
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Phantom Works
Intended status: Informational November 14, 2007
Expires: May 17, 2008

Simple Protocol for Robust IP/*/IP Tunnel Endpoint MTU Determination
(sprite-mtu)

draft-templin-inetmtu-06.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 17, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 The nominal Maximum Transmission Unit (MTU) of today's Internet has
 become 1500 bytes, but IP/*/IP tunneling mechanisms impose an
 encapsulation overhead that can reduce the effective path MTU to
 smaller values. Additionally, existing tunneling mechanisms are
 limited in their ability to support larger MTUs. This document
 specifies a simple protocol for robust IP/*/IP tunnel endpoint MTU
 determination (sprite-mtu).

Templin Expires May 17, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft sprite-mtu November 2007

Table of Contents

1. Introduction . 3
2. Terminology and Requirements 3
3. Concept of Operation . 4
4. "sprite-udp" UDP Service 5
5. "sprite-mtu" Protocol Specification 6
5.1. Interactions with End-to-End MTU Determination 6
5.2. Tunnel Virtual Interface MTU and linkMTU 6
5.3. Sprite Addresses . 7
5.4. Per-Tunnel Tunnel Soft State 7
5.4.1. TNE Soft State . 7
5.4.2. TFE Soft State . 8

5.5. Soft State Maintenance 9
5.5.1. TNE Soft State Maintenance 9
5.5.2. TFE Soft State Maintenance 9

5.6. Sending Packets . 10
5.6.1. Conceptual Sending Algorithm 10
5.6.2. Inner Packet Fragmentation 11
5.6.3. Encapsulation and Trailers 11
5.6.4. Outer Packet Fragmentation and Setting DF 12
5.6.5. Admitting Packets into the Tunnel 13

5.7. Receiving Packets . 13
5.7.1. IPv4 Reassembly Cache Management 13
5.7.2. Decapsulation . 13
5.7.3. Receiving Packet Too Big (PTB) Errors 14
5.7.4. Receiving Other ICMP Errors 14

5.8. MTU Probing and Black Hole Detection 14
5.9. Congestion Control . 14
5.10. sprite-mtu Checksum Calculation 15

6. Updated Specifications . 16
7. IANA Considerations . 17
8. Security Considerations 17
9. Acknowledgments . 17
10. References . 17
10.1. Normative References 17
10.2. Informative References 18

 Author's Address . 19
 Intellectual Property and Copyright Statements 20

Templin Expires May 17, 2008 [Page 2]

Internet-Draft sprite-mtu November 2007

1. Introduction

 The nominal Maximum Transmission Unit (MTU) of today's Internet has
 become 1500 bytes due to the preponderance of networking gear that
 configures an MTU of that size. Since not all links in the Internet
 configure a 1500 byte MTU, however, packets can be dropped due to an
 MTU restriction on the path.

 Upper layers see IP/*/IP tunnels as ordinary links, but even for
 small packets these links are susceptible to silent loss (e.g., due
 to path MTU restrictions, lost error messages, layered
 encapsulations, reassembly buffer limitations, etc.) resulting in
 poor performance and/or communications failures
 [RFC2923][RFC4459][RFC4821][RFC4963].

 This document specifies a simple protocol for robust IP/*/IP tunnel
 endpoint MTU determination (sprite-mtu), and updates the functional
 specifications for Tunnel Endpoints (TEs) found in existing tunneling
 mechanisms (see: Section 6).

 This document seeks to achieve an appropriate balance between
 function in the network and function in the end systems [RFC1958],
 and further observes the tunnel management specifications in
 [RFC2003][RFC2473][RFC4213].

2. Terminology and Requirements

 The following abbreviations and terms are used in this document:

 ICMP - ICMPv4 [RFC0793] or ICMPv6 [RFC4443].

 IP - IPv4 [RFC0791] or IPv6 [RFC2460].

 IP/*/IP - an inner IP packet encapsulated in outer */IP headers
 (e.g. for "*" = NULL, UDP, TCP, AH, ESP, etc.)

 inner packet/fragment/header - an IP packet/fragment/header before
 */IP encapsulation.

 outer packet/fragment/header - a */IP packet/fragment/header after
 encapsulation.

 AQM - Active Queue Management

 DF - the IPv4 header "Don't Fragment" flag

https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc1958
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires May 17, 2008 [Page 3]

Internet-Draft sprite-mtu November 2007

 ENCAPS - the size of the encapsulating */IP headers plus trailers

 EMTU_R - Effective Maximum Transmission Unit to Receive [RFC1122]
 for the TFE

 MTU - Maximum Transmission Unit

 linkMTU - MTU assigned to a link over which the tunnel is
 configured

 pathMTU - the minimum path MTU for the tunnel

 PTB - an ICMPv4 "Destination Unreachable - fragmentation needed"
 [RFC1191] or an ICMPv6 "Packet Too Big" [RFC1981] message.

 sprite-mtu - the sprite-mtu protocol, specified in this document

 sprite-udp - the sprite-udp UDP messaging service, also specified
 in this document

 sprite - a message of the "sprite-udp" service

 TE - Tunnel Endpoint

 TFE - Tunnel Far End

 TNE - Tunnel Near End

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

3. Concept of Operation

 TEs use the tunnel management specifications in
 [RFC2003][RFC2473][RFC4213] and also participate in the "sprite-mtu"
 protocol to confirm the participation of the TFE, to determine per-
 tunnel MTU values, to detect path MTU-related black-holes, and to
 detect congestion. The protocol is supported through the exchange of
 messages between TEs using the "sprite-udp" UDP service. The
 mechanisms provide robust MTU determination and congestion control
 when both TEs support the protocol, and support the legacy behavior
 otherwise.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4213

Templin Expires May 17, 2008 [Page 4]

Internet-Draft sprite-mtu November 2007

4. "sprite-udp" UDP Service

 The "sprite-udp" service is a simple UDP service based on "sprite"
 messages. Sprite requests set the UDP destination port to the
 sprite-udp service port (see: Section 7), and set the source port to
 either the sprite-udp service port or a dynamic port number chosen by
 the source. Sprite replys set the UDP source port to the sprite-udp
 service port and set the UDP destination port to the value included
 in the UDP source port in the soliciting sprite request.

 All sprite requests and replys are formatted as shown in Figure 1
 (format for other sprite messages may be specified in future
 documents):

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers | Type | TTL | Checksum |
 +-+
 | Identification | Sequence Number |
 +-+
 | Data ...
 +-+-+-+-+-

 Figure 1: Sprite Message Format

 where the fields of the message body are defined as follows:

 Vers
 the Version field indicates the sprite-udp protocol version. This
 document describes version 1.

 Type
 the message type. Currently defined values are:

 0 - request

 1 - reply

 2 - 15 reserved for future use

 TTL
 in sprite requests, set to 0; in sprite replies, set to the TTL/
 Hop Limit in the IP header of the request to which this packet is
 a reply.

Templin Expires May 17, 2008 [Page 5]

Internet-Draft sprite-mtu November 2007

 Checksum
 the 16-bit one's complement of the one's complement sum of the
 message body, starting with the version field and ending at the
 end of the data field. For computing the checksum, the checksum
 field is first set to zero. An all zero transmitted checksum
 value means that the transmitter generated no checksum.

 Identification, Sequence Number
 Two 16-bit fields, used exactly as specified for the corresponding
 fields in ICMP echo request and reply messages.

 Data
 Zero or more octets of arbitrary data, included in the sprite
 request and echoed in the reply.

5. "sprite-mtu" Protocol Specification

 TEs that implement the sprite-udp service MUST also participate in
 the "sprite-mtu" protocol to: 1) determine whether the TFE implements
 the scheme, 2) detect path MTU-related black holes, 3) provide timely
 aging of stale path MTU information, 4) determine the length of the
 forward path through the tunnel, 5) determine accurate round trip
 times, and 6) detect and report congestion. The following sections
 specify the protocol details:

5.1. Interactions with End-to-End MTU Determination

 The sprite-mtu protocol operates independently of any end-to-end MTU
 determination, however it offers improved convergence time and
 efficiency when end-to-end mechanisms such as [RFC4821] are also
 used.

5.2. Tunnel Virtual Interface MTU and linkMTU

 TEs SHOULD configure an MTU on the tunnel virtual interface (i.e.,
 the MTU that is seen by upper layers) that is at least as large as
 the largest linkMTU for all underlying interfaces over which the
 tunnel virtual interface is configured. For IPv6/*/IP tunnels, the
 tunnel virtual interface MUST configure an MTU no smaller than 1280
 bytes, and for IPv4/*/IP tunnels it SHOULD configure an MTU no
 smaller than 576 bytes.

 Additionally, operators SHOULD observe the recommendations in
[RFC3819], Section 2, i.e., they should avoid setting a too-small

 linkMTU on any of the underlying interfaces over which the tunnel
 virtual interface is configured.

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc3819#section-2

Templin Expires May 17, 2008 [Page 6]

Internet-Draft sprite-mtu November 2007

5.3. Sprite Addresses

 TEs must configure a time-varying link-local address (e.g., they
 regenerate a new link-local address every 30 seconds) for the tunnel
 interface known as the "sprite address". The sprite address is
 associated with the tunnel interface (i.e., not assigned to the
 interface) hence it need not be checked for uniqueness and will only
 be used for the purpose of sprite exchanges for soft state management
 (see below).

 For IPv6/*/IPv4 tunnels, link-local IPv6 privacy addresses [RFC4941]
 are used. For IPv4/*/IP tunnels, random assignments from the IPv4
 link local address range [RFC3927] are used, however the number of
 bits for randomness is significantly smaller than for IPv6.

 This addressing scheme is not available for unidirectional tunnels,
 since link local addresses would not be routable on the (non-
 tunneled) return path from the TFE to the TNE.

5.4. Per-Tunnel Tunnel Soft State

 TEs maintain per-tunnel soft state information (e.g., in a conceptual
 neighbor cache) that is initialized when there is evidence that a
 continuous flow of data will traverse the tunnel and is scheduled for
 deletion based on idle timers, resource limitations, etc. thereafter.
 The TNE maintains state regarding the forward path to the TFE. When
 necessary (e.g., when the tunnel is fragmenting), the TFE also
 maintains state regarding the number of packets received, packets in
 error, etc. The minimum state kept by the TNE and TFE is given in
 the following sections:

5.4.1. TNE Soft State

 The TNE keeps the following minimum per-tunnel soft state for active
 tunnels, and MAY keep additional soft state (e.g., packets/bytes
 sent, collisions, etc.):

 isQualified
 boolean indicating whether the TFE implements the protocol.

 Initial value: FALSE

 TFEAddr
 the inner IP address of the TFE.

https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc3927

Templin Expires May 17, 2008 [Page 7]

Internet-Draft sprite-mtu November 2007

 pathMTU
 the current minimum path MTU across the tunnel to the TFE,
 determined through sprite probing to determine the largest size
 outer packet that can traverse the tunnel.

 Initial value: 0.

 TTL
 the current path length across the tunnel to the TFE, determined
 through sprite probing.

 Initial value: 0.

 RTT
 the round trip time for the TFE.

 Initial value: none

 spriteList
 a list of sprite requests that have been sent into the tunnel but
 not yet acknowledged by the TFE.

 Initial list: NULL

5.4.2. TFE Soft State

 When requested by the TNE, the TFE keeps the following minimum per-
 tunnel soft state information, and MAY keep additional soft state
 (e.g., congestion, error rate, etc.):

 rxTime
 the system time at which the soft state for this TNE was
 initialized.

 rxPackets
 number of packets received.

 rxBytes
 number of bytes received.

 rxDropped
 number of packets dropped due to incorrect checksums, congestion,
 etc.

Templin Expires May 17, 2008 [Page 8]

Internet-Draft sprite-mtu November 2007

5.5. Soft State Maintenance

5.5.1. TNE Soft State Maintenance

 When a TNE has data to send to a TFE, it obeys the specification in
 the normative IP/*/IP reference. When there is evidence that a
 persistent flow of data will traverse the tunnel, the TNE also
 creates soft state per Section 5.3.1 (unless the soft state already
 exists) and sends sprite requests into the tunnel. The TNE includes
 in the inner IP header of each sprite request its current sprite
 address as the source address and a destination address that is
 either the current sprite address of the TFE or a different link
 local address. The TNE then sets 'Vers' to '1', sets 'Type' to '0',
 sets 'TTL' to '0', sets 'Identification' and 'Sequence Number' to
 identifying values, and includes a randomly-chosen nonce value (8
 bytes recommended) in the 'Data' field along with any other data to
 be echoed. The TNE finally calculates the checksum and writes its
 value in the 'Checksum' field (or, writes the value '0'), then sends
 the sprite request into the tunnel.

 If the TNE receives a sprite reply message that is apparently from
 the TFE and also includes an 'Identification', 'Sequence Number', and
 'Data' that matches a request in its 'spriteList', it sets
 'isQualified' to TRUE; otherwise, it discards the reply. The TNE
 also records the round-trip time (RTT) relative to the time at which
 it sent the soliciting sprite request, as well as the difference
 between the TTL of the soliciting request and the TTL encoded in the
 reply. The TNE finally records the source address in the inner IP
 header of the sprite reply in 'TFEAddr'.

 When the TNE requires the TFE to maintain state (e.g., when the
 tunnel is fragmenting), it sends continuous sprite requests at a rate
 of no more than 1 request per second and sets the inner destination
 address of each request to 'TFEAddr'. When the flow of data ceases,
 the TNE stops sending sprite requests and schedules the soft state
 entry for deletion. When the flow of data resumes, the TNE resumes
 sending sprite requests.

 The TNE removes sprite requests from its 'spriteList' when either a
 matching reply is received, or after a timeout period during which no
 matching reply is received. (Timeouts on the order of IPv6 neighbor
 discovery [RFC4861] are recommended.)

5.5.2. TFE Soft State Maintenance

 When a TFE receives a sprite request, it prepares a reply that
 includes the inner IP source address of the request in the inner IP
 destination address and its current sprite address in the inner IP

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires May 17, 2008 [Page 9]

Internet-Draft sprite-mtu November 2007

 source address. The TFE then sets 'Vers' to '1', sets 'Type to '1',
 copies the TTL/Hop Limit from the sprite request into the 'TTL'
 field, and copies 'Identification', 'Sequence Number' and 'Data' from
 the request message body into the corresponding fields of the reply.
 The TFE finally calculates the checksum and writes its value in the
 'Checksum' field (or, writes the value '0'), then sends the sprite
 reply back to the TNE.

 If the inner IP destination address of the sprite request was the
 same as the TFE's current sprite address, the TFE creates soft state
 per Section 5.3.2 if possible. The TFE maintains the soft state as
 long as it continues to receive sprite requests from the TNE that
 include an inner destination address that matches its current sprite
 address. When the flow of requests ceases, the TFE schedules the
 soft state entry for deletion.

 If the TFE is unable to maintain soft state, e.g., due to resource
 limitations, it sets the inner IP destination address in its sprite
 replys to a different link local IP address than the one included in
 the inner IP source address of the sprite request. The TNE must
 accept this as an indication that the TFE is not currently
 maintaining soft state.

5.6. Sending Packets

 Inner IP packets forwarded by upper layers that are larger than the
 tunnel virtual interface MTU are dropped with an ICMP Packet Too Big
 (PTB) sent back to the original source, as for any IP interface.
 Other inner IP packets are forwarded into the tunnel interface, which
 will encapsulate and send them on the underlying tunnel and/or return
 an internally-generated PTB when necessary.

 TEs that implement the sprite-mtu protocol use the specifications for
 sending packets found in the following sections:

5.6.1. Conceptual Sending Algorithm

 TEs use the conceptual sending algorithm in Figure 2 for sending
 packets that are forwarded into the tunnel virtual interface by upper
 layers:

Templin Expires May 17, 2008 [Page 10]

Internet-Draft sprite-mtu November 2007

 Fragment inner packet if necessary (Section 5.5.2)
 foreach inner packet/fragment
 Encapsulate as an outer packet (Section 5.5.3).
 Fragment outer packet if necessary (Sect. 5.5.4).
 foreach outer packet/fragment
 Send packet/fragment (Section 5.5.5).
 endforeach
 Send PTB appropriate to the inner protocol if
 necessary (Section 5.5.6).
 end foreach

 Figure 2: Conceptual Sending Algorithm

5.6.2. Inner Packet Fragmentation

 The TE considers an inner IPv4 packet as fragmentable IFF the DF bit
 is set to 0 in the inner IPv4 header, and assumes that the original
 source has learned through some end-to-end means that the final
 destination is able to reassemble a packet of this size. The TE uses
 IPv4 fragmentation to break fragmentable inner packets into fragments
 no larger than (576 - ENCAPS) before encapsulation; these inner
 fragments will ultimately be reassembled by the final destination.

 The TE is not permitted to fragment inner IPv6 packets, therefore an
 inner IPv6 packet is never fragmentable.

5.6.3. Encapsulation and Trailers

 TEs encapsulate inner IP packets according to the specific IP/*/IP
 document. When 'isQualified' is TRUE, the TE includes a trailer with
 a correct non-zero checksum in all packets that may incur outer
 fragmentation (see: Section 5.5.4). For other packets, the TE can
 either: 1) include a trailer with a correct non-zero checksum, 2)
 include a trailer with a zero checksum, or 3) omit the trailer.

 For outer packets that will include a trailer during encapsulation,
 the TE includes zero or more padding bytes plus a 4-byte trailing
 checksum immediately following the inner IP packet. The TE
 increments the innermost '*' header length field by the number of
 trailer bytes added before applying the outermost */IP
 encapsulation(s). For example, it increments the UDP length field
 for IP/UDP/IP tunnels ('*' = UDP), the IPv4 length field for IP/IPv4
 tunnels ('*' = NULL), etc. The encapsulation is shown in Figure 3:

Templin Expires May 17, 2008 [Page 11]

Internet-Draft sprite-mtu November 2007

 +---------------------------------+
 | Outer IP Header |
 | |
 +---------------------------------+
 | * Headers |
 | |
 +-------------+ +---------------------------------+
 | Inner IP | | Inner IP |
 ~ packet ~ ===> ~ packet ~
 | | | |
 +-------------+ +---------------------------------+ -\ T
 Inner Packet | | | r
 ~ Padding (0 or more bytes) ~ | a
 | | > i
 +----------------+----------------+ | l
 | cksum-A (16b) | cksum-B (16b) | | e
 +----------------+----------------+ -/ r
 | Any */IP protocol trailers ...
 +------------------------------
 Outer Packet

 Figure 3: Encapsulation Format with Trailer

 For all packets that will include a trailer, the TE appends any
 padding bytes as necessary to extend the packet to a specific length
 then calculates the checksum as specified in Section 5.10. It then
 appends the results in the A and B fields of the trailing checksum.
 (The TE instead writes the value 0 in these fields if the trailer is
 to include a zero checksum). The checksum is byte-aligned only,
 i.e., it need not be aligned on an even word/longword/etc. boundary.

 The TE SHOULD NOT include a trailer during encapsulation when
 'isQualified' is FALSE.

5.6.4. Outer Packet Fragmentation and Setting DF

 The TE is not permitted to fragment outer */IPv6 packets using IPv6
 fragmentation.

 The TE considers an outer */IPv4 packet as fragmentable IFF:

 o for IPv6/*/IPv4 tunnels, 'pathMTU' is less than (1280 bytes +
 ENCAPS) and the inner IPv6 packet is no larger than 1280 bytes,
 or:

 o for IPv4/*/IPv4 tunnels, 'pathMTU' is less than MIN(EMTU_R, 1280)
 bytes and the inner IPv4 packet is no larger than MIN(EMTU_R,
 1280) minus ENCAPS. (When EMTU_R for the TFE is not known, 576

Templin Expires May 17, 2008 [Page 12]

Internet-Draft sprite-mtu November 2007

 bytes must be assumed.)

 The TE's */IPv4 encapsulation layer(s) MAY fragment a fragmentable
 outer packet before admitting it into the tunnel. The TE SHOULD set
 DF=1 in the outer IPv4 header of each fragment if 'pathMTU' is known;
 otherwise, the TE MAY set DF=0 if there is assurance that the TFE can
 receive non-initial IPv4 fragments. These outer fragments will be
 reassembled by the TFE.

 The TE MUST set DF=1 in the outer IPv4 header of all unfragmentable
 outer packets.

5.6.5. Admitting Packets into the Tunnel

 For IP/*/IPv4 tunnels, when 'pathMTU' is smaller than the minimum
 values listed in Section 5.5.4 and the TFE is not maintaining soft
 state, the TE MUST institute pacing and AQM to minimize IPv4
 reassembly misassociations and/or congestion at the TFE. The TE MAY
 relax this pacing when the TFE indicates that it is maintaining soft
 state, but MUST resume pacing if it subsequently detects congestion
 at the TFE (see: Section 5.8).

 The TE admits outer packets into the tunnel subject to pacing and TTL
 restrictions. For unfragmentable outer packets that are larger than
 'pathMTU', the TE admits the packet but also sends a PTB message
 appropriate to the inner IP protocol with an MTU size of ('pathMTU' -
 ENCAPS).

5.7. Receiving Packets

 TEs that implement the sprite-mtu protocol use the specifications for
 receiving packets found in the following sections:

5.7.1. IPv4 Reassembly Cache Management

 IP/*/IPv4 TEs SHOULD perform AQM in their IPv4 reassembly cache. In
 particular, they should actively discard "stale" reassemblies that
 have no apparent opportunity for successful completion, i.e., even
 before the packets have reached the normal reassembly timeout
 expiration recommended in [RFC1122], Section 3.3.2.

5.7.2. Decapsulation

 When the TE receives (and, if necessary, reassembles) an encapsulated
 packet, and the packet includes a trailing checksum, the TE accepts
 the packet if the checksum is correct and drops the packet if the
 checksum is incorrect. Otherwise, the TE decapsulates the packet
 exactly as specified in the appropriate IP/*/IP document and discards

https://datatracker.ietf.org/doc/html/rfc1122#section-3.3.2

Templin Expires May 17, 2008 [Page 13]

Internet-Draft sprite-mtu November 2007

 the trailer.

 During decapsulation, it the TE is maintaining soft state it also
 records 'rx*' statistics in its soft state entry for the tunnel,
 i.e., it increments 'rxPackets' and 'rxBytes' for packets received
 with no errors, and increments 'rxDropped' for packets dropped due to
 checksum errors, congestion, etc.

5.7.3. Receiving Packet Too Big (PTB) Errors

 TNEs may receive PTB errors in response to any packets they admit
 into the tunnel. When the TNE receives a PTB with an MTU value
 smaller than 'pathMTU', it SHOULD record the new 'pathMTU' in its
 soft state entry for the tunnel.

5.7.4. Receiving Other ICMP Errors

 TEs SHOULD observe the specifications in [RFC2003][RFC2473][RFC4213]
 when they receive other ICMP errors from within the tunnel, but are
 advised that ICMP denial-of-service attacks are possible.

5.8. MTU Probing and Black Hole Detection

 When 'isQualified' is TRUE, the TE can send sprite requests to the
 TFE with trailing padding added during encapsulation to create an MTU
 probe of the desired length. In particular, when the TE sends a data
 packet into the tunnel with a size that exceeds the current
 'pathMTU', it MAY also send a padded sprite request of the same size
 into the tunnel. If the TE receives a matching sprite reply, it
 advances 'pathMTU' to the size of the request.

 The TE MAY send additional sprite requests into the tunnel to
 determine a maximum 'pathMTU' independent of any data packets sent
 into the tunnel, to detect a smaller 'pathMTU' due to routing changes
 and/or to detect MTU-related black holes.

 For IP/*/IPv4 tunnels, the TE MUST set DF=1 in any sprite request
 used for the purpose of 'pathMTU' probing.

5.9. Congestion Control

 The TNE MUST set the ECN field in the inner IP header of sprite
 requests used for soft state maintenance to either ECT(0) or ECT(1)
 [RFC3168] and MUST also examine the ECN field in the inner IP headers
 of sprite replys. When the TNE begins to observe the CE codepoint in
 the ECN field in the inner IP headers of successive sprite replys at
 a rate that exceeds a high water threshold, it institutes pacing per

Section 5.5.5. The TNE MAY relax pacing when the rate falls below a

https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc3168

Templin Expires May 17, 2008 [Page 14]

Internet-Draft sprite-mtu November 2007

 low water threshold.

 When soft state management is requested by the TNE, the TFE MUST
 track the rate at which packets received from the TNE are dropped due
 to, e.g., checksum errors, congestion, etc. When the rate exceeds a
 high water threshold, the TFE MUST begin setting the CE codepoint in
 the ECN field in the inner IP headers of sprite replys sent in
 response to requests with the ECN field set to other than not-ECT.
 The TFE MUST also set the CE codepoint in ordinary data packets with
 the ECN field set to other than not-ECT when it forwards them to the
 next IP hop. When the rate of dropped packets falls below a low
 water threshold, the TFE MAY relax CE codepoint marking.

 When the TFE is temporarily unable to maintain soft state, it
 includes a link local address in the inner IP destination address of
 its sprite replies that is different than the inner IP source address
 that the TNE included in its sprite request. The TNE must interpret
 this as an indication that pacing should resume.

5.10. sprite-mtu Checksum Calculation

 This specification uses a 16-bit variation of the Fletcher Checksum
 [RFC1146][STONE1][STONE2] called: the "sprite-mtu checksum" which
 provides a lightweight integrity check with different properties than
 those used by common link layers and upper layer protocols.

 The TE calculates the sprite-mtu checksum by summing every 10th byte
 of the packet beginning with the inner IP header up to the end of the
 inner packet including trailing padding, but not including the
 trailing checksum field itself. The TE calculates the checksum
 according to the algorithm below, which represents a slight variation
 of that found in [RFC1146]:

 The sprite-mtu checksum is calculated over a sequence of
 unsigned data octets (call them D[0] through D[N-1]) by
 maintaining unsigned 1's-complement 16-bit accumulators
 A and B whose contents are initially zero, and performing
 the following loop where i ranges from 1 to N:

 A := A + D[i]
 B := B + A
 i := i + 10

 If, at the end of the loop, either or both of the A and B
 accumulators encode the value 0x0000, invert the value in the
 accumulator(s) to 0xffff.

 Note that faster algorithms are possible and may be used instead of

https://datatracker.ietf.org/doc/html/rfc1146
https://datatracker.ietf.org/doc/html/rfc1146

Templin Expires May 17, 2008 [Page 15]

Internet-Draft sprite-mtu November 2007

 the algorithm above (see: [RFC1146]). Note also that for '*/IP'
 encapsulations that include an additional checksum, the sprite-mtu
 checksum can be calculated in parallel.

6. Updated Specifications

 This document updates the following specifications, and possibly
 others:

 o RFC1853 (IP-in-IP)

 o RFC2003 (IP-in-IP)

 o RFC2473 (Generic packet tunneling in IPv6)

 o RFC2529 (6over4)

 o RFC2661 (L2TP)

 o RFC2784 (GRE)

 o RFC3056 (6to4)

 o RFC3378 (ETHERIP)

 o RFC3884 (IPSec Transport Mode for Dynamic Routing)

 o RFC4023 (MPLS-in-IP)

 o RFC4213 (Basic IPv6 Transition Mechanisms)

 o RFC4214 (ISATAP)

 o RFC4301 (IPSec)

 o RFC4302 (AH)

 o RFC4303 (ESP)

 o RFC4380 (TEREDO)

 o LISP

 o IPAE

 o others....

https://datatracker.ietf.org/doc/html/rfc1146
https://datatracker.ietf.org/doc/html/rfc1853
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc3056
https://datatracker.ietf.org/doc/html/rfc3378
https://datatracker.ietf.org/doc/html/rfc3884
https://datatracker.ietf.org/doc/html/rfc4023
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4214
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc4380

Templin Expires May 17, 2008 [Page 16]

Internet-Draft sprite-mtu November 2007

7. IANA Considerations

 A new UDP port number for the "sprite-udp" service is requested.

8. Security Considerations

 A possible denial of service attack vector involves an off-path
 attacker sending sprite replys with spoofed source addresses, however
 the 8-byte nonce serves as an effective mitigation.

 A possible resource exhaustion attack vector exist when TEs use well-
 known and/or time-invariant addresses. Sprite addresses serve as an
 effective mitigation for bidirectional tunnels, as specified in

Section 5.9.

 Security considerations for specific IP/*/IP tunneling mechanisms are
 specified in their respective documents.

9. Acknowledgments

 This work has benefited from discussions with Fred Baker, Iljitsch
 van Beijnum, Brian Carpenter, Steve Casner, Remi Denis-Courmont,
 Aurnaud Ebalard, Gorry Fairhurst, John Heffner, Bob Hinden, Christian
 Huitema, Joe Macker, Matt Mathis, Dave Thaler, Joe Touch, Magnus
 Westerlund, Robin Whittle, and James Woodyatt.

 This work is dedicated to the editor's family.

10. References

10.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191

Templin Expires May 17, 2008 [Page 17]

Internet-Draft sprite-mtu November 2007

 for IP version 6", RFC 1981, August 1996.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, September 2001.

 [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 May 2005.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, September 2007.

10.2. Informative References

 [RFC1146] Zweig, J. and C. Partridge, "TCP alternate checksum
 options", RFC 1146, March 1990.

 [RFC1958] Carpenter, B., "Architectural Principles of the Internet",
RFC 1958, June 1996.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, September 2000.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, July 2004.

https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3927
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc1146
https://datatracker.ietf.org/doc/html/rfc1958
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819

Templin Expires May 17, 2008 [Page 18]

Internet-Draft sprite-mtu November 2007

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, April 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [STONE1] Stone, J., "Checksums in the Internet (Stanford Doctoral
 Dissertation)", August 2001.

 [STONE2] Stone, J., Greenwald, M., Partridge, C., and J. Hughes,
 "Performance of Checksums and CRC's over Real Data, IEEE/
 ACM Transactions on Networking, Vol 6, No. 5",
 October 1998.

Author's Address

 Fred L. Templin (editor)
 Boeing Phantom Works
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fred.l.templin@boeing.com

https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4963

Templin Expires May 17, 2008 [Page 19]

Internet-Draft sprite-mtu November 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Templin Expires May 17, 2008 [Page 20]

