
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320, rfc5558, rfc5720, October 5, 2018

rfc6179, rfc6706 (if
 approved)
Intended status: Standards Track
Expires: April 8, 2019

Asymmetric Extended Route Optimization (AERO)
draft-templin-intarea-6706bis-02.txt

Abstract

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). Nodes attached
 to AERO links can exchange packets via trusted intermediate routers
 that provide forwarding services to reach off-link destinations and
 route optimization services for improved performance. AERO provides
 an IPv6 link-local address format that supports operation of the IPv6
 Neighbor Discovery (ND) protocol and links ND to IP forwarding.
 Dynamic link selection, mobility management, quality of service (QoS)
 signaling and route optimization are naturally supported through
 dynamic neighbor cache updates, while IPv6 Prefix Delegation (PD) is
 supported by network services such as the Dynamic Host Configuration
 Protocol for IPv6 (DHCPv6). AERO is a widely-applicable tunneling
 solution especially well-suited to aviation services, mobile Virtual
 Private Networks (VPNs) and other applications as described in this
 document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 8, 2019.

Templin Expires April 8, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft AERO October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Asymmetric Extended Route Optimization (AERO) 7
3.1. AERO Link Reference Model 7
3.2. AERO Node Types . 9
3.3. AERO Routing System 10
3.4. AERO Interface Addresses 11
3.5. AERO Interface Characteristics 13
3.6. AERO Interface Initialization 16
3.6.1. AERO Relay Behavior 16
3.6.2. AERO Server Behavior 16
3.6.3. AERO Client Behavior 17
3.6.4. AERO Proxy Behavior 17

3.7. AERO Interface Neighbor Cache Maintenance 18
3.8. AERO Interface Forwarding Algorithm 19
3.8.1. Client Forwarding Algorithm 20
3.8.2. Proxy Forwarding Algorithm 20
3.8.3. Server Forwarding Algorithm 21
3.8.4. Relay Forwarding Algorithm 21
3.8.5. Processing Return Packets 22

3.9. AERO Interface Encapsulation and Re-encapsulation 23
3.10. AERO Interface Decapsulation 24
3.11. AERO Interface Data Origin Authentication 24
3.12. AERO Interface Packet Size Issues 24
3.13. AERO Interface Error Handling 26

 3.14. AERO Router Discovery, Prefix Delegation and
 Autoconfiguration . 30

3.14.1. AERO ND/PD Service Model 30
3.14.2. AERO Client Behavior 31
3.14.3. AERO Server Behavior 33

3.15. AERO Interface Route Optimization 35

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Templin Expires April 8, 2019 [Page 2]

Internet-Draft AERO October 2018

3.15.1. Reference Operational Scenario 35
3.15.2. Concept of Operations 37
3.15.3. Sending NS Messages 37
3.15.4. Re-encapsulating and Relaying the NS 38
3.15.5. Processing NSs and Sending NAs 39
3.15.6. Processing NAs 40
3.15.7. Server-Based Route Optimization 40

3.16. Neighbor Unreachability Detection (NUD) 42
3.17. Mobility Management and Quality of Service (QoS) 43
3.17.1. Forwarding Packets on Behalf of Departed Clients . . 44

 3.17.2. Announcing Link-Layer Address and QoS Preference
 Changes . 44

3.17.3. Bringing New Links Into Service 44
3.17.4. Removing Existing Links from Service 45
3.17.5. Implicit Mobility Management 45
3.17.6. Moving to a New Server 45

3.18. Multicast Considerations 46
4. The AERO Proxy . 46
5. Direct Underlying Interfaces 48
6. Operation on AERO Links with /64 ASPs 48
7. Implementation Status . 49
8. IANA Considerations . 49
9. Security Considerations 49
10. Acknowledgements . 51
11. References . 52
11.1. Normative References 52
11.2. Informative References 53

Appendix A. AERO Alternate Encapsulations 59
Appendix B. When to Insert an Encapsulation Fragment Header . . 61
Appendix C. Autoconfiguration for Constrained Platforms 61
Appendix D. Operational Deployment Alternatives 62
D.1. Operation on AERO Links Without DHCPv6 Services 62
D.2. Operation on Server-less AERO Links 62
D.3. Operation on Client-less AERO Links 63
D.4. Manually-Configured AERO Tunnels 63

 D.5. Encapsulation Avoidance on Relay-Server Dedicated Links . 63
D.6. Encapsulation Protocol Version Considerations 63
D.7. Extending AERO Links Through Security Gateways 64

Appendix E. Change Log . 65
 Author's Address . 66

1. Introduction

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). The AERO link
 can be used for tunneling between neighboring nodes over either IPv6
 or IPv4 networks, i.e., AERO views the IPv6 and IPv4 networks as
 equivalent links for tunneling. Nodes attached to AERO links can

Templin Expires April 8, 2019 [Page 3]

Internet-Draft AERO October 2018

 exchange packets via trusted intermediate routers that provide
 forwarding services to reach off-link destinations and route
 optimization services for improved performance [RFC5522].

 AERO provides an IPv6 link-local address format that supports
 operation of the IPv6 Neighbor Discovery (ND) [RFC4861] protocol and
 links ND to IP forwarding. Dynamic link selection, mobility
 management, quality of service (QoS) signaling and route optimization
 are naturally supported through dynamic neighbor cache updates, while
 IPv6 Prefix Delegation (PD) is supported by network services such as
 the Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
 [RFC3315][RFC3633].

 A node's AERO interface can be configured over multiple underlying
 interfaces. From the standpoint of ND, AERO interface neighbors
 therefore may appear to have multiple link-layer addresses (i.e., the
 IP addresses assigned to underlying interfaces). Each link-layer
 address is subject to change due to mobility and/or QoS fluctuations,
 and link-layer address changes are signaled by ND messaging the same
 as for any IPv6 link.

 AERO is applicable to a wide variety of use cases. For example, it
 can be used to coordinate the Virtual Private Network (VPN) links of
 mobile nodes (e.g., cellphones, tablets, laptop computers, etc.) that
 connect into a home enterprise network via public access networks
 using services such as OpenVPN [OVPN]. AERO is also applicable to
 aviation services for both manned and unmanned aircraft where the
 aircraft is treated as a mobile node that can connect an Internet of
 Things (IoT). Other applicable use cases are also in scope.

 The remainder of this document presents the AERO specification.

2. Terminology

 The terminology in the normative references applies; the following
 terms are defined within the scope of this document:

 IPv6 Neighbor Discovery (ND)
 an IPv6 control message service for coordinating neighbor
 relationships between nodes connected to a common link. The ND
 service used by AERO is specified in [RFC4861].

 IPv6 Prefix Delegation (PD)
 a networking service for delegating IPv6 prefixes to nodes on the
 link. The nominal PD service is DHCPv6 [RFC3315] [RFC3633],
 however alternate services (e.g., based on ND messaging) are also
 in scope
 [I-D.templin-v6ops-pdhost][I-D.templin-6man-dhcpv6-ndopt].

https://datatracker.ietf.org/doc/html/rfc5522
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3633

Templin Expires April 8, 2019 [Page 4]

Internet-Draft AERO October 2018

 (native) Internetwork
 a connected IP network topology over which the AERO link virtual
 overlay is configured and native peer-to-peer communications are
 supported. Example Internetworks include the global public
 Internet, private enterprise networks, aviation networks, etc.

 AERO link
 a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
 configured over an underlying Internetwork. All nodes on the AERO
 link appear as single-hop neighbors from the perspective of the
 virtual overlay even though they may be separated by many
 underlying Internetwork hops. The AERO mechanisms can also
 operate over native link types (e.g., Ethernet, WiFi etc.) when a
 tunnel virtual overlay is not needed.

 AERO interface
 a node's attachment to an AERO link. Since the addresses assigned
 to an AERO interface are managed for uniqueness, AERO interfaces
 do not require Duplicate Address Detection (DAD) and therefore set
 the administrative variable DupAddrDetectTransmits to zero
 [RFC4862].

 AERO address
 an IPv6 link-local address constructed as specified in

Section 3.4.

 AERO node
 a node that is connected to an AERO link.

 AERO Client ("Client")
 a node that requests IP PDs from one or more AERO Servers.
 Following PD, the Client assigns an AERO address to the AERO
 interface for use in ND exchanges with other AERO nodes. A node
 that acts as an AERO Client on one AERO interface can also act as
 an AERO Server on a different AERO interface.

 AERO Server ("Server")
 a node that configures an AERO interface to provide default
 forwarding services for AERO Clients. The Server assigns an
 administratively-provisioned IPv6 link-local address to the AERO
 interface to support the operation of the ND/PD services. An AERO
 Server can also act as an AERO Relay.

 AERO Relay ("Relay")
 an IP router that can relay IP packets between AERO Servers and/or
 forward IP packets between the AERO link and the native
 Internetwork. Relays are standard IP routers that can be
 purchased from any major network equipment supplier.

https://datatracker.ietf.org/doc/html/rfc4862

Templin Expires April 8, 2019 [Page 5]

Internet-Draft AERO October 2018

 AERO Proxy ("Proxy")
 a node that provides proxying services for Clients that cannot
 associate directly with Servers, e.g., when the Client is located
 in a secured internal enclave and the Server is located in the
 external Internetwork. The AERO Proxy is a conduit between the
 secured enclave and the external Internetwork in the same manner
 as for common web proxies, and behaves in a similar fashion as for
 ND proxies [RFC4389].

 ingress tunnel endpoint (ITE)
 an AERO interface endpoint that injects encapsulated packets into
 an AERO link.

 egress tunnel endpoint (ETE)
 an AERO interface endpoint that receives encapsulated packets from
 an AERO link.

 underlying network
 the same as defined for Internetwork.

 underlying link
 a link that connects an AERO node to the underlying network.

 underlying interface
 an AERO node's interface point of attachment to an underlying
 link.

 link-layer address
 an IP address assigned to an AERO node's underlying interface.
 When UDP encapsulation is used, the UDP port number is also
 considered as part of the link-layer address. Packets transmitted
 over an AERO interface use link-layer addresses as encapsulation
 header source and destination addresses. Destination link-layer
 addresses can be either "reachable" or "unreachable" based on
 dynamically-changing network conditions.

 network layer address
 the source or destination address of an encapsulated IP packet.

 end user network (EUN)
 an internal virtual or external edge IP network that an AERO
 Client connects to the rest of the network via the AERO interface.
 The Client sees each EUN as a "downstream" network and sees the
 AERO interface as its point of attachment to the "upstream"
 network.

 AERO Service Prefix (ASP)

https://datatracker.ietf.org/doc/html/rfc4389

Templin Expires April 8, 2019 [Page 6]

Internet-Draft AERO October 2018

 an IP prefix associated with the AERO link and from which more-
 specific AERO Client Prefixes (ACPs) are derived.

 AERO Client Prefix (ACP)
 an IP prefix derived from an ASP and delegated to a Client, where
 the ACP prefix length must be no shorter than the ASP prefix
 length and must be no longer than 64 for IPv6 or 32 for IPv4.

 base AERO address
 the lowest-numbered AERO address from the first ACP delegated to
 the Client (see Section 3.4).

 Throughout the document, the simple terms "Client", "Server", "Relay"
 and "Proxy" refer to "AERO Client", "AERO Server", "AERO Relay" and
 "AERO Proxy", respectively. Capitalization is used to distinguish
 these terms from DHCPv6 client/server/relay [RFC3315].

 The terminology of DHCPv6 [RFC3315][RFC3633] and IPv6 ND [RFC4861]
 (including the names of node variables, messages and protocol
 constants) is used throughout this document. Also, the term "IP" is
 used to generically refer to either Internet Protocol version, i.e.,
 IPv4 [RFC0791] or IPv6 [RFC8200].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. Lower case
 uses of these words are not to be interpreted as carrying RFC2119
 significance.

3. Asymmetric Extended Route Optimization (AERO)

 The following sections specify the operation of IP over Asymmetric
 Extended Route Optimization (AERO) links:

3.1. AERO Link Reference Model

https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires April 8, 2019 [Page 7]

Internet-Draft AERO October 2018

 .-(::::::::)
 .-(::::::::::::)-.
 (:: Internetwork ::)
 `-(::::::::::::)-'
 `-(::::::)-'
 |
 +--------------+ +--------+-------+ +--------------+
 |AERO Server S1| | AERO Relay R1 | |AERO Server S2|
 | Nbr: C1, R1 | | Nbr: S1, S2 | | Nbr: C2, R1 |
 | default->R1 | |(X1->S1; X2->S2)| | default->R1 |
 | X1->C1 | | ASP A1 | | X2->C2 |
 +-------+------+ +--------+-------+ +------+-------+
 | AERO Link | |
 X---+---+-------------------+-+----------------+---+---X
 | | |
 +-----+--------+ +----------+------+ +--------+-----+
 |AERO Client C1| | AERO Proxy P1 | |AERO Client C2|
 | Nbr: S1 | |(Proxy Nbr Cache)| | Nbr: S2 |
 | default->S1 | +--------+--------+ | default->S2 |
 | ACP X1 | | | ACP X2 |
 +------+-------+ .--------+------. +-----+--------+
 | (- Proxyed Clients -) |
 .-. `---------------' .-.
 ,-(_)-. ,-(_)-.
 .-(_ IP)-. +-------+ +-------+ .-(_ IP)-.
 (__ EUN)--|Host H1| |Host H2|--(__ EUN)
 `-(______)-' +-------+ +-------+ `-(______)-'

 Figure 1: AERO Link Reference Model

 Figure 1 presents the AERO link reference model. In this model:

 o AERO Relay R1 aggregates AERO Service Prefix (ASP) A1, acts as a
 default router for its associated Servers (S1 and S2), and
 connects the AERO link to the rest of the Internetwork.

 o AERO Servers S1 and S2 associate with Relay R1 and also act as
 default routers for their associated Clients C1 and C2.

 o AERO Clients C1 and C2 associate with Servers S1 and S2,
 respectively. They receive AERO Client Prefix (ACP) delegations
 X1 and X2, and also act as default routers for their associated
 physical or internal virtual EUNs. Simple hosts H1 and H2 attach
 to the EUNs served by Clients C1 and C2, respectively.

 o AERO Proxy P1 provides proxy services for AERO Clients in secured
 enclaves that cannot associate directly with other AERO link
 neighbors.

Templin Expires April 8, 2019 [Page 8]

Internet-Draft AERO October 2018

 Each node on the AERO link maintains an AERO interface neighbor cache
 and an IP forwarding table the same as for any link. Although the
 figure shows a limited deployment, in common operational practice
 there may be many additional Relays, Servers, Clients and Proxies.

3.2. AERO Node Types

 AERO Relays are standard IP routers that provide default forwarding
 services to AERO Servers. Each Relay also peers with Servers and
 other Relays in a dynamic routing protocol instance to discover the
 list of active ACPs (see Section 3.3). Relays forward packets
 between neighbors connected to the same AERO link and also forward
 packets between the AERO link and the native Internetwork. Relays
 present the AERO link to the native Internetwork as a set of one or
 more AERO Service Prefixes (ASPs) and serve as a gateway between the
 AERO link and the Internetwork. Relays maintain tunnels with
 neighboring Servers, and maintain an IP forwarding table entry for
 each AERO Client Prefix (ACP).

 AERO Servers provide default forwarding services to AERO Clients.
 Each Server also peers with Relays in a dynamic routing protocol
 instance to advertise its list of associated ACPs (see Section 3.3).
 Servers facilitate PD exchanges with Clients, where each delegated
 prefix becomes an ACP taken from an ASP. Servers forward packets
 between AERO interface neighbors, and maintain AERO interface
 neighbor cache entries for Relays. They also maintain both neighbor
 cache entries and IP forwarding table entries for each of their
 associated Clients.

 AERO Clients act as requesting routers to receive ACPs through PD
 exchanges with AERO Servers over the AERO link. Each Client can
 associate with a single Server or with multiple Servers, e.g., for
 fault tolerance, load balancing, etc. Each IPv6 Client receives at
 least a /64 IPv6 ACP, and may receive even shorter prefixes.
 Similarly, each IPv4 Client receives at least a /32 IPv4 ACP (i.e., a
 singleton IPv4 address), and may receive even shorter prefixes.
 Clients maintain an AERO interface neighbor cache entry for each of
 their associated Servers as well as for each of their correspondent
 Clients.

 AERO Proxies provide a transparent conduit for AERO Clients connected
 to secured enclaves to associate with AERO link Servers. The Client
 sends all of its control plane messages to the Server's link-layer
 address and the Proxy intercepts them before they leave the secured
 enclave. The Proxy forwards the Client's control and data plane
 messages to and from the Client's current Server(s). The Proxy may
 also discover a more direct route toward a target destination via
 AERO route optimization, in which case future outbound data packets

Templin Expires April 8, 2019 [Page 9]

Internet-Draft AERO October 2018

 would be forwarded via the more direct route. The Proxy function is
 specified in Section 4.

3.3. AERO Routing System

 The AERO routing system comprises a private instance of the Border
 Gateway Protocol (BGP) [RFC4271] that is coordinated between Relays
 and Servers and does not interact with either the public Internet BGP
 routing system or the native Internetwork routing system. Relays
 advertise only a small and unchanging set of ASPs to the native
 Internetwork routing system instead of the full dynamically changing
 set of ACPs.

 In a reference deployment, each AERO Server is configured as an
 Autonomous System Border Router (ASBR) for a stub Autonomous System
 (AS) using an AS Number (ASN) that is unique within the BGP instance,
 and each Server further uses eBGP to peer with one or more Relays but
 does not peer with other Servers. All Relays are members of the same
 hub AS using a common ASN, and use iBGP to maintain a consistent view
 of all active ACPs currently in service.

 Each Server maintains a working set of associated ACPs, and
 dynamically announces new ACPs and withdraws departed ACPs in its
 eBGP updates to Relays. Clients are expected to remain associated
 with their current Servers for extended timeframes, however Servers
 SHOULD selectively suppress updates for impatient Clients that
 repeatedly associate and disassociate with them in order to dampen
 routing churn.

 Each Relay configures a black-hole route for each of its ASPs. By
 black-holing the ASPs, the Relay will maintain forwarding table
 entries only for the ACPs that are currently active, and packets
 destined to all other ACPs will correctly incur Destination
 Unreachable messages due to the black hole route. Relays do not send
 eBGP updates for ACPs to Servers, but instead only originate a
 default route. In this way, Servers have only partial topology
 knowledge (i.e., they know only about the ACPs of their directly
 associated Clients) and they forward all other packets to Relays
 which have full topology knowledge.

 Scaling properties of the AERO routing system are limited by the
 number of BGP routes that can be carried by Relays. As of 2015, the
 global public Internet BGP routing system manages more than 500K
 routes with linear growth and no signs of router resource exhaustion
 [BGP]. More recent network emulation studies have also shown that a
 single Relay can accommodate at least 1M dynamically changing BGP
 routes even on a lightweight virtual machine, i.e., and without
 requiring high-end dedicated router hardware.

https://datatracker.ietf.org/doc/html/rfc4271

Templin Expires April 8, 2019 [Page 10]

Internet-Draft AERO October 2018

 Therefore, assuming each Relay can carry 1M or more routes, this
 means that at least 1M Clients can be serviced by a single set of
 Relays. A means of increasing scaling would be to assign a different
 set of Relays for each set of ASPs. In that case, each Server still
 peers with one or more Relays, but the Server institutes route
 filters so that it only sends BGP updates to the specific set of
 Relays that aggregate the ASP. For example, if the ASP for the AERO
 link is 2001:db8::/32, a first set of Relays could service the ASP
 segment 2001:db8::/40, a second set of Relays could service
 2001:db8:0100::/40, a third set could service 2001:db8:0200::/40,
 etc.

 Assuming up to 1K sets of Relays, the AERO routing system can then
 accommodate 1B or more ACPs with no additional overhead for Servers
 and Relays (for example, it should be possible to service 1B /64 ACPs
 taken from a /34 ASP and even more for shorter prefixes). In this
 way, each set of Relays services a specific set of ASPs that they
 advertise to the native Internetwork routing system, and each Server
 configures ASP-specific routes that list the correct set of Relays as
 next hops. This arrangement also allows for natural incremental
 deployment, and can support small scale initial deployments followed
 by dynamic deployment of additional Clients, Servers and Relays
 without disturbing the already-deployed base.

 Note that in an alternate routing arrangement each set of Relays
 could advertise an aggregated ASP for the link into the native
 Internetwork routing system even though each Relay services only
 smaller segments of the ASP. In that case, a Relay upon receiving a
 packet with a destination address covered by the ASP segment of
 another Relay can simply tunnel the packet to the other Relay. The
 tradeoff then is the penalty for Relay-to-Relay tunneling compared
 with reduced routing information in the native routing system.

 A full discussion of the BGP-based routing system used by AERO is
 found in [I-D.templin-atn-bgp].

3.4. AERO Interface Addresses

 AERO interface link-local address types include administratively-
 provisioned addresses and AERO addresses.

 Administratively-provisioned addresses are allocated from the range
 fe80::/96 and assigned to Relay and Server AERO interfaces.
 Administratively-provisioned addresses MUST be managed for uniqueness
 by the administrative authority for the AERO link. The address
 fe80:: is reserved as the IPv6 link-local Subnet Router Anycast
 address (i.e., the same as for any IPv6 link), and the address
 fe80::ffff:ffff is reserved as the "prefix-solicitation" address used

Templin Expires April 8, 2019 [Page 11]

Internet-Draft AERO October 2018

 by Clients to bootstrap AERO address autoconfiguration. These
 reserved addresses are therefore not available for general
 assignment.

 An AERO address is an IPv6 link-local address with an embedded prefix
 based on an ACP and associated with a Client's AERO interface. AERO
 addresses remain stable as the Client moves between topological
 locations, i.e., even if its link-layer addresses change.

 For IPv6, AERO addresses begin with the prefix fe80::/64 and include
 in the interface identifier (i.e., the lower 64 bits) a 64-bit prefix
 taken from one of the Client's IPv6 ACPs. For example, if the AERO
 Client receives the IPv6 ACP:

 2001:db8:1000:2000::/56

 it constructs its corresponding AERO addresses as:

 fe80::2001:db8:1000:2000

 fe80::2001:db8:1000:2001

 fe80::2001:db8:1000:2002

 ... etc. ...

 fe80::2001:db8:1000:20ff

 For IPv4, AERO addresses are based on an IPv4-mapped IPv6 address
 formed from an IPv4 ACP and with a Prefix Length of 96 plus the ACP
 prefix length. For example, for the IPv4 ACP 192.0.2.32/28 the
 IPv4-mapped IPv6 ACP is:

 0:0:0:0:0:FFFF:192.0.2.16/124

 The Client then constructs its AERO addresses with the prefix
 fe80::/64 and with the lower 64 bits of the IPv4-mapped IPv6 address
 in the interface identifier as:

 fe80::FFFF:192.0.2.16

 fe80::FFFF:192.0.2.17

 fe80::FFFF:192.0.2.18

 ... etc. ...

 fe80:FFFF:192.0.2.31

Templin Expires April 8, 2019 [Page 12]

Internet-Draft AERO October 2018

 When the Server delegates ACPs to the Client, both the Server and
 Client use the lowest-numbered AERO address from the first ACP
 delegation as the "base" AERO address (for example, for the ACP
 2001:db8:1000:2000::/56 the base AERO address is
 fe80::2001:db8:1000:2000). The Client then assigns the base AERO
 address to the AERO interface and uses it for the purpose of
 maintaining the neighbor cache entry. The Server likewise uses the
 AERO address as its index into the neighbor cache for this Client.

 If the Client has multiple AERO addresses (i.e., when there are
 multiple ACPs and/or ACPs with short prefix lengths), the Client
 originates ND messages using the base AERO address as the source
 address and accepts and responds to ND messages destined to any of
 its AERO addresses as equivalent to the base AERO address. In this
 way, the Client maintains a single neighbor cache entry that may be
 indexed by multiple AERO addresses.

 AERO addresses that embed an IPv6 prefix can be statelessly
 transformed into an IPv6 Subnet Router Anycast address and vice-
 versa. For example, for the AERO address fe80::2001:db8:2000:3000
 the corresponding Subnet Router Anycast address is
 2001:db8:2000:3000::. In the same way, for the IPv6 Subnet Router
 Anycast address 2001:db8:1:2:: the corresponding AERO address is
 fe80::2001:db8:1:2. In other words, the low-order 64 bits of an AERO
 address can be used as the high-order 64 bits of a Subnet Router
 Anycast address, and vice-versa.

 AERO interfaces additionally reserve an IPv6 prefix to support IPv6
 ND message exchanges between Servers. A Unique Local Address (ULA)
 prefix [RFC4389] would be a good candidate for the reserved prefix,
 since it is not routable outside of the AERO link. An address with
 interface identifier set to 0 taken from the reserved prefix is used
 as the AERO Server Subnet Router Anycast address. For example, if
 the reserved prefix is the ULA prefix fd00:db8::/64 the AERO Server
 Subnet Router Anycast Address is fd00:db8::.

3.5. AERO Interface Characteristics

 AERO interfaces use encapsulation (see: Section 3.9) to exchange
 packets with neighbors attached to the AERO link.

 AERO interfaces maintain a neighbor cache for tracking per-neighbor
 state the same as for any interface. AERO interfaces use ND messages
 including Router Solicitation (RS), Router Advertisement (RA),
 Neighbor Solicitation (NS) and Neighbor Advertisement (NA) for
 neighbor cache management.

https://datatracker.ietf.org/doc/html/rfc4389

Templin Expires April 8, 2019 [Page 13]

Internet-Draft AERO October 2018

 AERO interface ND messages include one or more Source/Target Link-
 Layer Address Options (S/TLLAOs) formatted as shown in Figure 2:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length = 5 | Reserved |
 +-+
 | Interface ID | UDP Port Number |
 +-+
 | |
 + +
 | |
 + IP Address +
 | |
 + +
 | |
 +-+
 |P00|P01|P02|P03|P04|P05|P06|P07|P08|P09|P10|P11|P12|P13|P14|P15|
 +-+
 |P16|P17|P18|P19|P20|P21|P22|P23|P24|P25|P26|P27|P28|P29|P30|P31|
 +-+
 |P32|P33|P34|P35|P36|P37|P38|P39|P40|P41|P42|P43|P44|P45|P46|P47|
 +-+
 |P48|P49|P50|P51|P52|P53|P54|P55|P56|P57|P58|P59|P60|P61|P62|P63|
 +-+

 Figure 2: AERO Source/Target Link-Layer Address Option (S/TLLAO)
 Format

 In this format:

 o Type is set to '1' for SLLAO or '2' for TLLAO.

 o Length is set to the constant value '5' (i.e., 5 units of 8
 octets).

 o Reserved is set to the value '0' on transmission and ignored on
 receipt.

 o Interface ID is set to a 16-bit integer value corresponding to an
 underlying interface of the AERO node.

 o UDP Port Number and IP Address are set to the addresses used by
 the AERO node when it sends encapsulated packets over the
 specified underlying interface (or to '0' when the addresses are
 left unspecified). When UDP is not used as part of the
 encapsulation, UDP Port Number is set to '0'. When the

Templin Expires April 8, 2019 [Page 14]

Internet-Draft AERO October 2018

 encapsulation IP address family is IPv4, IP Address is formed as
 an IPv4-mapped IPv6 address as specified in Section 3.4.

 o P(i) is a set of 64 Preference values that correspond to the 64
 Differentiated Service Code Point (DSCP) values [RFC2474]. Each
 P(i) is set to the value '0' ("disabled"), '1' ("low"), '2'
 ("medium") or '3' ("high") to indicate a QoS preference level for
 packet forwarding purposes.

 AERO interfaces may be configured over multiple underlying interface
 connections to underlying links. For example, common mobile handheld
 devices have both wireless local area network ("WLAN") and cellular
 wireless links. These links are typically used "one at a time" with
 low-cost WLAN preferred and highly-available cellular wireless as a
 standby. In a more complex example, aircraft frequently have many
 wireless data link types (e.g. satellite-based, cellular,
 terrestrial, air-to-air directional, etc.) with diverse performance
 and cost properties.

 A Client's underlying interfaces are classified as follows:

 o Native interfaces connect to the open Internetwork, and have a
 global IP address that is reachable from any open Internetwork
 correspondent.

 o NATed interfaces connect to a closed network that is separated
 from the open Internetwork by a Network Address Translator (NAT).
 The NAT does not participate in any AERO control message
 signaling, but the AERO Server can issue AERO control messages on
 behalf of the Client.

 o VPNed interfaces use security encapsulation over the Internetwork
 to a Virtual Private Network (VPN) gateway that also acts as an
 AERO Server. As with NATed links, the AERO Server can issue
 control messages on behalf of the Client.

 o Proxyed interfaces connect to a closed network that is separated
 from the open Internetwork by an AERO Proxy. Unlike NATed and
 VPNed interfaces, the AERO Proxy (rather than the Server) can
 issue control message on behalf of the Client.

 o Direct interfaces connect the Client directly to a neighbor
 without crossing any networked paths. An example is a line-of-
 sight link between a remote pilot and an unmanned aircraft.

 If a Client's multiple underlying interfaces are used "one at a time"
 (i.e., all other interfaces are in standby mode while one interface
 is active), then ND messages include only a single S/TLLAO with

https://datatracker.ietf.org/doc/html/rfc2474

Templin Expires April 8, 2019 [Page 15]

Internet-Draft AERO October 2018

 Interface ID set to a constant value. In that case, the Client would
 appear to have a single underlying interface but with a dynamically
 changing link-layer address.

 If the Client has multiple active underlying interfaces, then from
 the perspective of ND it would appear to have multiple link-layer
 addresses. In that case, ND messages MAY include multiple S/TLLAOs
 -- each with an Interface ID that corresponds to a specific
 underlying interface of the AERO node.

 When the Client includes an S/TLLAO for an underlying interface for
 which it is aware that there is a NAT or Proxy on the path to the
 Server, or when a node includes an S/TLLAO solely for the purpose of
 announcing new QoS preferences, the node sets both UDP Port Number
 and IP Address to 0 to indicate that the addresses are unspecified.

 When an ND message includes multiple S/TLLAOs, the first S/TLLAO MUST
 correspond to the AERO node's underlying interface used to transmit
 the message.

3.6. AERO Interface Initialization

3.6.1. AERO Relay Behavior

 When a Relay enables an AERO interface, it first assigns an
 administratively-provisioned link-local address fe80::ID to the
 interface. Each fe80::ID address MUST be unique among all AERO nodes
 on the link. The Relay then engages in a dynamic routing protocol
 session with one or more Servers and all other Relays on the link
 (see: Section 3.3), and advertises its assigned ASPs into the native
 Internetwork. Each Relay subsequently maintains an IP forwarding
 table entry for each active ACP covered by its ASP(s).

3.6.2. AERO Server Behavior

 When a Server enables an AERO interface, it assigns an
 administratively-provisioned link-local address fe80::ID the same as
 for Relays. The Server further configures a service to facilitate
 ND/PD exchanges with AERO Clients. The Server maintains neighbor
 cache entries for one or more Relays on the link, and manages per-
 Client neighbor cache entries and IP forwarding table entries based
 on control message exchanges. Each Server also engages in a dynamic
 routing protocol with their neighboring Relays (see: Section 3.3).

 When the Server receives an NS/RS message on the AERO interface it
 authenticates the message and returns an NA/RA message. The Server
 further provides a simple link-layer conduit between AERO interface
 neighbors. In particular, when a packet sent by a source Client

Templin Expires April 8, 2019 [Page 16]

Internet-Draft AERO October 2018

 arrives on the Server's AERO interface and is destined to another
 AERO node, the Server forwards the packet from within the AERO
 interface driver at the link layer without ever disturbing the
 network layer.

3.6.3. AERO Client Behavior

 When a Client enables an AERO interface, it sends RS messages with
 ND/PD parameters over an underlying interface to one or more AERO
 Servers, which return RA messages with corresponding PD parameters.
 See [I-D.templin-6man-dhcpv6-ndopt] for the types of ND/PD parameters
 that can be included in the RS/RA message exchanges.

 After the initial ND/PD message exchange, the Client can register
 additional underlying interfaces with the Server by sending a simple
 RS message (i.e., one with no PD parameters) over each underlying
 interface using its base AERO address as the source network layer
 address. The Server will update its neighbor cache entry for the
 Client and return a simple RA message.

 The Client maintains a neighbor cache entry for each of its Servers
 and each of its active correspondent Clients. When the Client
 receives ND messages on the AERO interface it updates or creates
 neighbor cache entries, including link-layer address and QoS
 preferences.

3.6.4. AERO Proxy Behavior

 When a Proxy enables an AERO interface, it maintains per-Client proxy
 neighbor cache entries based on control message exchanges. Proxies
 forward packets between their associated Clients and the Clients'
 associated Servers.

 When the Proxy receives an RS message from a Client in the secured
 enclave, it creates an incomplete proxy neighbor cache entry and
 sends a corresponding RS message to a Server selected by the Client
 while using its own link-layer address as the source address. When
 the Server returns an RA message, the Proxy completes the proxy
 neighbor cache entry based on autoconfiguration information in the RA
 and sends a corresponding RA to the Client while using its own link-
 layer address as the source address. The Client, Server and Proxy
 will then have the necessary state for managing the proxy neighbor
 association.

Templin Expires April 8, 2019 [Page 17]

Internet-Draft AERO October 2018

3.7. AERO Interface Neighbor Cache Maintenance

 Each AERO interface maintains a conceptual neighbor cache that
 includes an entry for each neighbor it communicates with on the AERO
 link, the same as for any IPv6 interface [RFC4861]. AERO interface
 neighbor cache entries are said to be one of "permanent", "static",
 "proxy" or "dynamic".

 Permanent neighbor cache entries are created through explicit
 administrative action; they have no timeout values and remain in
 place until explicitly deleted. AERO Relays maintain permanent
 neighbor cache entries for their associated Relays and Servers on the
 link, and AERO Servers maintain permanent neighbor cache entries for
 their associated Relays. Each entry maintains the mapping between
 the neighbor's fe80::ID network-layer address and corresponding link-
 layer address.

 Static neighbor cache entries are created and maintained through ND/
 PD exchanges as specified in Section 3.14, and remain in place for
 durations bounded by ND/PD lifetimes. AERO Servers maintain static
 neighbor cache entries for each of their associated Clients, and AERO
 Clients maintain static neighbor cache entries for each of their
 associated Servers.

 Proxy neighbor cache entries are created and maintained by AERO
 Proxies when they process Client/Server ND/PD exchanges, and remain
 in place for durations bounded by ND/PD lifetimes. AERO Proxies
 maintain proxy neighbor cache entries for each of their associated
 Clients.

 Dynamic neighbor cache entries are created or updated based on
 receipt of route optimization messages as specified in Section 3.15,
 and are garbage-collected when keepalive timers expire. AERO nodes
 maintain dynamic neighbor cache entries for each of their active
 correspondents with lifetimes based on ND messaging constants.

 When a target AERO node receives a valid NS message used for route
 optimization, it returns an NA message and also creates or updates a
 dynamic neighbor cache entry for the source network-layer and link-
 layer addresses. The node then sets a "ReportTime" variable in the
 neighbor cache entry to REPORT_TIME seconds. The node resets
 ReportTime when it receives a new NS message, and otherwise
 decrements ReportTime while no NS messages have been received. It is
 RECOMMENDED that REPORT_TIME be set to the default constant value 40
 seconds to allow a 10 second window so that the AERO route
 optimization procedure can converge before ReportTime decrements
 below FORWARD_TIME (see below).

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires April 8, 2019 [Page 18]

Internet-Draft AERO October 2018

 When a source AERO node receives a valid NA message that matches its
 NS message, it creates or updates a dynamic neighbor cache entry for
 the target network-layer and link-layer addresses. The node then
 sets a "ForwardTime" variable in the neighbor cache entry to
 FORWARD_TIME seconds and uses this value to determine whether packets
 can be forwarded directly to the correspondent, i.e., instead of via
 a default route. The node resets ForwardTime when it receives a new
 NA, and otherwise decrements ForwardTime while no further NA messages
 arrive. It is RECOMMENDED that FORWARD_TIME be set to the default
 constant value 30 seconds to match the default REACHABLE_TIME value
 specified in [RFC4861].

 The node also sets a "MaxRetry" variable to MAX_RETRY to limit the
 number of keepalives sent when a correspondent may have gone
 unreachable. It is RECOMMENDED that MAX_RETRY be set to 3 the same
 as described for address resolution in Section 7.3.3 of [RFC4861].

 Different values for REPORT_TIME, FORWARD_TIME and MAX_RETRY MAY be
 administratively set; however, if different values are chosen, all
 nodes on the link MUST consistently configure the same values. Most
 importantly, REPORT_TIME SHOULD be set to a value that is
 sufficiently longer than FORWARD_TIME to allow the AERO route
 optimization procedure to converge.

 When there may be a NAT or Proxy between the Client and the Server,
 or if the path from the Client to the Server should be tested for
 reachability, the Client can send periodic RS messages to the Server
 without PD parameters to receive RA replies. The RS/RA messaging
 will keep NAT/Proxy state alive and test Server reachability without
 disturbing the PD service.

3.8. AERO Interface Forwarding Algorithm

 IP packets enter a node's AERO interface either from the network
 layer (i.e., from a local application or the IP forwarding system) or
 from the link layer (i.e., from the AERO tunnel virtual link).
 Packets that enter the AERO interface from the network layer are
 encapsulated and forwarded into the AERO link, i.e., they are
 tunneled to an AERO interface neighbor. Packets that enter the AERO
 interface from the link layer are either re-admitted into the AERO
 link or forwarded to the network layer where they are subject to
 either local delivery or IP forwarding. In all cases, the AERO
 interface itself MUST NOT decrement the network layer TTL/Hop-count
 since its forwarding actions occur below the network layer.

 AERO interfaces may have multiple underlying interfaces and/or
 neighbor cache entries for neighbors with multiple Interface ID
 registrations (see Section 3.5). The AERO node uses each packet's

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.3

Templin Expires April 8, 2019 [Page 19]

Internet-Draft AERO October 2018

 DSCP value to select an outgoing underlying interface based on the
 node's own QoS preferences, and also to select a destination link-
 layer address based on the neighbor's underlying interface with the
 highest preference. If multiple outgoing interfaces and/or neighbor
 interfaces have a preference of "high", the AERO node sends one copy
 of the packet via each of the (outgoing / neighbor) interface pairs;
 otherwise, the node sends a single copy of the packet via the
 interface with the highest preference. AERO nodes keep track of
 which underlying interfaces are currently "reachable" or
 "unreachable", and only use "reachable" interfaces for forwarding
 purposes.

 The following sections discuss the AERO interface forwarding
 algorithms for Clients, Proxies, Servers and Relays. In the
 following discussion, a packet's destination address is said to
 "match" if it is a non-link-local address with a prefix covered by an
 ASP/ACP, or if it is an AERO address that embeds an ACP, or if it is
 the same as an administratively-provisioned link-local address.

3.8.1. Client Forwarding Algorithm

 When an IP packet enters a Client's AERO interface from the network
 layer the Client searches for a dynamic neighbor cache entry that
 matches the destination. If there is a match, the Client uses one or
 more "reachable" link-layer addresses in the entry as the link-layer
 addresses for encapsulation and admits the packet into the AERO link.
 Otherwise, the Client uses the link-layer address in a static
 neighbor cache entry for a Server as the encapsulation address
 (noting that there may be a Proxy on the path to the real Server).

 When an IP packet enters a Client's AERO interface from the link-
 layer, if the destination matches one of the Client's ACPs or link-
 local addresses the Client decapsulates the packet and delivers it to
 the network layer. Otherwise, the Client drops the packet and MAY
 return a network-layer ICMP Destination Unreachable message subject
 to rate limiting (see: Section 3.13).

3.8.2. Proxy Forwarding Algorithm

 When the Proxy receives a packet from a Client within the secured
 enclave, the Proxy searches for a dynamic neighbor cache entry that
 matches the destination. If there is a match, the Proxy uses one or
 more "reachable" link-layer addresses in the entry as the link-layer
 addresses for encapsulation and admits the packet into the AERO link.
 Otherwise, the Proxy uses the link-layer address for one of the
 Client's Servers as the encapsulation address.

Templin Expires April 8, 2019 [Page 20]

Internet-Draft AERO October 2018

 When the Proxy receives a packet from an AERO interface neighbor, it
 searches for a proxy neighbor cache entry for a Client within the
 secured enclave that matches the destination. If there is a match,
 the Proxy forwards the packet to the Client. Otherwise, the Proxy
 returns the packet to the neighbor, i.e., by reversing the source and
 destination link-layer addresses and re-admitting the packet into the
 AERO link.

3.8.3. Server Forwarding Algorithm

 When an IP packet enters a Server's AERO interface from the network
 layer, the Server searches for a static neighbor cache entry for a
 Client that matches the destination. If there is a match, the Server
 uses one or more link-layer addresses in the entry as the link-layer
 addresses for encapsulation and admits the packet into the AERO link.
 Otherwise, the Server uses the link-layer address in a permanent
 neighbor cache entry for a Relay (selected through longest-prefix
 match) as the link-layer address for encapsulation.

 When an IP packet enters a Server's AERO interface from the link
 layer, the Server processes the packet according to the network-layer
 destination address as follows:

 o if the destination matches one of the Server's own addresses the
 Server decapsulates the packet and forwards it to the network
 layer for local delivery.

 o else, if the destination matches a static neighbor cache entry for
 a Client the Server first determines whether the neighbor is the
 same as the one it received the packet from. If so, the Server
 drops the packet silently to avoid looping; otherwise, the Server
 uses the neighbor's link-layer address(es) as the destination for
 encapsulation and re-admits the packet into the AERO link.

 o else, the Server uses the link-layer address in a neighbor cache
 entry for a Relay (selected through longest-prefix match) as the
 link-layer address for encapsulation.

3.8.4. Relay Forwarding Algorithm

 When an IP packet enters a Relay's AERO interface from the network
 layer, the Relay searches its IP forwarding table for an ACP entry
 that matches the destination the same as for any IP router. If there
 is a match, the Relay uses the link-layer address in the
 corresponding neighbor cache entry as the link-layer address for
 encapsulation and forwards the packet to the AERO neighbor.
 Otherwise, the Relay drops the packet and returns a network-layer

Templin Expires April 8, 2019 [Page 21]

Internet-Draft AERO October 2018

 ICMP Destination Unreachable message subject to rate limiting (see:
Section 3.13).

 When an IP packet enters a Relay's AERO interface from the link-
 layer, (i.e., when it receives a packet from a Server via a tunnel)
 the Relay processes the packet as follows:

 o if the destination does not match an ASP, or if the destination
 matches one of the Relay's own addresses, the Relay decapsulates
 the packet and forwards it to the network layer where it will be
 subject to either IP forwarding or local delivery.

 o else, if the destination matches an ACP entry in the IP forwarding
 table the Relay first determines whether the neighbor is the same
 as the one it received the packet from. If so the Relay MUST drop
 the packet silently to avoid looping; otherwise, the Relay uses
 the neighbor's link-layer address as the destination for
 encapsulation and re-admits the packet into the AERO link.

 o else, the Relay drops the packet and returns an ICMP Destination
 Unreachable message subject to rate limiting (see: Section 3.13).

3.8.5. Processing Return Packets

 When an AERO Server receives a return packet from an AERO Proxy (see
Section 3.8.2), it proceeds according to the AERO link trust basis.

 Namely, the return packets have the same trust profile as for link-
 layer Destination Unreachable messages. If the Server has sufficient
 trust basis to accept link-layer Destination Unreachable messages, it
 can then process the return packet by searching for a dynamic
 neighbor cache entry that matches the destination. If there is a
 match, the Server marks the corresponding link-layer address as
 "unreachable", selects the next-highest priority "reachable" link-
 layer address in the entry as the link-layer address for
 encapsulation then (re)admits the packet into the AERO link. If
 there are no "reachable" link-layer addresses, the Server instead
 sets ForwardTime in the dynamic neighbor cache entry to 0 (noting
 that ReportTime may still be non-zero). Otherwise, the Server SHOULD
 drop the packet and treat it as an indication that a path may be
 failing, and MAY use Neighbor Unreachability Detection (NUD) (see:

Section 3.13) to test the path for reachability.

 When an AERO Relay receives a return packet from an AERO Server, it
 searches its routing table for an entry that matches the inner
 destination address. If there is a routing table entry that lists a
 different Server as the next hop, the Relay forwards the packet to
 the different Server; otherwise, the Relay drops the packet.

Templin Expires April 8, 2019 [Page 22]

Internet-Draft AERO October 2018

3.9. AERO Interface Encapsulation and Re-encapsulation

 AERO interfaces encapsulate IP packets according to whether they are
 entering the AERO interface from the network layer or if they are
 being re-admitted into the same AERO link they arrived on. This
 latter form of encapsulation is known as "re-encapsulation".

 The AERO interface encapsulates packets per the Generic UDP
 Encapsulation (GUE) procedures in
 [I-D.ietf-intarea-gue][I-D.ietf-intarea-gue-extensions], or through
 an alternate encapsulation format (e.g., see: Appendix A). For
 packets entering the AERO interface from the network layer, the AERO
 interface copies the "TTL/Hop Limit", "Type of Service/Traffic Class"
 [RFC2983], "Flow Label"[RFC6438] (for IPv6) and "Congestion
 Experienced" [RFC3168] values in the packet's IP header into the
 corresponding fields in the encapsulation IP header. For packets
 undergoing re-encapsulation, the AERO interface instead copies these
 values from the original encapsulation IP header into the new
 encapsulation header, i.e., the values are transferred between
 encapsulation headers and *not* copied from the encapsulated packet's
 network-layer header. (Note especially that by copying the TTL/Hop
 Limit between encapsulation headers the value will eventually
 decrement to 0 if there is a (temporary) routing loop.) For IPv4
 encapsulation/re-encapsulation, the AERO interface sets the DF bit as
 discussed in Section 3.12.

 When GUE encapsulation is used, the AERO interface next sets the UDP
 source port to a constant value that it will use in each successive
 packet it sends, and sets the UDP length field to the length of the
 encapsulated packet plus 8 bytes for the UDP header itself plus the
 length of the GUE header (or 0 if GUE direct IP encapsulation is
 used). For packets sent to a Server or Relay, the AERO interface
 sets the UDP destination port to 8060, i.e., the IANA-registered port
 number for AERO. For packets sent to a Client, the AERO interface
 sets the UDP destination port to the port value stored in the
 neighbor cache entry for this Client. The AERO interface then either
 includes or omits the UDP checksum according to the GUE
 specification.

 Clients normally use the IP address of the underlying interface as
 the encapsulation source address. If the underlying interface does
 not have an IP address, however, the Client uses an IP address taken
 from an ACP as the encapsulation source address (assuming the node
 has some way of injecting the ACP into the underlying network routing
 system). For IPv6 addresses, the Client normally uses the ACP Subnet
 Router Anycast address [RFC4291].

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4291

Templin Expires April 8, 2019 [Page 23]

Internet-Draft AERO October 2018

 Encapsulation between Servers and Relays can use standard mechanisms
 such as Generic Routing Encapsulation (GRE) [RFC2784] and IPSec
 [RFC4301] so that Relays can be standard IP routers with no AERO-
 specific mechanisms.

3.10. AERO Interface Decapsulation

 AERO interfaces decapsulate packets destined either to the AERO node
 itself or to a destination reached via an interface other than the
 AERO interface the packet was received on. Decapsulation is per the
 procedures specified for the appropriate encapsulation format.

3.11. AERO Interface Data Origin Authentication

 AERO nodes employ simple data origin authentication procedures for
 encapsulated packets they receive from other nodes on the AERO link.
 In particular:

 o AERO Relays and Servers accept encapsulated packets with a link-
 layer source address that matches a permanent neighbor cache
 entry.

 o AERO Servers accept authentic encapsulated ND messages from
 Clients (either directly or via a Proxy), and create or update a
 static neighbor cache entry for the Client based on the specific
 message type.

 o AERO Clients and Servers accept encapsulated packets if there is a
 static neighbor cache entry with a link-layer address that matches
 the packet's link-layer source address.

 o AERO Proxies accept encapsulated packets if there is a proxy
 neighbor cache entry that matches the packet's network-layer
 address.

 Each packet should include a signature that the recipient can use to
 authenticate the message origin, e.g., as for common VPN systems such
 as OpenVPN [OVPN]. In environments where source address spoofing is
 not considered a threat, however, it may be sufficient to require
 signatures only for ND control plane messages and omit signatures for
 data plane messages.

3.12. AERO Interface Packet Size Issues

 The AERO interface is the node's attachment to the AERO link. The
 AERO interface acts as a tunnel ingress when it sends a packet to an
 AERO link neighbor and as a tunnel egress when it receives a packet
 from an AERO link neighbor. AERO interfaces observe the packet

https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc4301

Templin Expires April 8, 2019 [Page 24]

Internet-Draft AERO October 2018

 sizing considerations for tunnels discussed in
 [I-D.ietf-intarea-tunnels] and as specified below.

 The Internet Protocol expects that IP packets will either be
 delivered to the destination or a suitable Packet Too Big (PTB)
 message returned to support the process known as IP Path MTU
 Discovery (PMTUD) [RFC1191][RFC1981]. However, PTB messages may be
 crafted for malicious purposes such as denial of service, or lost in
 the network [RFC2923]. This can be especially problematic for
 tunnels, where a condition known as a PMTUD "black hole" can result.
 For these reasons, AERO interfaces employ operational procedures that
 avoid interactions with PMTUD, including the use of fragmentation
 when necessary.

 AERO interfaces observe two different types of fragmentation. Source
 fragmentation occurs when the AERO interface (acting as a tunnel
 ingress) fragments the encapsulated packet into multiple fragments
 before admitting each fragment into the tunnel. Network
 fragmentation occurs when an encapsulated packet admitted into the
 tunnel by the ingress is fragmented by an IPv4 router on the path to
 the egress. Note that a packet that incurs source fragmentation may
 also incur network fragmentation.

 IPv6 specifies a minimum link Maximum Transmission Unit (MTU) of 1280
 bytes [RFC8200]. Although IPv4 specifies a smaller minimum link MTU
 of 68 bytes [RFC0791], AERO interfaces also observe the IPv6 minimum
 for IPv4 even if encapsulated packets may incur network
 fragmentation.

 IPv6 specifies a minimum Maximum Reassembly Unit (MRU) of 1500 bytes
 [RFC8200], while the minimum MRU for IPv4 is only 576 bytes [RFC1122]
 (note that common IPv6 over IPv4 tunnels already assume a larger MRU
 than the IPv4 minimum).

 AERO interfaces therefore configure an MTU that MUST NOT be smaller
 than 1280 bytes, MUST NOT be larger than the minimum MRU among all
 nodes on the AERO link minus the encapsulation overhead ("ENCAPS"),
 and SHOULD NOT be smaller than 1500 bytes. AERO interfaces also
 configure a Maximum Segment Unit (MSU) as the maximum-sized
 encapsulated packet that the ingress can inject into the tunnel
 without source fragmentation. The MSU value MUST NOT be larger than
 (MTU+ENCAPS) and MUST NOT be larger than 1280 bytes unless there is
 operational assurance that a larger size can traverse the link along
 all paths.

 All AERO nodes MUST configure the same MTU/MSU values for reasons
 cited in [RFC3819][RFC4861]; in particular, multicast support
 requires a common MTU value among all nodes on the link. All AERO

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3819

Templin Expires April 8, 2019 [Page 25]

Internet-Draft AERO October 2018

 nodes MUST configure an MRU large enough to reassemble packets up to
 (MTU+ENCAPS) bytes in length; nodes that cannot configure a large-
 enough MRU MUST NOT enable an AERO interface.

 The network layer proceeds as follow when it presents an IP packet to
 the AERO interface. For each IPv4 packet that is larger than the
 AERO interface MTU and with the DF bit set to 0, the network layer
 uses IPv4 fragmentation to break the packet into a minimum number of
 non-overlapping fragments where the first fragment is no larger than
 the MTU and the remaining fragments are no larger than the first.
 For all other IP packets, if the packet is larger than the AERO
 interface MTU, the network layer drops the packet and returns a PTB
 message to the original source. Otherwise, the network layer admits
 each IP packet or fragment into the AERO interface.

 For each IP packet admitted into the AERO interface, the interface
 (acting as a tunnel ingress) encapsulates the packet. If the
 encapsulated packet is larger than the AERO interface MSU the ingress
 source-fragments the encapsulated packet into a minimum number of
 non-overlapping fragments where the first fragment is no larger than
 the MSU and the remaining fragments are no larger than the first.
 The ingress then admits each encapsulated packet or fragment into the
 tunnel, and for IPv4 sets the DF bit to 0 in the IP encapsulation
 header in case any network fragmentation is necessary. The
 encapsulated packets will be delivered to the egress, which
 reassembles them into a whole packet if necessary.

 Several factors must be considered when fragmentation is needed. For
 AERO links over IPv4, the IP ID field is only 16 bits in length,
 meaning that fragmentation at high data rates could result in data
 corruption due to reassembly misassociations [RFC6864][RFC4963]. For
 AERO links over both IPv4 and IPv6, studies have also shown that IP
 fragments are dropped unconditionally over some network paths [I-
 D.taylor-v6ops-fragdrop]. In environments where IP fragmentation
 issues could result in operational problems, the ingress SHOULD
 employ intermediate-layer source fragmentation (see: [RFC2764] and
 [I-D.ietf-intarea-gue-extensions]) before appending the outer
 encapsulation headers to each fragment. Since the encapsulation
 fragment header reduces the room available for packet data, but the
 original source has no way to control its insertion, the ingress MUST
 include the fragment header length in the ENCAPS length even for
 packets in which the header is absent.

3.13. AERO Interface Error Handling

 When an AERO node admits encapsulated packets into the AERO
 interface, it may receive link-layer or network-layer error
 indications.

https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc2764

Templin Expires April 8, 2019 [Page 26]

Internet-Draft AERO October 2018

 A link-layer error indication is an ICMP error message generated by a
 router in the underlying network on the path to the neighbor or by
 the neighbor itself. The message includes an IP header with the
 address of the node that generated the error as the source address
 and with the link-layer address of the AERO node as the destination
 address.

 The IP header is followed by an ICMP header that includes an error
 Type, Code and Checksum. Valid type values include "Destination
 Unreachable", "Time Exceeded" and "Parameter Problem"
 [RFC0792][RFC4443]. (AERO interfaces ignore all link-layer IPv4
 "Fragmentation Needed" and IPv6 "Packet Too Big" messages since they
 only emit packets that are guaranteed to be no larger than the IP
 minimum link MTU as discussed in Section 3.12.)

 The ICMP header is followed by the leading portion of the packet that
 generated the error, also known as the "packet-in-error". For
 ICMPv6, [RFC4443] specifies that the packet-in-error includes: "As
 much of invoking packet as possible without the ICMPv6 packet
 exceeding the minimum IPv6 MTU" (i.e., no more than 1280 bytes). For
 ICMPv4, [RFC0792] specifies that the packet-in-error includes:
 "Internet Header + 64 bits of Original Data Datagram", however

[RFC1812] Section 4.3.2.3 updates this specification by stating: "the
 ICMP datagram SHOULD contain as much of the original datagram as
 possible without the length of the ICMP datagram exceeding 576
 bytes".

 The link-layer error message format is shown in Figure 3 (where, "L2"
 and "L3" refer to link-layer and network-layer, respectively):

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812#section-4.3.2.3

Templin Expires April 8, 2019 [Page 27]

Internet-Draft AERO October 2018

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~
 | L2 IP Header of |
 | error message |
 ~ ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | L2 ICMP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 ~ ~ P
 | IP and other encapsulation | a
 | headers of original L3 packet | c
 ~ ~ k
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ e
 ~ ~ t
 | IP header of |
 | original L3 packet | i
 ~ ~ n
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~ e
 | Upper layer headers and | r
 | leading portion of body | r
 | of the original L3 packet | o
 ~ ~ r
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 3: AERO Interface Link-Layer Error Message Format

 The AERO node rules for processing these link-layer error messages
 are as follows:

 o When an AERO node receives a link-layer Parameter Problem message,
 it processes the message the same as described as for ordinary
 ICMP errors in the normative references [RFC0792][RFC4443].

 o When an AERO node receives persistent link-layer Time Exceeded
 messages, the IP ID field may be wrapping before earlier fragments
 awaiting reassembly have been processed. In that case, the node
 SHOULD begin including integrity checks and/or institute rate
 limits for subsequent packets.

 o When an AERO node receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its dynamic neighbor correspondents, the node
 SHOULD process the message as an indication that a path may be
 failing, and MAY initiate NUD over that path. If it receives
 Destination Unreachable messages on many or all paths, the node
 SHOULD set ForwardTime for the corresponding dynamic neighbor

https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires April 8, 2019 [Page 28]

Internet-Draft AERO October 2018

 cache entry to 0 and allow future packets destined to the
 correspondent to flow through a default route.

 o When an AERO Client receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its static neighbor Servers, the Client SHOULD
 mark the path as unusable and use another path. If it receives
 Destination Unreachable messages on many or all paths, the Client
 SHOULD associate with a new Server and release its association
 with the old Server as specified in Section 3.17.6.

 o When an AERO Server receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its static neighbor Clients, the Server SHOULD
 mark the underlying path as unusable and use another underlying
 path. If it receives Destination Unreachable messages on multiple
 paths, the Server should take no further actions unless it
 receives a receives an explicit ND/PD release message or if the PD
 lifetime expires. In that case, the Server MUST release the
 Client's delegated ACP, withdraw the ACP from the AERO routing
 system and delete the neighbor cache entry.

 o When an AERO Relay or Server receives link-layer Destination
 Unreachable messages in response to an encapsulated packet that it
 sends to one of its permanent neighbors, it treats the messages as
 an indication that the path to the neighbor may be failing.
 However, the dynamic routing protocol should soon reconverge and
 correct the temporary outage.

 When an AERO Relay receives a packet for which the network-layer
 destination address is covered by an ASP, if there is no more-
 specific routing information for the destination the Relay drops the
 packet and returns a network-layer Destination Unreachable message
 subject to rate limiting. The Relay writes the network-layer source
 address of the original packet as the destination address and uses
 one of its non link-local addresses as the source address of the
 message.

 When an AERO node receives an encapsulated packet for which the
 reassembly buffer it too small, it drops the packet and returns a
 network-layer Packet Too Big (PTB) message. The node first writes
 the MRU value into the PTB message MTU field, writes the network-
 layer source address of the original packet as the destination
 address and writes one of its non link-local addresses as the source
 address.

Templin Expires April 8, 2019 [Page 29]

Internet-Draft AERO October 2018

3.14. AERO Router Discovery, Prefix Delegation and Autoconfiguration

 AERO Router Discovery, Prefix Delegation and Autoconfiguration are
 coordinated as discussed in the following Sections.

3.14.1. AERO ND/PD Service Model

 Each AERO Server configures a PD service to facilitate Client
 requests. Each Server is provisioned with a database of ACP-to-
 Client ID mappings for all Clients enrolled in the AERO system, as
 well as any information necessary to authenticate each Client. The
 Client database is maintained by a central administrative authority
 for the AERO link and securely distributed to all Servers, e.g., via
 the Lightweight Directory Access Protocol (LDAP) [RFC4511], via
 static configuration, etc. Therefore, no Server-to-Server PD state
 synchronization is necessary, and Clients can optionally hold
 separate PDs for the same ACPs from multiple Servers. In this way,
 Clients can associate with multiple Servers, and can receive new PDs
 from new Servers before releasing PDs received from existing Servers.
 This provides the Client with a natural fault-tolerance and/or load
 balancing profile.

 AERO Clients and Servers use ND messages to maintain neighbor cache
 entries. AERO Servers configure their AERO interfaces as advertising
 interfaces, and therefore send unicast RA messages with configuration
 information in response to a Client's RS message. Thereafter,
 Clients send additional RS messages to the Server's unicast address
 to refresh prefix and/or router lifetimes.

 AERO Clients and Servers include PD parameters in the RS/RA messages
 they exchange (see: [I-D.templin-6man-dhcpv6-ndopt]). The unified
 ND/PD messages are exchanged between Client and Server according to
 the prefix management schedule required by the PD service.

 On Some AERO links, PD arrangements may be through some out-of-band
 service such as network management, static configuration, etc. In
 those cases, AERO nodes can use simple RS/RA message exchanges with
 no explicit PD options. Instead, the RS/RA messages use AERO
 addresses as a means of representing the delegated prefixes, e.g., if
 a message includes a source address of "fe80::2001:db8:1:2" then the
 recipient can infer that the sender holds the prefix delegation
 "2001:db8:1:2::/N" (where 'N' is the prefix length common to all ACPs
 for the link).

 The following sections specify the Client and Server behavior.

https://datatracker.ietf.org/doc/html/rfc4511

Templin Expires April 8, 2019 [Page 30]

Internet-Draft AERO October 2018

3.14.2. AERO Client Behavior

 AERO Clients discover the link-layer addresses of AERO Servers via
 static configuration (e.g., from a flat-file map of Server addresses
 and locations), or through an automated means such as Domain Name
 System (DNS) name resolution [RFC1035]. In the absence of other
 information, the Client resolves the DNS Fully-Qualified Domain Name
 (FQDN) "linkupnetworks.[domainname]" where "linkupnetworks" is a
 constant text string and "[domainname]" is a DNS suffix for the
 Client's underlying interface (e.g., "example.com"). After
 discovering the link-layer addresses, the Client associates with one
 or more of the corresponding Servers.

 To associate with a Server, the Client acts as a requesting router to
 request ACPs through an ND/PD message exchange. The Client sends an
 RS message with PD parameters and with all-routers multicast as the
 IPv6 destination address, the address of the Client's underlying
 interface as the link-layer source address and the link-layer address
 of the Server as the link-layer destination address. If the Client
 already knows its own AERO address, it uses the AERO address as the
 IPv6 source address; otherwise, it uses the prefix-solicitation
 address as the source address. If the Client's underlying interface
 connects to a subnetwork that supports ACP injection, the Client can
 use the ACP's Subnet Router Anycast address as the link-layer source
 address.

 The Client next includes one or more SLLAOs in the RS message
 formatted as described in Section 3.5 to register its link-layer
 address(es) with the Server. The first SLLAO MUST correspond to the
 underlying interface over which the Client will send the RS message.
 The Client MAY include additional SLLAOs specific to other underlying
 interfaces, but if so it sets the UDP Port Number and IP Address
 fields to 0. The Client can instead register additional link-layer
 addresses with the Server by sending additional RS messages including
 SLLAOs via other underlying interfaces after the initial RS/RA
 exchange.

 The Client then sends the RS message to the AERO Server and waits for
 an RA message reply (see Section 3.14.3) while retrying MAX_RETRY
 times until an RA is received. If the Client receives no RAs, or if
 it receives an RA with Router Lifetime set to 0 and/or with no ACP PD
 parameters, the Client SHOULD discontinue autoconfiguration attempts
 through this Server and try another Server. Otherwise, the Client
 processes the ACPs found in the RA message.

 Next, the Client creates a static neighbor cache entry with the
 Server's link-local address as the network-layer address and the
 Server's encapsulation source address as the link-layer address. The

https://datatracker.ietf.org/doc/html/rfc1035

Templin Expires April 8, 2019 [Page 31]

Internet-Draft AERO October 2018

 Client then autoconfigures AERO addresses for each of the delegated
 ACPs and assigns them to the AERO interface.

 The Client next examines the P bit in the RA message flags field
 [RFC5175]. If the P bit value was 1, the Client infers that there is
 a NAT or Proxy on the path to the Server via the interface over which
 it sent the RS message. In that case, the Client sets UDP Port
 Number and IP Address to 0 in the S/TLLAOs of any subsequent ND
 messages it sends to the Server over that link.

 The Client also caches any ASPs included in Route Information Options
 (RIOs) [RFC4191] as ASPs to associate with the AERO link, and assigns
 the MTU/MSU values in the MTU options to its AERO interface while
 configuring an appropriate MRU. This configuration information
 applies to the AERO link as a whole, and all AERO nodes will receive
 the same values.

 Following autoconfiguration, the Client sub-delegates the ACPs to its
 attached EUNs and/or the Client's own internal virtual interfaces as
 described in [I-D.templin-v6ops-pdhost] to support the Client's
 downstream attached "Internet of Things (IoT)". The Client
 subsequently maintains its ACP delegations through each of its
 Servers by sending RS messages with PD parameters to receive
 corresponding RA messages.

 After the Client registers its Interface IDs and their associated
 UDP/IP addresses and 'P(i)' values, it may wish to change one or more
 Interface ID registrations, e.g., if an underlying interface changes
 address or becomes unavailable, if QoS preferences change, etc. To
 do so, the Client prepares an unsolicited NA message to send over any
 available underlying interface. The target address of the NA message
 is set to the Client's link-local address, and the destination
 address is set to all-nodes multicast. The NA MUST include a TLLAO
 specific to the selected available underlying interface as the first
 TLLAO and MAY include any additional TLLAOs specific to other
 underlying interfaces. The Client includes fresh 'P(i)' values in
 each TLLAO to update the Server's neighbor cache entry. If the
 Client wishes to update 'P(i)' values without updating the link-layer
 address, it sets the UDP Port Number and IP Address fields to 0. If
 the Client wishes to disable the interface, it sets all 'P(i)' values
 to '0' ("disabled").

 If the Client wishes to discontinue use of a Server it issues an RS
 message with PD parameters that will cause the Server to release the
 Client. When the Server processes the message, it releases the ACP,
 deletes its neighbor cache entry for the Client, withdraws the IP
 route from the routing system and returns an RA reply containing any
 necessary PD parameters.

https://datatracker.ietf.org/doc/html/rfc5175
https://datatracker.ietf.org/doc/html/rfc4191

Templin Expires April 8, 2019 [Page 32]

Internet-Draft AERO October 2018

3.14.3. AERO Server Behavior

 AERO Servers act as IPv6 routers and support a PD service for
 Clients. AERO Servers arrange to add their encapsulation layer IP
 addresses (i.e., their link-layer addresses) to a static map of
 Server addresses for the link and/or the DNS resource records for the
 FQDN "linkupnetworks.[domainname]" before entering service.

 When an AERO Server receives a prospective Client's RS message with
 PD parameters on its AERO interface, and the Server is too busy, it
 SHOULD return an immediate RA reply with no ACPs and with Router
 Lifetime set to 0. Otherwise, the Server authenticates the RS
 message and processes the PD parameters. The Server first determines
 the correct ACPs to delegate to the Client by searching the Client
 database. When the Server delegates the ACPs, it also creates an IP
 forwarding table entry for each ACP so that the AERO BGP-based
 routing system will propagate the ACPs to the Relays that aggregate
 the corresponding ASP (see: Section 3.3).

 Next, the Server prepares an RA message that includes the delegated
 ACPs and any other PD parameters. The Server then returns the RA
 message using its link-local address as the network-layer source
 address, the network-layer source address of the RS message as the
 network-layer destination address, the Server's link-layer address as
 the source link-layer address, and the source link-layer address of
 the RS message as the destination link-layer address. The Server
 next sets the P flag in the RA message flags field [RFC5175] to 1 if
 the source link-layer address in the RS message was different than
 the address in the first SLLAO to indicate that there is a NAT or
 Proxy on the path; otherwise it sets P to 0. The Server then
 includes one or more RIOs that encode the ASPs for the AERO link.
 The Server also includes two MTU options - the first MTU option
 includes the MTU for the link and the second MTU option includes the
 MSU for the link (see Section 3.12). The Server finally sends the RA
 message to the Client.

 The Server next creates a static neighbor cache entry for the Client
 using the base AERO address as the network-layer address and with
 lifetime set to no more than the smallest PD lifetime. Next, the
 Server updates the neighbor cache entry link-layer address(es) by
 recording the information in each SLLAO option indexed by the
 Interface ID and including the UDP port number, IP address and P(i)
 values. For the first SLLAO in the list, however, the Server records
 the actual encapsulation source UDP and IP addresses instead of those
 that appear in the SLLAO in case there was a NAT or Proxy in the
 path.

https://datatracker.ietf.org/doc/html/rfc5175

Templin Expires April 8, 2019 [Page 33]

Internet-Draft AERO October 2018

 After the initial RS/RA exchange, the AERO Server maintains the
 neighbor cache entry for the Client until the PD lifetimes expire.
 If the Client issues additional RS messages with PD renewal
 parameters, the Server extends the PD lifetimes. If the Client
 issues an RS with PD release parameters, or if the Client does not
 issue a renewal before the lifetime expires, the Server deletes the
 neighbor cache entry for the Client and withdraws the IP routes from
 the AERO routing system. The Server processes these and any other
 Client PD messages, and returns an RA reply. The Server may also
 issue an unsolicited RA message with PD reconfigure parameters to
 inform the Client that it needs to renegotiate its PDs.

3.14.3.1. Lightweight DHCPv6 Relay Agent (LDRA)

 When DHCPv6 is used as the ND/PD service back end, AERO Clients and
 Servers are always on the same link (i.e., the AERO link) from the
 perspective of DHCPv6. However, in some implementations the DHCPv6
 server and ND function may be located in separate modules. In that
 case, the Server's AERO interface driver module can act as a
 Lightweight DHCPv6 Relay Agent (LDRA)[RFC6221] to relay PD messages
 to and from the DHCPv6 server module.

 When the LDRA receives an authentic RS message, it extracts the PD
 message parameters and uses them to fabricate an IPv6/UDP/DHCPv6
 message. It sets the IPv6 source address to the source address of
 the RS message, sets the IPv6 destination address to
 'All_DHCP_Relay_Agents_and_Servers' and sets the UDP fields to values
 that will be understood by the DHCPv6 server.

 The LDRA then wraps the message in a Relay-Forward message header and
 includes an Interface-ID option that includes enough information to
 allow the LDRA to forward the resulting Reply message back to the
 Client (e.g., the Client's link-layer addresses, a security
 association identifier, etc.). The LDRA also wraps the information
 in all of the SLLAO options from the RS message into the Interface-ID
 option, then forwards the message to the DHCPv6 server.

 When the DHCPv6 server prepares a Reply message, it wraps the message
 in a Relay-Reply message and echoes the Interface-ID option. The
 DHCPv6 server then delivers the Relay-Reply message to the LDRA,
 which discards the Relay-Reply wrapper and IPv6/UDP headers, then
 uses the DHCPv6 message to fabricate an RA response to the Client.
 The Server uses the information in the Interface ID option to prepare
 the RA message and to cache the link-layer addresses taken from the
 SLLAOs echoed in the Interface-ID option.

https://datatracker.ietf.org/doc/html/rfc6221

Templin Expires April 8, 2019 [Page 34]

Internet-Draft AERO October 2018

3.15. AERO Interface Route Optimization

 When a source Client forwards packets to a prospective correspondent
 Client within the same AERO link domain (i.e., one for which the
 packet's destination address is covered by an ASP), the source Client
 MAY initiate an AERO link route optimization procedure. The
 procedure is based on an exchange of IPv6 ND messages using a chain
 of AERO Servers and Relays as a trust basis.

 Although the Client is responsible for initiating route optimization,
 the Server is the policy enforcement point that determines whether
 route optimization is permitted. For example, on some AERO links
 route optimization would allow traffic to circumvent critical
 network-based traffic inspection points. In those cases, the Server
 can simply discard any route optimization messages instead of
 forwarding them.

 The following sections specify the AERO link route optimization
 procedure.

3.15.1. Reference Operational Scenario

 Figure 4 depicts the AERO link route optimization reference
 operational scenario, using IPv6 addressing as the example (while not
 shown, a corresponding example for IPv4 addressing can be easily
 constructed). The figure shows an AERO Relay ('R1'), two AERO
 Servers ('S1', 'S2'), two AERO Clients ('C1', 'C2') and two ordinary
 IPv6 hosts ('H1', 'H2'):

Templin Expires April 8, 2019 [Page 35]

Internet-Draft AERO October 2018

 +--------------+ +--------------+ +--------------+
 | Server S1 | | Relay R1 | | Server S2 |
 +--------------+ +--------------+ +--------------+
 fe80::2 fe80::1 fe80::3
 L2(S1) L2(R1) L2(S2)
 | | |
 X-----+-----+------------------+-----------------+----+----X
 | AERO Link |
 L2(C1) L2(C2)
 fe80::2001:db8:0:0 fe80::2001:db8:1:0
 +--------------+ +--------------+
 |AERO Client C1| |AERO Client C2|
 +--------------+ +--------------+
 2001:DB8:0::/48 2001:DB8:1::/48
 | |
 .-. .-.
 ,-(_)-. 2001:db8:0::1 2001:db8:1::1 ,-(_)-.
 .-(_ IP)-. +-------+ +-------+ .-(_ IP)-.
 (__ EUN)--|Host H1| |Host H2|--(__ EUN)
 `-(______)-' +-------+ +-------+ `-(______)-'

 Figure 4: AERO Reference Operational Scenario

 In Figure 4, Relay ('R1') assigns the administratively-provisioned
 link-local address fe80::1 to its AERO interface with link-layer
 address L2(R1), Server ('S1') assigns the address fe80::2 with link-
 layer address L2(S1), and Server ('S2') assigns the address fe80::3
 with link-layer address L2(S2). Servers ('S1') and ('S2') next
 arrange to add their link-layer addresses to a published list of
 valid Servers for the AERO link.

 AERO Client ('C1') receives the ACP 2001:db8:0::/48 in an ND/PD
 exchange via AERO Server ('S1') then assigns the address
 fe80::2001:db8:0:0 to its AERO interface with link-layer address
 L2(C1). Client ('C1') configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::2 and link-
 layer address L2(S1), then sub-delegates the ACP to its attached
 EUNs. IPv6 host ('H1') connects to the EUN, and configures the
 address 2001:db8:0::1.

 AERO Client ('C2') receives the ACP 2001:db8:1::/48 in an ND/PD
 exchange via AERO Server ('S2') then assigns the address
 fe80::2001:db8:1:0 to its AERO interface with link-layer address
 L2(C2). Client ('C2') configures a default route and neighbor cache
 entry via the AERO interface with next-hop address fe80::3 and link-
 layer address L2(S2), then sub-delegates the ACP to its attached
 EUNs. IPv6 host ('H2') connects to the EUN, and configures the
 address 2001:db8:1::1.

Templin Expires April 8, 2019 [Page 36]

Internet-Draft AERO October 2018

3.15.2. Concept of Operations

 Again, with reference to Figure 4, when source host ('H1') sends a
 packet to destination host ('H2'), the packet is first forwarded over
 the source host's attached EUN to Client ('C1'). Client ('C1') then
 forwards the packet via its AERO interface to Server ('S1') and also
 sends an NS message toward Client ('C2') via Server ('S1').

 Server ('S1') then forwards both the packet and the NS message out
 the same AERO interface toward Client ('C2') via Relay ('R1'). When
 Relay ('R1') receives the packet and NS message, it consults its
 forwarding table to discover Server ('S2') as the next hop toward
 Client ('C2'). Relay ('R1') then forwards both the packet and the NS
 message to Server ('S2'), which then forwards them to Client ('C2').

 After Client ('C2') receives the NS message, it process the message
 and creates or updates a dynamic neighbor cache entry for Client
 ('C1'), then sends the NA response to the link-layer address of
 Client ('C1').

 After Client ('C1') receives the NA message, it processes the message
 and creates or updates a dynamic neighbor cache entry for Client
 ('C2'). Thereafter, forwarding of packets from Client ('C1') to
 Client ('C2') without involving any intermediate nodes is enabled.
 The mechanisms that support this exchange are specified in the
 following sections.

3.15.3. Sending NS Messages

 When a Client forwards a packet with a source address from one of its
 ACPs toward a destination address covered by an ASP (i.e., toward
 another AERO Client connected to the same AERO link), the source
 Client MAY send an NS message forward toward the destination Client
 via the Server.

 In the reference operational scenario, when Client ('C1') forwards a
 packet toward Client ('C2'), it MAY also send an NS message forward
 toward Client ('C2'), subject to rate limiting (see Section 8.2 of
 [RFC4861]). Client ('C1') prepares the NS message as follows:

 o the link-layer source address is set to 'L2(C1)' (i.e., the link-
 layer address of Client ('C1')).

 o the link-layer destination address is set to 'L2(S1)' (i.e., the
 link-layer address of Server ('S1')).

 o the network-layer source address is set to fe80::2001:db8:0:0
 (i.e., the base AERO address of Client ('C1')).

https://datatracker.ietf.org/doc/html/rfc4861#section-8.2
https://datatracker.ietf.org/doc/html/rfc4861#section-8.2

Templin Expires April 8, 2019 [Page 37]

Internet-Draft AERO October 2018

 o the network-layer destination address is set to the AERO address
 corresponding to the destination address of Client ('C2').

 o the Type is set to 135.

 o the Target Address is set to the destination address of the packet
 that triggered route optimization.

 o the message includes SLLAOs set to appropriate values for the
 Client ('C1')'s underlying interfaces The first SLLAO serves as
 the "Report-To" address for the Client, which is the address to
 which the target will announce mobility events and/or other
 dynamic updates.

 o the message includes one or more RIOs that include Client ('C1')'s
 ACPs [I-D.templin-6man-rio-redirect].

 o the message SHOULD include a Timestamp option and a Nonce option.

 Note that the act of sending NS messages is cited as "MAY", since
 Client ('C1') may have advanced knowledge that the direct path to
 Client ('C2') would be unusable or otherwise undesirable. If the
 direct path later becomes unusable after the initial route
 optimization, Client ('C1') simply allows packets to again flow
 through Server ('S1').

3.15.4. Re-encapsulating and Relaying the NS

 When Server ('S1') receives an NS message from Client ('C1'), it
 first verifies that the SLLAOs in the NS are a proper subset of the
 link-layer addresses in Client ('C1')'s neighbor cache entry. If the
 Client's SLLAOs are not acceptable, Server ('S1') discards the
 message.

 Server ('S1') then examines the network-layer destination address of
 the NS to determine the next hop toward Client ('C2') by searching
 for the AERO address in the neighbor cache. Since Client ('C2') is
 not one of its neighbors, Server ('S1') then inserts an additional
 layer of encapsulation between the outer IP header and the NS message
 proper. This mid-layer IP header uses the AERO Server Subnet Router
 Anycast address as the source address and the Subnet Router Anycast
 address corresponding to Client ("C2")'s AERO address as the
 destination address (in this case, C2's Subnet Router Anycast address
 is 2001:db8:1:0::). The Server then forwards this double-
 encapsulated NS message to Relay ('R1') by changing the link-layer
 source address of the message to 'L2(S1)' and changing the link-layer
 destination address to 'L2(R1)'. Server ('S1') finally forwards the

Templin Expires April 8, 2019 [Page 38]

Internet-Draft AERO October 2018

 message to Relay ('R1') without decrementing the network-layer TTL/
 Hop Limit field.

 When Relay ('R1') receives the double-encapsulated NS message from
 Server ('S1') it discards the outer IP header and determines that
 Server ('S2') is the next hop toward Client ('C2') by consulting its
 standard IP forwarding table for the Client Subnet Router Anycast
 destination address. Relay ('R1') then encapsulates and forwards the
 message to Server ('S2') the same as for any IP router.

 When Server ('S2') receives the double-encapsulated NS message from
 Relay ('R1') it removes the mid-layer IP header and determines that
 Client ('C2') is a neighbor on a native underlying interface by
 consulting its neighbor cache for Client ('C2')'s AERO address.
 Server ('S2') then re-encapsulates the NS while changing the link-
 layer source address to 'L2(S2)' and changing the link-layer
 destination address to 'L2(C2)'. Server ('S2') then forwards the
 message to Client ('C2').

3.15.5. Processing NSs and Sending NAs

 When Client ('C2') receives the NS message, it accepts the NS only if
 the message has a link-layer source address of one of its Servers
 (e.g., L2(S2)). Client ('C2') further accepts the message only if it
 is willing to serve as a route optimization target.

 In the reference operational scenario, when Client ('C2') receives a
 valid NS message, it either creates or updates a dynamic neighbor
 cache entry that stores the source address of the message as the
 network-layer address of Client ('C1') and stores the link-layer
 addresses found in the SLLAOs as the link-layer addresses of Client
 ('C1'). Client ('C2') then sets ReportTime for the neighbor cache
 entry to REPORT_TIME.

 After processing the message, Client ('C2') prepares an NA message
 response as follows:

 o the link-layer source address is set to 'L2(C2)' (i.e., the link-
 layer address of Client ('C2')).

 o the link-layer destination address is set to 'L2(C1)' (i.e., the
 link-layer address of Client ('C1')).

 o the network-layer source address is set to fe80::2001:db8:1:0
 (i.e., the base AERO address of Client ('C2')).

 o the network-layer destination address is set to fe80::2001:db8:0:0
 (i.e., the base AERO address of Client ('C1')).

Templin Expires April 8, 2019 [Page 39]

Internet-Draft AERO October 2018

 o the Type is set to 136.

 o The Target Address is set to the Target Address field in the NS
 message.

 o the message includes one or more TLLAOs set to appropriate values
 for Client ('C2')'s native underlying interfaces.

 o the message includes one or more RIOs that include Client ('C2')'s
 ACPs [I-D.templin-6man-rio-redirect].

 o the message SHOULD include a Timestamp option and MUST echo the
 Nonce option received in the NS (i.e., if a Nonce option was
 present).

 Client ('C2') then sends the NA message to Client ('C1').

3.15.6. Processing NAs

 When Client ('C1') receives the NA message, it first verifies that
 the NA matches the original NS message. Client ('C1') then processes
 the message as follows.

 In the reference operational scenario, when Client ('C1') receives
 the NA message, it either creates or updates a dynamic neighbor cache
 entry that stores the source address of the message as the network-
 layer address of Client ('C2'), stores the link-layer addresses found
 in the TLLAOs as the link-layer addresses of Client ('C2') and stores
 the ACPs encoded in the RIOs of the NA as the ACPs for Client ('C2').
 Client ('C1') then sets ForwardTime for the neighbor cache entry to
 FORWARD_TIME.

 Now, Client ('C1') has a neighbor cache entry with a valid
 ForwardTime value, while Client ('C2') has a neighbor cache entry
 with a valid ReportTime value. Thereafter, Client ('C1') may forward
 ordinary network-layer data packets directly to Client ('C2') without
 involving any intermediate nodes, and Client ('C2') can dynamically
 report any changes in link-layer information by sending unsolicited
 NA messages. (In order for Client ('C2') to forward packets to
 Client ('C1'), a corresponding NS/NA message exchange is required in
 the reverse direction; hence, the mechanism is asymmetric.)

3.15.7. Server-Based Route Optimization

 The source Client itself may initiate route optimization if the
 Client has only native interfaces. If the source Client has Direct,
 NATed, Proxyed or VPNed interfaces, route optimization must instead
 be initiated by the source Server. The source Server MUST include an

Templin Expires April 8, 2019 [Page 40]

Internet-Draft AERO October 2018

 SLLAO with a "Report-To" address in the route optimization NS
 messages it sends. The "Report-To" address must be one of the source
 Server's globally routable IP addresses.

 In the same way, the target Client may serve as a route optimization
 target if it has only native interfaces. If some or all of the
 target Client's underlying interfaces are Direct, NATed, Proxyed or
 VPNed the target Server must instead serve as the route optimization
 target. In that case, when the source Server sends an NS message the
 target Server prepares an NA response the same as if it were the
 target Client (see: Section 3.15.5).

 When the target Server sends an NA response to a route optimization
 NS, it includes a Timestamp option, any necessary security options,
 and TLLAOs corresponding to the target Client's underlying
 interfaces. The target Server writes the link-layer address of the
 Client in TLLAOs corresponding to native underlying interfaces,
 writes the link-layer address of the Proxy in TLLAOs corresponding to
 Proxyed underlying interfaces and writes its own link-layer address
 in TLLAOs corresponding to other interfaces. The Interface ID and
 QoS Preference values in the TLLAOs are those supplied by the target
 Client during ND exchanges with the target Server. The target Server
 then establishes a dynamic neighbor cache entry for the source with
 ReportTime set to REPORT_TIME seconds and with a "Report-To" address
 set to the address of the source.

 When the source Server receives the NA response, it creates or
 updates a dynamic neighbor cache entry for the target with
 ForwardTime set to FORWARD_TIME seconds and with the information
 provided in the TLLAOs as the link-layer addresses and preference
 values for the Client. The source Server then translates the
 solicited NA message into an unsolicited NA message by changing the
 source address to its own link-local address, changing the
 destination address to all-nodes multicast, recalculating checksums
 and any security options, and including the Timestamp option as it
 appeared in the original solicited NA. The source Server then
 retains this message for subsequent transmission to any source
 neighbors that send packets to the target within the current
 ForwardTime window.

 While ForwardTime is greater than 0, the source Server sends
 unsolicited NA messages (subject to rate limiting) in response to
 data packets from source Clients or Proxies that are destined to the
 target Client. The unsolicited NA messages update source Client and
 Proxy dynamic neighbor cache entries with ForwardTime set to
 FORWARD_TIME minus the difference between the current time and the NA
 Timestamp. Subsequent packets from the source destined to the target

Templin Expires April 8, 2019 [Page 41]

Internet-Draft AERO October 2018

 Client then travel via the route-optimized path instead of through
 the dogleg path through Servers and Relays.

 Following route optimization, when the target Client (or Proxy) sends
 unsolicited NA messages to the target Server to update link-layer
 addresses and/or QoS preferences, the target Server translates the
 messages the same as described above and repeats them to any of its
 neighbors with non-zero ReportTime. The source Server in turn
 translates the messages and repeats them to any of their source
 Clients or Proxys to which they recently sent NAs.

 If the target Client moves to a new Server, the old Server sends
 immediate unsolicited NA messages with no TLLAOs to any of its
 dynamic neighbors with non-zero ReportTime, and retains the dynamic
 neighbor cache entry until ReportTime expires. While ReportTime is
 non-zero, the old Server sends unsolicited NA messages with no TLLAOs
 (subject to rate limiting) back to the source in response to data
 packets received from a correspondent node while forwarding the
 packets themselves to a Relay. The Relay will then either forward
 the packets to the new Server if the target Client has moved, or drop
 the packets if the target Client is no longer in the network. When
 the source receives the unsolicited NAs with no TLLAOs, it allows
 future packets destined to the target Client to again flow through
 its own Server (or Relay).

3.16. Neighbor Unreachability Detection (NUD)

 AERO nodes perform Neighbor Unreachability Detection (NUD) by sending
 NS messages to elicit solicited NA messages from neighbors the same
 as described in [RFC4861]. NUD is performed either reactively in
 response to persistent link-layer errors (see Section 3.13) or
 proactively to update neighbor cache entry timers and/or link-layer
 address information. (NS messages may include SLLAOs and NA messages
 may include TLLAOs in order to update link-layer address
 information.)

 When an AERO node sends an NS/NA message, it uses one of its link-
 local addresses as the IPv6 source address and a link-local address
 of the neighbor as the IPv6 destination address. When route
 optimization directs a source AERO node to a target AERO node, the
 source node SHOULD proactively test the direct path by sending an
 initial NS message to elicit a solicited NA response. While testing
 the path, the source node can optionally continue sending packets via
 its default router, maintain a small queue of packets until target
 reachability is confirmed, or (optimistically) allow packets to flow
 directly to the target.

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires April 8, 2019 [Page 42]

Internet-Draft AERO October 2018

 While data packets are still flowing, the source node thereafter
 periodically tests the direct path to the target node (see

Section 7.3 of [RFC4861]) in order to keep dynamic neighbor cache
 entries alive. When the target node receives a valid NS message, it
 resets ReportTime to REPORT_TIME and updates its cached link-layer
 addresses (if necessary). When the source node receives a
 corresponding NA message, it resets ForwardTime to FORWARD_TIME and
 updates its cached link-layer addresses (if necessary). If the
 source node is unable to elicit an NA response from the target node
 after MaxRetry attempts, it SHOULD set ForwardTime to 0. Otherwise,
 the source node considers the path usable and SHOULD thereafter
 process any link-layer errors as an indication that the direct path
 to the target node may be failing.

 When ForwardTime for a dynamic neighbor cache entry expires, the
 source node resumes sending any subsequent packets via a Server (or
 Relay) and may (eventually) attempt to re-initiate the AERO route
 optimization process. When ReportTime for a dynamic neighbor cache
 entry expires, the target node ceases to send dynamic mobility and
 QoS updates to the source node. When both ForwardTime and ReportTime
 for a dynamic neighbor cache entry expire, the node deletes the
 neighbor cache entry.

 Note that an AERO node may have multiple underlying interface paths
 toward the target neighbor. In that case, the node SHOULD perform
 NUD over each underlying interface and only consider the neighbor
 unreachable if NUD fails over multiple underlying interface paths.

3.17. Mobility Management and Quality of Service (QoS)

 AERO is an example of a Distributed Mobility Management (DMM)
 service. Each AERO Server is responsible for only a subset of the
 Clients on the AERO link, as opposed to a Centralized Mobility
 Management (CMM) service where there is a single network mobility
 service for all Clients. AERO Clients coordinate with their regional
 Servers via RS/RA exchanges to maintain the DMM profile, and the AERO
 routing system tracks the current AERO Client/Server peering
 relationships.

 AERO interfaces accommodate mobility management by sending
 unsolicited NA messages the same as for announcing link-layer address
 changes for any interface that implements IPv6 ND [RFC4861]. (In
 environments where reliability is a concern, AERO interfaces can send
 immediate NS messages to receive solicited NA messages, i.e., they
 can skip the unreliable unsolicited NA messaging step and move
 directly to a reliable NS/NA exchange. This comes at a penalty of at
 least one round trip.)

https://datatracker.ietf.org/doc/html/rfc4861#section-7.3
https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires April 8, 2019 [Page 43]

Internet-Draft AERO October 2018

 When a node sends an unsolicited NA message, it sets the IPv6 source
 to its own link-local address, sets the IPv6 destination address to
 all-nodes multicast, sets the link-layer source address to its own
 address and sets the link-layer destination address to either a
 multicast address or the unicast link-layer address of a neighbor.
 If the unsolicited NA message must be received by multiple neighbors,
 the node sends multiple copies of the NA using a different unicast
 link-layer destination address for each neighbor. Mobility
 management considerations are specified in the following sections.

3.17.1. Forwarding Packets on Behalf of Departed Clients

 When a Server receives packets with destination addresses that do not
 match one of its static neighbor cache Clients, it forwards the
 packets to a Relay and also returns an unsolicited NA message to the
 sender with no TLLAOs. The packets will be delivered to the target
 Client's new location, and the sender will realize that it needs to
 delete its routing information that associated the target with this
 Server.

3.17.2. Announcing Link-Layer Address and QoS Preference Changes

 When a Client needs to change its link-layer addresses, e.g., due to
 a mobility event, it sends unsolicited NAs to its neighbors using the
 new link-layer address as the source address and with TLLAOs that
 include the new Client UDP Port Number, IP Address and P(i) values.
 (For neighbors that are Servers, the Client can instead initiate an
 RS/RA exchange.) If the Client sends the NA solely for the purpose
 of updating QoS preferences without updating the link-layer address,
 the Client sets the UDP Port Number and IP Address to 0.

 The Client MAY send up to MaxRetry unsolicited NA messages in
 parallel with sending actual data packets in case one or more NAs are
 lost. If all NAs are lost, the neighbor will eventually invoke NUD
 by sending NS messages that include SLLAOs.

3.17.3. Bringing New Links Into Service

 When a Client needs to bring new underlying interfaces into service
 (e.g., when it activates a new data link), it sends unsolicited NAs
 to its neighbors using the new link-layer address as the source
 address and with TLLAOs that include the new Client link-layer
 information. (For neighbors that are Servers, the Client can instead
 initiate an RS/RA exchange.)

Templin Expires April 8, 2019 [Page 44]

Internet-Draft AERO October 2018

3.17.4. Removing Existing Links from Service

 When a Client needs to remove existing underlying interfaces from
 service (e.g., when it de-activates an existing data link), it sends
 unsolicited NAs to its neighbors with TLLAOs with all P(i) values set
 to 0. (For neighbors that are Servers, the Client can instead
 initiate an RS/RA exchange.)

 If the Client needs to send ND messages over an underlying interface
 other than the one being removed from service, it MUST include a
 current TLLAO for the sending interface as the first TLLAO and
 include TLLAOs for any underlying interface being removed from
 service as additional TLLAOs.

3.17.5. Implicit Mobility Management

 AERO interface neighbors MAY provide a configuration option that
 allows them to perform implicit mobility management in which no ND
 messaging is used. In that case, the Client only transmits packets
 over a single interface at a time, and the neighbor always observes
 packets arriving from the Client from the same link-layer source
 address.

 If the Client's underlying interface address changes (either due to a
 readdressing of the original interface or switching to a new
 interface) the neighbor immediately updates the neighbor cache entry
 for the Client and begins accepting and sending packets to the
 Client's new link-layer address. This implicit mobility method
 applies to use cases such as cellphones with both WiFi and Cellular
 interfaces where only one of the interfaces is active at a given
 time, and the Client automatically switches over to the backup
 interface if the primary interface fails.

3.17.6. Moving to a New Server

 When a Client associates with a new Server, it performs the Client
 procedures specified in Section 3.14.2. The Client then sends RS
 messages with PD release parameters to the old Server to release
 itself from that Server's domain. If the Client does not receive an
 RA reply after MaxRetry attempts, the old Server may have failed and
 the Client should discontinue its release attempts.

 Clients SHOULD NOT move rapidly between Servers in order to avoid
 causing excessive oscillations in the AERO routing system. Such
 oscillations could result in intermittent reachability for the Client
 itself, while causing no harm to the network. Examples of when a
 Client might wish to change to a different Server include a Server

Templin Expires April 8, 2019 [Page 45]

Internet-Draft AERO October 2018

 that has gone unreachable, topological movements of significant
 distance, etc.

3.18. Multicast Considerations

 When the underlying network does not support multicast, AERO Clients
 map link-scoped multicast addresses to the link-layer address of a
 Server, which acts as a multicast forwarding agent. The AERO Client
 also serves as an IGMP/MLD Proxy for its EUNs and/or hosted
 applications per [RFC4605] while using the link-layer address of the
 Server as the link-layer address for all multicast packets.

 When the underlying network supports multicast, AERO nodes use the
 multicast address mapping specification found in [RFC2529] for IPv4
 underlying networks and use a TBD site-scoped multicast mapping for
 IPv6 underlying networks. In that case, border routers must ensure
 that the encapsulated site-scoped multicast packets do not leak
 outside of the site spanned by the AERO link.

4. The AERO Proxy

 In some environments, AERO Clients may be located in secured
 subnetwork enclaves (e.g., corporate enterprise networks, radio
 access networks, cellular service provider networks, etc.) that do
 not allow direct communications from the Client to a Server in the
 outside Internetwork. In that case, the secured enclave can employ
 an AERO Proxy.

 The AERO Proxy is located at the secured enclave perimeter and
 listens for RS messages originating from or RA messages destined to
 AERO Clients located within the enclave. The Proxy acts on these
 control messages as follows:

 o when the Proxy receives an RS message from a Client within the
 secured enclave, it first authenticates the message then creates a
 proxy neighbor cache entry for the Client in the INCOMPLETE State
 and caches the Client and Server link-layer address along with any
 identifying information including Transaction IDs, Client
 Identifiers, Nonce values, etc. The Proxy then creates a new RS
 message using its own link-local address as the source and with an
 RIO that includes the Client's ACP. The Proxy then forwards the
 message to the Server indicated by the destination link-layer
 address in the original RS while using its own external address as
 the source link-layer address.

 o when the Server receives the RS message, it authenticates the
 message then creates a static neighbor cache entry for the Client

https://datatracker.ietf.org/doc/html/rfc4605
https://datatracker.ietf.org/doc/html/rfc2529

Templin Expires April 8, 2019 [Page 46]

Internet-Draft AERO October 2018

 with the Proxy's address as the link-layer address. The Server
 then sends an RA message back to the Proxy.

 o when the Proxy receives the RA message, it matches the message
 with the RS that created the (INCOMPLETE) proxy neighbor cache
 entry. The Proxy then caches the route information in the message
 as a mapping from the Client's ACPs to the Client's address within
 the secured enclave, and sets the neighbor cache entry state to
 REACHABLE. The Proxy then creates a new RA message using the
 cached Client information and forwards it to the Client.

 After the initial RS/RA handshake, the Proxy forwards data packets
 between the Client and Server with the Server acting as the Client's
 default router. The Proxy can send ND messages to the Client's
 Server(s) to update Server neighbor cache entries on behalf of the
 Client. (For example, the Proxy can send unsolicited NA messages
 with a TLLAO with UDP Port Number and IP Address set to 0 and with
 valid P(i) values to update the Server(s) with the Client's new QoS
 preferences for that link). The Proxy also forwards any control and
 data messages originating from the Client to the Client's primary
 Server.

 At some time after data packets have been flowing from the Client to
 the Server, the Proxy may receive unsolicited NA messages from the
 Server with TLLAOs corresponding to a target Client. The Proxy
 establishes a dynamic neighbor cache entry for the target with
 ForwardTime set to FORWARD_TIME and allows future data packets
 destined to the target to flow directly according to the link-layer
 address information instead of through the Server. The Proxy may at
 some later point receive additional NA messages with TLLAOs, and if
 so resets ForwardTime and updates its cached link-layer address
 information. If the Proxy receives no further NA messages, or if it
 receives NA messages with no TLLAOs, it deletes the dynamic neighbor
 cache entry.

 In some subnetworks that employ a Proxy, the Client's ACP can be
 injected into the underlying network routing system. In that case,
 the Client can send data messages without encapsulation so that the
 native underlying network routing system transports the
 unencapsulated packets to the Proxy. This can be very beneficial,
 e.g., if the Client connects to the network via low-end data links
 such as some aviation wireless links. In that case, however, the
 Client's control message are still sent encapsulated so as to supply
 the Proxy with the address of the Server and to transport IPv6 ND
 messages without decrementing the hop-count. In summary, the
 interface becomes one where control messages are encapsulated while
 data messages are either unencapsulated or encapsulated according to
 the specific use case. This encapsulation avoidance can be seen as a

Templin Expires April 8, 2019 [Page 47]

Internet-Draft AERO October 2018

 form of "header compression", meaning that the MTU should be sized
 based on the size of full encapsulated messages even if most messages
 are sent unencapsulated.

5. Direct Underlying Interfaces

 When a Client's AERO interface is configured over a Direct underlying
 interface, the neighbor at the other end of the Direct link can
 receive packets without any encapsulation. In that case, the Client
 sends packets over the Direct link according to the QoS preferences
 associated with its underling interfaces. If the Direct underlying
 interface has the highest QoS preference, then the Client's IP
 packets are transmitted directly to the peer without going through an
 underlying network. If other underlying interfaces have higher QoS
 preferences, then the Client's IP packets are transmitted via a
 different underlying interface, which may result in the inclusion of
 AERO Proxies, Servers and Relays in the communications path. Direct
 underlying interfaces must be tested periodically for reachability,
 e.g., via NUD, via periodic unsolicited NAs, etc.

6. Operation on AERO Links with /64 ASPs

 IPv6 AERO links typically have ASPs that cover many candidate ACPs of
 length /64 or shorter. However, in some cases it may be desirable to
 use AERO over links that have only a /64 ASP. This can be
 accommodated by treating all Clients on the AERO link as simple hosts
 that receive /128 prefix delegations.

 In that case, the Client sends an RS message to the Server the same
 as for ordinary AERO links. The Server responds with an RA message
 that includes one or more /128 prefixes (i.e., singleton addresses)
 that include the /64 ASP prefix along with an interface identifier
 portion to be assigned to the Client. The Client and Server then
 configure their AERO addresses based on the interface identifier
 portions of the /128s (i.e., the lower 64 bits) and not based on the
 /64 prefix (i.e., the upper 64 bits).

 For example, if the ASP for the host-only IPv6 AERO link is
 2001:db8:1000:2000::/64, each Client will receive one or more /128
 IPv6 prefix delegations such as 2001:db8:1000:2000::1/128,
 2001:db8:1000:2000::2/128, etc. When the Client receives the prefix
 delegations, it assigns the AERO addresses fe80::1, fe80::2, etc. to
 the AERO interface, and assigns the global IPv6 addresses (i.e., the
 /128s) to either the AERO interface or an internal virtual interface
 such as a loopback. In this arrangement, the Client conducts route
 optimization in the same sense as discussed in Section 3.15.

Templin Expires April 8, 2019 [Page 48]

Internet-Draft AERO October 2018

 This specification has applicability for nodes that act as a Client
 on an "upstream" AERO link, but also act as a Server on "downstream"
 AERO links. More specifically, if the node acts as a Client to
 receive a /64 prefix from the upstream AERO link it can then act as a
 Server to provision /128s to Clients on downstream AERO links.

7. Implementation Status

 An AERO implementation based on OpenVPN (https://openvpn.net/) was
 announced on the v6ops mailing list on January 10, 2018. The latest
 version is available at: http://linkupnetworks.net/aero/AERO-OpenVPN-

1.2.tgz.

 An initial public release of the AERO proof-of-concept source code
 was announced on the intarea mailing list on August 21, 2015. The
 latest version is available at: http://linkupnetworks.net/aero/aero-

4.0.0.tgz.

8. IANA Considerations

 The IANA has assigned a 4-octet Private Enterprise Number "45282" for
 AERO in the "enterprise-numbers" registry.

 The IANA has assigned the UDP port number "8060" for an earlier
 experimental version of AERO [RFC6706]. This document obsoletes
 [RFC6706] and claims the UDP port number "8060" for all future use.

 No further IANA actions are required.

9. Security Considerations

 AERO link security considerations are the same as for standard IPv6
 Neighbor Discovery [RFC4861] except that AERO improves on some
 aspects. In particular, AERO uses a trust basis between Clients and
 Servers, where the Clients only engage in the AERO mechanism when it
 is facilitated by a trusted Server.

 NS and NA messages SHOULD include a Timestamp option (see Section 5.3
 of [RFC3971]) that other AERO nodes can use to verify the message
 time of origin. NS and RS messages SHOULD include a Nonce option
 (see Section 5.3 of [RFC3971]) that recipients echo back in
 corresponding NA and RA responses.

 In cases where spoofing cannot be mitigated through other means, AERO
 IPv6 ND messages should employ SEcure Neighbor Discovery (SEND)
 [RFC3971], which also protects the PD information embedded in RS/RA
 message options. In order to apply SEND, AERO nodes use

https://openvpn.net/
http://linkupnetworks.net/aero/AERO-OpenVPN-1.2.tgz
http://linkupnetworks.net/aero/AERO-OpenVPN-1.2.tgz
http://linkupnetworks.net/aero/aero-4.0.0.tgz
http://linkupnetworks.net/aero/aero-4.0.0.tgz
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971#section-5.3
https://datatracker.ietf.org/doc/html/rfc3971

Templin Expires April 8, 2019 [Page 49]

Internet-Draft AERO October 2018

 Cryptographically Generated Addresses (CGAs) [RFC3972] as the source
 addresses of secured ND messages.

 AERO links must be protected against link-layer address spoofing
 attacks in which an attacker on the link pretends to be a trusted
 neighbor. Links that provide link-layer securing mechanisms (e.g.,
 IEEE 802.1X WLANs) and links that provide physical security (e.g.,
 enterprise network wired LANs) provide a first line of defense,
 however AERO nodes SHOULD also use securing services such as SEND for
 authentication and network admission control.

 AERO Clients MUST ensure that their connectivity is not used by
 unauthorized nodes on their EUNs to gain access to a protected
 network, i.e., AERO Clients that act as routers MUST NOT provide
 routing services for unauthorized nodes. (This concern is no
 different than for ordinary hosts that receive an IP address
 delegation but then "share" the address with other nodes via some
 form of Internet connection sharing such as tethering.)

 AERO Clients, Servers and Relays on the open Internet are susceptible
 to the same attack profiles as for any Internet nodes. For this
 reason, IP security SHOULD be used when AERO is employed over
 unmanaged/unsecured links using securing mechanisms such as IPsec
 [RFC4301], IKE [RFC5996] and/or TLS [RFC5246]. In some environments,
 however, the use of application-layer security from Clients to
 correspondent nodes (i.e., other Clients and/or Internet nodes) could
 obviate the need for IP security between AERO Clients, Servers and
 Relays.

 AERO Servers and Relays present targets for traffic amplification DoS
 attacks. This concern is no different than for widely-deployed VPN
 security gateways in the Internet, where attackers could send spoofed
 packets to the gateways at high data rates. This can be mitigated by
 connecting Relays and Servers over dedicated links with no
 connections to the Internet and/or when connections to the Internet
 are only permitted through well-managed firewalls.

 Traffic amplification DoS attacks can also target an AERO Client's
 low data rate links. This is a concern not only for Clients located
 on the open Internet but also for Clients in secured enclaves. AERO
 Servers can institute rate limits that protect Clients from receiving
 packet floods that could DoS low data rate links.

 AERO Relays and Servers MUST discard packets with AERO Server Subnet
 Router Anycast as the source address originating from any node other
 than a permanent neighbor. This is to avoid a message injection
 spoofing attack from an off-link attacker.

https://datatracker.ietf.org/doc/html/rfc3972
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc5246

Templin Expires April 8, 2019 [Page 50]

Internet-Draft AERO October 2018

 Security considerations for accepting link-layer ICMP messages and
 reflected packets are discussed throughout the document.

10. Acknowledgements

 Discussions in the IETF, aviation standards communities and private
 exchanges helped shape some of the concepts in this work.
 Individuals who contributed insights include Mikael Abrahamsson, Mark
 Andrews, Fred Baker, Bob Braden, Stewart Bryant, Brian Carpenter,
 Wojciech Dec, Ralph Droms, Adrian Farrel, Nick Green, Sri Gundavelli,
 Brian Haberman, Bernhard Haindl, Joel Halpern, Tom Herbert, Sascha
 Hlusiak, Lee Howard, Andre Kostur, Ted Lemon, Andy Malis, Satoru
 Matsushima, Tomek Mrugalski, Alexandru Petrescu, Behcet Saikaya,
 Michal Skorepa, Joe Touch, Bernie Volz, Ryuji Wakikawa, Tony Whyman,
 Lloyd Wood and James Woodyatt. Members of the IESG also provided
 valuable input during their review process that greatly improved the
 document. Special thanks go to Stewart Bryant, Joel Halpern and
 Brian Haberman for their shepherding guidance during the publication
 of the AERO first edition.

 This work has further been encouraged and supported by Boeing
 colleagues including Kyle Bae, M. Wayne Benson, Dave Bernhardt, Cam
 Brodie, Balaguruna Chidambaram, Irene Chin, Bruce Cornish, Claudiu
 Danilov, Wen Fang, Anthony Gregory, Jeff Holland, Ed King, Gene
 MacLean III, Rob Muszkiewicz, Sean O'Sullivan, Kent Shuey, Brian
 Skeen, Mike Slane, Carrie Spiker, Brendan Williams, Julie Wulff,
 Yueli Yang, Eric Yeh and other members of the BR&T and BIT mobile
 networking teams. Kyle Bae, Wayne Benson and Eric Yeh are especially
 acknowledged for implementing the AERO functions as extensions to the
 public domain OpenVPN distribution.

 Earlier works on NBMA tunneling approaches are found in
 [RFC2529][RFC5214][RFC5569].

 Many of the constructs presented in this second edition of AERO are
 based on the author's earlier works, including:

 o The Internet Routing Overlay Network (IRON)
 [RFC6179][I-D.templin-ironbis]

 o Virtual Enterprise Traversal (VET)
 [RFC5558][I-D.templin-intarea-vet]

 o The Subnetwork Encapsulation and Adaptation Layer (SEAL)
 [RFC5320][I-D.templin-intarea-seal]

 o AERO, First Edition [RFC6706]

https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc5569
https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc6706

Templin Expires April 8, 2019 [Page 51]

Internet-Draft AERO October 2018

 Note that these works cite numerous earlier efforts that are not also
 cited here due to space limitations. The authors of those earlier
 works are acknowledged for their insights.

 This work is aligned with the NASA Safe Autonomous Systems Operation
 (SASO) program under NASA contract number NNA16BD84C.

 This work is aligned with the FAA as per the SE2025 contract number
 DTFAWA-15-D-00030.

 This work is aligned with the Boeing Information Technology (BIT)
 MobileNet program.

 This work is aligned with the Boeing Research and Technology (BR&T)
 autonomous systems networking program.

11. References

11.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, DOI 10.17487/RFC0792, September 1981,

 <https://www.rfc-editor.org/info/rfc792>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <https://www.rfc-editor.org/info/rfc3315>.

https://datatracker.ietf.org/doc/html/rfc768
https://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc791
https://www.rfc-editor.org/info/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://www.rfc-editor.org/info/rfc792
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2474
https://www.rfc-editor.org/info/rfc2474
https://datatracker.ietf.org/doc/html/rfc3315
https://www.rfc-editor.org/info/rfc3315

Templin Expires April 8, 2019 [Page 52]

Internet-Draft AERO October 2018

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 DOI 10.17487/RFC3633, December 2003,
 <https://www.rfc-editor.org/info/rfc3633>.

 [RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971,
 DOI 10.17487/RFC3971, March 2005,
 <https://www.rfc-editor.org/info/rfc3971>.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, DOI 10.17487/RFC3972, March 2005,

 <https://www.rfc-editor.org/info/rfc3972>.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,
 November 2005, <https://www.rfc-editor.org/info/rfc4191>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/info/rfc4193>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <https://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC5175] Haberman, B., Ed. and R. Hinden, "IPv6 Router
 Advertisement Flags Option", RFC 5175,
 DOI 10.17487/RFC5175, March 2008,
 <https://www.rfc-editor.org/info/rfc5175>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

11.2. Informative References

 [BGP] Huston, G., "BGP in 2015, http://potaroo.net", January
 2016.

https://datatracker.ietf.org/doc/html/rfc3633
https://www.rfc-editor.org/info/rfc3633
https://datatracker.ietf.org/doc/html/rfc3971
https://www.rfc-editor.org/info/rfc3971
https://datatracker.ietf.org/doc/html/rfc3972
https://www.rfc-editor.org/info/rfc3972
https://datatracker.ietf.org/doc/html/rfc4191
https://www.rfc-editor.org/info/rfc4191
https://datatracker.ietf.org/doc/html/rfc4193
https://www.rfc-editor.org/info/rfc4193
https://datatracker.ietf.org/doc/html/rfc4861
https://www.rfc-editor.org/info/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://datatracker.ietf.org/doc/html/rfc5175
https://www.rfc-editor.org/info/rfc5175
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200
http://potaroo

Templin Expires April 8, 2019 [Page 53]

Internet-Draft AERO October 2018

 [I-D.ietf-intarea-gue]
 Herbert, T., Yong, L., and O. Zia, "Generic UDP
 Encapsulation", draft-ietf-intarea-gue-06 (work in
 progress), August 2018.

 [I-D.ietf-intarea-gue-extensions]
 Herbert, T., Yong, L., and F. Templin, "Extensions for
 Generic UDP Encapsulation", draft-ietf-intarea-gue-

extensions-05 (work in progress), August 2018.

 [I-D.ietf-intarea-tunnels]
 Touch, J. and M. Townsley, "IP Tunnels in the Internet
 Architecture", draft-ietf-intarea-tunnels-09 (work in
 progress), July 2018.

 [I-D.templin-6man-dhcpv6-ndopt]
 Templin, F., "A Unified Stateful/Stateless
 Autoconfiguration Service for IPv6", draft-templin-6man-

dhcpv6-ndopt-06 (work in progress), September 2018.

 [I-D.templin-6man-rio-redirect]
 Templin, F. and j. woodyatt, "Route Information Options in
 IPv6 Neighbor Discovery", draft-templin-6man-rio-

redirect-06 (work in progress), May 2018.

 [I-D.templin-atn-bgp]
 Templin, F., Saccone, G., Dawra, G., Lindem, A., and V.
 Moreno, "A Simple BGP-based Mobile Routing System for the
 Aeronautical Telecommunications Network", draft-templin-

atn-bgp-08 (work in progress), August 2018.

 [I-D.templin-intarea-grefrag]
 Templin, F., "GRE Tunnel Level Fragmentation", draft-

templin-intarea-grefrag-04 (work in progress), July 2016.

 [I-D.templin-intarea-seal]
 Templin, F., "The Subnetwork Encapsulation and Adaptation
 Layer (SEAL)", draft-templin-intarea-seal-68 (work in
 progress), January 2014.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)", draft-

templin-intarea-vet-40 (work in progress), May 2013.

 [I-D.templin-ironbis]
 Templin, F., "The Interior Routing Overlay Network
 (IRON)", draft-templin-ironbis-16 (work in progress),
 March 2014.

https://datatracker.ietf.org/doc/html/draft-ietf-intarea-gue-06
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-gue-extensions-05
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-gue-extensions-05
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-tunnels-09
https://datatracker.ietf.org/doc/html/draft-templin-6man-dhcpv6-ndopt-06
https://datatracker.ietf.org/doc/html/draft-templin-6man-dhcpv6-ndopt-06
https://datatracker.ietf.org/doc/html/draft-templin-6man-rio-redirect-06
https://datatracker.ietf.org/doc/html/draft-templin-6man-rio-redirect-06
https://datatracker.ietf.org/doc/html/draft-templin-atn-bgp-08
https://datatracker.ietf.org/doc/html/draft-templin-atn-bgp-08
https://datatracker.ietf.org/doc/html/draft-templin-intarea-grefrag-04
https://datatracker.ietf.org/doc/html/draft-templin-intarea-grefrag-04
https://datatracker.ietf.org/doc/html/draft-templin-intarea-seal-68
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-ironbis-16

Templin Expires April 8, 2019 [Page 54]

Internet-Draft AERO October 2018

 [I-D.templin-v6ops-pdhost]
 Templin, F., "Multi-Addressing Considerations for IPv6
 Prefix Delegation", draft-templin-v6ops-pdhost-21 (work in
 progress), June 2018.

 [OVPN] OpenVPN, O., "http://openvpn.net", October 2016.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <https://www.rfc-editor.org/info/rfc1812>.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <https://www.rfc-editor.org/info/rfc1981>.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 DOI 10.17487/RFC2003, October 1996,
 <https://www.rfc-editor.org/info/rfc2003>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
RFC 2131, DOI 10.17487/RFC2131, March 1997,

 <https://www.rfc-editor.org/info/rfc2131>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <https://www.rfc-editor.org/info/rfc2473>.

 [RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529,
 DOI 10.17487/RFC2529, March 1999,
 <https://www.rfc-editor.org/info/rfc2529>.

https://datatracker.ietf.org/doc/html/draft-templin-v6ops-pdhost-21
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
https://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/rfc1981
https://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/rfc2003
https://www.rfc-editor.org/info/rfc2003
https://datatracker.ietf.org/doc/html/rfc2131
https://www.rfc-editor.org/info/rfc2131
https://datatracker.ietf.org/doc/html/rfc2473
https://www.rfc-editor.org/info/rfc2473
https://datatracker.ietf.org/doc/html/rfc2529
https://www.rfc-editor.org/info/rfc2529

Templin Expires April 8, 2019 [Page 55]

Internet-Draft AERO October 2018

 [RFC2764] Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, DOI 10.17487/RFC2764, February 2000,
 <https://www.rfc-editor.org/info/rfc2764>.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 DOI 10.17487/RFC2784, March 2000,
 <https://www.rfc-editor.org/info/rfc2784>.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,

 <https://www.rfc-editor.org/info/rfc2890>.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, DOI 10.17487/RFC2923, September 2000,

 <https://www.rfc-editor.org/info/rfc2923>.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
RFC 2983, DOI 10.17487/RFC2983, October 2000,

 <https://www.rfc-editor.org/info/rfc2983>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC3819] Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, DOI 10.17487/RFC3819, July 2004,
 <https://www.rfc-editor.org/info/rfc3819>.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213,
 DOI 10.17487/RFC4213, October 2005,
 <https://www.rfc-editor.org/info/rfc4213>.

 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

https://datatracker.ietf.org/doc/html/rfc2764
https://www.rfc-editor.org/info/rfc2764
https://datatracker.ietf.org/doc/html/rfc2784
https://www.rfc-editor.org/info/rfc2784
https://datatracker.ietf.org/doc/html/rfc2890
https://www.rfc-editor.org/info/rfc2890
https://datatracker.ietf.org/doc/html/rfc2923
https://www.rfc-editor.org/info/rfc2923
https://datatracker.ietf.org/doc/html/rfc2983
https://www.rfc-editor.org/info/rfc2983
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://www.rfc-editor.org/info/rfc3819
https://datatracker.ietf.org/doc/html/rfc4213
https://www.rfc-editor.org/info/rfc4213
https://datatracker.ietf.org/doc/html/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291

Templin Expires April 8, 2019 [Page 56]

Internet-Draft AERO October 2018

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC4389] Thaler, D., Talwar, M., and C. Patel, "Neighbor Discovery
 Proxies (ND Proxy)", RFC 4389, DOI 10.17487/RFC4389, April
 2006, <https://www.rfc-editor.org/info/rfc4389>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,

RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access
 Protocol (LDAP): The Protocol", RFC 4511,
 DOI 10.17487/RFC4511, June 2006,
 <https://www.rfc-editor.org/info/rfc4511>.

 [RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding
 ("IGMP/MLD Proxying")", RFC 4605, DOI 10.17487/RFC4605,
 August 2006, <https://www.rfc-editor.org/info/rfc4605>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <https://www.rfc-editor.org/info/rfc4963>.

 [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
 Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
 DOI 10.17487/RFC5214, March 2008,
 <https://www.rfc-editor.org/info/rfc5214>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5320] Templin, F., Ed., "The Subnetwork Encapsulation and
 Adaptation Layer (SEAL)", RFC 5320, DOI 10.17487/RFC5320,
 February 2010, <https://www.rfc-editor.org/info/rfc5320>.

https://datatracker.ietf.org/doc/html/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://datatracker.ietf.org/doc/html/rfc4389
https://www.rfc-editor.org/info/rfc4389
https://datatracker.ietf.org/doc/html/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/rfc4511
https://www.rfc-editor.org/info/rfc4511
https://datatracker.ietf.org/doc/html/rfc4605
https://www.rfc-editor.org/info/rfc4605
https://datatracker.ietf.org/doc/html/rfc4963
https://www.rfc-editor.org/info/rfc4963
https://datatracker.ietf.org/doc/html/rfc5214
https://www.rfc-editor.org/info/rfc5214
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5320
https://www.rfc-editor.org/info/rfc5320

Templin Expires April 8, 2019 [Page 57]

Internet-Draft AERO October 2018

 [RFC5522] Eddy, W., Ivancic, W., and T. Davis, "Network Mobility
 Route Optimization Requirements for Operational Use in
 Aeronautics and Space Exploration Mobile Networks",

RFC 5522, DOI 10.17487/RFC5522, October 2009,
 <https://www.rfc-editor.org/info/rfc5522>.

 [RFC5558] Templin, F., Ed., "Virtual Enterprise Traversal (VET)",
RFC 5558, DOI 10.17487/RFC5558, February 2010,

 <https://www.rfc-editor.org/info/rfc5558>.

 [RFC5569] Despres, R., "IPv6 Rapid Deployment on IPv4
 Infrastructures (6rd)", RFC 5569, DOI 10.17487/RFC5569,
 January 2010, <https://www.rfc-editor.org/info/rfc5569>.

 [RFC5720] Templin, F., "Routing and Addressing in Networks with
 Global Enterprise Recursion (RANGER)", RFC 5720,
 DOI 10.17487/RFC5720, February 2010,
 <https://www.rfc-editor.org/info/rfc5720>.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC 5996, DOI 10.17487/RFC5996, September 2010,
 <https://www.rfc-editor.org/info/rfc5996>.

 [RFC6179] Templin, F., Ed., "The Internet Routing Overlay Network
 (IRON)", RFC 6179, DOI 10.17487/RFC6179, March 2011,
 <https://www.rfc-editor.org/info/rfc6179>.

 [RFC6221] Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A.
 Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221,
 DOI 10.17487/RFC6221, May 2011,
 <https://www.rfc-editor.org/info/rfc6221>.

 [RFC6422] Lemon, T. and Q. Wu, "Relay-Supplied DHCP Options",
RFC 6422, DOI 10.17487/RFC6422, December 2011,

 <https://www.rfc-editor.org/info/rfc6422>.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,
 <https://www.rfc-editor.org/info/rfc6438>.

 [RFC6706] Templin, F., Ed., "Asymmetric Extended Route Optimization
 (AERO)", RFC 6706, DOI 10.17487/RFC6706, August 2012,
 <https://www.rfc-editor.org/info/rfc6706>.

https://datatracker.ietf.org/doc/html/rfc5522
https://www.rfc-editor.org/info/rfc5522
https://datatracker.ietf.org/doc/html/rfc5558
https://www.rfc-editor.org/info/rfc5558
https://datatracker.ietf.org/doc/html/rfc5569
https://www.rfc-editor.org/info/rfc5569
https://datatracker.ietf.org/doc/html/rfc5720
https://www.rfc-editor.org/info/rfc5720
https://datatracker.ietf.org/doc/html/rfc5996
https://www.rfc-editor.org/info/rfc5996
https://datatracker.ietf.org/doc/html/rfc6179
https://www.rfc-editor.org/info/rfc6179
https://datatracker.ietf.org/doc/html/rfc6221
https://www.rfc-editor.org/info/rfc6221
https://datatracker.ietf.org/doc/html/rfc6422
https://www.rfc-editor.org/info/rfc6422
https://datatracker.ietf.org/doc/html/rfc6438
https://www.rfc-editor.org/info/rfc6438
https://datatracker.ietf.org/doc/html/rfc6706
https://www.rfc-editor.org/info/rfc6706

Templin Expires April 8, 2019 [Page 58]

Internet-Draft AERO October 2018

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, DOI 10.17487/RFC6864, February 2013,

 <https://www.rfc-editor.org/info/rfc6864>.

 [TUNTAP] Wikipedia, W., "http://en.wikipedia.org/wiki/TUN/TAP",
 October 2014.

Appendix A. AERO Alternate Encapsulations

 When GUE encapsulation is not needed, AERO can use common
 encapsulations such as IP-in-IP [RFC2003][RFC2473][RFC4213], Generic
 Routing Encapsulation (GRE) [RFC2784][RFC2890] and others. The
 encapsulation is therefore only differentiated from non-AERO tunnels
 through the application of AERO control messaging and not through,
 e.g., a well-known UDP port number.

 As for GUE encapsulation, alternate AERO encapsulation formats may
 require encapsulation layer fragmentation. For simple IP-in-IP
 encapsulation, an IPv6 fragment header is inserted directly between
 the inner and outer IP headers when needed, i.e., even if the outer
 header is IPv4. The IPv6 Fragment Header is identified to the outer
 IP layer by its IP protocol number, and the Next Header field in the
 IPv6 Fragment Header identifies the inner IP header version. For GRE
 encapsulation, a GRE fragment header is inserted within the GRE
 header [I-D.templin-intarea-grefrag].

 Figure 5 shows the AERO IP-in-IP encapsulation format before any
 fragmentation is applied:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IPv4 Header | | Outer IPv6 Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |IPv6 Frag Header (optional)| |IPv6 Frag Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header | | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | |
 ~ ~ ~ ~
 ~ Inner Packet Body ~ ~ Inner Packet Body ~
 ~ ~ ~ ~
 | | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Minimal Encapsulation in IPv4 Minimal Encapsulation in IPv6

 Figure 5: Minimal Encapsulation Format using IP-in-IP

https://datatracker.ietf.org/doc/html/rfc6864
https://www.rfc-editor.org/info/rfc6864
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2784

Templin Expires April 8, 2019 [Page 59]

Internet-Draft AERO October 2018

 Figure 6 shows the AERO GRE encapsulation format before any
 fragmentation is applied:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Header |
 | (with checksum, key, etc..) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Fragment Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 ~ ~
 ~ Inner Packet Body ~
 ~ ~
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 6: Minimal Encapsulation Using GRE

 Alternate encapsulation may be preferred in environments where GUE
 encapsulation would add unnecessary overhead. For example, certain
 low-bandwidth wireless data links may benefit from a reduced
 encapsulation overhead.

 GUE encapsulation can traverse network paths that are inaccessible to
 non-UDP encapsulations, e.g., for crossing Network Address
 Translators (NATs). More and more, network middleboxes are also
 being configured to discard packets that include anything other than
 a well-known IP protocol such as UDP and TCP. It may therefore be
 necessary to determine the potential for middlebox filtering before
 enabling alternate encapsulation in a given environment.

 In addition to IP-in-IP, GRE and GUE, AERO can also use security
 encapsulations such as IPsec and SSL/TLS. In that case, AERO control
 messaging and route determination occur before security encapsulation
 is applied for outgoing packets and after security decapsulation is
 applied for incoming packets.

 AERO is especially well suited for use with VPN system encapsulations
 such as OpenVPN [OVPN].

Templin Expires April 8, 2019 [Page 60]

Internet-Draft AERO October 2018

Appendix B. When to Insert an Encapsulation Fragment Header

 An encapsulation fragment header is inserted when the AERO tunnel
 ingress needs to apply fragmentation to accommodate packets that must
 be delivered without loss due to a size restriction. Fragmentation
 is performed on the inner packet while encapsulating each inner
 packet fragment in outer IP and encapsulation layer headers that
 differ only in the fragment header fields.

 The fragment header can also be inserted in order to include a
 coherent Identification value with each packet, e.g., to aid in
 Duplicate Packet Detection (DPD). In this way, network nodes can
 cache the Identification values of recently-seen packets and use the
 cached values to determine whether a newly-arrived packet is in fact
 a duplicate. The Identification value within each packet could
 further provide a rough indicator of packet reordering, e.g., in
 cases when the tunnel egress wishes to discard packets that are
 grossly out of order.

 In some use cases, there may be operational assurance that no
 fragmentation of any kind will be necessary, or that only occasional
 large control messages will require fragmentation. In that case, the
 encapsulation fragment header can be omitted and ordinary
 fragmentation of the outer IP protocol version can be applied when
 necessary.

Appendix C. Autoconfiguration for Constrained Platforms

 On some platforms (e.g., popular cell phone operating systems), the
 act of assigning a default IPv6 route and/or assigning an address to
 an interface may not be permitted from a user application due to
 security policy. Typically, those platforms include a TUN/TAP
 interface [TUNTAP] that acts as a point-to-point conduit between user
 applications and the AERO interface. In that case, the Client can
 instead generate a "synthesized RA" message. The message conforms to
 [RFC4861] and is prepared as follows:

 o the IPv6 source address is the Client's AERO address

 o the IPv6 destination address is all-nodes multicast

 o the Router Lifetime is set to a time that is no longer than the
 ACP DHCPv6 lifetime

 o the message does not include a Source Link Layer Address Option
 (SLLAO)

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires April 8, 2019 [Page 61]

Internet-Draft AERO October 2018

 o the message includes a Prefix Information Option (PIO) with a /64
 prefix taken from the ACP as the prefix for autoconfiguration

 The Client then sends the synthesized RA message via the TUN/TAP
 interface, where the operating system kernel will interpret it as
 though it were generated by an actual router. The operating system
 will then install a default route and use StateLess Address
 AutoConfiguration (SLAAC) to configure an IPv6 address on the TUN/TAP
 interface. Methods for similarly installing an IPv4 default route
 and IPv4 address on the TUN/TAP interface are based on synthesized
 DHCPv4 messages [RFC2131].

Appendix D. Operational Deployment Alternatives

 AERO can be used in many different variations based on the specific
 use case. The following sections discuss variations that adhere to
 the AERO principles while allowing selective application of AERO
 components.

D.1. Operation on AERO Links Without DHCPv6 Services

 When Servers on the AERO link do not provide DHCPv6 services,
 operation can still be accommodated through administrative
 configuration of ACPs on AERO Clients. In that case, administrative
 configurations of AERO interface neighbor cache entries on both the
 Server and Client are also necessary. However, this may interfere
 with the ability for Clients to dynamically change to new Servers,
 and can expose the AERO link to misconfigurations unless the
 administrative configurations are carefully coordinated.

D.2. Operation on Server-less AERO Links

 In some AERO link scenarios, there may be no Servers on the link and/
 or no need for Clients to use a Server as an intermediary trust
 anchor. In that case, each Client acts as a Server unto itself to
 establish neighbor cache entries by performing direct Client-to-
 Client IPv6 ND message exchanges, and some other form of trust basis
 must be applied so that each Client can verify that the prospective
 neighbor is authorized to use its claimed ACP.

 When there is no Server on the link, Clients must arrange to receive
 ACPs and publish them via a secure alternate PD authority through
 some means outside the scope of this document.

https://datatracker.ietf.org/doc/html/rfc2131

Templin Expires April 8, 2019 [Page 62]

Internet-Draft AERO October 2018

D.3. Operation on Client-less AERO Links

 In some environments, the AERO service may be useful for mobile nodes
 that do not implement the AERO Client function and do not perform
 encapsulation. For example, if the mobile node has a way of
 injecting its ACP into the access subnetwork routing system an AERO
 Server connected to the same access network can accept the ACP prefix
 injection as an indication that a new mobile node has come onto the
 subnetwork. The Server can then inject the ACP into the BGP routing
 system the same as if an AERO Client/Server PD exchange had occurred.
 If the mobile node subsequently withdraws the ACP from the access
 network routing system, the Server can then withdraw the ACP from the
 BGP routing system.

 In this arrangement, AERO Servers and Relays are used in exactly the
 same ways as for environments where DHCPv6 Client/Server exchanges
 are supported. However, the access subnetwork routing systems must
 be capable of accommodating rapid ACP injections and withdrawals from
 mobile nodes with the understanding that the information must be
 propagated to all routers in the system. Operational experience has
 shown that this kind of routing system "churn" can lead to overall
 instability and routing system inconsistency.

D.4. Manually-Configured AERO Tunnels

 In addition to the dynamic neighbor discovery procedures for AERO
 link neighbors described above, AERO encapsulation can be applied to
 manually-configured tunnels. In that case, the tunnel endpoints use
 an administratively-provisioned link-local address and exchange NS/NA
 messages the same as for dynamically-established tunnels.

D.5. Encapsulation Avoidance on Relay-Server Dedicated Links

 In some environments, AERO Servers and Relays may be connected by
 dedicated point-to-point links, e.g., high speed fiberoptic leased
 lines. In that case, the Servers and Relays can participate in the
 AERO link the same as specified above but can avoid encapsulation
 over the dedicated links. In that case, however, the links would be
 dedicated for AERO and could not be multiplexed for both AERO and
 non-AERO communications.

D.6. Encapsulation Protocol Version Considerations

 A source Client may connect only to an IPvX underlying network, while
 the target Client connects only to an IPvY underlying network. In
 that case, the target and source Clients have no means for reaching
 each other directly (since they connect to underlying networks of

Templin Expires April 8, 2019 [Page 63]

Internet-Draft AERO October 2018

 different IP protocol versions) and so must ignore any route
 optimization messages and continue to send packets via their Servers.

D.7. Extending AERO Links Through Security Gateways

 When an enterprise mobile node moves from a campus LAN connection to
 a public Internet link, it must re-enter the enterprise via a
 security gateway that has both a physical interface connection to the
 Internet and a physical interface connection to the enterprise
 internetwork. This most often entails the establishment of a Virtual
 Private Network (VPN) link over the public Internet from the mobile
 node to the security gateway. During this process, the mobile node
 supplies the security gateway with its public Internet address as the
 link-layer address for the VPN. The mobile node then acts as an AERO
 Client to negotiate with the security gateway to obtain its ACP.

 In order to satisfy this need, the security gateway also operates as
 an AERO Server with support for AERO Client proxying. In particular,
 when a mobile node (i.e., the Client) connects via the security
 gateway (i.e., the Server), the Server provides the Client with an
 ACP in a PD exchange the same as if it were attached to an enterprise
 campus access link. The Server then replaces the Client's link-layer
 source address with the Server's enterprise-facing link-layer address
 in all AERO messages the Client sends toward neighbors on the AERO
 link. The AERO messages are then delivered to other nodes on the
 AERO link as if they were originated by the security gateway instead
 of by the AERO Client. In the reverse direction, the AERO messages
 sourced by nodes within the enterprise network can be forwarded to
 the security gateway, which then replaces the link-layer destination
 address with the Client's link-layer address and replaces the link-
 layer source address with its own (Internet-facing) link-layer
 address.

 After receiving the ACP, the Client can send IP packets that use an
 address taken from the ACP as the network layer source address, the
 Client's link-layer address as the link-layer source address, and the
 Server's Internet-facing link-layer address as the link-layer
 destination address. The Server will then rewrite the link-layer
 source address with the Server's own enterprise-facing link-layer
 address and rewrite the link-layer destination address with the
 target AERO node's link-layer address, and the packets will enter the
 enterprise network as though they were sourced from a node located
 within the enterprise. In the reverse direction, when a packet
 sourced by a node within the enterprise network uses a destination
 address from the Client's ACP, the packet will be delivered to the
 security gateway which then rewrites the link-layer destination
 address to the Client's link-layer address and rewrites the link-
 layer source address to the Server's Internet-facing link-layer

Templin Expires April 8, 2019 [Page 64]

Internet-Draft AERO October 2018

 address. The Server then delivers the packet across the VPN to the
 AERO Client. In this way, the AERO virtual link is essentially
 extended *through* the security gateway to the point at which the VPN
 link and AERO link are effectively grafted together by the link-layer
 address rewriting performed by the security gateway. All AERO
 messaging services (including route optimization and mobility
 signaling) are therefore extended to the Client.

 In order to support this virtual link grafting, the security gateway
 (acting as an AERO Server) must keep static neighbor cache entries
 for all of its associated Clients located on the public Internet.
 The neighbor cache entry is keyed by the AERO Client's AERO address
 the same as if the Client were located within the enterprise
 internetwork. The neighbor cache is then managed in all ways as
 though the Client were an ordinary AERO Client. This includes the
 AERO IPv6 ND messaging signaling for Route Optimization and Neighbor
 Unreachability Detection.

 Note that the main difference between a security gateway acting as an
 AERO Server and an enterprise-internal AERO Server is that the
 security gateway has at least one enterprise-internal physical
 interface and at least one public Internet physical interface.
 Conversely, the enterprise-internal AERO Server has only enterprise-
 internal physical interfaces. For this reason security gateway
 proxying is needed to ensure that the public Internet link-layer
 addressing space is kept separate from the enterprise-internal link-
 layer addressing space. This is afforded through a natural extension
 of the security association caching already performed for each VPN
 client by the security gateway.

Appendix E. Change Log

 Changes from draft-templin-intarea-6706bis-01 to draft-templin-
intrea-6706bis-02:

 o Note on encapsulation avoidance in Section 4.

 Changes from draft-templin-intarea-6706bis-00 to draft-templin-
intrea-6706bis-01:

 o Remove DHCPv6 Server Release procedures that leveraged the old way
 Relays used to "route" between Server link-local addresses

 o Remove all text relating to Relays needing to do any AERO-specific
 operations

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-01
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-02
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-02
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-00
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-01
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-01

Templin Expires April 8, 2019 [Page 65]

Internet-Draft AERO October 2018

 o Proxy sends RS and receives RA from Server using SEND. Use CGAs
 as source addresses, and destination address of RA reply is to the
 AERO address corresponding to the Client's ACP.

 o Proxy uses SEND to protect RS and authenticate RA (Client does not
 use SEND, but rather relies on subnetwork security. When the
 Proxy receives an RS from the Client, it creates a new RS using
 its own addresses as the source and uses SEND with CGAs to send a
 new RS to the Server.

 o Emphasize distributed mobility management

 o AERO address-based RS injection of ACP into underlying routing
 system.

 Changes from draft-templin-aerolink-82 to draft-templin-intarea-
6706bis-00:

 o Document use of NUD (NS/NA) for reliable link-layer address
 updates as an alternative to unreliable unsolicited NA.
 Consistent with Section 7.2.6 of RFC4861.

 o Server adds additional layer of encapsulation between outer and
 inner headers of NS/NA messages for transmission through Relays
 that act as vanilla IPv6 routers. The messages include the AERO
 Server Subnet Router Anycast address as the source and the Subnet
 Router Anycast address corresponding to the Client's ACP as the
 destination.

 o Clients use Subnet Router Anycsat address as the encapsulation
 source address when the access network does not provide a
 topologically-fixed address.

 o

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

https://datatracker.ietf.org/doc/html/draft-templin-aerolink-82
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-00
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-00
https://datatracker.ietf.org/doc/html/rfc4861#section-7.2.6

Templin Expires April 8, 2019 [Page 66]

