100Gbps links significantly exceeded the performance

characteristics for Path-MTU or smaller-sized segments.

Significant performance increases were also observed when the Path-

MTU itself was increased, with the greatest performance occurring

when both the segment size and Path-MTU approached their maximum

values. When the segment size exceeds the Path-MTU, fragmentation at

some layer is a natural consequence but in our experiments IP

fragmentation had no adverse performance impact. This proves that

using larger LTP segments (and therefore reducing the number of

segments LTP must manage) is the key enabler for greater

performance.

The questions of how to avoid the possibility of reassembly

corruption due to IP ID wraparound at high data rates and how to

mitigate congestive fragment loss have for many decades impeded full

dependence on fragmentation. However, these questions and others

have now been addressed in "Identification Extension for the

Internet Protocol" [I-D.templin-intarea-ipid-ext]. The new ability

to extend the IP Identification field to 32-bit, 64-bit or even

larger sizes obviates the vulnerability documented in [RFC4963],

while the fragmentation control message feedback supports adaptive

congestion mitigation. These new functions allow LTP senders and

receivers to fully engage the fragmentation and reassembly services

which were always intended as core aspects of the Internet

architecture. This results in an internetworking service for LTP

that is adaptive, efficient and not subject to wasted transmissions.

The encouraging results with conventional segment sizes as large as

65535 octets invites the question of whether even greater

performance increases are possible using still larger segments. Such

large segments must be carried in packets known as jumbograms for

which no fragmentation and reassembly are possible. Although no

links currently configure MTUs larger than 65535 octets, future

experiments with larger link MTU sizes using Forward Error

Correction (FEC) instead of traditional packet integrity checks

should yield even greater performance benefits. These links can only

be discovered and utilized using Path MTU Discovery (PMTUD).

In conclusion, the answer to the LTP/UDP performance optimization

question under conventional packet sizes is not simply unmitigated

fragmentation and reassembly but rather intelligently managed and

adaptive services that can tune the system for optimum performance

under any conditions. As a result, "Identification Extension for the

Internet Protocol" provides a near-term solution for LTP performance

maximization, while "IP Parcels and Advanced Jumbos" promises to

advance performance to its ultimate aspirations.

¶

¶

¶

¶

¶

7. Implementation Status

Supporting code for invoking the sendmmsg() facility is included in

the official ION source code distribution, beginning with release

ion-4.0.1.

Working code for GSO/GRO has been incorporated into a pre-release of

ION and scheduled for integration following the next major release.

An implementation of LTP/UDP/IP Parcels over OMNI interfaces is

available in github. A multi-threaded LTP receiver implementation is

currently under investigation.

8. IANA Considerations

This document introduces no IANA considerations.

9. Security Considerations

Communications networking security is necessary to preserve

confidentiality, integrity and availability.

10. Acknowledgements

The NASA Space Communications and Networks (SCaN) directorate

coordinates DTN activities for the International Space Station (ISS)

and other space exploration initiatives.

Akash Agarwal, Madhuri Madhava Badgandi, Keith Philpott, Bill

Pohlchuck, Vijayasarathy Rajagopalan, Bhargava Raman Sai Prakash and

Eric Yeh are acknowledged for their significant contributions. Tyler

Doubrava was the first to mention the "sendmmsg()" facility. Scott

Burleigh provided review input, and David Zoller provided useful

perspective.

Honoring life, liberty and the pursuit of happiness.

¶

¶

¶

¶

¶

¶

¶

¶

[RFC0768]

[RFC0791]

[RFC2119]

[RFC5326]

[RFC8174]

[RFC8200]

[FRAG]

[I-D.templin-intarea-ipid-ext]

[I-D.templin-intarea-omni]

11. References

11.1. Normative References

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Ramadas, M., Burleigh, S., and S. Farrell, "Licklider

Transmission Protocol - Specification", RFC 5326, DOI

10.17487/RFC5326, September 2008, <https://www.rfc-

editor.org/info/rfc5326>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

11.2. Informative References

Mogul, J. and C. Kent, "Fragmentation Considered Harmful,

ACM Sigcomm 1987", August 1987.

Templin, F., "Identification Extension for the Internet

Protocol", Work in Progress, Internet-Draft, draft-

templin-intarea-ipid-ext-21, 13 October 2023, <https://

datatracker.ietf.org/doc/html/draft-templin-intarea-ipid-

ext-21>.

Templin, F., "Transmission of IP Packets over Overlay

Multilink Network (OMNI) Interfaces", Work in Progress,

Internet-Draft, draft-templin-intarea-omni-49, 18 October

2023, <https://datatracker.ietf.org/doc/html/draft-

templin-intarea-omni-49>.

https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5326
https://www.rfc-editor.org/info/rfc5326
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://datatracker.ietf.org/doc/html/draft-templin-intarea-ipid-ext-21
https://datatracker.ietf.org/doc/html/draft-templin-intarea-ipid-ext-21
https://datatracker.ietf.org/doc/html/draft-templin-intarea-ipid-ext-21
https://datatracker.ietf.org/doc/html/draft-templin-intarea-omni-49
https://datatracker.ietf.org/doc/html/draft-templin-intarea-omni-49

[I-D.templin-intarea-parcels]

[MPPS]

[QUIC]

[RFC2675]

[RFC4963]

[RFC6864]

[RFC8899]

[RFC8900]

[RFC9171]

Templin, F., "IP Parcels and Advanced Jumbos", Work in

Progress, Internet-Draft, draft-templin-intarea-

parcels-79, 13 October 2023, <https://

datatracker.ietf.org/doc/html/draft-templin-intarea-

parcels-79>.

Majkowski, M., "How to Receive a Million Packets Per

Second, https://blog.cloudflare.com/how-to-receive-a-

million-packets/", June 2015.

Ghedini, A., "Accelerating UDP Packet Transmission for

QUIC, https://calendar.perfplanet.com/2019/accelerating-

udp-packet-transmission-for-quic/", December 2019.

Borman, D., Deering, S., and R. Hinden, "IPv6

Jumbograms", RFC 2675, DOI 10.17487/RFC2675, August 1999,

<https://www.rfc-editor.org/info/rfc2675>.

Heffner, J., Mathis, M., and B. Chandler, "IPv4

Reassembly Errors at High Data Rates", RFC 4963, DOI

10.17487/RFC4963, July 2007, <https://www.rfc-editor.org/

info/rfc4963>.

Touch, J., "Updated Specification of the IPv4 ID Field",

RFC 6864, DOI 10.17487/RFC6864, February 2013, <https://

www.rfc-editor.org/info/rfc6864>.

Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.

Völker, "Packetization Layer Path MTU Discovery for

Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,

September 2020, <https://www.rfc-editor.org/info/

rfc8899>.

Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,

and F. Gont, "IP Fragmentation Considered Fragile", BCP

230, RFC 8900, DOI 10.17487/RFC8900, September 2020,

<https://www.rfc-editor.org/info/rfc8900>.

Burleigh, S., Fall, K., and E. Birrane, III, "Bundle

Protocol Version 7", RFC 9171, DOI 10.17487/RFC9171,

January 2022, <https://www.rfc-editor.org/info/rfc9171>.

Author's Address

Fred L. Templin (editor)

Boeing Research & Technology

P.O. Box 3707

Seattle, WA 98124

United States of America

https://datatracker.ietf.org/doc/html/draft-templin-intarea-parcels-79
https://datatracker.ietf.org/doc/html/draft-templin-intarea-parcels-79
https://datatracker.ietf.org/doc/html/draft-templin-intarea-parcels-79
https://www.rfc-editor.org/info/rfc2675
https://www.rfc-editor.org/info/rfc4963
https://www.rfc-editor.org/info/rfc4963
https://www.rfc-editor.org/info/rfc6864
https://www.rfc-editor.org/info/rfc6864
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc8900
https://www.rfc-editor.org/info/rfc9171

Email: fltemplin@acm.org

mailto:fltemplin@acm.org

	LTP Fragmentation
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. IP Fragmentation Issues
	4. LTP Fragmentation
	5. Beyond "sendmmsg()"
	6. Advanced LTP Performance Enhancement
	6.1. LTP and GSO
	6.2. LTP and GRO
	6.3. LTP GSO/GRO Over OMNI Interfaces
	6.4. IP Parcels
	6.5. IP Fragmentation Revisited

	7. Implementation Status
	8. IANA Considerations
	9. Security Considerations
	10. Acknowledgements
	11. References
	11.1. Normative References
	11.2. Informative References

	Author's Address

