
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320, rfc5558, rfc5720, April 15, 2020

rfc6179, rfc6706 (if
 approved)
Intended status: Standards Track
Expires: October 17, 2020

Asymmetric Extended Route Optimization (AERO)
draft-templin-intarea-6706bis-43

Abstract

 This document specifies the operation of IP over tunnel virtual links
 using Asymmetric Extended Route Optimization (AERO). AERO interfaces
 use an IPv6 link-local address format that supports operation of the
 IPv6 Neighbor Discovery (ND) protocol and links ND to IP forwarding.
 Prefix delegation/registration services are employed for network
 admission and to manage the routing system. Multilink operation,
 mobility management, quality of service (QoS) signaling and route
 optimization are naturally supported through dynamic neighbor cache
 updates. Standard IP multicasting services are also supported. AERO
 is a widely-applicable mobile internetworking service especially
 well-suited to aviation services, mobile Virtual Private Networks
 (VPNs) and many other applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 17, 2020.

Templin Expires October 17, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft AERO April 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Asymmetric Extended Route Optimization (AERO) 10
3.1. AERO Link Reference Model 10
3.2. AERO Node Types . 12
3.3. AERO Routing System 13
3.4. AERO Addresses . 15
3.5. Spanning Partitioned AERO Networks (SPAN) 16
3.6. AERO Interface Characteristics 20
3.7. AERO Interface Initialization 25
3.7.1. AERO Server/Gateway Behavior 25
3.7.2. AERO Proxy Behavior 25
3.7.3. AERO Client Behavior 26
3.7.4. AERO Relay Behavior 26

3.8. AERO Interface Neighbor Cache Maintenance 26
3.9. AERO Interface Encapsulation and Re-encapsulation 28
3.10. AERO Interface Decapsulation 29
3.11. AERO Interface Data Origin Authentication 29
3.12. AERO Interface MTU and Fragmentation 30
3.13. AERO Interface Forwarding Algorithm 32
3.13.1. Client Forwarding Algorithm 32
3.13.2. Proxy Forwarding Algorithm 33
3.13.3. Server/Gateway Forwarding Algorithm 34
3.13.4. Relay Forwarding Algorithm 35

3.14. AERO Interface Error Handling 36
 3.15. AERO Router Discovery, Prefix Delegation and
 Autoconfiguration . 38

3.15.1. AERO ND/PD Service Model 38
3.15.2. AERO Client Behavior 39
3.15.3. AERO Server Behavior 41

3.16. The AERO Proxy . 44

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Templin Expires October 17, 2020 [Page 2]

Internet-Draft AERO April 2020

3.16.1. Detecting and Responding to Server Failures 46
3.16.2. Point-to-Multipoint Server Coordindation 47

3.17. AERO Route Optimization 47
3.17.1. Route Optimization Initiation 48
3.17.2. Relaying the NS 48
3.17.3. Processing the NS and Sending the NA 48
3.17.4. Relaying the NA 50
3.17.5. Processing the NA 50
3.17.6. Route Optimization Maintenance 50

3.18. Neighbor Unreachability Detection (NUD) 51
3.19. Mobility Management and Quality of Service (QoS) 52
3.19.1. Mobility Update Messaging 53

 3.19.2. Announcing Link-Layer Address and/or QoS Preference
 Changes . 54

3.19.3. Bringing New Links Into Service 54
3.19.4. Removing Existing Links from Service 54
3.19.5. Moving to a New Server 55

3.20. Multicast . 56
3.20.1. Source-Specific Multicast (SSM) 56
3.20.2. Any-Source Multicast (ASM) 57
3.20.3. Bi-Directional PIM (BIDIR-PIM) 58

3.21. Operation over Multiple AERO Links (VLANs) 58
3.22. DNS Considerations 59
3.23. Transition Considerations 60
3.24. Detecting and Reacting to Server and Relay Failures . . . 60
3.25. AERO Clients on the Open Internet 61

4. Implementation Status . 63
5. IANA Considerations . 63
6. Security Considerations 63
7. Acknowledgements . 65
8. References . 66
8.1. Normative References 66
8.2. Informative References 68

Appendix A. AERO Alternate Encapsulations 75
Appendix B. Non-Normative Considerations 77
B.1. Implementation Strategies for Route Optimization 77
B.2. Implicit Mobility Management 78
B.3. Direct Underlying Interfaces 78
B.4. Operation on AERO Links with /64 ASPs 78
B.5. AERO Critical Infrastructure Considerations 79
B.6. AERO Server Failure Implications 80
B.7. AERO Client / Server Architecture 80

Appendix C. Change Log . 82
 Author's Address . 91

Templin Expires October 17, 2020 [Page 3]

Internet-Draft AERO April 2020

1. Introduction

 Asymmetric Extended Route Optimization (AERO) fulfills the
 requirements of Distributed Mobility Management (DMM) [RFC7333] and
 route optimization [RFC5522] for aeronautical networking and other
 network mobility use cases. AERO is based on a Non-Broadcast,
 Multiple Access (NBMA) virtual link model known as the AERO link.
 The AERO link is a virtual overlay configured over one or more
 underlying Internetworks, and nodes on the link can exchange IP
 packets via tunneling. Multilink operation allows for increased
 reliability, bandwidth optimization and traffic path diversity.

 The AERO service comprises Clients, Proxys, Servers and Gateways that
 are seen as AERO link neighbors as well as Relays that bridge AERO
 link partitions. Each node's AERO interface uses an IPv6 link-local
 address format (known as the AERO address) that supports operation of
 the IPv6 Neighbor Discovery (ND) protocol [RFC4861] and links ND to
 IP forwarding. A node's AERO interface can be configured over
 multiple underlying interfaces, and may therefore appear as a single
 interface with multiple link-layer addresses. Each link-layer
 address is subject to change due to mobility and/or QoS fluctuations,
 and link-layer address changes are signaled by ND messaging the same
 as for any IPv6 link.

 AERO links provide a cloud-based service where mobile nodes may use
 any Server acting as a Mobility Anchor Point (MAP) and fixed nodes
 may use any Gateway on the link for efficient communications. Fixed
 nodes forward packets destined to other AERO nodes to the nearest
 Gateway, which forwards them through the cloud. A mobile node's
 initial packets are forwarded through the Server, while direct
 routing is supported through asymmetric extended route optimization
 while data packets are flowing. Both unicast and multicast
 communications are supported, and mobile nodes may efficiently move
 between locations while maintaining continuous communications with
 correspondents and without changing their IP Address.

 AERO Relays are interconnected in a secured private BGP overlay
 routing instance known as "The SPAN". The SPAN provides a hybrid
 routing/bridging service to join the underlying Internetworks of
 multiple disjoint administrative domains into a single unified AERO
 link. Each AERO link instance is characterized by the set of
 Mobility Service Prefixes (MSPs) common to all mobile nodes. The
 link extends to the point where a Gateway/Server is on the optimal
 route from any correspondent node on the link, and provides a gateway
 between the underlying Internetwork and the SPAN. To the underlying
 Internetwork, the Gateway/Server is the source of a route to the MSP,
 and hence uplink traffic to the mobile node is naturally routed to
 the nearest Gateway/Server.

https://datatracker.ietf.org/doc/html/rfc7333
https://datatracker.ietf.org/doc/html/rfc5522
https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires October 17, 2020 [Page 4]

Internet-Draft AERO April 2020

 AERO assumes the use of PIM Sparse Mode in support of multicast
 communication. In support of Source Specific Multicast (SSM) when a
 Mobile Node is the source, AERO route optimization ensures that a
 shortest-path multicast tree is established with provisions for
 mobility and multilink operation. In all other multicast scenarios
 there are no AERO dependencies.

 AERO was designed for aeronautical networking for both manned and
 unmanned aircraft, where the aircraft is treated as a mobile node
 that can connect an Internet of Things (IoT). AERO is also
 applicable to a wide variety of other use cases. For example, it can
 be used to coordinate the Virtual Private Network (VPN) links of
 mobile nodes (e.g., cellphones, tablets, laptop computers, etc.) that
 connect into a home enterprise network via public access networks
 using services such as OpenVPN [OVPN]. Other applicable use cases
 are also in scope.

 The following numbered sections present the AERO specification. The
 appendices at the end of the document are non-normative.

2. Terminology

 The terminology in the normative references applies; the following
 terms are defined within the scope of this document:

 IPv6 Neighbor Discovery (ND)
 an IPv6 control message service for coordinating neighbor
 relationships between nodes connected to a common link. AERO
 interfaces use the ND service specified in [RFC4861].

 IPv6 Prefix Delegation (PD)
 a networking service for delegating IPv6 prefixes to nodes on the
 link. The nominal PD service is DHCPv6 [RFC8415], however
 alternate services (e.g., based on ND messaging) are also in scope
 [I-D.templin-v6ops-pdhost][I-D.templin-6man-dhcpv6-ndopt]. Most
 notably, a minimal form of PD known as "prefix registration" can
 be used if the Client knows its prefix in advance and can
 represent it in the IPv6 source address of an ND message.

 Access Network (ANET)
 a node's first-hop data link service network, e.g., a radio access
 network, cellular service provider network, corporate enterprise
 network, or the public Internet itself. For secured ANETs, link-
 layer security services such as IEEE 802.1X and physical-layer
 security prevent unauthorized access internally while border
 network-layer security services such as firewalls and proxies
 prevent unauthorized outside access.

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc8415

Templin Expires October 17, 2020 [Page 5]

Internet-Draft AERO April 2020

 ANET interface
 a node's attachment to a link in an ANET.

 ANET address
 an IP address assigned to a node's interface connection to an
 ANET.

 Internetwork (INET)
 a connected IP network topology with a coherent routing and
 addressing plan and that provides a transit backbone service for
 ANET end systems. INETs also provide an underlay service over
 which the AERO virtual link is configured. Example INETs include
 corporate enterprise networks, aviation networks, and the public
 Internet itself. When there is no administrative boundary between
 an ANET and the INET, the ANET and INET are one and the same.

 INET Partition
 frequently, INETs such as large corporate enterprise networks are
 sub-divided internally into separate isolated partitions. Each
 partition is fully connected internally but disconnected from
 other partitions, and there is no requirement that separate
 partitions maintain consistent Internet Protocol and/or addressing
 plans. (An INET partition is the same as a SPAN segment discussed
 below.)

 INET interface
 a node's attachment to a link in an INET.

 INET address
 an IP address assigned to a node's interface connection to an
 INET.

 AERO link
 a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
 configured over one or more underlying INETs. Nodes on the AERO
 link appear as single-hop neighbors from the perspective of the
 virtual overlay even though they may be separated by many
 underlying INET hops. AERO links may be configured over multiple
 underlying SPAN segments (see below).

 AERO interface
 a node's attachment to an AERO link. Since the addresses assigned
 to an AERO interface are managed for uniqueness, AERO interfaces
 do not require Duplicate Address Detection (DAD) and therefore set
 the administrative variable 'DupAddrDetectTransmits' to zero
 [RFC4862].

 underlying interface

https://datatracker.ietf.org/doc/html/rfc4862

Templin Expires October 17, 2020 [Page 6]

Internet-Draft AERO April 2020

 an ANET or INET interface over which an AERO interface is
 configured.

 AERO address
 an IPv6 link-local address assigned to an AERO interface and
 constructed as specified in Section 3.4.

 base AERO address
 the lowest-numbered AERO address aggregated by the MNP (see

Section 3.4).

 Mobility Service Prefix (MSP)
 an IP prefix assigned to the AERO link and from which more-
 specific Mobile Network Prefixes (MNPs) are derived.

 Mobile Network Prefix (MNP)
 an IP prefix allocated from an MSP and delegated to an AERO Client
 or Gateway.

 AERO node
 a node that is connected to an AERO link, or that provides
 services to other nodes on an AERO link.

 AERO Client ("Client")
 an AERO node that connects to one or more ANETs and requests MNP
 PDs from AERO Servers. The Client assigns a Client AERO address
 to the AERO interface for use in ND exchanges with other AERO
 nodes and forwards packets to correspondents according to AERO
 interface neighbor cache state.

 AERO Server ("Server")
 an INET node that configures an AERO interface to provide default
 forwarding and mobility/multilink services for AERO Clients. The
 Server assigns an administratively-provisioned AERO address to its
 AERO interface to support the operation of the ND/PD services, and
 advertises all of its associated MNPs via BGP peerings with
 Relays.

 AERO Gateway ("Gateway")
 an AERO Server that also provides forwarding services between
 nodes reached via the AERO link and correspondents on other links.
 AERO Gateways are provisioned with MNPs (i.e., the same as for an
 AERO Client) and run a dynamic routing protocol to discover any
 non-MNP IP routes. In both cases, the Gateway advertises the
 MSP(s) over INET interfaces, and distributes all of its associated
 MNPs and non-MNP IP routes via BGP peerings with Relays (i.e., the
 same as for an AERO Server).

Templin Expires October 17, 2020 [Page 7]

Internet-Draft AERO April 2020

 AERO Relay ("Relay")
 a node that provides hybrid routing/bridging services (as well as
 a security trust anchor) for nodes on an AERO link. As a router,
 the Relay forwards packets using standard IP forwarding. As a
 bridge, the Relay forwards packets over the AERO link without
 decrementing the IPv6 Hop Limit. AERO Relays peer with Servers
 and other Relays to discover the full set of MNPs for the link as
 well as any non-MNPs that are reachable via Gateways.

 AERO Proxy ("Proxy")
 a node that provides proxying services between Clients in an ANET
 and Servers in external INETs. The AERO Proxy is a conduit
 between the ANET and external INETs in the same manner as for
 common web proxies, and behaves in a similar fashion as for ND
 proxies [RFC4389].

 Spanning Partitioned AERO Networks (SPAN)
 a means for bridging disjoint INET partitions as segments of a
 unified AERO link the same as for a bridged campus LAN. The SPAN
 is a mid-layer IPv6 encapsulation service in the AERO routing
 system that supports a unified AERO link view for all segments.
 Each segment in the SPAN is a distinct INET partition. Segment
 Routing [RFC8754] can be used to cause packets to visit selected
 hops on the SPAN.

 SPAN Service Prefix (SSP)
 a global or unique local /96 IPv6 prefix assigned to the AERO link
 to support SPAN services.

 SPAN Partition Prefix (SPP)
 a sub-prefix of the SPAN Service Prefix uniquely assigned to a
 single SPAN segment.

 SPAN Client Prefix (SCP)
 a SPAN prefix formed from an AERO Client address.

 SPAN Address
 a unique local IPv6 address taken from a SPAN Client/Partition
 Prefix and constructed as specified in Section 3.5. SPAN
 addresses are statelessly derived from AERO addresses, and vice-
 versa.

 ingress tunnel endpoint (ITE)
 an AERO interface endpoint that injects encapsulated packets into
 an AERO link.

 egress tunnel endpoint (ETE)

https://datatracker.ietf.org/doc/html/rfc4389
https://datatracker.ietf.org/doc/html/rfc8754

Templin Expires October 17, 2020 [Page 8]

Internet-Draft AERO April 2020

 an AERO interface endpoint that receives encapsulated packets from
 an AERO link.

 link-layer address
 an IP address used as an encapsulation header source or
 destination address from the perspective of the AERO interface.
 When an upper layer protocol (e.g., UDP) is used as part of the
 encapsulation, the port number is also considered as part of the
 link-layer address. From the perspective of the AERO interface,
 the link-layer address is either an INET address for intra-segment
 encapsulation or a SPAN address for inter-segment encapsulation.

 network layer address
 the source or destination address of an encapsulated IP packet
 presented to the AERO interface.

 end user network (EUN)
 an internal virtual or external edge IP network that an AERO
 Client or Gateway connects to the rest of the network via the AERO
 interface. The Client/Gateway sees each EUN as a "downstream"
 network, and sees the AERO interface as the point of attachment to
 the "upstream" network.

 Mobile Node (MN)
 an AERO Client and all of its downstream-attached networks that
 move together as a single unit, i.e., an end system that connects
 an Internet of Things.

 Mobile Router (MR)
 a MN's on-board router that forwards packets between any
 downstream-attached networks and the AERO link.

 Route Optimization Source (ROS)
 the AERO node nearest the source that initiates route
 optimization. The ROS may be a Server or Proxy acting on behalf
 of the source Client.

 Route Optimization responder (ROR)
 the AERO node nearest the target destination that responds to
 route optimization requests. The ROR may be a Server acting on
 behalf of a target MNP Client, or a Gateway for a non-MNP
 destination.

 MAP List
 a geographically and/or topologically referenced list of AERO
 addresses of all Servers within the same AERO link. There is a
 single MAP list for the entire AERO link.

Templin Expires October 17, 2020 [Page 9]

Internet-Draft AERO April 2020

 ROS List
 a list of AERO/SPAN-to-INET address mappings of all ROSes within
 the same SPAN segment. There is a distinct ROS list for each
 segment.

 Distributed Mobility Management (DMM)
 a BGP-based overlay routing service coordinated by Servers and
 Relays that tracks all Server-to-Client associations.

 Mobility Service (MS)
 the collective set of all Servers, Proxys, Relays and Gateways
 that provide the AERO Service to Clients.

 Mobility Service Endpoint MSE)
 an individual Server, Proxy, Relay or Gateway in the Mobility
 Service.

 Throughout the document, the simple terms "Client", "Server",
 "Relay", "Proxy" and "Gateway" refer to "AERO Client", "AERO Server",
 "AERO Relay", "AERO Proxy" and "AERO Gateway", respectively.
 Capitalization is used to distinguish these terms from other common
 Internetworking uses in which they appear without capitalization.

 The terminology of DHCPv6 [RFC8415] and IPv6 ND [RFC4861] (including
 the names of node variables, messages and protocol constants) is used
 throughout this document. The terms "All-Routers multicast", "All-
 Nodes multicast", "Solicited-Node multicast" and "Subnet-Router
 anycast" are defined in [RFC4291] (with Link-Local scope assumed).
 Also, the term "IP" is used to generically refer to either Internet
 Protocol version, i.e., IPv4 [RFC0791] or IPv6 [RFC8200].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Asymmetric Extended Route Optimization (AERO)

 The following sections specify the operation of IP over Asymmetric
 Extended Route Optimization (AERO) links:

3.1. AERO Link Reference Model

https://datatracker.ietf.org/doc/html/rfc8415
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires October 17, 2020 [Page 10]

Internet-Draft AERO April 2020

 +----------------+
 | AERO Relay R1 |
 | Nbr: S1, S2, P1|
 |(X1->S1; X2->S2)|
 | MSP M1 |
 +-+---------+--+-+
 +--------------+ | Secured | | +--------------+
 |AERO Server S1| | tunnels | | |AERO Server S2|
 | Nbr: C1, R1 +-----+ | +-----+ Nbr: C2, R1 |
 | default->R1 | | | default->R1 |
 | X1->C1 | | | X2->C2 |
 +-------+------+ | +------+-------+
 | AERO Link | |
 X===+===+===================+==)===============+===+===X
 | | | |
 +-----+--------+ +--------+--+-----+ +--------+-----+
 |AERO Client C1| | AERO Proxy P1 | |AERO Client C2|
 | Nbr: S1 | |(Proxy Nbr Cache)| | Nbr: S2 |
 | default->S1 | +--------+--------+ | default->S2 |
 | MNP X1 | | | MNP X2 |
 +------+-------+ .--------+------. +-----+--------+
 | (- Proxyed Clients -) |
 .-. `---------------' .-.
 ,-(_)-. ,-(_)-.
 .-(_ IP)-. +-------+ +-------+ .-(_ IP)-.
 (__ EUN)--|Host H1| |Host H2|--(__ EUN)
 `-(______)-' +-------+ +-------+ `-(______)-'

 Figure 1: AERO Link Reference Model

 Figure 1 presents the AERO link reference model. In this model:

 o the AERO link is an overlay network service configured over one or
 more underlying INET partitions which may be managed by different
 administrative authorities and have incompatible protocols and/or
 addressing plans.

 o AERO Relay R1 aggregates Mobility Service Prefix (MSP) M1,
 discovers Mobile Network Prefixes (MNPs) X* and advertises the MSP
 via BGP peerings over secured tunnels to Servers (S1, S2). Relays
 use the SPAN service to bridge disjoint segments of a partitioned
 AERO link.

 o AERO Servers S1 and S2 configure secured tunnels with Relay R1 and
 also provide mobility, multilink and default router services for
 their associated Clients C1 and C2.

Templin Expires October 17, 2020 [Page 11]

Internet-Draft AERO April 2020

 o AERO Clients C1 and C2 associate with Servers S1 and S2,
 respectively. They receive Mobile Network Prefix (MNP)
 delegations X1 and X2, and also act as default routers for their
 associated physical or internal virtual EUNs. Simple hosts H1 and
 H2 attach to the EUNs served by Clients C1 and C2, respectively.

 o AERO Proxy P1 configures a secured tunnel with Relay R1 and
 provides proxy services for AERO Clients in secured enclaves that
 cannot associate directly with other AERO link neighbors.

 Each node on the AERO link maintains an AERO interface neighbor cache
 and an IP forwarding table the same as for any link. Although the
 figure shows a limited deployment, in common operational practice
 there will normally be many additional Relays, Servers, Clients and
 Proxys.

3.2. AERO Node Types

 AERO Relays provide hybrid routing/bridging services (as well as a
 security trust anchor) for nodes on an AERO link. Relays use
 standard IPv6 routing to forward packets both within the same INET
 partitions and between disjoint INET partitions based on a mid-layer
 IPv6 encapsulation known as the SPAN header. The inner IP layer
 experiences a virtual bridging service since the inner IP TTL/Hop
 Limit is not decremented during forwarding. Each Relay also peers
 with Servers and other Relays in a dynamic routing protocol instance
 to provide a Distributed Mobility Management (DMM) service for the
 list of active MNPs (see Section 3.3). Relays present the AERO link
 as a set of one or more Mobility Service Prefixes (MSPs) but as link-
 layer devices need not connect directly to the AERO link themselves
 unless an administrative interface is desired. Relays configure
 secured tunnels with Servers, Proxys and other Relays; they further
 maintain IP forwarding table entries for each Mobile Network Prefix
 (MNP) and any other reachable non-MNP prefixes.

 AERO Servers provide default forwarding and mobility/multilink
 services for AERO Client Mobile Nodes (MNs). Each Server also peers
 with Relays in a dynamic routing protocol instance to advertise its
 list of associated MNPs (see Section 3.3). Servers facilitate PD
 exchanges with Clients, where each delegated prefix becomes an MNP
 taken from an MSP. Servers forward packets between AERO interface
 neighbors and track each Client's mobility profiles.

 AERO Clients register their MNPs through PD exchanges with AERO
 Servers over the AERO link, and distribute the MNPs to nodes on EUNs.
 A Client may also be co-resident on the same physical or virtual
 platform as a Server; in that case, the Client and Server behave as a
 single functional unit.

Templin Expires October 17, 2020 [Page 12]

Internet-Draft AERO April 2020

 AERO Proxys provide a conduit for ANET AERO Clients to associate with
 AERO Servers in external INETs. Client and Servers exchange control
 plane messages via the Proxy acting as a bridge between the ANET/INET
 boundary. The Proxy forwards data packets between Clients and the
 AERO link according to forwarding information in the neighbor cache.
 The Proxy function is specified in Section 3.16.

 AERO Gateways are Servers that provide forwarding services between
 the AERO interface and INET/EUN interfaces. Gateways are provisioned
 with MNPs the same as for an AERO Client, and also run a dynamic
 routing protocol to discover any non-MNP IP routes. The Gateway
 advertises the MSP(s) to INETs, and distributes all of its associated
 MNPs and non-MNP IP routes via BGP peerings with Relays.

 AERO Relays, Servers, Proxys and Gateways are critical infrastructure
 elements in fixed (i.e., non-mobile) INET deployments and hence have
 permanent and unchanging INET addresses. AERO Clients are MNs that
 connect via ANET interfaces, i.e., their ANET addresses may change
 when the Client moves to a new ANET connection.

3.3. AERO Routing System

 The AERO routing system comprises a private instance of the Border
 Gateway Protocol (BGP) [RFC4271] that is coordinated between Relays
 and Servers and does not interact with either the public Internet BGP
 routing system or any underlying INET routing systems.

 In a reference deployment, each Server is configured as an Autonomous
 System Border Router (ASBR) for a stub Autonomous System (AS) using
 an AS Number (ASN) that is unique within the BGP instance, and each
 Server further uses eBGP to peer with one or more Relays but does not
 peer with other Servers. Each INET of a multi-segment AERO link must
 include one or more Relays, which peer with the Servers and Proxys
 within that INET. All Relays within the same INET are members of the
 same hub AS using a common ASN, and use iBGP to maintain a consistent
 view of all active MNPs currently in service. The Relays of
 different INETs peer with one another using eBGP.

 Relays advertise the AERO link's MSPs and any non-MNP routes to each
 of their Servers. This means that any aggregated non-MNPs (including
 "default") are advertised to all Servers. Each Relay configures a
 black-hole route for each of its MSPs. By black-holing the MSPs, the
 Relay will maintain forwarding table entries only for the MNPs that
 are currently active, and packets destined to all other MNPs will
 correctly incur Destination Unreachable messages due to the black-
 hole route. In this way, Servers have only partial topology
 knowledge (i.e., they know only about the MNPs of their directly

https://datatracker.ietf.org/doc/html/rfc4271

Templin Expires October 17, 2020 [Page 13]

Internet-Draft AERO April 2020

 associated Clients) and they forward all other packets to Relays
 which have full topology knowledge.

 Servers maintain a working set of associated MNPs, and dynamically
 announce new MNPs and withdraw departed MNPs in eBGP updates to
 Relays. Servers that are configured as Gateways also redistribute
 non-MNP routes learned from non-AERO interfaces via their eBGP Relay
 peerings.

 Clients are expected to remain associated with their current Servers
 for extended timeframes, however Servers SHOULD selectively suppress
 updates for impatient Clients that repeatedly associate and
 disassociate with them in order to dampen routing churn. Servers
 that are configured as Gateways advertise the MSPs via INET/EUN
 interfaces, and forward packets between INET/EUN interfaces and the
 AERO interface using standard IP forwarding.

 Scaling properties of the AERO routing system are limited by the
 number of BGP routes that can be carried by Relays. As of 2015, the
 global public Internet BGP routing system manages more than 500K
 routes with linear growth and no signs of router resource exhaustion
 [BGP]. More recent network emulation studies have also shown that a
 single Relay can accommodate at least 1M dynamically changing BGP
 routes even on a lightweight virtual machine, i.e., and without
 requiring high-end dedicated router hardware.

 Therefore, assuming each Relay can carry 1M or more routes, this
 means that at least 1M Clients can be serviced by a single set of
 Relays. A means of increasing scaling would be to assign a different
 set of Relays for each set of MSPs. In that case, each Server still
 peers with one or more Relays, but institutes route filters so that
 BGP updates are only sent to the specific set of Relays that
 aggregate the MSP. For example, if the MSP for the AERO link is
 2001:db8::/32, a first set of Relays could service the MSP
 2001:db8::/40, a second set of Relays could service
 2001:db8:0100::/40, a third set could service 2001:db8:0200::/40,
 etc.

 Assuming up to 1K sets of Relays, the AERO routing system can then
 accommodate 1B or more MNPs with no additional overhead (for example,
 it should be possible to service 1B /64 MNPs taken from a /34 MSP and
 even more for shorter prefixes). In this way, each set of Relays
 services a specific set of MSPs that they advertise to the native
 Internetwork routing system, and each Server configures MSP-specific
 routes that list the correct set of Relays as next hops. This
 arrangement also allows for natural incremental deployment, and can
 support small scale initial deployments followed by dynamic

Templin Expires October 17, 2020 [Page 14]

Internet-Draft AERO April 2020

 deployment of additional Clients, Servers and Relays without
 disturbing the already-deployed base.

 Server and Relays can use the Bidirectional Forwarding Detection
 (BFD) protocol [RFC5880] to quickly detect link failures that don't
 result in interface state changes, BGP peer failures, and
 administrative state changes. BFD is important in environments where
 rapid response to failures is required for routing reconvergence and,
 hence, communications continuity.

 A full discussion of the BGP-based routing system used by AERO is
 found in [I-D.ietf-rtgwg-atn-bgp]. The system provides for
 Distributed Mobility Management (DMM) per the distributed mobility
 anchoring architecture [I-D.ietf-dmm-distributed-mobility-anchoring].

3.4. AERO Addresses

 A Client's AERO address is an IPv6 link-local address formed from the
 Client's delegated MNP. Relay, Server and Proxy AERO addresses are
 assigned from the range fe80::/96 and include an administratively-
 provisioned value in the lower 32 bits.

 IPv6 Client AERO addresses encode the Subnet-Router anycast address
 of a MNP (or non-MNP globally routable prefix) within the least-
 significant 112 bits of the IPv6 link-local prefix fe80::/16. For
 example, for the MNP 2001:db8:1000:2000::/56 the corresponding AERO
 address is fe80:2001:db8:1000:2000::/72.

 IPv4-compatible Client AERO addresses are based on an IPv4-mapped
 IPv6 address [RFC4291] formed from an IPv4 MNP and with a prefix
 length of 96 plus the MNP prefix length. For example, for the IPv4
 MNP 192.0.2.16/28 the IPv4-mapped IPv6 MNP is:

 0:0:0:0:0:ffff:192.0.2.16/124 (also written as
 0:0:0:0:0:ffff:c000:0210/124)

 The Client then constructs its AERO address with the prefix fe80::/64
 and with the lower 64 bits of the IPv4-mapped IPv6 address in the
 interface identifier as: fe80::ffff:192.0.2.16.

 Mobility Service (MS) AERO addresses (used by Relays, Servers,
 Gateways and Proxys) are allocated from the range fe80::/96, and MUST
 be managed for uniqueness. The lower 32 bits of the AERO address
 includes a unique integer value between 1 and 0xfeffffff (e.g.,
 fe80::1, fe80::2, fe80::3, etc., fe80::feff:ffff) as assigned by the
 administrative authority for the link. The address fe80:: is the
 IPv6 link-local Subnet-Router anycast address, and the address range
 fe80::ff00:0000/104 is reserved for future use.

https://datatracker.ietf.org/doc/html/rfc5880
https://datatracker.ietf.org/doc/html/rfc4291

Templin Expires October 17, 2020 [Page 15]

Internet-Draft AERO April 2020

 Finally, the address range fe80::/32 is used as the Teredo service
 prefix for AERO according to the format in Section 4 of [RFC4380]
 (see Section 3.25 for further discussion).

 For a full discussion of the above address format and implications
 for the /64 boundary, see: [I-D.templin-6man-omni-interface].

3.5. Spanning Partitioned AERO Networks (SPAN)

 An AERO link configured over a single INET appears as a single
 unified link with a consistent underlying network addressing plan.
 In that case, all nodes on the link can exchange packets via simple
 INET encapsulation, since the underlying INET is connected. In
 common practice, however, an AERO link may be partitioned into
 multiple "segments", where each segment is a distinct INET
 potentially managed under a different administrative authority (e.g.,
 as for worldwide aviation service providers such as ARINC, SITA,
 Inmarsat, etc.). Individual INETs may also themselves be partitioned
 internally, in which case each internal partition is seen as a
 separate segment.

 The addressing plan of each segment is consistent internally but will
 often bear no relation to the addressing plans of other segments.
 Each segment is also likely to be separated from others by network
 security devices (e.g., firewalls, proxies, packet filtering
 gateways, etc.), and in many cases disjoint segments may not even
 have any common physical link connections. Therefore, nodes can only
 be assured of exchanging packets directly with correspondents in the
 same segment, and not with those in other segments. The only means
 for joining the segments therefore is through inter-domain peerings
 between AERO Relays.

 The same as for traditional campus LANs, multiple AERO link segments
 can be joined into a single unified link via a virtual bridging
 service termed "The SPAN". The SPAN performs link-layer packet
 forwarding between segments (i.e., bridging) without decrementing the
 network-layer TTL/Hop Limit. The SPAN model is depicted in Figure 2:

https://datatracker.ietf.org/doc/html/rfc4380#section-4

Templin Expires October 17, 2020 [Page 16]

Internet-Draft AERO April 2020

 .
 . .
 . .-(::::::::) .
 . .-(::::::::::::)-. +-+ .
 . (:::: Segment A :::)--|R|---+ .
 . `-(::::::::::::)-' +-+ | .
 . `-(::::::)-' | .
 . | .
 . .-(::::::::) | .
 . .-(::::::::::::)-. +-+ | .
 . (:::: Segment B :::)--|R|---+ .
 . `-(::::::::::::)-' +-+ | .
 . `-(::::::)-' | .
 . | .
 . .-(::::::::) | .
 . .-(::::::::::::)-. +-+ | .
 . (:::: Segment C :::)--|R|---+ .
 . `-(::::::::::::)-' +-+ | .
 . `-(::::::)-' | .
 . | .
 . ..(etc).. x .
 . .
 . .
 . <- AERO Link Bridged by the SPAN -> .

 Figure 2: The SPAN

 To support the SPAN, AERO links use the Unique Local Address (ULA)
 prefix fd80::/16 [RFC4193] as the SPAN Service Prefix (SSP). The
 prefix length intentionally matches the IPv6 link-local prefix
 (fe80::/16), and enables a simple 1-bit stateless translation between
 AERO and SPAN addresses (i.e., bit 7 is '1' for AERO addresses or '0'
 for SPAN addresses).

 Each segment in the SPAN assigns a unique sub-prefix of fd80::/96
 termed the "SPAN Partition Prefix (SPP)". For example, a first
 segment could assign fd80::1000/116, a second could assign
 fd80::2000/116, a third could assign fd80::3000/116, etc. The
 administrative authorities for each segment must therefore coordinate
 to assure mutually-exclusive SPP assignments, but internal
 provisioning of the SPP is an independent local consideration for
 each administrative authority.

 SPAN addresses are formed by simply clearing bit 7 of the
 corresponding AERO address. For example:

https://datatracker.ietf.org/doc/html/rfc4193

Templin Expires October 17, 2020 [Page 17]

Internet-Draft AERO April 2020

 o the SPAN address formed from the IPv6 Client AERO address
 fe80:2001:db8:1000:2000:: is simply fd80:2001:db8:1000:2000::

 o the SPAN address formed from the IPv4-compatible Client AERO
 address fe80::ffff:192.0.2.1 is simply fd80::ffff:192.0.2.1

 o the SPAN address formed from the administrative AERO address
 fe80::1001 is simply fd80::1001.

 AERO Relays serve as bridges to join multiple segments into a unified
 AERO link over multiple diverse administrative domains. They support
 the bridging function by first establishing forwarding table entries
 for their SPPs either via standard BGP routing or static routes. For
 example, if three Relays ('A', 'B' and 'C') from different segments
 serviced the SPPs fd80::1000/116, fd80::2000/116 and fd80::3000/116
 respectively, then the forwarding tables in each Relay are as
 follows:

 A: fd80::1000/116->local, fd80::2000/116->B, fd80::3000/116->C

 B: fd80::1000/116->A, fd80::2000/116->local, fd80::3000/116->C

 C: fd80::1000/116->A, fd80::2000/116->B, fd80::3000/116->local

 These forwarding table entries are permanent and never change, since
 they correspond to fixed infrastructure elements in their respective
 segments.

 SPAN Client Prefixes (SCPs) are instead dynamically advertised in the
 AERO link routing system by Servers and Gateways that aggregate their
 correspnding MNPs. For example, if three Servers ('D', 'E' and 'F')
 aggregated the MNPs 2001:db8:1000:2000::/56, 2001:db8:3000:4000::/56
 and 2001:db8:5000:6000::/56 then the routing system would include:

 D: fd80:2001:db8:1000:2000::/72

 E: fd80:2001:db8:3000:4000::/72

 F: fd80:2001:db8:5000:6000::/72

 With the SCPs and SPPs in place in each Relay's forwarding table,
 control and data packets sent between AERO nodes in different
 segments can therefore be carried over the via encapsulation in a
 mid-layer IPv6 header known as the "SPAN header". For example, when
 a source AERO node forwards a packet with IPv6 address
 2001:db8:1:2::1 to a target AERO node with IPv6 address
 2001:db8:1000:2000::1, it first encapsulates the packet in a SPAN
 header with source address set to fd80:2001:db8:1:2:: and destination

Templin Expires October 17, 2020 [Page 18]

Internet-Draft AERO April 2020

 address set to fd80:2001:db8:1000:2000::. Next, it encapsulates the
 resulting SPAN packet in an INET header with source address set to
 its own INET address (e.g., 192.0.2.100) and destination set to the
 INET address of a Relay (e.g., 192.0.2.1).

 SPAN encapsulation is based on Generic Packet Tunneling in IPv6
 [RFC2473]; the encapsulation format in the above example is shown in
 Figure 3:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | INET Header |
 | src = 192.0.2.100 |
 | dst = 192.0.2.1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | SPAN Header |
 | src = fd80:2001:db8:1:2:: |
 | dst=fd80:2001:db8:1000:2000:: |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header |
 | src = 2001:db8:1:2::1 |
 | dst = 2001:db8:1000:2000::1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 ~ ~
 ~ Inner Packet Body ~
 ~ ~
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 3: SPAN Encapsulation

 In this format, the inner IP header and packet body are the original
 IP packet, the SPAN header is an IPv6 header prepared according to
 [RFC2473], and the INET header is prepared as discussed in

Section 3.9. A packet is said to be "forwarded/sent into the SPAN"
 when it is encapsulated as described above then forwarded via a
 secured tunnel to a neighboring Relay.

 This gives rise to a routing system that contains both SCP routes
 that may change dynamically due to regional node mobility and SPP
 routes that never change. The Relays can therefore provide link-
 layer bridging by sending packets into the SPAN instead of network-
 layer routing according to MNP routes. As a result, opportunities
 for packet loss due to node mobility between different segments are
 mitigated.

 In normal operations, IPv6 ND messages are conveyed to SPP addresses
 over the SPAN so that specific Proxys, Servers or Gateways can be

https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2473

Templin Expires October 17, 2020 [Page 19]

Internet-Draft AERO April 2020

 addressed without being subject to mobility events. Conversely, only
 the first few packets destined to SCP addresses traverse the SPAN
 until route optimization can determine a more direct path.

3.6. AERO Interface Characteristics

 AERO interfaces are virtual interfaces configured over one or more
 underlying interfaces classified as follows:

 o Native interfaces have global IP addresses that are reachable from
 any INET correspondent. All Server, Gateway and Relay interfaces
 are native interfaces, as are INET-facing interfaces of Proxys.
 Clients connected to native interfaces receive Router
 Advertisemenets (RAs) with a Client AERO destination address and
 the P flag set to 0, as discussed in the following sections.

 o NATed interfaces connect to a private network behind a Network
 Address Translator (NAT). The NAT does not participate in any
 AERO control message signaling, but the Server can issue control
 messages on behalf of the Client. Clients that are behind a NAT
 are required to send periodic keepalive messages to keep NAT state
 alive when there are no data packets flowing. If no other
 periodic messaging service is available, the Client can send
 Router Solicitation (RS) messages to receive RA replies from its
 Server(s). Clients connected to NATed interfaces receive RAs with
 a Teredo-formatted AERO destination address.

 o Proxyed interfaces connect to an ANET that is separated from the
 open INET by an AERO Proxy. Unlike NATed and VPNed interfaces,
 the Proxy can actively issue control messages on behalf of the
 Client. Clients connected to Proxyed interfaces receive RAs with
 the P flag set to 1.

 o VPNed interfaces use security encapsulation to a Virtual Private
 Network (VPN) server that also acts as an AERO Server. As with
 NATed links, the Server can issue control messages on behalf of
 the Client, and the Client can send periodic messages such as RS/
 RA to keep the VPN state alive. Clients connected to VPNed
 interfaces receive RAs with the P flag set to 1 the same as for
 Proxyed interfaces.

 o Direct interfaces connect a Client directly to a Server without
 crossing any ANET/INET paths. An example is a line-of-sight link
 between a remote pilot and an unmanned aircraft. The same Client
 considerations apply as for VPNed interfaces above, and the Client
 receives RA messages with the P flag set to 1.

Templin Expires October 17, 2020 [Page 20]

Internet-Draft AERO April 2020

 AERO interfaces use SPAN-layer encapsualtion as necessary as
 discussed in Section 3.5. AERO interfaces use link-layer
 encapsulation (see: Section 3.9) to exchange packets with AERO link
 neighbors over Native, NATed or VPNed interfaces. AERO interfaces do
 not use encapsulation over Proxyed and Direct underlying interfaces.

 AERO interfaces maintain a neighbor cache for tracking per-neighbor
 state the same as for any interface. AERO interfaces use ND messages
 including Router Solicitation (RS), Router Advertisement (RA),
 Neighbor Solicitation (NS) and Neighbor Advertisement (NA) for
 neighbor cache management.

 AERO interfaces send ND messages with an Overlay Multilink Network
 Interface (OMNI) option formatted as specified in
 [I-D.templin-6man-omni-interface]. The OMNI option includes prefix
 registration information and "ifIndex-tuples" containing link
 information parameters for the AERO interface's underlying
 interfaces.

 When encapsulation is used, AERO interface ND messages MAY also
 include an AERO Source/Target Link-Layer Address Option (S/TLLAO)
 formatted as shown in Figure 4:

Templin Expires October 17, 2020 [Page 21]

Internet-Draft AERO April 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | ifIndex[1] |SRT| LHS |FMT|P|
 +-+
 ~ Segment Routing List [1] ~
 +-+
 ~ Link Layer Address [1] ~
 +-+
 | Port Number [1] | ifIndex[2] |SRT| LHS |FMT|P|
 +-+
 ~ Segment Routing List [2] ~
 +-+
 ~ Link Layer Address [2] ~
 +-+
 | Port Number [2] | ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~
 ~ ... ~
 ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ | ifIndex[N] |SRT| LHS |FMT|P|
 +-+
 ~ Segment Routing List [N] ~
 +-+
 ~ Link Layer Address [N] ~
 +-+
 | Port Number [N] | Zero Padding (if necessary) ...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 Figure 4: AERO Source/Target Link-Layer Address Option (S/TLLAO)
 Format

 In this format, Type and Length are set the same as specified for S/
 TLLAOs in [RFC4861], with trailing zero padding octets added as
 necessary to produce an integral number of 8 octet blocks. The S/
 TLLAO includes N ifIndex-tuples in correspondence to ifIndex-tuples
 that appear in the OMNI option. Each ifIndex-tuple includes the
 folllowing information:

 o ifIndex[i] - the same value as in the corresponding ifIndex-tuple
 included in the OMNI option.

 o SRT[i] - a 2-bit "Segment Routing Tone" value coded as follows:

 * 00 - Red

 * 01 - Green

 * 10 - Blue-1

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires October 17, 2020 [Page 22]

Internet-Draft AERO April 2020

 * 11 - Blue-2

 o LHS[i] - a 3-bit "LookaHead Segments" value that encodes the
 number (from 0 to 7) of entries in Segment Routing List [i].

 o FMT[i] - a 2-bit "Format" code. Determines the format of the Link
 Layer Address [i] field as follows:

 * 00 - Link Layer Address [i] is unspecified.

 * 01 - Link Layer Address [i] encodes a native IPv4 address.

 * 10 - Link Layer Address [i] encodes a NATed IPv4 address.

 * 11 - Link Layer Address [i] encodes an IPv6 address.

 o P[i] - the "Port" bit. If set to 0 the Port Number [i] field is
 omitted; otherwise, the Port Number [i] field is included.

 o Segment Routing List [i] - Includes LHS[i]-many 4 byte
 administrative SPAN IDs for Segment routing, in the order to be
 visited on the path to the source/target (i.e., ID 1 first, then
 ID 2, then ID 3, etc). If LHS[i] is 0, no SPAN IDs are present
 and the FMT[i] and Link Layer Address [i] fields are consulted.

 o Link Layer Address [i] - Included according to FMT[i], and is 0
 bytes in length for "unspecified", 4 bytes in length for IPv4 or
 16 bytes in length for IPv6. For IP addresses, the value is
 written in "obfuscated" form by applying an exclusive-or of all
 bits of the address with "all-ones" as discussed in [RFC4380] -
 see also Section 3.25.

 o Port Number [i] - When present, the field is 2 bytes in length and
 immediately follows Link Layer Address [i]. Encodes the upper
 layer protocol port number used as the encapsulation source port.
 As with the Link-Layer Address, the value is written in
 "obfuscated" form.

 If an S/TLLAO is included, any ifIndex-tuples correspond to a proper
 subset of the OMNI option ifIndex-tuples. Any S/TLLAO ifIndex-tuple
 having an ifIndex value that does not appear in an OMNI option
 ifindex-tuple is ignored. If the same ifIndex value appears in
 multiple ifIndex-tuples, the first tuple is processed and the
 remaining tuples are ignored. Any S/TLLAO ifIndex-tuples can
 therefore be viewed as inter-dependent extensions of their
 corresponidng OMNI option ifIndex-tuples, i.e., the OMNI option and
 S/TLLAO are companions that are interpreted in conjunction with each
 other.

https://datatracker.ietf.org/doc/html/rfc4380

Templin Expires October 17, 2020 [Page 23]

Internet-Draft AERO April 2020

 A Client's AERO interface may be configured over multiple underlying
 interface connections. For example, common mobile handheld devices
 have both wireless local area network ("WLAN") and cellular wireless
 links. These links are often used "one at a time" with low-cost WLAN
 preferred and highly-available cellular wireless as a standby, but a
 simultaneous-use capability could provide benefits. In a more
 complex example, aircraft frequently have many wireless data link
 types (e.g. satellite-based, cellular, terrestrial, air-to-air
 directional, etc.) with diverse performance and cost properties.

 If a Client's multiple underlying interfaces are used "one at a time"
 (i.e., all other interfaces are in standby mode while one interface
 is active), then ND message OMNI options include only a single
 ifIndex-tuple set to constant values. In that case, the Client would
 appear to have a single interface but with a dynamically changing
 link-layer address.

 If the Client has multiple active underlying interfaces, then from
 the perspective of ND it would appear to have multiple link-layer
 addresses. In that case, ND message OMNI options MAY include
 multiple ifIndex-tuples - each with values that correspond to a
 specific interface. Every ND message need not include all OMNI and/
 or S/TLLAO ifIndex-tuples; for any ifIndex-tuple not included, the
 neighbor considers the status as unchanged.

 Relay, Server and Proxy AERO interfaces may be configured over one or
 more secured tunnel interfaces. The AERO interface configures both
 an AERO address and its corresponding SPAN address, while the
 underlying secured tunnel interfaces are either unnumbered or
 configure the same SPAN address. The AERO interface encapsulates
 each IP packet in a SPAN header and presents the packet to the
 underlying secured tunnel interface. For Relays that do not
 configure an AERO interface, the secured tunnel interfaces themselves
 are exposed to the IP layer with each interface configuring the
 Relay's SPAN address. Routing protocols such as BGP therefore run
 directly over the Relay's secured tunnel interfaces. For nodes that
 configure an AERO interface, routing protocols such as BGP run over
 the AERO interface but do not employ SPAN encapsulation. Instead,
 the AERO interface presents the routing protocol messages directly to
 the underlying secured tunnels without applying encapsulation and
 while using the SPAN address as the source address. This distinction
 must be honored consistently according to each node's configuration
 so that the IP forwarding table will associate discovered IP routes
 with the correct interface.

Templin Expires October 17, 2020 [Page 24]

Internet-Draft AERO April 2020

3.7. AERO Interface Initialization

 AERO Servers, Proxys and Clients configure AERO interfaces as their
 point of attachment to the AERO link. AERO nodes assign the MSPs for
 the link to their AERO interfaces (i.e., as a "route-to-interface")
 to ensure that packets with destination addresses covered by an MNP
 not explicitly assigned to a non-AERO interface are directed to the
 AERO interface.

 AERO interface initialization procedures for Servers, Proxys, Clients
 and Relays are discussed in the following sections.

3.7.1. AERO Server/Gateway Behavior

 When a Server enables an AERO interface, it assigns AERO/SPAN
 addresses and configures permanent neighbor cache entries for
 neighbors in the same SPAN segment by consulting the ROS list for the
 segment. The Server also configures secured tunnels with one or more
 neighboring Relays and engages in a BGP routing protocol session with
 each Relay.

 The AERO interface provides a single interface abstraction to the IP
 layer, but internally comprises multiple secured tunnels as well as
 an NBMA nexus for sending encapsulated data packets to AERO interface
 neighbors. The Server further configures a service to facilitate ND/
 PD exchanges with AERO Clients and manages per-Client neighbor cache
 entries and IP forwarding table entries based on control message
 exchanges.

 Gateways are simply Servers that run a dynamic routing protocol to
 redistribute routes between the AERO interface and INET/EUN
 interfaces (see: Section 3.3). The Gateway provisions MNPs to
 networks on the INET/EUN interfaces (i.e., the same as a Client would
 do) and advertises the MSP(s) for the AERO link over the INET/EUN
 interfaces. The Gateway further provides an attachment point of the
 AERO link to the non-MNP-based global topology.

3.7.2. AERO Proxy Behavior

 When a Proxy enables an AERO interface, it assigns AERO/SPAN
 addresses and configures permanent neighbor cache entries the same as
 for Servers. The Proxy also configures secured tunnels with one or
 more neighboring Relays and maintains per-Client neighbor cache
 entries based on control message exchanges.

Templin Expires October 17, 2020 [Page 25]

Internet-Draft AERO April 2020

3.7.3. AERO Client Behavior

 When a Client enables an AERO interface, it sends RS messages with
 ND/PD parameters over its underlying interfaces to a Server in the
 MAP list, which returns an RA message with corresponding parameters.
 (The RS/RA messages may pass through a Proxy in the case of a
 Client's Proxyed interface.)

3.7.4. AERO Relay Behavior

 AERO Relays need not connect directly to the AERO link, since they
 operate as link-layer forwarding devices instead of network layer
 routers. Configuration of AERO interfaces on Relays is therefore
 OPTIONAL, e.g., if an administrative interface is needed. Relays
 configure secured tunnels with Servers, Proxys and other Relays; they
 also configure AERO/SPAN addresses and permanent neighbor cache
 entries the same as Servers. Relays engage in a BGP routing protocol
 session with a subset of the Servers on the local SPAN segment, and
 with other Relays on the SPAN (see: Section 3.3).

3.8. AERO Interface Neighbor Cache Maintenance

 Each AERO interface maintains a conceptual neighbor cache that
 includes an entry for each neighbor it communicates with on the AERO
 link per [RFC4861]. AERO interface neighbor cache entries are said
 to be one of "permanent", "symmetric", "asymmetric" or "proxy".

 Permanent neighbor cache entries are created through explicit
 administrative action; they have no timeout values and remain in
 place until explicitly deleted. AERO Servers and Proxys maintain
 permanent neighbor cache entries for all other Servers and Proxys
 within the same SPAN segment. Each entry maintains the mapping
 between the neighbor's network-layer AERO address and corresponding
 INET address. The list of all permanent neighbor cache entries for
 the SPAN segment is maintained in the segment's ROS list.

 Symmetric neighbor cache entries are created and maintained through
 RS/RA exchanges as specified in Section 3.15, and remain in place for
 durations bounded by ND/PD lifetimes. AERO Servers maintain
 symmetric neighbor cache entries for each of their associated
 Clients, and AERO Clients maintain symmetric neighbor cache entries
 for each of their associated Servers. The list of all Servers on the
 AERO link is maintained in the link's MAP list.

 Asymmetric neighbor cache entries are created or updated based on
 route optimization messaging as specified in Section 3.17, and are
 garbage-collected when keepalive timers expire. AERO ROSs maintain
 asymmetric neighbor cache entries for active targets with lifetimes

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires October 17, 2020 [Page 26]

Internet-Draft AERO April 2020

 based on ND messaging constants. Asymmetric neighbor cache entries
 are unidirectional since only the ROS (and not the ROR) creates an
 entry.

 Proxy neighbor cache entries are created and maintained by AERO
 Proxys when they process Client/Server ND/PD exchanges, and remain in
 place for durations bounded by ND/PD lifetimes. AERO Proxys maintain
 proxy neighbor cache entries for each of their associated Clients.
 Proxy neighbor cache entries track the Client state and the address
 of the Client's associated Server(s).

 To the list of neighbor cache entry states in Section 7.3.2 of
 [RFC4861], Proxy and Server AERO interfaces add an additional state
 DEPARTED that applies to symmetric and proxy neighbor cache entries
 for Clients that have recently departed. The interface sets a
 "DepartTime" variable for the neighbor cache entry to "DEPART_TIME"
 seconds. DepartTime is decremented unless a new ND message causes
 the state to return to REACHABLE. While a neighbor cache entry is in
 the DEPARTED state, packets destined to the target Client are
 forwarded to the Client's new location instead of being dropped.
 When DepartTime decrements to 0, the neighbor cache entry is deleted.
 It is RECOMMENDED that DEPART_TIME be set to the default constant
 value REACHABLE_TIME plus 10 seconds (40 seconds by default) to allow
 a window for packets in flight to be delivered while stale route
 optimization state may be present.

 When an ROR receives an authentic NS message used for route
 optimization, it searches for a symmetric neighbor cache entry for
 the target Client. The ROR then returns a solicited NA message
 without creating a neighbor cache entry for the ROS, but creates or
 updates a target Client "Report List" entry for the ROS and sets a
 "ReportTime" variable for the entry to REPORT_TIME seconds. The ROR
 resets ReportTime when it receives a new authentic NS message, and
 otherwise decrements ReportTime while no authentic NS messages have
 been received. It is RECOMMENDED that REPORT_TIME be set to the
 default constant value REACHABLE_TIME plus 10 seconds (40 seconds by
 default) to allow a window for route optimization to converge before
 ReportTime decrements below REACHABLE_TIME.

 When the ROS receives a solicited NA message response to its NS
 message used for route optimization, it creates or updates an
 asymmetric neighbor cache entry for the target network-layer and
 link-layer addresses. The ROS then (re)sets ReachableTime for the
 neighbor cache entry to REACHABLE_TIME seconds and uses this value to
 determine whether packets can be forwarded directly to the target,
 i.e., instead of via a default route. The ROS otherwise decrements
 ReachableTime while no further solicited NA messages arrive. It is

https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.2
https://datatracker.ietf.org/doc/html/rfc4861#section-7.3.2

Templin Expires October 17, 2020 [Page 27]

Internet-Draft AERO April 2020

 RECOMMENDED that REACHABLE_TIME be set to the default constant value
 30 seconds as specified in [RFC4861].

 AERO nodes also use the value MAX_UNICAST_SOLICIT to limit the number
 of NS keepalives sent when a correspondent may have gone unreachable,
 the value MAX_RTR_SOLICITATIONS to limit the number of RS messages
 sent without receiving an RA and the value MAX_NEIGHBOR_ADVERTISEMENT
 to limit the number of unsolicited NAs that can be sent based on a
 single event. It is RECOMMENDED that MAX_UNICAST_SOLICIT,
 MAX_RTR_SOLICITATIONS and MAX_NEIGHBOR_ADVERTISEMENT be set to 3 the
 same as specified in [RFC4861].

 Different values for DEPART_TIME, REPORT_TIME, REACHABLE_TIME,
 MAX_UNICAST_SOLICIT, MAX_RTR_SOLCITATIONS and
 MAX_NEIGHBOR_ADVERTISEMENT MAY be administratively set; however, if
 different values are chosen, all nodes on the link MUST consistently
 configure the same values. Most importantly, DEPART_TIME and
 REPORT_TIME SHOULD be set to a value that is sufficiently longer than
 REACHABLE_TIME to avoid packet loss due to stale route optimization
 state.

3.9. AERO Interface Encapsulation and Re-encapsulation

 In some instances, AERO interfaces insert a mid-layer IPv6 header
 known as the SPAN header as discussed in the following sections.
 After either inserting or omitting the SPAN header, the AERO
 interface inserts an outer encapsulation header as discussed below.

 AERO interfaces avoid outer encapsulation over Direct underlying
 interfaces and Proxyed underlying interfaces for which the first-hop
 access router is AERO-aware. Other AERO interfaces encapsulate
 packets according to whether they are entering the AERO interface
 from the network layer or if they are being re-admitted into the same
 AERO link they arrived on. This latter form of encapsulation is
 known as "re-encapsulation".

 For packets entering the AERO interface from the network layer, the
 AERO interface copies the "TTL/Hop Limit", "Type of Service/Traffic
 Class" [RFC2983], "Flow Label"[RFC6438] (for IPv6) and "Congestion
 Experienced" [RFC3168] values in the inner packet's IP header into
 the corresponding fields in the SPAN and outer encapsulation
 header(s).

 For packets undergoing re-encapsulation, the AERO interface instead
 copies these values from the original encapsulation header into the
 new encapsulation header, i.e., the values are transferred between
 encapsulation headers and *not* copied from the encapsulated packet's
 network-layer header. (Note especially that by copying the TTL/Hop

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc3168

Templin Expires October 17, 2020 [Page 28]

Internet-Draft AERO April 2020

 Limit between encapsulation headers the value will eventually
 decrement to 0 if there is a (temporary) routing loop.) For IPv4
 encapsulation/re-encapsulation, the AERO interface sets the DF bit as
 discussed in Section 3.12.

 AERO interfaces configured over native and NATed underlying
 interfaces encapsulate packets in INET headers according to the next
 hop determined in the forwarding algorithm in Section 3.13. If the
 next hop is reached via a secured tunnel, the AERO interface uses an
 encapsulation format specific to the secured tunnel type (see:

Section 6). If the next hop is reached via an unsecured underlying
 interface, the AERO interface instead uses Generic UDP Encapsulation
 (GUE) [I-D.ietf-intarea-gue] or an alternate minimal encapsulation
 format Appendix A.

 When GUE encapsulation is used, the AERO interface next sets the UDP
 source port to a constant value that it will use in each successive
 packet it sends, and sets the UDP length field to the length of the
 SPAN packet plus 8 bytes for the UDP header itself plus the length of
 the GUE header (or 0 if GUE direct IP encapsulation is used). For
 packets sent to a Server or Relay, the AERO interface sets the UDP
 destination port to 8060, i.e., the IANA-registered port number for
 AERO. For packets sent to a Client, the AERO interface sets the UDP
 destination port to the port value stored in the neighbor cache entry
 for this Client. The AERO interface then either includes or omits
 the UDP checksum according to the GUE specification.

 AERO interfaces observes the packet sizing and fragmentation
 considerations found in Section 3.12.

3.10. AERO Interface Decapsulation

 AERO interfaces decapsulate packets destined either to the AERO node
 itself or to a destination reached via an interface other than the
 AERO interface the packet was received on. When the encapsulated
 packet arrives in multiple SPAN fragments, the AERO interface
 reassembles as discussed in Section 3.12. Further decapsulation
 steps are performed according to the appropriate encapsulation format
 specification.

3.11. AERO Interface Data Origin Authentication

 AERO nodes employ simple data origin authentication procedures. In
 particular:

 o AERO Relays, Servers and Proxys accept encapsulated data packets
 and control messages received from secured tunnels via the SPAN.

Templin Expires October 17, 2020 [Page 29]

Internet-Draft AERO April 2020

 o AERO Servers and Proxys accept encapsulated data packets and NS
 messages used for Neighbor Unreachability Detection (NUD) received
 from a member of the ROS list.

 o AERO Proxys and Clients accept packets that originate from within
 the same secured ANET.

 o AERO Clients and Gateways accept packets from downstream network
 correspondents based on ingress filtering.

 AERO nodes silently drop any packets that do not satisfy the above
 data origin authentication procedures. Further security
 considerations are discussed inSection 6.

3.12. AERO Interface MTU and Fragmentation

 IPv6 underlying interfaces are REQUIRED to configure a minimum
 Maximum Transmission Unit (MTU) of 1280 bytes [RFC8200]. The minimum
 MTU for IPv4 underlying interfaces is only 68 bytes [RFC1122],
 meaning that a packet smaller than the IPv6 MTU may require
 fragmentation when IPv4 encapsulation is used. Therefore, the Don't
 Fragment (DF) bit in the IPv4 encapsulation header MUST be set to 0.

 The AERO interface configures an MTU of 9180 bytes [RFC2492]; the
 size is therefore not a reflection of the underlying interface MTUs,
 but rather determines the largest packet the AERO interface can
 forward or reassemble. The AERO interface therefore accommodates IP
 packets up to 9180 bytes while generating IPv6 Path MTU Discovery
 (PMTUD) Packet Too Big (PTB) messages [RFC8201] as necessary (see
 below).

 AERO interfaces employ mid-layer IPv6 encapsulation and
 fragmentation/reassembly per [RFC2473] (aka "SPAN encapsulation") to
 accommodate the 9180 byte MTU. The AERO interface returns
 internally-generated PTB messages for packets admitted into the
 interface that it deems too large (e.g., according to link
 performance characteristics, reassembly cost, etc.) while either
 dropping or forwarding the packet as necessary. The AERO interface
 performs PMTUD even if the destination appears to be on the same link
 since intermediate AERO link nodes may return a PTB. This ensures
 that the path MTU is adaptive and reflects the current path used for
 a given data flow.

 AERO nodes perform SPAN encapsulation and fragmentation/reassembly as
 follows:

 o When a node's AERO interface sends a packet over a Proxyed, VPNed
 or Direct underlying interface, it sends without SPAN

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2492
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc2473

Templin Expires October 17, 2020 [Page 30]

Internet-Draft AERO April 2020

 encapsulation if the packet is no larger than the underlying
 interface MTU. Otherwise, it encapsulates the packet in a SPAN
 header with source address set to the node's own SPAN address and
 destination set to the SPAN address of the link-layer peer Proxy,
 Server or Client on the underlying interface. The AERO interface
 then uses IPv6 fragmentation to break the encapsulated packet into
 a minimum number of non-overlapping fragments, where the largest
 fragment size is determined by the underlying interface MTU and
 the smallest fragment is no smaller than 640 bytes. The AERO
 interface then sends the fragments to the link-layer peer, which
 reassembles before forwarding toward the final destination.

 o When a node's AERO interface sends a packet over a Native or
 NATted underlying interface, it sends packets no larger than 1280
 bytes without SPAN encapsulation if the destination is reached via
 an INET address within the same SPAN segment. Otherwise, it
 encapsulates the packet in a SPAN header with source address set
 to the node's SPAN address and destination set to the SPAN address
 of the next hop AERO node toward the final destination. The AERO
 interface then uses IPv6 fragmentation to break the encapsulated
 packet into a minimum number of non-overlapping fragments, where
 the largest fragment size is 1280 bytes and the smallest fragment
 is no smaller than 640 bytes. The AERO interface then sends the
 fragments to the SPAN destination, which reassembles before
 forwarding toward the final destination.

 In order to avoid a "tiny fragment" attack, AERO interfaces
 unconditionally drop all SPAN fragments smaller than 640 bytes. In
 order to set the correct context for reassembly, the AERO interface
 that inserts a SPAN header MUST also be the one that inserts the IPv6
 Fragment Header Identification value. Although all fragmnets of the
 same fragmented SPAN packet are typically sent via the same
 underlying interface, this is not strictly required since all
 fragments will arrive at the AERO interface that performs reassembly
 even if they travel over different paths.

 Note that the AERO interface can forward large packets via
 encapsulation and fragmentation while at the same time returning
 advisory PTB messages, e.g., subject to rate limiting. The receiving
 node that performs reassembly can also send advisory PTB messages if
 reassembly conditions become unfavorable. The AERO interface can
 therefore continuously forward large packets without loss while
 returning advisory messages recommending a smaller size. Advisory
 PTB messages are differentiated from PTB messages that report loss by
 setting the Code field in the ICMPv6 message header to the value 1.
 This document therefore updates [RFC4443] and [RFC8201].

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc8201

Templin Expires October 17, 2020 [Page 31]

Internet-Draft AERO April 2020

3.13. AERO Interface Forwarding Algorithm

 IP packets enter a node's AERO interface either from the network
 layer (i.e., from a local application or the IP forwarding system) or
 from the link layer (i.e., from an AERO interface neighbor). All
 packets entering a node's AERO interface first undergo data origin
 authentication as discussed in Section 3.11. Packets that satisfy
 data origin authentication are processed further, while all others
 are dropped silently.

 Packets that enter the AERO interface from the network layer are
 forwarded to an AERO interface neighbor. Packets that enter the AERO
 interface from the link layer are either re-admitted into the AERO
 link or forwarded to the network layer where they are subject to
 either local delivery or IP forwarding. In all cases, the AERO
 interface itself MUST NOT decrement the network layer TTL/Hop-count
 since its forwarding actions occur below the network layer.

 AERO interfaces may have multiple underlying interfaces and/or
 neighbor cache entries for neighbors with multiple ifIndex-tuple
 registrations (see Section 3.6). The AERO interface uses traffic
 classifiers (e.g., DSCP value, port number, etc.) to select an
 outgoing underlying interface for each packet based on the node's own
 QoS preferences, and also to select a destination link-layer address
 based on the neighbor's underlying interface with the highest
 preference. AERO implementations SHOULD allow for QoS preference
 values to be modified at runtime through network management.

 If multiple outgoing interfaces and/or neighbor interfaces have a
 preference of "high", the AERO node replicates the packet and sends
 one copy via each of the (outgoing / neighbor) interface pairs;
 otherwise, the node sends a single copy of the packet via an
 interface with the highest preference. AERO nodes keep track of
 which underlying interfaces are currently "reachable" or
 "unreachable", and only use "reachable" interfaces for forwarding
 purposes.

 The following sections discuss the AERO interface forwarding
 algorithms for Clients, Proxys, Servers and Relays. In the following
 discussion, a packet's destination address is said to "match" if it
 is the same as a cached address, or if it is covered by a cached
 prefix (which may be encoded in an AERO address).

3.13.1. Client Forwarding Algorithm

 When an IP packet enters a Client's AERO interface from the network
 layer the Client searches for an asymmetric neighbor cache entry that
 matches the destination. If there is a match, the Client uses one or

Templin Expires October 17, 2020 [Page 32]

Internet-Draft AERO April 2020

 more "reachable" neighbor interfaces in the entry for packet
 forwarding. If there is no asymmetric neighbor cache entry, the
 Client instead forwards the packet toward a Server (the packet is
 intercepted by a Proxy if there is a Proxy on the path). The Client
 encapuslates the packet in an IPv6 header and fragments if necessary
 according to MTU requirements (see: Section 3.12).

 When an IP packet enters a Client's AERO interface from the link-
 layer, if the destination matches one of the Client's MNPs or link-
 local addresses the Client reassembles and decapsulates as necessary
 and delivers the inner packet to the network layer. Otherwise, the
 Client drops the packet and MAY return a network-layer ICMP
 Destination Unreachable message subject to rate limiting (see:

Section 3.14).

3.13.2. Proxy Forwarding Algorithm

 For control messages originating from or destined to a Client, the
 Proxy intercepts the message and updates its proxy neighbor cache
 entry for the Client. The Proxy then forwards a (proxyed) copy of
 the control message. (For example, the Proxy forwards a proxied
 version of a Client's NS/RS message to the target neighbor, and
 forwards a proxied version of the NA/RA reply to the Client.)

 When the Proxy receives a data packet from a Client within the ANET,
 ithe Proxy reassembles and re-fragments if necessary then searches
 for an asymmetric neighbor cache entry that matches the destination
 and forwards as follows:

 o if the destination matches an asymmetric neighbor cache entry, the
 Proxy uses one or more "reachable" neighbor interfaces in the
 entry for packet forwarding using SPAN encapsualtion and Segment
 Routing if necessary with the final destination set to the
 neighbor's SPAN address. If the neighbor interface is in the same
 SPAN segment, the Proxy forwards the packet directly to the
 neighbor; otherwise, it forwards the packet to a Relay.

 o else, the Proxy encapsulates and forwards the packet to a Relay
 while using the SPAN address corresponding to the packet's
 destination as the SPAN destination address.

 When the Proxy receives an encapsulated data packet from an INET
 neighbor or from a secured tunnel from a Relay, it accepts the packet
 only if data origin authentication succeeds and if there is a proxy
 neighbor cache entry that matches the inner destination. Next, the
 Proxy reassembles the packet (if necessary) and continues processing.

Templin Expires October 17, 2020 [Page 33]

Internet-Draft AERO April 2020

 Next if reassembly is complete and the neighbor cache state is
 REACHABLE, the Proxy either drops and returns a PTB (see:

Section 3.12) or forwards the packet to the Client while performing
 SPAN encapsulation and re-fragmentation to the ANET MTU size if
 necessary. If the neighbor cache entry state is DEPARTED, the Proxy
 instead changes the SPAN destination address to the address of the
 new Server and forwards it to a Relay while performing re-
 fragmentation to 1280 bytes if necessary.

3.13.3. Server/Gateway Forwarding Algorithm

 For control messages destined to a target Client's AERO address that
 are received from a secured tunnel, the Server intercepts the message
 and sends an appropriate response on behalf of the Client. (For
 example, the Server sends an NA message reply in response to an NS
 message directed to one of its associated Clients.) If the Client's
 neighbor cache entry is in the DEPARTED state, however, the Server
 instead forwards the packet to the Client's new Server as discussed
 in Section 3.19.

 When the Server receives an encapsulated data packet from an INET
 neighbor or from a secured tunnel, it accepts the packet only if data
 origin authentication succeeds. If the SPAN destination address is
 its own address, the Server continues processing as follows:

 o if the destination matches a symmetric neighbor cache entry in the
 REACHABLE state the Server prepares the packet for forwarding to
 the destination Client. The Server first reassembles (if
 necessary) and forwards the packet (while re-fragmenting if
 necessary) as specified inSection 3.12.

 o else, if the destination matches a symmetric neighbor cache entry
 in the DEPARETED state the Server re-encapsulates the packet and
 forwards it using the SPAN address of the Client's new Server as
 the destination.

 o else, if the destination matches an asymmetric neighbor cache
 entry, the Server uses one or more "reachable" neighbor interfaces
 in the entry for packet forwarding via the local INET if the
 neighbor is in the same SPAN segment or using SPAN encapsualtion
 and Segment Routing if necessary with the final destination set to
 the neighbor's SPAN address otherwise.

 o else, if the destination is an AERO address that is not assigned
 on the AERO interface the Server drops the packet.

 o else, the Server (acting as a Gateway) reassembles if necessary,
 decapsulates the packet and releases it to the network layer for

Templin Expires October 17, 2020 [Page 34]

Internet-Draft AERO April 2020

 local delivery or IP forwarding. Based on the information in the
 forwarding table, the network layer may return the packet to the
 same AERO interface in which case further processing occurs as
 below. (Note that this arrangement accommodates common
 implementations in which the IP forwarding table is not accessible
 from within the AERO interface. If the AERO interface can
 directly access the IP forwarding table (such as for in-kernel
 implementations) the forwarding table lookup can instead be
 performed internally from within the AERO interface itself.)

 When the Server's AERO interface receives a data packet from the
 network layer or from a VPNed or Direct Client, it performs SPAN
 encapsualtion and fragmentation if necessary, then processes the
 packet according to the network-layer destination address as follows:

 o if the destination matches a symmetric or asymmetric neighbor
 cache entry the Server processes the packet as above.

 o else, the Server encapsulates the packet and forwards it to a
 Relay using its own SPAN address as the source and the SPAN
 address corresponding to the destination as the destination.

3.13.4. Relay Forwarding Algorithm

 Relays forward packets over secured tunnels the same as any IP
 router. When the Relay receives an encapsulated packet via a secured
 tunnel, it removes the INET header and searches for a forwarding
 table entry that matches the destination address in the next header.
 The Relay then processes the packet as follows:

 o if the destination matches one of the Relay's own addresses, the
 Relay submits the packet for local delivery.

 o else, if the destination matches a forwarding table entry the
 Relay forwards the packet via a secured tunnel to the next hop.
 If the destination matches an MSP without matching an MNP,
 however, the Relay instead drops the packet and returns an ICMP
 Destination Unreachable message subject to rate limiting (see:

Section 3.14).

 o else, the Relay drops the packet and returns an ICMP Destination
 Unreachable as above.

 As for any IP router, the Relay decrements the TTL/Hop Limit when it
 forwards the packet. Therefore, only the Hop Limit in the SPAN
 header is decremented, and not the TTL/Hop Limit in the inner packet
 header.

Templin Expires October 17, 2020 [Page 35]

Internet-Draft AERO April 2020

3.14. AERO Interface Error Handling

 When an AERO node admits a packet into the AERO interface, it may
 receive link-layer or network-layer error indications.

 A link-layer error indication is an ICMP error message generated by a
 router in the INET on the path to the neighbor or by the neighbor
 itself. The message includes an IP header with the address of the
 node that generated the error as the source address and with the
 link-layer address of the AERO node as the destination address.

 The IP header is followed by an ICMP header that includes an error
 Type, Code and Checksum. Valid type values include "Destination
 Unreachable", "Time Exceeded" and "Parameter Problem"
 [RFC0792][RFC4443]. (AERO interfaces ignore all link-layer IPv4
 "Fragmentation Needed" and IPv6 "Packet Too Big" messages since they
 only emit packets that are guaranteed to be no larger than the IP
 minimum link MTU as discussed in Section 3.12.)

 The ICMP header is followed by the leading portion of the packet that
 generated the error, also known as the "packet-in-error". For
 ICMPv6, [RFC4443] specifies that the packet-in-error includes: "As
 much of invoking packet as possible without the ICMPv6 packet
 exceeding the minimum IPv6 MTU" (i.e., no more than 1280 bytes). For
 ICMPv4, [RFC0792] specifies that the packet-in-error includes:
 "Internet Header + 64 bits of Original Data Datagram", however

[RFC1812] Section 4.3.2.3 updates this specification by stating: "the
 ICMP datagram SHOULD contain as much of the original datagram as
 possible without the length of the ICMP datagram exceeding 576
 bytes".

 The link-layer error message format is shown in Figure 5 (where, "L2"
 and "L3" refer to link-layer and network-layer, respectively):

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812#section-4.3.2.3

Templin Expires October 17, 2020 [Page 36]

Internet-Draft AERO April 2020

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~
 | L2 IP Header of |
 | error message |
 ~ ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | L2 ICMP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 ~ ~ P
 | IP and other encapsulation | a
 | headers of original L3 packet | c
 ~ ~ k
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ e
 ~ ~ t
 | IP header of |
 | original L3 packet | i
 ~ ~ n
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~ ~ e
 | Upper layer headers and | r
 | leading portion of body | r
 | of the original L3 packet | o
 ~ ~ r
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 5: AERO Interface Link-Layer Error Message Format

 The AERO node rules for processing these link-layer error messages
 are as follows:

 o When an AERO node receives a link-layer Parameter Problem message,
 it processes the message the same as described as for ordinary
 ICMP errors in the normative references [RFC0792][RFC4443].

 o When an AERO node receives persistent link-layer Time Exceeded
 messages, the IP ID field may be wrapping before earlier fragments
 awaiting reassembly have been processed. In that case, the node
 should begin including integrity checks and/or institute rate
 limits for subsequent packets.

 o When an AERO node receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its asymmetric neighbor correspondents, the node
 should process the message as an indication that a path may be
 failing, and optionally initiate NUD over that path. If it
 receives Destination Unreachable messages over multiple paths, the
 node should allow future packets destined to the correspondent to
 flow through a default route and re-initiate route optimization.

https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires October 17, 2020 [Page 37]

Internet-Draft AERO April 2020

 o When an AERO Client receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its symmetric neighbor Servers, the Client should
 mark the path as unusable and use another path. If it receives
 Destination Unreachable messages on many or all paths, the Client
 should associate with a new Server and release its association
 with the old Server as specified in Section 3.19.5.

 o When an AERO Server receives persistent link-layer Destination
 Unreachable messages in response to encapsulated packets that it
 sends to one of its symmetric neighbor Clients, the Server should
 mark the underlying path as unusable and use another underlying
 path.

 o When an AERO Server or Proxy receives link-layer Destination
 Unreachable messages in response to an encapsulated packet that it
 sends to one of its permanent neighbors, it treats the messages as
 an indication that the path to the neighbor may be failing.
 However, the dynamic routing protocol should soon reconverge and
 correct the temporary outage.

 When an AERO Relay receives a packet for which the network-layer
 destination address is covered by an MSP, if there is no more-
 specific routing information for the destination the Relay drops the
 packet and returns a network-layer Destination Unreachable message
 subject to rate limiting. The Relay writes the network-layer source
 address of the original packet as the destination address and uses
 one of its non link-local addresses as the source address of the
 message.

 When an AERO node receives an encapsulated packet for which the
 reassembly buffer it too small, it drops the packet and returns a
 network-layer Packet Too Big (PTB) message. The node first writes
 the MRU value into the PTB message MTU field, writes the network-
 layer source address of the original packet as the destination
 address and writes one of its non link-local addresses as the source
 address.

3.15. AERO Router Discovery, Prefix Delegation and Autoconfiguration

 AERO Router Discovery, Prefix Delegation and Autoconfiguration are
 coordinated as discussed in the following Sections.

3.15.1. AERO ND/PD Service Model

 Each AERO Server on the link configures a PD service to facilitate
 Client requests. Each Server is provisioned with a database of MNP-
 to-Client ID mappings for all Clients enrolled in the AERO service,

Templin Expires October 17, 2020 [Page 38]

Internet-Draft AERO April 2020

 as well as any information necessary to authenticate each Client.
 The Client database is maintained by a central administrative
 authority for the AERO link and securely distributed to all Servers,
 e.g., via the Lightweight Directory Access Protocol (LDAP) [RFC4511],
 via static configuration, etc. Clients receive the same service
 regardless of the Servers they select.

 AERO Clients and Servers use ND messages to maintain neighbor cache
 entries. AERO Servers configure their AERO interfaces as advertising
 NBMA interfaces, and therefore send unicast RA messages with a short
 Router Lifetime value (e.g., REACHABLE_TIME seconds) in response to a
 Client's RS message. Thereafter, Clients send additional RS messages
 to keep Server state alive.

 AERO Clients and Servers include PD parameters in RS/RA messages (see
 [I-D.templin-6man-dhcpv6-ndopt] for ND/PD alternatives). The unified
 ND/PD messages are exchanged between Client and Server according to
 the prefix management schedule required by the PD service. If the
 Client knows its MNP in advance, it can instead employ prefix
 registration by including its AERO address as the source address of
 an RS message and with an OMNI option with valid prefix registration
 information for the MNP. If the Server (and Proxy) accept the
 Client's MNP assertion, they inject the prefix into the routing
 system and establish the necessary neighbor cache state.

 The following sections specify the Client and Server behavior.

3.15.2. AERO Client Behavior

 AERO Clients discover the addresses of Servers in a similar manner as
 described in [RFC5214]. Discovery methods include static
 configuration (e.g., from a flat-file map of Server addresses and
 locations), or through an automated means such as Domain Name System
 (DNS) name resolution [RFC1035]. Alternatively, the Client can
 discover Server addresses through a layer 2 data link login exchange,
 or through a unicast RA response to a multicast/anycast RS as
 described below. In the absence of other information, the Client can
 resolve the DNS Fully-Qualified Domain Name (FQDN)
 "linkupnetworks.[domainname]" where "linkupnetworks" is a constant
 text string and "[domainname]" is a DNS suffix for the AERO link
 (e.g., "example.com").

 To associate with a Server, the Client acts as a requesting router to
 request MNPs. The Client prepares an RS message with PD parameters
 and includes a Nonce and Timestamp option if the Client needs to
 correlate RA replies. If the Client already knows the Server's AERO
 address, it includes the AERO address as the network-layer
 destination address; otherwise, it includes the link-scoped All-

https://datatracker.ietf.org/doc/html/rfc4511
https://datatracker.ietf.org/doc/html/rfc5214
https://datatracker.ietf.org/doc/html/rfc1035

Templin Expires October 17, 2020 [Page 39]

Internet-Draft AERO April 2020

 Routers multicast (ff02::2) or Subnet-Router anycast (fe80::) address
 as the network-layer destination. If the Client already knows its
 own AERO address, it uses the AERO address as the network-layer
 source address; otherwise, it uses the unspecified IPv6 address
 (::/128) as the network-layer source address.

 The Client next includes an OMNI option in the RS message to register
 its link-layer information with the Server. The Client sets the OMNI
 option prefix registration information according to the MNP, and
 includes an ifIndex-tuple with S set to '1' corresponding to the
 underlying interface over which the Client will send the RS message.
 The Client MAY include additional ifIndex-tuples specific to other
 underlying interfaces. The Client MAY also include an SLLAO
 corresponding to the OMNI option ifIndex-tuple with S set to '1'.

 The Client then sends the RS message (either directly via Direct
 interfaces, via INET encapsulation for NATed interfaces, via a VPN
 for VPNed interfaces, via a Proxy for proxyed interfaces or via a
 Relay for native interfaces) and waits for an RA message reply (see

Section 3.15.3). The Client retries up to MAX_RTR_SOLICITATIONS
 times until an RA is received. If the Client receives no RAs, or if
 it receives an RA with Router Lifetime set to 0, the Client SHOULD
 abandon this Server and try another Server. Otherwise, the Client
 processes the PD information found in the RA message.

 Next, the Client creates a symmetric neighbor cache entry with the
 Server's AERO address as the network-layer address and the Server's
 encapsulation and/or link-layer addresses as the link-layer address.
 The Client records the RA Router Lifetime field value in the neighbor
 cache entry as the time for which the Server has committed to
 maintaining the MNP in the routing system via this underlying
 interface, and caches the other RA configuration information
 including Cur Hop Limit, M and O flags, Reachable Time and Retrans
 Timer. The Client then autoconfigures AERO addresses for each of the
 delegated MNPs and assigns them to the AERO interface. The Client
 also caches any MSPs included in Route Information Options (RIOs)
 [RFC4191] as MSPs to associate with the AERO link, and assigns the
 MTU value in the MTU option to the underlying interface.

 The Client then registers additional underlying interfaces with the
 Server by sending RS messages via each additional interface. The RS
 messages include the same parameters as for the initial RS/RA
 exchange, but with destination address set to the Server's AERO
 address.

 Following autoconfiguration, the Client sub-delegates the MNPs to its
 attached EUNs and/or the Client's own internal virtual interfaces as
 described in [I-D.templin-v6ops-pdhost] to support the Client's

https://datatracker.ietf.org/doc/html/rfc4191

Templin Expires October 17, 2020 [Page 40]

Internet-Draft AERO April 2020

 downstream attached "Internet of Things (IoT)". The Client
 subsequently sends additional RS messages over each underlying
 interface before the Router Lifetime received for that interface
 expires.

 After the Client registers its underlying interfaces, it may wish to
 change one or more registrations, e.g., if an interface changes
 address or becomes unavailable, if QoS preferences change, etc. To
 do so, the Client prepares an RS message to send over any available
 underlying interface. The RS includes an OMNI option with prefix
 registration information specific to its MNP, with an ifIndex-tuple
 specific to the selected underlying interface with S set to '1', and
 with any additional ifIndex-tuples specific to other underlying
 interfaces. The Client includes fresh ifIndex-tuple values to update
 the Server's neighbor cache entry. When the Client receives the
 Server's RA response, it has assurance that the Server has been
 updated with the new information.

 If the Client wishes to discontinue use of a Server it issues an RS
 message over any underlying interface with an OMNI option with a
 prefix release indication. When the Server processes the message, it
 releases the MNP, sets the symmetric neighbor cache entry state for
 the Client to DEPARTED and returns an RA reply with Router Lifetime
 set to 0. After a short delay (e.g., 2 seconds), the Server
 withdraws the MNP from the routing system.

3.15.3. AERO Server Behavior

 AERO Servers act as IP routers and support a PD service for Clients.
 Servers arrange to add their AERO addresses to a static map of Server
 addresses for the link and/or the DNS resource records for the FQDN
 "linkupnetworks.[domainname]" before entering service. Server
 addresses should be geographically and/or topologically referenced,
 and made available for discovery by Clients on the AERO link.

 When a Server receives a prospective Client's RS message on its AERO
 interface, it SHOULD return an immediate RA reply with Router
 Lifetime set to 0 if it is currently too busy or otherwise unable to
 service the Client. Otherwise, the Server authenticates the RS
 message and processes the PD parameters. The Server first determines
 the correct MNPs to delegate to the Client by searching the Client
 database. When the Server delegates the MNPs, it also creates a
 forwarding table entry for each MNP so that the MNPs are propagated
 into the routing system (see: Section 3.3). For IPv6, the Server
 creates an IPv6 forwarding table entry for each MNP. For IPv4, the
 Server creates an IPv6 forwarding table entry with the SPAN
 Compatibility Prefix (SCP) corresponding to the IPv4 address.

Templin Expires October 17, 2020 [Page 41]

Internet-Draft AERO April 2020

 The Server next creates a symmetric neighbor cache entry for the
 Client using the base AERO address as the network-layer address and
 with lifetime set to no more than the smallest PD lifetime. Next,
 the Server updates the neighbor cache entry by recording the
 information in each ifIndex-tuple in the RS OMNI option. The Server
 also records the actual SPAN/INET addresses in the neighbor cache
 entry.

 Next, the Server prepares an RA message using its AERO address as the
 network-layer source address and the network-layer source address of
 the RS message as the network-layer destination address. The Server
 sets the Router Lifetime to the time for which it will maintain both
 this underlying interface individually and the symmetric neighbor
 cache entry as a whole. The Server also sets Cur Hop Limit, M and O
 flags, Reachable Time and Retrans Timer to values appropriate for the
 AERO link. The Server includes the delegated MNPs, any other PD
 parameters and an OMNI option with no ifIndex-tuples. The Server
 then includes one or more RIOs that encode the MSPs for the AERO
 link, plus an MTU option (see Section 3.12). The Server finally
 forwards the message to the Client using SPAN/INET, INET, or NULL
 encapsulation as necessary.

 After the initial RS/RA exchange, the Server maintains a
 ReachableTime timer for each of the Client's underlying interfaces
 individually (and for the Client's symmetric neighbor cache entry
 collectively) set to expire after Router Lifetime seconds. If the
 Client (or Proxy) issues additional RS messages, the Server sends an
 RA response and resets ReachableTime. If the Server receives an ND
 message with PD release indication it sets the Client's symmetric
 neighbor cache entry to the DEPARTED state and withdraws the MNP from
 the routing system after a short delay (e.g., 2 seconds). If
 ReachableTime expires before a new RS is received on an individual
 underlying interface, the Server marks the interface as DOWN. If
 ReachableTime expires before any new RS is received on any individual
 underlying interface, the Server deletes the neighbor cache entry and
 withdraws the MNP without delay.

 The Server processes any ND/PD messages pertaining to the Client and
 returns an NA/RA reply in response to solicitations. The Server may
 also issue unsolicited RA messages, e.g., with PD reconfigure
 parameters to cause the Client to renegotiate its PDs, with Router
 Lifetime set to 0 if it can no longer service this Client, etc.
 Finally, If the symmetric neighbor cache entry is in the DEPARTED
 state, the Server deletes the entry after DepartTime expires.

 Note: Clients SHOULD notify former Servers of their departures, but
 Servers are responsible for expiring neighbor cache entries and
 withdrawing routes even if no departure notification is received

Templin Expires October 17, 2020 [Page 42]

Internet-Draft AERO April 2020

 (e.g., if the Client leaves the network unexpectedly). Servers
 SHOULD therefore set Router Lifetime to REACHABLE_TIME seconds in
 solicited RA messages to minimize persistent stale cache information
 in the absence of Client departure notifications. A short Router
 Lifetime also ensures that proactive Client/Server RS/RA messaging
 will keep any NAT state alive (see above).

 Note: All Servers on an AERO link MUST advertise consistent values in
 the RA Cur Hop Limit, M and O flags, Reachable Time and Retrans Timer
 fields the same as for any link, since unpredictable behavior could
 result if different Servers on the same link advertised different
 values.

3.15.3.1. Lightweight DHCPv6 Relay Agent (LDRA)

 When DHCPv6 is used as the ND/PD service back end, AERO Clients and
 Servers are always on the same link (i.e., the AERO link) from the
 perspective of DHCPv6. However, in some implementations the DHCPv6
 server and ND function may be located in separate modules. In that
 case, the Server's AERO interface module can act as a Lightweight
 DHCPv6 Relay Agent (LDRA)[RFC6221] to relay PD messages to and from
 the DHCPv6 server module.

 When the LDRA receives an authentic RS message, it extracts the PD
 message parameters and uses them to construct an IPv6/UDP/DHCPv6
 message. It sets the IPv6 source address to the source address of
 the RS message, sets the IPv6 destination address to
 'All_DHCP_Relay_Agents_and_Servers' and sets the UDP fields to values
 that will be understood by the DHCPv6 server.

 The LDRA then wraps the message in a DHCPv6 'Relay-Forward' message
 header and includes an 'Interface-Id' option that includes enough
 information to allow the LDRA to forward the resulting Reply message
 back to the Client (e.g., the Client's link-layer addresses, a
 security association identifier, etc.). The LDRA also wraps the OMNI
 option and SLLAO into the Interface-Id option, then forwards the
 message to the DHCPv6 server.

 When the DHCPv6 server prepares a Reply message, it wraps the message
 in a 'Relay-Reply' message and echoes the Interface-Id option. The
 DHCPv6 server then delivers the Relay-Reply message to the LDRA,
 which discards the Relay-Reply wrapper and IPv6/UDP headers, then
 uses the DHCPv6 message to construct an RA response to the Client.
 The Server uses the information in the Interface-Id option to prepare
 the RA message and to cache the link-layer addresses taken from the
 OMNI option and SLLAO echoed in the Interface-Id option.

https://datatracker.ietf.org/doc/html/rfc6221

Templin Expires October 17, 2020 [Page 43]

Internet-Draft AERO April 2020

3.16. The AERO Proxy

 Clients may connect to ANETs that deploy perimeter security services
 to facilitate communications to Servers in outside INETs. In that
 case, the ANET can employ an AERO Proxy. The Proxy is located at the
 ANET/INET border and listens for RS messages originating from or RA
 messages destined to ANET Clients. The Proxy acts on these control
 messages as follows:

 o when the Proxy receives an RS message from a new ANET Client, it
 first authenticates the message then examines the network-layer
 destination address. If the destination address is a Server's
 AERO address, the Proxy proceeds to the next step. Otherwise, if
 the destination is All-Routers multicast or Subnet-Router anycast,
 the Proxy selects a "nearby" Server that is likely to be a good
 candidate to serve the Client and replaces the destination address
 with the Server's AERO address. Next, the Proxy creates a proxy
 neighbor cache entry and caches the Client and Server link-layer
 addresses along with the OMNI option information and any other
 identifying information including Transaction IDs, Client
 Identifiers, Nonce values, etc. The Proxy finally encapsulates
 the (proxyed) RS message in a SPAN header with source set to the
 Proxy's SPAN address and destination set to the Server's SPAN
 address then forwards the message into the SPAN.

 o when the Server receives the RS, it authenticates the message then
 creates or updates a symmetric neighbor cache entry for the Client
 with the Proxy's SPAN address as the link-layer address. The
 Server then sends an RA message back to the Proxy via the SPAN.

 o when the Proxy receives the RA, it authenticates the message and
 matches it with the proxy neighbor cache entry created by the RS.
 The Proxy then caches the PD route information as a mapping from
 the Client's MNPs to the Client's ANET address, caches the
 Server's advertised Router Lifetime and sets the neighbor cache
 entry state to REACHABLE. The Proxy then sets the P bit in the RA
 flags field, optionally rewrites the Router Lifetime and forwards
 the (proxyed) message to the Client. The Proxy finally includes
 an MTU option (if necessary) with an MTU to use for the underlying
 ANET interface.

 After the initial RS/RA exchange, the Proxy forwards any Client data
 packets for which there is no matching asymmetric neighbor cache
 entry to a Relay using SPAN encapsulation with its own SPAN address
 as the source and the SPAN address corresponding to the Client as the
 destination. The Proxy instead forwards any Client data destined to
 an asymmetric neighbor cache target directly to the target according

Templin Expires October 17, 2020 [Page 44]

Internet-Draft AERO April 2020

 to the SPAN/link-layer information - the process of establishing
 asymmetric neighbor cache entries is specified in Section 3.17.

 While the Client is still attached to the ANET, the Proxy sends NS,
 RS and/or unsolicited NA messages to update the Server's symmetric
 neighbor cache entries on behalf of the Client and/or to convey QoS
 updates. This allows for higher-frequency Proxy-initiated RS/RA
 messaging over well-connected INET infrastructure supplemented by
 lower-frequency Client-initiated RS/RA messaging over constrained
 ANET data links.

 If the Server ceases to send solicited advertisements, the Proxy
 sends unsolicited RAs on the ANET interface with destination set to
 All-Nodes multicast (ff02::1) and with Router Lifetime set to zero to
 inform Clients that the Server has failed. Although the Proxy
 engages in ND exchanges on behalf of the Client, the Client can also
 send ND messages on its own behalf, e.g., if it is in a better
 position than the Proxy to convey QoS changes, etc. For this reason,
 the Proxy marks any Client-originated solicitation messages (e.g. by
 inserting a Nonce option) so that it can return the solicited
 advertisement to the Client instead of processsing it locally.

 If the Client becomes unreachable, the Proxy sets the neighbor cache
 entry state to DEPARTED and retains the entry for DEPART_TIME
 seconds. While the state is DEPARTED, the Proxy forwards any packets
 destined to the Client to a Relay via SPAN encapsulation with the
 Client's current Server as the destination. The Relay in turn
 forwards the packets to the Client's current Server. When DepartTime
 expires, the Proxy deletes the neighbor cache entry and discards any
 further packets destined to this (now forgotten) Client.

 In some ANETs that employ a Proxy, the Client's MNP can be injected
 into the ANET routing system. In that case, the Client can send data
 messages without encapsulation so that the ANET native routing system
 transports the unencapsulated packets to the Proxy. This can be very
 beneficial, e.g., if the Client connects to the ANET via low-end data
 links such as some aviation wireless links.

 If the first-hop ANET access router is AERO-aware, the Client can
 avoid encapsulation for both its control and data messages. When the
 Client connects to the link, it can send an unencapsulated RS message
 with source address set to its AERO address and with destination
 address set to the AERO address of the Client's selected Server or to
 All-Routers multicast or Subnet-Router anycast. The Client includes
 an OMNI option formatted as specified in
 [I-D.templin-6man-omni-interface].

Templin Expires October 17, 2020 [Page 45]

Internet-Draft AERO April 2020

 The Client then sends the unencapsulated RS message, which will be
 intercepted by the AERO-Aware access router. The access router then
 encapsulates the RS message in an ANET header with its own address as
 the source address and the address of a Proxy as the destination
 address. The access router further remembers the address of the
 Proxy so that it can encapsulate future data packets from the Client
 via the same Proxy. If the access router needs to change to a new
 Proxy, it simply sends another RS message toward the Server via the
 new Proxy on behalf of the Client.

 In some cases, the access router and Proxy may be one and the same
 node. In that case, the node would be located on the same physical
 link as the Client, but its message exchanges with the Server would
 need to pass through a security gateway at the ANET/INET border. The
 method for deploying access routers and Proxys (i.e. as a single node
 or multiple nodes) is an ANET-local administrative consideration.

3.16.1. Detecting and Responding to Server Failures

 In environments where fast recovery from Server failure is required,
 Proxys SHOULD use proactive Neighbor Unreachability Detection (NUD)
 to track Server reachability in a similar fashion as for
 Bidirectional Forwarding Detection (BFD) [RFC5880]. Proxys can then
 quickly detect and react to failures so that cached information is
 re-established through alternate paths. The NUD control messaging is
 carried only over well-connected ground domain networks (i.e., and
 not low-end aeronautical radio links) and can therefore be tuned for
 rapid response.

 Proxys perform proactive NUD with Servers for which there are
 currently active ANET Clients by sending continuous NS messages in
 rapid succession, e.g., one message per second. The Proxy sends the
 NS message via the SPAN with the Proxy's AERO address as the source
 and the AERO address of the Server as the destination. When the
 Proxy is also sending RS messages to the Server on behalf of ANET
 Clients, the resulting RA responses can be considered as equivalent
 hints of forward progress. This means that the Proxy need not also
 send a periodic NS if it has already sent an RS within the same
 period. If the Server fails (i.e., if the Proxy ceases to receive
 advertisements), the Proxy can quickly inform Clients by sending
 multicast RA messages on the ANET interface.

 The Proxy sends RA messages on the ANET interface with source address
 set to the Server's address, destination address set to All-Nodes
 multicast, and Router Lifetime set to 0. The Proxy SHOULD send
 MAX_FINAL_RTR_ADVERTISEMENTS RA messages separated by small delays
 [RFC4861]. Any Clients on the ANET that had been using the failed
 Server will receive the RA messages and associate with a new Server.

https://datatracker.ietf.org/doc/html/rfc5880
https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires October 17, 2020 [Page 46]

Internet-Draft AERO April 2020

3.16.2. Point-to-Multipoint Server Coordindation

 In environments where Client messaging over ANETs is bandwidth-
 limited and/or expensive, Clients can enlist the services of the
 Proxy to coordinate with multiple Servers in a single RS/RA message
 exchange. The Client can send a single RS message to All-Routers
 multicast that includes the ID's of multiple Servers in MS-Register
 sub-options of the OMNI option,.

 When the Proxy receives the RS and processes the OMNI option, it
 performs a separate RS/RA exchange with each MS-Register Server.
 When it has received the RA messages, it creates an "aggregate" RA
 message to return to the Client with an OMNI option with each
 responding Server's ID recorded in an MS-Register sub-option.

 Client's can thereafter employ efficient point-to-multipoint Server
 coordination under the assistance of the Proxy to dramatically reduce
 the number of messages sent over the ANET while enlisting the support
 of multiple Servers for fault tolerance. Clients can further include
 MS-Release suboptions in RS messages to request the Proxy to release
 from former Servers via the procedures discussed in Section 3.19.5.

 The OMNI interface specification [I-D.templin-6man-omni-interface]
 provides further discussion of the Client/Proxy RS/RA messaging
 involved in point-to-multipoint coordination.

3.17. AERO Route Optimization

 While data packets are flowing between a source and target node,
 route optimization SHOULD be used. Route optimization is initiated
 by the first eligible Route Optimization Source (ROS) closest to the
 source as follows:

 o For Clients on VPNed and Direct interfaces, the Server is the ROS.

 o For Clients on Proxyed interfaces, the Proxy is the ROS.

 o For Clients on native and NATed interfaces, the Client itself is
 the ROS.

 o For correspondent nodes on INET/EUN interfaces serviced by a
 Gateway, the Gateway is the ROS.

 The route optimization procedure is conducted between the ROS and the
 target Server/Gateway acting as a Route Optimization Responder (ROR)
 in the same manner as for IPv6 ND Address Resolution and using the
 same NS/NA messaging. The target may either be a MNP Client serviced
 by a Server, or a non-MNP correspondent reachable via a Gateway.

Templin Expires October 17, 2020 [Page 47]

Internet-Draft AERO April 2020

 The procedures are specified in the following sections.

3.17.1. Route Optimization Initiation

 While data packets are flowing from the source node toward a target
 node, the ROS performs address resolution by sending an NS message
 for Address Resolution (NS(AR)) to receive a solicited NA message
 from the ROR. When the ROS sends an NS(AR), it includes:

 o the AERO address of the ROS as the source address.

 o the data packet's destination as the Target Address.

 o the Solicited-Node multicast address [RFC4291] formed from the
 lower 24 bits of the data packet's destination as the destination
 address, e.g., for 2001:db8:1:2::10:2000 the NS destination
 address is ff02:0:0:0:0:1:ff10:2000.

 The NS(AR) message includes an OMNI option with no ifIndex-tuples and
 no SLLAO, such that the target will not create a neighbor cache
 entry.

 The ROS then encapsulates the NS(AR) message in a SPAN header with
 source set to its own SPAN address and destination set to the SPAN
 address corresponding to the packet's final destination, then sends
 the message into the SPAN without decrementing the network-layer TTL/
 Hop Limit field.

3.17.2. Relaying the NS

 When the Relay receives the NS(AR) message from the ROS, it discards
 the INET header and determines that the ROR is the next hop by
 consulting its standard IPv6 forwarding table for the SPAN header
 destination address. The Relay then forwards the message toward the
 ROR via the SPAN the same as for any IPv6 router. The final-hop
 Relay in the SPAN will deliver the message via a secured tunnel to
 the ROR.

3.17.3. Processing the NS and Sending the NA

 When the ROR receives the NS(AR) message, it examines the Target
 Address to determine whether it has a neighbor cache entry and/or
 route that matches the target. If there is no match, the ROR drops
 the NS(AR) message. Otherwise, the ROR continues processing as
 follows:

 o if the target belongs to an MNP Client neighbor in the DEPARTED
 state the ROR changes the NS(AR) message SPAN destination address

https://datatracker.ietf.org/doc/html/rfc4291

Templin Expires October 17, 2020 [Page 48]

Internet-Draft AERO April 2020

 to the SPAN address of the Client's new Server, forwards the
 message into the SPAN and returns from processing.

 o If the target belongs to an MNP Client neighbor in the REACHABLE
 state, the ROR instead adds the AERO source address to the target
 Client's Report List with time set to ReportTime.

 o If the target belongs to a non-MNP route, the ROR continues
 processing without adding an entry to the Report List.

 The ROR then prepares a solicited NA message to send back to the ROS
 but does not create a neighbor cache entry. The ROR sets the NA
 source address to the AERO address corresponding to the target, sets
 the Target Address to the target of the solicitation, and sets the
 destination address to the source of the solicitation.

 The ROR then includes an OMNI option with prefix registration length
 set to the length of the MNP if the target is an MNP Client;
 otherwise, set to the maximum of the non-MNP prefix length and 64.
 (Note that a /64 limit is imposed to avoid causing the ROS to set
 short prefixes (e.g., "default") that would match destinations for
 which the routing system includes more-specific prefixes.)

 If the target is an MNP Client, the ROR next includes ifIndex-tuples
 in the OMNI option for each of the target Client's underlying
 interfaces with current information for each interface and with the S
 flag set to 0. The ROR then includes a TLLAO with ifIndex-tuples in
 one-to-one correspondence with the tuples that appear in the OMNI
 option.

 For VPNed, Direct and Proxyed interfaces, the ROR includes the IDs of
 all SPAN routers in the path in the Segment Routing List while
 setting the final entry to its own SPAN ID for VPNed and Direct
 interfaces or to the SPAN ID of the Proxy for Proxyed interfaces.
 For NATed and Native interfaces, if the ROS and ROR are located in
 the same SPAN partition and Segment Routing is not needed the ROR
 sets the Link Layer Address and Port Number (if necessary) to the
 Client's INET addresss for that interface. Otherwise, the ROR
 includes a Segment Routing List with its own SPAN ID as the final
 entry and omits the Link Layer Address.

 The ROR then sets the NA message R flag to 1 (as a router), S flag to
 1 (as a response to a solicitation), and O flag to 0 (as a proxy).
 The ROR finally encapsulates the NA message in a SPAN header with
 source set to its own SPAN address and destination set to the source
 SPAN address of the NS(AR) message, then forwards the message into
 the SPAN without decrementing the network-layer TTL/Hop Limit field.

Templin Expires October 17, 2020 [Page 49]

Internet-Draft AERO April 2020

3.17.4. Relaying the NA

 When the Relay receives the NA message from the ROR, it discards the
 INET header and determines that the ROS is the next hop by consulting
 its standard IPv6 forwarding table for the SPAN header destination
 address. The Relay then forwards the SPAN-encapsulated NA message
 toward the ROS the same as for any IPv6 router. The final-hop Relay
 in the SPAN will deliver the message via a secured tunnel to the ROS.

3.17.5. Processing the NA

 When the ROS receives the solicited NA message, it processes the
 message the same as for standard IPv6 Address Resolution [RFC4861].
 In the process, it caches the source SPAN address then creates an
 asymmetric neighbor cache entry for the ROR and caches all
 information found in the OMNI and TLLAO options. The ROS finally
 sets the asymmetric neighbor cache entry lifetime to REACHABLE_TIME
 seconds.

3.17.6. Route Optimization Maintenance

 Following route optimization, the ROS forwards future data packets
 destined to the target via the addresses found in the cached link-
 layer information. The route optimization is shared by all sources
 that send packets to the target via the ROS, i.e., and not just the
 source on behalf of which the route optimization was initiated.

 While new data packets destined to the target are flowing through the
 ROS, it sends additional NS(AR) messages to the ROR before
 ReachableTime expires to receive a fresh solicited NA message the
 same as described in the previous sections (route optimization
 refreshment strategies are an implementation matter, with a non-
 normative example given in Appendix B.1). The ROS uses the cached
 SPAN address of the ROR as the NS(AR) SPAN destination address, and
 sends up to MAX_MULTICAST_SOLICIT NS(AR) messages separated by 1
 second until an NA is received. If no NA is received, the ROS
 assumes that the current ROR has become unreachable and deletes the
 neighbor cache entry. Subsequent data packets will trigger a new
 route optimization per Section 3.17.1 to discover a new ROR while
 initial data packets travel over a suboptimal route.

 If an NA is received, the ROS then updates the asymmetric neighbor
 cache entry to refresh ReachableTime, while (for MNP destinations)
 the ROR adds or updates the ROS address to the target Client's Report
 List and with time set to ReportTime. While no data packets are
 flowing, the ROS instead allows ReachableTime for the asymmetric
 neighbor cache entry to expire. When ReachableTime expires, the ROS

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires October 17, 2020 [Page 50]

Internet-Draft AERO April 2020

 deletes the asymmetric neighbor cache entry. Any future data packets
 flowing through the ROS will again trigger a new route optimization.

 The ROS may also receive unsolicited NA messages from the ROR at any
 time (see: Section 3.19). If there is an asymmetric neighbor cache
 entry for the target, the ROS updates the link-layer information but
 does not update ReachableTime since the receipt of an unsolicited NA
 does not confirm that any forward paths are working. If there is no
 asymmetric neighbor cache entry, the ROS simply discards the
 unsolicited NA.

 In this arrangement, the ROS holds an asymmetric neighbor cache entry
 for the ROR, but the ROR does not hold an asymmetric neighbor cache
 entry for the ROS. The route optimization neighbor relationship is
 therefore asymmetric and unidirectional. If the target node also has
 packets to send back to the source node, then a separate route
 optimization procedure is performed in the reverse direction. But,
 there is no requirement that the forward and reverse paths be
 symmetric.

3.18. Neighbor Unreachability Detection (NUD)

 AERO nodes perform Neighbor Unreachability Detection (NUD) per
 [RFC4861] either reactively in response to persistent link-layer
 errors (see Section 3.14) or proactively to confirm reachability.
 The NUD algorithm is based on periodic control message exchanges.
 The algorithm may further be seeded by ND hints of forward progress,
 but care must be taken to avoid inferring reachability based on
 spoofed information. For example, authentic IPv6 ND message
 exchanges may be considered as acceptable hints of forward progress,
 while spurious data packets should not be.

 AERO Servers, Proxys and Gateways can use standard NS/NA NUD
 exchanges sent over the SPAN to securely test reachability without
 risk of DoS attacks from nodes pretending to be a neighbor; Proxys
 can further perform NUD to securely verify Server reachability on
 behalf of their proxyed Clients. However, a means for a ROS to test
 the unsecured forward directions of target route optimized paths is
 also necessary.

 When an ROR directs an ROS to a neighbor with one or more target
 link-layer addresses, the ROS can proactively test each such
 unsecured route optimized path by sending "loopback" NS(NUD)
 messages. While testing the paths, the ROS can optionally continue
 to send packets via the SPAN, maintain a small queue of packets until
 target reachability is confirmed, or (optimistically) allow packets
 to flow via the route optimized paths.

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires October 17, 2020 [Page 51]

Internet-Draft AERO April 2020

 When the ROS sends a loopback NS(NUD) message, it uses its AERO
 address as both the IPv6 source and destination address, and the MNP
 Subnet-Router anycast address as the Target Address. The ROS
 includes a Nonce and Timestamp option, then encapsulates the message
 in SPAN/INET headers with its own SPAN address as the source and the
 SPAN address of the route optimization target as the destination.
 The ROS then forwards the message to the target (either directly to
 the link layer address of the target if the target is in the same
 SPAN segment, or via a Relay if the target is in a different SPAN
 segment).

 When the route optimization target receives the NS(NUD) message, it
 notices that the IPv6 destination address is the same as the source
 address. It then reverses the SPAN source and destination addresses
 and returns the message to the ROS (either directly or via the SPAN).
 The route optimization target does not decrement the NS(NUD) message
 IPv6 Hop-Limit in the process, since the message has not exited the
 SPAN.

 When the ROS receives the NS(NUD) message, it can determine from the
 Nonce, Timestamp and Target Address that the message originated from
 itself and that it transited the forward path. The ROS need not
 prepare an NA response, since the destination of the response would
 be itself and testing the route optimization path again would be
 redundant.

 The ROS marks route optimization target paths that pass these NUD
 tests as "reachable", and those that do not as "unreachable". These
 markings inform the AERO interface forwarding algorithm specified in

Section 3.13.

 Note that to avoid a DoS vector nodes MUST NOT return loopback
 NS(NUD) messages received from an unsecured link-layer source via a
 secured SPAN path.

3.19. Mobility Management and Quality of Service (QoS)

 AERO is a Distributed Mobility Management (DMM) service. Each Server
 is responsible for only a subset of the Clients on the AERO link, as
 opposed to a Centralized Mobility Management (CMM) service where
 there is a single network mobility collective entity for all Clients.
 Clients coordinate with their associated Servers via RS/RA exchanges
 to maintain the DMM profile, and the AERO routing system tracks all
 current Client/Server peering relationships.

 Servers provide default routing and mobility/multilink services for
 their dependent Clients. Clients are responsible for maintaining
 neighbor relationships with their Servers through periodic RS/RA

Templin Expires October 17, 2020 [Page 52]

Internet-Draft AERO April 2020

 exchanges, which also serves to confirm neighbor reachability. When
 a Client's underlying interface address and/or QoS information
 changes, the Client is responsible for updating the Server with this
 new information. Note that for Proxyed interfaces, however, the
 Proxy can also perform some RS/RA exchanges on the Client's behalf.

 Mobility management considerations are specified in the following
 sections.

3.19.1. Mobility Update Messaging

 Servers accommodate Client mobility/multilink and/or QoS change
 events by sending unsolicited NA (uNA) messages to each ROS in the
 target Client's Report List. When a Server sends a uNA message, it
 sets the IPv6 source address to the Client's AERO address, sets the
 destination address to All-Nodes multicast and sets the Target
 Address to the Client's Subnet-Router anycast address. The Server
 also includes an OMNI option with prefix registration information and
 with ifIndex-tuples for the target Client's remaining interfaces with
 S set to 0. The Server then includes a TLLAO with corresponding
 ifIndex-tuples prepared the same as for the initial route
 optimization event. The Server sets the NA R flag to 1, the S flag
 to 0 and the O flag to 0, then encapsulates the message in a SPAN
 header with source set to its own SPAN address and destination set to
 the SPAN address of the ROS and sends the message into the SPAN.

 As discussed in Section 7.2.6 of [RFC4861], the transmission and
 reception of uNA messages is unreliable but provides a useful
 optimization. In well-connected Internetworks with robust data links
 uNA messages will be delivered with high probability, but in any case
 the Server can optionally send up to MAX_NEIGHBOR_ADVERTISEMENT uNAs
 to each ROS to increase the likelihood that at least one will be
 received.

 When the ROS receives an uNA message, it ignores the message if there
 is no existing neighbor cache entry for the Client. Otherwise, it
 uses the included OMNI option and TLLAO information to update the
 neighbor cache entry, but does not reset ReachableTime since the
 receipt of an unsolicited NA message from the target Server does not
 provide confirmation that any forward paths to the target Client are
 working.

 If uNA messages are lost, the ROS may be left with stale address and/
 or QoS information for the Client for up to REACHABLE_TIME seconds.
 During this time, the ROS can continue sending packets according to
 its stale neighbor cache information. When ReachableTime is close to
 expiring, the ROS will re-initiate route optimization and receive
 fresh link-layer address information.

https://datatracker.ietf.org/doc/html/rfc4861#section-7.2.6

Templin Expires October 17, 2020 [Page 53]

Internet-Draft AERO April 2020

 In addition to sending uNA messages to the current set of ROSs for
 the Client, the Server also sends uNAs to the former link-layer
 address for any ifIndex-tuple for which the link-layer address has
 changed. The uNA messages update Proxys that cannot easily detect
 (e.g., without active probing) when a formerly-active Client has
 departed.

3.19.2. Announcing Link-Layer Address and/or QoS Preference Changes

 When a Client needs to change its ANET addresses and/or QoS
 preferences (e.g., due to a mobility event), either the Client or its
 Proxys send RS messages to the Server via the SPAN with an OMNI
 option that includes an ifIndex-tuple with S set to 1 and with the
 new link quality and address information.

 Up to MAX_RTR_SOLICITATIONS RS messages MAY be sent in parallel with
 sending actual data packets in case one or more RAs are lost. If all
 RAs are lost, the Client SHOULD re-associate with a new Server.

 When the Server receives the Client's changes, it sends uNA messages
 to all nodes in the Report List the same as described in the previous
 section.

3.19.3. Bringing New Links Into Service

 When a Client needs to bring new underlying interfaces into service
 (e.g., when it activates a new data link), it sends an RS message to
 the Server via the underlying interface with an OMNI option that
 includes an ifIndex-tuple with S set to 1 and appropriate link
 quality values and with link-layer address information for the new
 link.

3.19.4. Removing Existing Links from Service

 When a Client needs to remove existing underlying interfaces from
 service (e.g., when it de-activates an existing data link), it sends
 an RS or uNA message to its Server with an OMNI option with
 appropriate link quality values.

 If the Client needs to send RS/uNA messages over an underlying
 interface other than the one being removed from service, it MUST
 include ifIndex-tuples with appropriate link quality values for any
 underlying interfaces being removed from service.

Templin Expires October 17, 2020 [Page 54]

Internet-Draft AERO April 2020

3.19.5. Moving to a New Server

 When a Client associates with a new Server, it performs the Client
 procedures specified in Section 3.15.2. The Client also includes MS-
 Release identifiers in the RS message OMNI option per
 [I-D.templin-6man-omni-interface] if it wants the new Server to
 notify any old Servers from which the Client is departing.

 When the new Server receives the Client's RS message, it returns an
 RA as specified in Section 3.15.3 and sends up to
 MAX_NEIGHBOR_ADVERTIISEMENT uNA messages to any old Servers listed in
 OMNI option MS-Release identifiers. Each uNA message includes the
 Client's AERO address as the source address, the old Server's AERO
 address as the destination address, and an OMNI option with the
 Register/Release bit set to 0. The new Server wraps the uNA in a
 SPAN header with its own SPAN address as the source and the old
 Server's SPAN address as the destination, then sends the message into
 the SPAN.

 When an old Server receives the uNA, it changes the Client's neighbor
 cache entry state to DEPARTED, sets the link-layer address of the
 Client to the new Server's SPAN address, and sets DepartTime to
 DEPART_TIME seconds. After a short delay (e.g., 2 seconds) the old
 Server withdraws the Client's MNP from the routing system. After
 DepartTime expires, the old Server deletes the Client's neighbor
 cache entry.

 The old Server also sends unsolicited NA messages to all ROSs in the
 Client's Report List with an OMNI option with a single ifIndex-tuple
 with ifIndex set to 0 and S set to '1', and with the SPAN address of
 the new Server in a companion TLLAO. When the ROS receives the NA,
 it caches the address of the new Server in the existing asymmetric
 neighbor cache entry and marks the entry as STALE. Subsequent data
 packets will then flow according to any existing cached link-layer
 information and trigger a new NS(AR)/NA exchange via the new Server.

 Clients SHOULD NOT move rapidly between Servers in order to avoid
 causing excessive oscillations in the AERO routing system. Examples
 of when a Client might wish to change to a different Server include a
 Server that has gone unreachable, topological movements of
 significant distance, movement to a new geographic region, movement
 to a new SPAN segment, etc.

 When a Client moves to a new Server, some of the fragments of a
 multiple fragment packet may have already arrived at the old Server
 while others are en route to the new Server, however no special
 attention in the reassembly algorithm is necessary when re-routed
 fragments are simply treated as loss.

Templin Expires October 17, 2020 [Page 55]

Internet-Draft AERO April 2020

3.20. Multicast

 The AERO Client provides an IGMP (IPv4) [RFC2236] or MLD (IPv6)
 [RFC3810] proxy service for its EUNs and/or hosted applications
 [RFC4605]. The Client forwards IGMP/MLD messages over any of its
 underlying interfaces for which group membership is required. The
 IGMP/MLD messages may be further forwarded by a first-hop ANET access
 router acting as an IGMP/MLD-snooping switch [RFC4541], then
 ultimately delivered to an AERO Proxy/Server acting as a Protocol
 Independent Multicast - Sparse-Mode (PIM-SM, or simply "PIM")
 Designated Router (DR) [RFC7761]. AERO Gateways also act as PIM
 routers (i.e., the same as AERO Proxys/Servers) on behalf of nodes on
 INET/EUN networks. The behaviors identified in the following
 sections correspond to Source-Specific Multicast (SSM) and Any-Source
 Multicast (ASM) operational modes.

3.20.1. Source-Specific Multicast (SSM)

 When an ROS (i.e., an AERO Proxy/Server/Gateway) "X" acting as PIM
 router receives a Join/Prune message from a node on its downstream
 interfaces containing one or more ((S)ource, (G)roup) pairs, it
 updates its Multicast Routing Information Base (MRIB) accordingly.
 For each S belonging to a prefix reachable via X's non-AERO
 interfaces, X then forwards the (S, G) Join/Prune to any PIM routers
 on those interfaces per [RFC7761].

 For each S belonging to a prefix reachable via X's AERO interface, X
 originates a separate copy of the Join/Prune for each (S,G) in the
 message using its own AERO address as the source address and ALL-PIM-
 ROUTERS as the destination address. X then encapsulates each message
 in a SPAN header with source address set to the SPAN address of X and
 destination address set to S then forwards the message into the SPAN.
 The SPAN in turn forwards the message to AERO Server/Gateway "Y" that
 services S. At the same time, if the message was a Join, X sends a
 route-optimization NS message toward each S the same as discussed in

Section 3.17. The resulting NAs will return the AERO address for the
 prefix that matches S as the network-layer source address and TLLAOs
 with the SPAN addresses corresponding to any ifIndex-tuples that are
 currently servicing S.

 When Y processes the Join/Prune message, if S located behind any
 Native, Direct, VPNed or NATed interfaces Y acts as a PIM router and
 updates its MRIB to list X as the next hop in the reverse path. If S
 is located behind any Proxys "Z"*, Y also forwards the message to
 each Z* over the SPAN while continuing to use the AERO address of X
 as the source address. Each Z* then updates its MRIB accordingly and
 maintains the AERO address of X as the next hop in the reverse path.
 Since the Relays in the SPAN do not examine network layer control

https://datatracker.ietf.org/doc/html/rfc2236
https://datatracker.ietf.org/doc/html/rfc3810
https://datatracker.ietf.org/doc/html/rfc4605
https://datatracker.ietf.org/doc/html/rfc4541
https://datatracker.ietf.org/doc/html/rfc7761
https://datatracker.ietf.org/doc/html/rfc7761

Templin Expires October 17, 2020 [Page 56]

Internet-Draft AERO April 2020

 messages, this means that the (reverse) multicast tree path is simply
 from each Z* (and/or Y) to X with no other multicast-aware routers in
 the path. If any Z* (and/or Y) is located on the same SPAN segment
 as X, the multicast data traffic sent to X directly using SPAN/INET
 encapsulation instead of via a Relay.

 Following the initial Join/Prune and NS/NA messaging, X maintains an
 asymmetric neighbor cache entry for each S the same as if X was
 sending unicast data traffic to S. In particular, X performs
 additional NS/NA exchanges to keep the neighbor cache entry alive for
 up to t_periodic seconds [RFC7761]. If no new Joins are received
 within t_periodic seconds, X allows the neighbor cache entry to
 expire. Finally, if X receives any additional Join/Prune messages
 for (S,G) it forwards the messages to each Y and Z* in the neighbor
 cache entry over the SPAN.

 At some later time, Client C that holds an MNP for source S may
 depart from a first Proxy Z1 and/or connect via a new Proxy Z2. In
 that case, Y sends an unsolicited NA message to X the same as
 specified for unicast mobility in Section 3.19. When X receives the
 unsolicited NA message, it updates its asymmetric neighbor cache
 entry for the AERO address for source S and sends new Join messages
 to any new Proxys Z2. There is no requirement to send any Prune
 messages to old Proxys Z1 since source S will no longer source any
 multicast data traffic via Z1. Instead, the multicast state for
 (S,G) in Proxy Z1 will soon time out since no new Joins will arrive.

 After some later time, C may move to a new Server Y2 and depart from
 old Sever Y1. In that case, Y1 sends Join messages for any of C's
 active (S,G) groups to Y2 while including its own AERO address as the
 source address. This causes Y2 to include Y1 in the multicast
 forwarding tree during the interim time that Y1's symmetric neighbor
 cache entry for C is in the DEPARTED state. At the same time, Y1
 sends an unsolicited NA message to X with an OMNI option and TLLAO
 with ifIndex-tuple set to 0 and a release indication to cause X to
 release its asymmetric neighbor cache entry. X then sends a new Join
 message to S via the SPAN and re-initiates route optimization the
 same as if it were receiving a fresh Join message from a node on a
 downstream link.

3.20.2. Any-Source Multicast (ASM)

 When an ROS X acting as a PIM router receives a Join/Prune from a
 node on its downstream interfaces containing one or more (*,G) pairs,
 it updates its Multicast Routing Information Base (MRIB) accordingly.
 X then forwards a copy of the message to the Rendezvous Point (RP) R
 for each G over the SPAN. X uses its own AERO address as the source
 address and ALL-PIM-ROUTERS as the destination address, then

https://datatracker.ietf.org/doc/html/rfc7761

Templin Expires October 17, 2020 [Page 57]

Internet-Draft AERO April 2020

 encapsulates each message in a SPAN header with source address set to
 the SPAN address of X and destination address set to R, then sends
 the message into the SPAN. At the same time, if the message was a
 Join X initiates NS/NA route optimization the same as for the SSM
 case discussed in Section 3.20.1.

 For each source S that sends multicast traffic to group G via R, the
 Proxy/Server Z* for the Client that aggregates S encapsulates the
 packets in PIM Register messages and forwards them to R via the SPAN.
 R may then elect to send a PIM Join to Z* over the SPAN. This will
 result in an (S,G) tree rooted at Z* with R as the next hop so that R
 will begin to receive two copies of the packet; one native copy from
 the (S, G) tree and a second copy from the pre-existing (*, G) tree
 that still uses PIM Register encapsulation. R can then issue a PIM
 Register-stop message to suppress the Register-encapsulated stream.
 At some later time, if C moves to a new Proxy/Server Z*, it resumes
 sending packets via PIM Register encapsulation via the new Z*.

 At the same time, as multicast listeners discover individual S's for
 a given G, they can initiate an (S,G) Join for each S under the same
 procedures discussed in Section 3.20.1. Once the (S,G) tree is
 established, the listeners can send (S, G) Prune messages to R so
 that multicast packets for group G sourced by S will only be
 delivered via the (S, G) tree and not from the (*, G) tree rooted at
 R. All mobility considerations discussed for SSM apply.

3.20.3. Bi-Directional PIM (BIDIR-PIM)

 Bi-Directional PIM (BIDIR-PIM) [RFC5015] provides an alternate
 approach to ASM that treats the Rendezvous Point (RP) as a Designated
 Forwarder (DF). Further considerations for BIDIR-PIM are out of
 scope.

3.21. Operation over Multiple AERO Links (VLANs)

 An AERO Client can connect to multiple AERO links the same as for any
 data link service. In that case, the Client maintains a distinct
 AERO interface for each link, e.g., 'aero0' for the first link,
 'aero1' for the second, 'aero2' for the third, etc. Each AERO link
 would include its own distinct set of Relays, Servers and Proxys,
 thereby providing redundancy in case of failures.

 The Relays, Servers and Proxys on each AERO link can assign AERO and
 SPAN addresses that use the same or different numberings from those
 on other links. Since the links are mutually independent there is no
 requirement for avoiding inter-link address duplication, e.g., the
 same AERO address such as fe80::1000 could be used to number distinct
 nodes that connect to different AERO links.

https://datatracker.ietf.org/doc/html/rfc5015

Templin Expires October 17, 2020 [Page 58]

Internet-Draft AERO April 2020

 Each AERO link could utilize the same or different ANET connections.
 The links can be distinguished at the link-layer via Virtual Local
 Area Network (VLAN) tagging (e.g., IEEE 802.1Q) and/or through
 assignment of distinct sets of MSPs on each link. This gives rise to
 the opportunity for supporting multiple redundant networked paths,
 where each VLAN is distinguished by a different label (e.g., colors
 such as Red, Green, Blue, etc.). In particular, the Client can tag
 its RS messages with the appropriate label to cause the network to
 select the desired VLAN.

 Clients that connect to multiple AERO interfaces can select the
 outgoing interface appropriate for a given Red/Blue/Green/etc.
 traffic profile while (in the reverse direction) correspondent nodes
 must have some way of steering their packets destined to a target via
 the correct AERO link.

 In a first alternative, if each AERO link services different MSPs,
 then the Client can receive a distinct MNP from each of the links.
 IP routing will therefore assure that the correct Red/Green/Blue/etc.
 network is used for both outbound and inbound traffic. This can be
 accomplished using existing technologies and approaches, and without
 requiring any special supporting code in correspondent nodes or
 Relays.

 In a second alternative, if each AERO link services the same MSP(s)
 then each link could assign a distinct "AERO Link Anycast" address
 that is configured by all Relays on the link. Correspondent nodes
 then include a "type 4" routing header with the Anycast address for
 the AERO link as the IPv6 destination and with the address of the
 target encoded as the "next segment" in the routing header
 [RFC8402][I-D.ietf-6man-segment-routing-header]. Standard IP routing
 will then direct the packet to the nearest Relay for the correct AERO
 link, which will replace the destination address with the target
 address then forward the packet to the target.

3.22. DNS Considerations

 AERO Client MNs and INET correspondent nodes consult the Domain Name
 System (DNS) the same as for any Internetworking node. When
 correspondent nodes and Client MNs use different IP protocol versions
 (e.g., IPv4 correspondents and IPv6 MNs), the INET DNS must maintain
 A records for IPv4 address mappings to MNs which must then be
 populated in Gateway NAT64 mapping caches. In that way, an IPv4
 correspondent node can send packets to the IPv4 address mapping of
 the target MN, and the Gateway will translate the IPv4 header and
 destination address into an IPv6 header and IPv6 destination address
 of the MN.

https://datatracker.ietf.org/doc/html/rfc8402

Templin Expires October 17, 2020 [Page 59]

Internet-Draft AERO April 2020

 When an AERO Client registers with an AERO Server, the Server can
 return the address(es) of DNS servers in RDNSS options [RFC6106].
 The DNS server provides the IP addresses of other MNs and
 correspondent nodes in AAAA records for IPv6 or A records for IPv4.

3.23. Transition Considerations

 The SPAN ensures that dissimilar INET partitions can be joined into a
 single unified AERO link, even though the partitions themselves may
 have differing protocol versions and/or incompatible addressing
 plans. However, a commonality can be achieved by incrementally
 distributing globally routable (i.e., native) IP prefixes to
 eventually reach all nodes (both mobile and fixed) in all SPAN
 segments. This can be accomplished by incrementally deploying AERO
 Gateways on each INET partition, with each Gateway distributing its
 MNPs and/or discovering non-MNP prefixes on its INET links.

 This gives rise to the opportunity to eventually distribute native IP
 addresses to all nodes, and to present a unified AERO link view
 (bridged by the SPAN) even if the INET partitions remain in their
 current protocol and addressing plans. In that way, the AERO link
 can serve the dual purpose of providing a mobility/multilink service
 and a transition service. Or, if an INET partition is transitioned
 to a native IP protocol version and addressing scheme that is
 compatible with the AERO link MNP-based addressing scheme, the
 partition and AERO link can be joined by Gateways.

 Gateways that connect INETs/EUNs with dissimilar IP protocol versions
 must employ a network address and protocol translation function such
 as NAT64[RFC6146].

3.24. Detecting and Reacting to Server and Relay Failures

 In environments where rapid failure recovery is required, Servers and
 Relays SHOULD use Bidirectional Forwarding Detection (BFD) [RFC5880].
 Nodes that use BFD can quickly detect and react to failures so that
 cached information is re-established through alternate nodes. BFD
 control messaging is carried only over well-connected ground domain
 networks (i.e., and not low-end radio links) and can therefore be
 tuned for rapid response.

 Servers and Relays maintain BFD sessions in parallel with their BGP
 peerings. If a Server or Relay fails, BGP peers will quickly re-
 establish routes through alternate paths the same as for common BGP
 deployments. Similarly, Proxys maintain BFD sessions with their
 associated Relays even though they do not establish BGP peerings with
 them.

https://datatracker.ietf.org/doc/html/rfc6106
https://datatracker.ietf.org/doc/html/rfc5880

Templin Expires October 17, 2020 [Page 60]

Internet-Draft AERO April 2020

 Proxys SHOULD use proactive NUD for Servers for which there are
 currently active ANET Clients in a manner that parallels BFD, i.e.,
 by sending unicast NS messages in rapid succession to receive
 solicited NA messages. When the Proxy is also sending RS messages on
 behalf of ANET Clients, the RS/RA messaging can be considered as
 equivalent hints of forward progress. This means that the Proxy need
 not also send a periodic NS if it has already sent an RS within the
 same period. If a Server fails, the Proxy will cease to receive
 advertisements and can quickly inform Clients of the outage by
 sending multicast RA messages on the ANET interface.

 The Proxy sends multicast RA messages with source address set to the
 Server's address, destination address set to All-Nodes multicast, and
 Router Lifetime set to 0. The Proxy SHOULD send
 MAX_FINAL_RTR_ADVERTISEMENTS RA messages separated by small delays
 [RFC4861]. Any Clients on the ANET interface that have been using
 the (now defunct) Server will receive the RA messages and associate
 with a new Server.

3.25. AERO Clients on the Open Internet

 AERO Clients that connect to the open Internet via native and/or
 NATed interfaces can establish a VPN to securely connect to a Server
 in a "tethered" arrangement with all of the Client's traffic
 transiting the Server. Alternatively, the Client can exchange ND
 messages directly with other AERO nodes using SPAN/INET
 encapsulation. In that case, the Client must apply asymmetric
 security for IPv6 ND messages to ensure routing and neighbor cache
 integrity using SEcure Neighbor Discovery (SEND) [RFC3971] and
 Cryptographically Generated Addresses (CGAs) [RFC3972].

 When a Client enables native and/or NATed underlying interfaces, the
 AERO interface sends an RS message with IPv6 source address set to a
 link-local CGA, with IPv6 destination set to All-Routers multicast,
 with an OMNI opton and with SEND/CGA options to provide message
 authentication. The Client also includes an SLLAO with the IP
 address and Port Number used for INET enacpsulation written in
 obfuscated form as discussed in Section 3.6. The Client wraps the
 message in a SPAN header with source address set to the Client's SPAN
 address and with destination address set to the SPAN address of a
 Server. The Client then further wraps the SPAN message in an INET
 header with source set to the Client's INET address and destination
 set to the Server's INET address, then sends the message to the
 Server.

 When the Server receives the RS message, it authenticates the message
 and registers the Client's MNP and INET interface information
 according to the OMNI option parameters. The Server then returns an

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc3972

Templin Expires October 17, 2020 [Page 61]

Internet-Draft AERO April 2020

 RA message with IPv6 source set to its CGA, with IPv6 destination set
 to the Client's CGA, with an OMNI option and with SEND/CGA options to
 provide message authentication. If the Client is located behind a
 NAT, the Server instead sets the IPv6 destination to the Teredo IPv6
 address formed using the service prefix fe80::/32 (see Section 4 of
 [RFC4380]). The Server then wraps the message in a SPAN header with
 source address set to the Server's SPAN address and destination set
 to the Client's SPAN address, and further wraps the SPAN message in
 an INET header with source set to the Server's INET address and
 destination set to the Client's INET address.

 After the Client has registered its INET interfaces in such RS/RA
 exchanges it sends periodic RS messages to receive fresh RA messages
 before the Router Lifetime received on each INET interface expires
 (again, using SEND/CGA). The Client also maintains default routes
 via its Servers, i.e., the same as described in earlier sections.

 When the Client sends messages to target IP addresses, it also
 invokes route optimization per Section 3.17 using IPv6 ND address
 resolution messaging. The Client sends the (SEND/CGA-protected)
 NS(AR) message wrapped in a SPAN header with source set to the
 Client's SPAN address and destination set to the SPAN address
 corresponding to the target, and with INET destination address set to
 the address of the Server. The Server authenticates the message and
 sends a corresponding NS(AR) message over the SPAN. When the ROR
 receives the NS(AR), it adds the Client's SPAN address and Server's
 INET address to the target's Report List, and returns an NA with OMNI
 and TLLAO information for the target. The Server then returns a
 (SEND/CGA-protected) NA message to the Client.

 Following route optimization, for any of the target's Native
 addresses the Client forwards data packets directly to the target
 INET addresses according to the OMNI/TLLAO information. For any
 NATed addresses, the Client first establishes NAT state as specified
 in [RFC6081][RFC4380] while using "loopback" NS(NUD) messages as
 discussed in Section 3.18 as "bubbles". The Client continues to send
 data packets via the SPAN until NAT state is populated, then begins
 forwarding packets via the direct path through the NAT to the target.

 The ROR may return uNAs via the Server if the target moves, and the
 Server will send corresponding (SEND/CGA-protected) uNAs to the
 Client. The Client can also send "loopback" NS(NUD) messages to test
 forward path reachability even though there is no security
 association between the Client and the target.

https://datatracker.ietf.org/doc/html/rfc4380#section-4
https://datatracker.ietf.org/doc/html/rfc4380#section-4
https://datatracker.ietf.org/doc/html/rfc6081

Templin Expires October 17, 2020 [Page 62]

Internet-Draft AERO April 2020

4. Implementation Status

 An AERO implementation based on OpenVPN (https://openvpn.net/) was
 announced on the v6ops mailing list on January 10, 2018 and an
 initial public release of the AERO proof-of-concept source code was
 announced on the intarea mailing list on August 21, 2015.

 As of 4/1/2020, more recent updated implementations are under
 internal development and testing with plans to release in the near
 future.

5. IANA Considerations

 The IANA has assigned a 4-octet Private Enterprise Number "45282" for
 AERO in the "enterprise-numbers" registry.

 The IANA has assigned the UDP port number "8060" for an earlier
 experimental version of AERO [RFC6706]. This document obsoletes
 [RFC6706] and claims the UDP port number "8060" for all future use.

 No further IANA actions are required.

6. Security Considerations

 AERO Relays configure secured tunnels with AERO Servers and Proxys
 within their local SPAN segments. Applicable secured tunnel
 alternatives include IPsec [RFC4301], TLS/SSL [RFC8446], DTLS
 [RFC6347], WireGuard, etc. The AERO Relays of all SPAN segments in
 turn configure secured tunnels for their neighboring AERO Relays
 across the SPAN. Therefore, control messages that traverse the SPAN
 between any pair of AERO link neighbors are already secured.

 AERO Servers, Gateways and Proxys targeted by a route optimization
 may also receive packets directly from the INET partitions instead of
 via the SPAN. For INET partitions that apply effective ingress
 filtering to defeat source address spoofing, the simple data origin
 authentication procedures in Section 3.11 can be applied.

 For INET partitions that cannot apply effective ingress filtering,
 the two options for securing communications include 1) disable route
 optimization so that all traffic is conveyed over secured tunnels via
 the SPAN, or 2) enable on-demand secure tunnel creation between INET
 partition neighbors. Option 1) would result in longer routes than
 necessary and traffic concentration on critical infrastructure
 elements. Option 2) could be coordinated by establishing a secured
 tunnel on-demand instead of performing an NS/NA exchange in the route
 optimization procedures. Procedures for establishing on-demand
 secured tunnels are out of scope.

https://openvpn.net/
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6347

Templin Expires October 17, 2020 [Page 63]

Internet-Draft AERO April 2020

 AERO Clients that connect to secured enclaves need not apply security
 to their ND messages, since the messages will be intercepted by a
 perimeter Proxy that applies security on its outward-facing
 interface. AERO Clients located outside of secured enclaves can use
 symmetric network and/or transport layer security services such as
 VPNs, but when there are many prospective neighbors with dynamically
 changing connectivity an asymmetric security service such as SEcure
 Neighbor Discovery (SEND) [RFC3971] and Cryptographically Generated
 Addresses (CGAs) [RFC3972] may be more appropriate.

 Application endpoints SHOULD use application-layer security services
 such as TLS/SSL, DTLS or SSH [RFC4251] to assure the same level of
 protection as for critical secured Internet services. AERO Clients
 that require host-based VPN services SHOULD use symmetric network
 and/or transport layer security services such as IPsec, TLS/SSL,
 DTLS, etc. AERO Proxys and Servers can also provide a network-based
 VPN service on behalf of the Client, e.g., if the Client is located
 within a secured enclave and cannot establish a VPN on its own
 behalf.

 AERO Servers and Relays present targets for traffic amplification
 Denial of Service (DoS) attacks. This concern is no different than
 for widely-deployed VPN security gateways in the Internet, where
 attackers could send spoofed packets to the gateways at high data
 rates. This can be mitigated by connecting Servers and Relays over
 dedicated links with no connections to the Internet and/or when
 connections to the Internet are only permitted through well-managed
 firewalls. Traffic amplification DoS attacks can also target an AERO
 Client's low data rate links. This is a concern not only for Clients
 located on the open Internet but also for Clients in secured
 enclaves. AERO Servers and Proxys can institute rate limits that
 protect Clients from receiving packet floods that could DoS low data
 rate links.

 AERO Gateways must implement ingress filtering to avoid a spoofing
 attack in which spurious SPAN messages are injected into an AERO link
 from an outside attacker. AERO Clients MUST ensure that their
 connectivity is not used by unauthorized nodes on their EUNs to gain
 access to a protected network, i.e., AERO Clients that act as routers
 MUST NOT provide routing services for unauthorized nodes. (This
 concern is no different than for ordinary hosts that receive an IP
 address delegation but then "share" the address with other nodes via
 some form of Internet connection sharing such as tethering.)

 The MAP list MUST be well-managed and secured from unauthorized
 tampering, even though the list contains only public information.
 The MAP list can be conveyed to the Client in a similar fashion as in

https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc3972
https://datatracker.ietf.org/doc/html/rfc4251

Templin Expires October 17, 2020 [Page 64]

Internet-Draft AERO April 2020

 [RFC5214] (e.g., through layer 2 data link login messaging, secure
 upload of a static file, DNS lookups, etc.).

 Although public domain and commercial SEND implementations exist,
 concerns regarding the strength of the cryptographic hash algorithm
 have been documented [RFC6273] [RFC4982].

 Security considerations for accepting link-layer ICMP messages and
 reflected packets are discussed throughout the document.

7. Acknowledgements

 Discussions in the IETF, aviation standards communities and private
 exchanges helped shape some of the concepts in this work.
 Individuals who contributed insights include Mikael Abrahamsson, Mark
 Andrews, Fred Baker, Bob Braden, Stewart Bryant, Brian Carpenter,
 Wojciech Dec, Pavel Drasil, Ralph Droms, Adrian Farrel, Nick Green,
 Sri Gundavelli, Brian Haberman, Bernhard Haindl, Joel Halpern, Tom
 Herbert, Sascha Hlusiak, Lee Howard, Zdenek Jaron, Andre Kostur,
 Hubert Kuenig, Ted Lemon, Andy Malis, Satoru Matsushima, Tomek
 Mrugalski, Madhu Niraula, Alexandru Petrescu, Behcet Saikaya, Michal
 Skorepa, Joe Touch, Bernie Volz, Ryuji Wakikawa, Tony Whyman, Lloyd
 Wood and James Woodyatt. Members of the IESG also provided valuable
 input during their review process that greatly improved the document.
 Special thanks go to Stewart Bryant, Joel Halpern and Brian Haberman
 for their shepherding guidance during the publication of the AERO
 first edition.

 This work has further been encouraged and supported by Boeing
 colleagues including Kyle Bae, M. Wayne Benson, Dave Bernhardt, Cam
 Brodie, John Bush, Balaguruna Chidambaram, Irene Chin, Bruce Cornish,
 Claudiu Danilov, Don Dillenburg, Joe Dudkowski, Wen Fang, Samad
 Farooqui, Anthony Gregory, Jeff Holland, Seth Jahne, Brian Jaury,
 Greg Kimberly, Ed King, Madhuri Madhava Badgandi, Laurel Matthew,
 Gene MacLean III, Rob Muszkiewicz, Sean O'Sullivan, Vijay
 Rajagopalan, Greg Saccone, Rod Santiago, Kent Shuey, Brian Skeen,
 Mike Slane, Carrie Spiker, Katie Tran, Brendan Williams, Amelia
 Wilson, Julie Wulff, Yueli Yang, Eric Yeh and other members of the
 Boeing mobility, networking and autonomy teams. Kyle Bae, Wayne
 Benson, Katie Tran and Eric Yeh are especially acknowledged for
 implementing the AERO functions as extensions to the public domain
 OpenVPN distribution.

 Earlier works on NBMA tunneling approaches are found in
 [RFC2529][RFC5214][RFC5569].

 Many of the constructs presented in this second edition of AERO are
 based on the author's earlier works, including:

https://datatracker.ietf.org/doc/html/rfc6273
https://datatracker.ietf.org/doc/html/rfc4982
https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc5569

Templin Expires October 17, 2020 [Page 65]

Internet-Draft AERO April 2020

 o The Internet Routing Overlay Network (IRON)
 [RFC6179][I-D.templin-ironbis]

 o Virtual Enterprise Traversal (VET)
 [RFC5558][I-D.templin-intarea-vet]

 o The Subnetwork Encapsulation and Adaptation Layer (SEAL)
 [RFC5320][I-D.templin-intarea-seal]

 o AERO, First Edition [RFC6706]

 Note that these works cite numerous earlier efforts that are not also
 cited here due to space limitations. The authors of those earlier
 works are acknowledged for their insights.

 This work is aligned with the NASA Safe Autonomous Systems Operation
 (SASO) program under NASA contract number NNA16BD84C.

 This work is aligned with the FAA as per the SE2025 contract number
 DTFAWA-15-D-00030.

 This work is aligned with the Boeing Commercial Airplanes (BCA)
 Internet of Things (IoT) and autonomy programs.

 This work is aligned with the Boeing Information Technology (BIT)
 MobileNet program.

8. References

8.1. Normative References

 [I-D.templin-6man-omni-interface]
 Templin, F. and T. Whyman, "Transmission of IPv6 Packets
 over Overlay Multilink Network (OMNI) Interfaces", draft-

templin-6man-omni-interface-14 (work in progress), April
 2020.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, DOI 10.17487/RFC0792, September 1981,

 <https://www.rfc-editor.org/info/rfc792>.

https://datatracker.ietf.org/doc/html/rfc6179
https://datatracker.ietf.org/doc/html/rfc5558
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc6706
https://datatracker.ietf.org/doc/html/draft-templin-6man-omni-interface-14
https://datatracker.ietf.org/doc/html/draft-templin-6man-omni-interface-14
https://datatracker.ietf.org/doc/html/rfc791
https://www.rfc-editor.org/info/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://www.rfc-editor.org/info/rfc792

Templin Expires October 17, 2020 [Page 66]

Internet-Draft AERO April 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <https://www.rfc-editor.org/info/rfc2473>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971,
 DOI 10.17487/RFC3971, March 2005,
 <https://www.rfc-editor.org/info/rfc3971>.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, DOI 10.17487/RFC3972, March 2005,

 <https://www.rfc-editor.org/info/rfc3972>.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,
 November 2005, <https://www.rfc-editor.org/info/rfc4191>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/info/rfc4193>.

 [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)", RFC 4380,
 DOI 10.17487/RFC4380, February 2006,
 <https://www.rfc-editor.org/info/rfc4380>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <https://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2473
https://www.rfc-editor.org/info/rfc2473
https://datatracker.ietf.org/doc/html/rfc2474
https://www.rfc-editor.org/info/rfc2474
https://datatracker.ietf.org/doc/html/rfc3971
https://www.rfc-editor.org/info/rfc3971
https://datatracker.ietf.org/doc/html/rfc3972
https://www.rfc-editor.org/info/rfc3972
https://datatracker.ietf.org/doc/html/rfc4191
https://www.rfc-editor.org/info/rfc4191
https://datatracker.ietf.org/doc/html/rfc4193
https://www.rfc-editor.org/info/rfc4193
https://datatracker.ietf.org/doc/html/rfc4380
https://www.rfc-editor.org/info/rfc4380
https://datatracker.ietf.org/doc/html/rfc4861
https://www.rfc-editor.org/info/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://www.rfc-editor.org/info/rfc4862

Templin Expires October 17, 2020 [Page 67]

Internet-Draft AERO April 2020

 [RFC5175] Haberman, B., Ed. and R. Hinden, "IPv6 Router
 Advertisement Flags Option", RFC 5175,
 DOI 10.17487/RFC5175, March 2008,
 <https://www.rfc-editor.org/info/rfc5175>.

 [RFC6081] Thaler, D., "Teredo Extensions", RFC 6081,
 DOI 10.17487/RFC6081, January 2011,
 <https://www.rfc-editor.org/info/rfc6081>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8415] Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
 Richardson, M., Jiang, S., Lemon, T., and T. Winters,
 "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",

RFC 8415, DOI 10.17487/RFC8415, November 2018,
 <https://www.rfc-editor.org/info/rfc8415>.

8.2. Informative References

 [BGP] Huston, G., "BGP in 2015, http://potaroo.net", January
 2016.

 [I-D.ietf-6man-segment-routing-header]
 Filsfils, C., Dukes, D., Previdi, S., Leddy, J.,
 Matsushima, S., and D. Voyer, "IPv6 Segment Routing Header
 (SRH)", draft-ietf-6man-segment-routing-header-26 (work in
 progress), October 2019.

 [I-D.ietf-dmm-distributed-mobility-anchoring]
 Chan, A., Wei, X., Lee, J., Jeon, S., and C. Bernardos,
 "Distributed Mobility Anchoring", draft-ietf-dmm-

distributed-mobility-anchoring-15 (work in progress),
 March 2020.

 [I-D.ietf-intarea-gue]
 Herbert, T., Yong, L., and O. Zia, "Generic UDP
 Encapsulation", draft-ietf-intarea-gue-09 (work in
 progress), October 2019.

https://datatracker.ietf.org/doc/html/rfc5175
https://www.rfc-editor.org/info/rfc5175
https://datatracker.ietf.org/doc/html/rfc6081
https://www.rfc-editor.org/info/rfc6081
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://datatracker.ietf.org/doc/html/rfc8415
https://www.rfc-editor.org/info/rfc8415
http://potaroo
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-26
https://datatracker.ietf.org/doc/html/draft-ietf-dmm-distributed-mobility-anchoring-15
https://datatracker.ietf.org/doc/html/draft-ietf-dmm-distributed-mobility-anchoring-15
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-gue-09

Templin Expires October 17, 2020 [Page 68]

Internet-Draft AERO April 2020

 [I-D.ietf-intarea-gue-extensions]
 Herbert, T., Yong, L., and F. Templin, "Extensions for
 Generic UDP Encapsulation", draft-ietf-intarea-gue-

extensions-06 (work in progress), March 2019.

 [I-D.ietf-intarea-tunnels]
 Touch, J. and M. Townsley, "IP Tunnels in the Internet
 Architecture", draft-ietf-intarea-tunnels-10 (work in
 progress), September 2019.

 [I-D.ietf-rtgwg-atn-bgp]
 Templin, F., Saccone, G., Dawra, G., Lindem, A., and V.
 Moreno, "A Simple BGP-based Mobile Routing System for the
 Aeronautical Telecommunications Network", draft-ietf-

rtgwg-atn-bgp-05 (work in progress), January 2020.

 [I-D.templin-6man-dhcpv6-ndopt]
 Templin, F., "A Unified Stateful/Stateless Configuration
 Service for IPv6", draft-templin-6man-dhcpv6-ndopt-09
 (work in progress), January 2020.

 [I-D.templin-intarea-grefrag]
 Templin, F., "GRE Tunnel Level Fragmentation", draft-

templin-intarea-grefrag-04 (work in progress), July 2016.

 [I-D.templin-intarea-seal]
 Templin, F., "The Subnetwork Encapsulation and Adaptation
 Layer (SEAL)", draft-templin-intarea-seal-68 (work in
 progress), January 2014.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)", draft-

templin-intarea-vet-40 (work in progress), May 2013.

 [I-D.templin-ironbis]
 Templin, F., "The Interior Routing Overlay Network
 (IRON)", draft-templin-ironbis-16 (work in progress),
 March 2014.

 [I-D.templin-v6ops-pdhost]
 Templin, F., "IPv6 Prefix Delegation and Multi-Addressing
 Models", draft-templin-v6ops-pdhost-25 (work in progress),
 January 2020.

 [OVPN] OpenVPN, O., "http://openvpn.net", October 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-intarea-gue-extensions-06
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-gue-extensions-06
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-tunnels-10
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-atn-bgp-05
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-atn-bgp-05
https://datatracker.ietf.org/doc/html/draft-templin-6man-dhcpv6-ndopt-09
https://datatracker.ietf.org/doc/html/draft-templin-intarea-grefrag-04
https://datatracker.ietf.org/doc/html/draft-templin-intarea-grefrag-04
https://datatracker.ietf.org/doc/html/draft-templin-intarea-seal-68
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-ironbis-16
https://datatracker.ietf.org/doc/html/draft-templin-v6ops-pdhost-25

Templin Expires October 17, 2020 [Page 69]

Internet-Draft AERO April 2020

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <https://www.rfc-editor.org/info/rfc1812>.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 DOI 10.17487/RFC2003, October 1996,
 <https://www.rfc-editor.org/info/rfc2003>.

 [RFC2236] Fenner, W., "Internet Group Management Protocol, Version
 2", RFC 2236, DOI 10.17487/RFC2236, November 1997,
 <https://www.rfc-editor.org/info/rfc2236>.

 [RFC2492] Armitage, G., Schulter, P., and M. Jork, "IPv6 over ATM
 Networks", RFC 2492, DOI 10.17487/RFC2492, January 1999,
 <https://www.rfc-editor.org/info/rfc2492>.

 [RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529,
 DOI 10.17487/RFC2529, March 1999,
 <https://www.rfc-editor.org/info/rfc2529>.

 [RFC2764] Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, DOI 10.17487/RFC2764, February 2000,
 <https://www.rfc-editor.org/info/rfc2764>.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 DOI 10.17487/RFC2784, March 2000,
 <https://www.rfc-editor.org/info/rfc2784>.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,

 <https://www.rfc-editor.org/info/rfc2890>.

https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
https://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/rfc2003
https://www.rfc-editor.org/info/rfc2003
https://datatracker.ietf.org/doc/html/rfc2236
https://www.rfc-editor.org/info/rfc2236
https://datatracker.ietf.org/doc/html/rfc2492
https://www.rfc-editor.org/info/rfc2492
https://datatracker.ietf.org/doc/html/rfc2529
https://www.rfc-editor.org/info/rfc2529
https://datatracker.ietf.org/doc/html/rfc2764
https://www.rfc-editor.org/info/rfc2764
https://datatracker.ietf.org/doc/html/rfc2784
https://www.rfc-editor.org/info/rfc2784
https://datatracker.ietf.org/doc/html/rfc2890
https://www.rfc-editor.org/info/rfc2890

Templin Expires October 17, 2020 [Page 70]

Internet-Draft AERO April 2020

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, DOI 10.17487/RFC2923, September 2000,

 <https://www.rfc-editor.org/info/rfc2923>.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
RFC 2983, DOI 10.17487/RFC2983, October 2000,

 <https://www.rfc-editor.org/info/rfc2983>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC3810] Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
 Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
 DOI 10.17487/RFC3810, June 2004,
 <https://www.rfc-editor.org/info/rfc3810>.

 [RFC3819] Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, DOI 10.17487/RFC3819, July 2004,
 <https://www.rfc-editor.org/info/rfc3819>.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213,
 DOI 10.17487/RFC4213, October 2005,
 <https://www.rfc-editor.org/info/rfc4213>.

 [RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
 January 2006, <https://www.rfc-editor.org/info/rfc4251>.

 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

https://datatracker.ietf.org/doc/html/rfc2923
https://www.rfc-editor.org/info/rfc2923
https://datatracker.ietf.org/doc/html/rfc2983
https://www.rfc-editor.org/info/rfc2983
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3810
https://www.rfc-editor.org/info/rfc3810
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://www.rfc-editor.org/info/rfc3819
https://datatracker.ietf.org/doc/html/rfc4213
https://www.rfc-editor.org/info/rfc4213
https://datatracker.ietf.org/doc/html/rfc4251
https://www.rfc-editor.org/info/rfc4251
https://datatracker.ietf.org/doc/html/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4301
https://www.rfc-editor.org/info/rfc4301

Templin Expires October 17, 2020 [Page 71]

Internet-Draft AERO April 2020

 [RFC4389] Thaler, D., Talwar, M., and C. Patel, "Neighbor Discovery
 Proxies (ND Proxy)", RFC 4389, DOI 10.17487/RFC4389, April
 2006, <https://www.rfc-editor.org/info/rfc4389>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,

RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access
 Protocol (LDAP): The Protocol", RFC 4511,
 DOI 10.17487/RFC4511, June 2006,
 <https://www.rfc-editor.org/info/rfc4511>.

 [RFC4541] Christensen, M., Kimball, K., and F. Solensky,
 "Considerations for Internet Group Management Protocol
 (IGMP) and Multicast Listener Discovery (MLD) Snooping
 Switches", RFC 4541, DOI 10.17487/RFC4541, May 2006,
 <https://www.rfc-editor.org/info/rfc4541>.

 [RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding
 ("IGMP/MLD Proxying")", RFC 4605, DOI 10.17487/RFC4605,
 August 2006, <https://www.rfc-editor.org/info/rfc4605>.

 [RFC4607] Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, DOI 10.17487/RFC4607, August 2006,
 <https://www.rfc-editor.org/info/rfc4607>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <https://www.rfc-editor.org/info/rfc4963>.

 [RFC4982] Bagnulo, M. and J. Arkko, "Support for Multiple Hash
 Algorithms in Cryptographically Generated Addresses
 (CGAs)", RFC 4982, DOI 10.17487/RFC4982, July 2007,
 <https://www.rfc-editor.org/info/rfc4982>.

 [RFC5015] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano,
 "Bidirectional Protocol Independent Multicast (BIDIR-
 PIM)", RFC 5015, DOI 10.17487/RFC5015, October 2007,
 <https://www.rfc-editor.org/info/rfc5015>.

https://datatracker.ietf.org/doc/html/rfc4389
https://www.rfc-editor.org/info/rfc4389
https://datatracker.ietf.org/doc/html/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/rfc4511
https://www.rfc-editor.org/info/rfc4511
https://datatracker.ietf.org/doc/html/rfc4541
https://www.rfc-editor.org/info/rfc4541
https://datatracker.ietf.org/doc/html/rfc4605
https://www.rfc-editor.org/info/rfc4605
https://datatracker.ietf.org/doc/html/rfc4607
https://www.rfc-editor.org/info/rfc4607
https://datatracker.ietf.org/doc/html/rfc4963
https://www.rfc-editor.org/info/rfc4963
https://datatracker.ietf.org/doc/html/rfc4982
https://www.rfc-editor.org/info/rfc4982
https://datatracker.ietf.org/doc/html/rfc5015
https://www.rfc-editor.org/info/rfc5015

Templin Expires October 17, 2020 [Page 72]

Internet-Draft AERO April 2020

 [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
 Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
 DOI 10.17487/RFC5214, March 2008,
 <https://www.rfc-editor.org/info/rfc5214>.

 [RFC5320] Templin, F., Ed., "The Subnetwork Encapsulation and
 Adaptation Layer (SEAL)", RFC 5320, DOI 10.17487/RFC5320,
 February 2010, <https://www.rfc-editor.org/info/rfc5320>.

 [RFC5522] Eddy, W., Ivancic, W., and T. Davis, "Network Mobility
 Route Optimization Requirements for Operational Use in
 Aeronautics and Space Exploration Mobile Networks",

RFC 5522, DOI 10.17487/RFC5522, October 2009,
 <https://www.rfc-editor.org/info/rfc5522>.

 [RFC5558] Templin, F., Ed., "Virtual Enterprise Traversal (VET)",
RFC 5558, DOI 10.17487/RFC5558, February 2010,

 <https://www.rfc-editor.org/info/rfc5558>.

 [RFC5569] Despres, R., "IPv6 Rapid Deployment on IPv4
 Infrastructures (6rd)", RFC 5569, DOI 10.17487/RFC5569,
 January 2010, <https://www.rfc-editor.org/info/rfc5569>.

 [RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
 (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
 <https://www.rfc-editor.org/info/rfc5880>.

 [RFC6106] Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
 "IPv6 Router Advertisement Options for DNS Configuration",

RFC 6106, DOI 10.17487/RFC6106, November 2010,
 <https://www.rfc-editor.org/info/rfc6106>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <https://www.rfc-editor.org/info/rfc6146>.

 [RFC6179] Templin, F., Ed., "The Internet Routing Overlay Network
 (IRON)", RFC 6179, DOI 10.17487/RFC6179, March 2011,
 <https://www.rfc-editor.org/info/rfc6179>.

 [RFC6221] Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A.
 Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221,
 DOI 10.17487/RFC6221, May 2011,
 <https://www.rfc-editor.org/info/rfc6221>.

https://datatracker.ietf.org/doc/html/rfc5214
https://www.rfc-editor.org/info/rfc5214
https://datatracker.ietf.org/doc/html/rfc5320
https://www.rfc-editor.org/info/rfc5320
https://datatracker.ietf.org/doc/html/rfc5522
https://www.rfc-editor.org/info/rfc5522
https://datatracker.ietf.org/doc/html/rfc5558
https://www.rfc-editor.org/info/rfc5558
https://datatracker.ietf.org/doc/html/rfc5569
https://www.rfc-editor.org/info/rfc5569
https://datatracker.ietf.org/doc/html/rfc5880
https://www.rfc-editor.org/info/rfc5880
https://datatracker.ietf.org/doc/html/rfc6106
https://www.rfc-editor.org/info/rfc6106
https://datatracker.ietf.org/doc/html/rfc6146
https://www.rfc-editor.org/info/rfc6146
https://datatracker.ietf.org/doc/html/rfc6179
https://www.rfc-editor.org/info/rfc6179
https://datatracker.ietf.org/doc/html/rfc6221
https://www.rfc-editor.org/info/rfc6221

Templin Expires October 17, 2020 [Page 73]

Internet-Draft AERO April 2020

 [RFC6273] Kukec, A., Krishnan, S., and S. Jiang, "The Secure
 Neighbor Discovery (SEND) Hash Threat Analysis", RFC 6273,
 DOI 10.17487/RFC6273, June 2011,
 <https://www.rfc-editor.org/info/rfc6273>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,
 <https://www.rfc-editor.org/info/rfc6438>.

 [RFC6706] Templin, F., Ed., "Asymmetric Extended Route Optimization
 (AERO)", RFC 6706, DOI 10.17487/RFC6706, August 2012,
 <https://www.rfc-editor.org/info/rfc6706>.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, DOI 10.17487/RFC6864, February 2013,

 <https://www.rfc-editor.org/info/rfc6864>.

 [RFC7269] Chen, G., Cao, Z., Xie, C., and D. Binet, "NAT64
 Deployment Options and Experience", RFC 7269,
 DOI 10.17487/RFC7269, June 2014,
 <https://www.rfc-editor.org/info/rfc7269>.

 [RFC7333] Chan, H., Ed., Liu, D., Seite, P., Yokota, H., and J.
 Korhonen, "Requirements for Distributed Mobility
 Management", RFC 7333, DOI 10.17487/RFC7333, August 2014,
 <https://www.rfc-editor.org/info/rfc7333>.

 [RFC7421] Carpenter, B., Ed., Chown, T., Gont, F., Jiang, S.,
 Petrescu, A., and A. Yourtchenko, "Analysis of the 64-bit
 Boundary in IPv6 Addressing", RFC 7421,
 DOI 10.17487/RFC7421, January 2015,
 <https://www.rfc-editor.org/info/rfc7421>.

 [RFC7761] Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,
 Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent
 Multicast - Sparse Mode (PIM-SM): Protocol Specification
 (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March
 2016, <https://www.rfc-editor.org/info/rfc7761>.

 [RFC8086] Yong, L., Ed., Crabbe, E., Xu, X., and T. Herbert, "GRE-
 in-UDP Encapsulation", RFC 8086, DOI 10.17487/RFC8086,
 March 2017, <https://www.rfc-editor.org/info/rfc8086>.

https://datatracker.ietf.org/doc/html/rfc6273
https://www.rfc-editor.org/info/rfc6273
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6438
https://www.rfc-editor.org/info/rfc6438
https://datatracker.ietf.org/doc/html/rfc6706
https://www.rfc-editor.org/info/rfc6706
https://datatracker.ietf.org/doc/html/rfc6864
https://www.rfc-editor.org/info/rfc6864
https://datatracker.ietf.org/doc/html/rfc7269
https://www.rfc-editor.org/info/rfc7269
https://datatracker.ietf.org/doc/html/rfc7333
https://www.rfc-editor.org/info/rfc7333
https://datatracker.ietf.org/doc/html/rfc7421
https://www.rfc-editor.org/info/rfc7421
https://datatracker.ietf.org/doc/html/rfc7761
https://www.rfc-editor.org/info/rfc7761
https://datatracker.ietf.org/doc/html/rfc8086
https://www.rfc-editor.org/info/rfc8086

Templin Expires October 17, 2020 [Page 74]

Internet-Draft AERO April 2020

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

 [RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
 July 2018, <https://www.rfc-editor.org/info/rfc8402>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8754] Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy, J.,
 Matsushima, S., and D. Voyer, "IPv6 Segment Routing Header
 (SRH)", RFC 8754, DOI 10.17487/RFC8754, March 2020,
 <https://www.rfc-editor.org/info/rfc8754>.

Appendix A. AERO Alternate Encapsulations

 When GUE encapsulation is not needed, AERO can use common
 encapsulations such as IP-in-IP [RFC2003][RFC2473][RFC4213], Generic
 Routing Encapsulation (GRE) [RFC2784][RFC2890] and others. The
 encapsulation is therefore only differentiated from non-AERO tunnels
 through the application of AERO control messaging and not through,
 e.g., a well-known UDP port number.

 As for GUE encapsulation, alternate AERO encapsulation formats may
 require encapsulation layer fragmentation. For simple IP-in-IP
 encapsulation, an IPv6 fragment header is inserted directly between
 the inner and outer IP headers when needed, i.e., even if the outer
 header is IPv4. The IPv6 Fragment Header is identified to the outer
 IP layer by its IP protocol number, and the Next Header field in the
 IPv6 Fragment Header identifies the inner IP header version. For GRE
 encapsulation, a GRE fragment header is inserted within the GRE
 header [I-D.templin-intarea-grefrag].

 Figure 6 shows the AERO IP-in-IP encapsulation format before any
 fragmentation is applied:

https://datatracker.ietf.org/doc/html/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://datatracker.ietf.org/doc/html/rfc8402
https://www.rfc-editor.org/info/rfc8402
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8754
https://www.rfc-editor.org/info/rfc8754
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2784

Templin Expires October 17, 2020 [Page 75]

Internet-Draft AERO April 2020

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IPv4 Header | | Outer IPv6 Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |IPv6 Frag Header (optional)| |IPv6 Frag Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header | | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | |
 ~ ~ ~ ~
 ~ Inner Packet Body ~ ~ Inner Packet Body ~
 ~ ~ ~ ~
 | | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Minimal Encapsulation in IPv4 Minimal Encapsulation in IPv6

 Figure 6: Minimal Encapsulation Format using IP-in-IP

 Figure 7 shows the AERO GRE encapsulation format before any
 fragmentation is applied:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Outer IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Header |
 | (with checksum, key, etc..) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | GRE Fragment Header (optional)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Inner IP Header |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 ~ ~
 ~ Inner Packet Body ~
 ~ ~
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 7: Minimal Encapsulation Using GRE

 Alternate encapsulation may be preferred in environments where GUE
 encapsulation would add unnecessary overhead. For example, certain
 low-bandwidth wireless data links may benefit from a reduced
 encapsulation overhead.

Templin Expires October 17, 2020 [Page 76]

Internet-Draft AERO April 2020

 GUE encapsulation can traverse network paths that are inaccessible to
 non-UDP encapsulations, e.g., for crossing Network Address
 Translators (NATs). More and more, network middleboxes are also
 being configured to discard packets that include anything other than
 a well-known IP protocol such as UDP and TCP. It may therefore be
 necessary to determine the potential for middlebox filtering before
 enabling alternate encapsulation in a given environment.

 In addition to IP-in-IP, GRE and GUE, AERO can also use security
 encapsulations such as IPsec, TLS/SSL, DTLS, etc. In that case, AERO
 control messaging and route determination occur before security
 encapsulation is applied for outgoing packets and after security
 decapsulation is applied for incoming packets.

 AERO is especially well suited for use with VPN system encapsulations
 such as OpenVPN [OVPN].

Appendix B. Non-Normative Considerations

 AERO can be applied to a multitude of Internetworking scenarios, with
 each having its own adaptations. The following considerations are
 provided as non-normative guidance:

B.1. Implementation Strategies for Route Optimization

 Route optimization as discussed in Section 3.17 results in the route
 optimization source (ROS) creating an asymmetric neighbor cache entry
 for the target neighbor. The neighbor cache entry is maintained for
 at most REACHABLE_TIME seconds and then deleted unless updated. In
 order to refresh the neighbor cache entry lifetime before the
 ReachableTime timer expires, the specification requires
 implementations to issue a new NS/NA exchange to reset ReachableTime
 to REACHABLE_TIME seconds while data packets are still flowing.
 However, the decision of when to initiate a new NS/NA exchange and to
 perpetuate the process is left as an implementation detail.

 One possible strategy may be to monitor the neighbor cache entry
 watching for data packets for (REACHABLE_TIME - 5) seconds. If any
 data packets have been sent to the neighbor within this timeframe,
 then send an NS to receive a new NA. If no data packets have been
 sent, wait for 5 additional seconds and send an immediate NS if any
 data packets are sent within this "expiration pending" 5 second
 window. If no additional data packets are sent within the 5 second
 window, delete the neighbor cache entry.

 The monitoring of the neighbor data packet traffic therefore becomes
 an asymmetric ongoing process during the neighbor cache entry
 lifetime. If the neighbor cache entry expires, future data packets

Templin Expires October 17, 2020 [Page 77]

Internet-Draft AERO April 2020

 will trigger a new NS/NA exchange while the packets themselves are
 delivered over a longer path until route optimization state is re-
 established.

B.2. Implicit Mobility Management

 AERO interface neighbors MAY provide a configuration option that
 allows them to perform implicit mobility management in which no ND
 messaging is used. In that case, the Client only transmits packets
 over a single interface at a time, and the neighbor always observes
 packets arriving from the Client from the same link-layer source
 address.

 If the Client's underlying interface address changes (either due to a
 readdressing of the original interface or switching to a new
 interface) the neighbor immediately updates the neighbor cache entry
 for the Client and begins accepting and sending packets according to
 the Client's new address. This implicit mobility method applies to
 use cases such as cellphones with both WiFi and Cellular interfaces
 where only one of the interfaces is active at a given time, and the
 Client automatically switches over to the backup interface if the
 primary interface fails.

B.3. Direct Underlying Interfaces

 When a Client's AERO interface is configured over a Direct interface,
 the neighbor at the other end of the Direct link can receive packets
 without any encapsulation. In that case, the Client sends packets
 over the Direct link according to QoS preferences. If the Direct
 interface has the highest QoS preference, then the Client's IP
 packets are transmitted directly to the peer without going through an
 ANET/INET. If other interfaces have higher QoS preferences, then the
 Client's IP packets are transmitted via a different interface, which
 may result in the inclusion of Proxys, Servers and Relays in the
 communications path. Direct interfaces must be tested periodically
 for reachability, e.g., via NUD.

B.4. Operation on AERO Links with /64 ASPs

 IPv6 AERO links typically have MSPs that aggregate many candidate
 MNPs of length /64 or shorter. However, in some cases it may be
 desirable to use AERO over links that have only a /64 MSP. This can
 be accommodated by treating all Clients on the AERO link as simple
 hosts that receive /128 prefix delegations.

 In that case, the Client sends an RS message to the Server the same
 as for ordinary AERO links. The Server responds with an RA message
 that includes one or more /128 prefixes (i.e., singleton addresses)

Templin Expires October 17, 2020 [Page 78]

Internet-Draft AERO April 2020

 that include the /64 MSP prefix along with an interface identifier
 portion to be assigned to the Client. The Client and Server then
 configure their AERO addresses based on the interface identifier
 portions of the /128s (i.e., the lower 64 bits) and not based on the
 /64 prefix (i.e., the upper 64 bits).

 For example, if the MSP for the host-only IPv6 AERO link is
 2001:db8:1000:2000::/64, each Client will receive one or more /128
 IPv6 prefix delegations such as 2001:db8:1000:2000::1/128,
 2001:db8:1000:2000::2/128, etc. When the Client receives the prefix
 delegations, it assigns the AERO addresses fe80::1, fe80::2, etc. to
 the AERO interface, and assigns the global IPv6 addresses (i.e., the
 /128s) to either the AERO interface or an internal virtual interface
 such as a loopback. In this arrangement, the Client conducts route
 optimization in the same sense as discussed in Section 3.17.

 This specification has applicability for nodes that act as a Client
 on an "upstream" AERO link, but also act as a Server on "downstream"
 AERO links. More specifically, if the node acts as a Client to
 receive a /64 prefix from the upstream AERO link it can then act as a
 Server to provision /128s to Clients on downstream AERO links.

B.5. AERO Critical Infrastructure Considerations

 AERO Relays can be either Commercial off-the Shelf (COTS) standard IP
 routers or virtual machines in the cloud. Relays must be
 provisioned, supported and managed by the INET administrative
 authority, and connected to the Relays of other INETs via inter-
 domain peerings. Cost for purchasing, configuring and managing
 Relays is nominal even for very large AERO links.

 AERO Servers can be standard dedicated server platforms, but most
 often will be deployed as virtual machines in the cloud. The only
 requirements for Servers are that they can run the AERO user-level
 code and have at least one network interface connection to the INET.
 As with Relays, Servers must be provisioned, supported and managed by
 the INET administrative authority. Cost for purchasing, configuring
 and managing Servers is nominal especially for virtual Servers hosted
 in the cloud.

 AERO Proxys are most often standard dedicated server platforms with
 one network interface connected to the ANET and a second interface
 connected to an INET. As with Servers, the only requirements are
 that they can run the AERO user-level code and have at least one
 interface connection to the INET. Proxys must be provisioned,
 supported and managed by the ANET administrative authority. Cost for
 purchasing, configuring and managing Proxys is nominal, and borne by
 the ANET administrative authority.

Templin Expires October 17, 2020 [Page 79]

Internet-Draft AERO April 2020

 AERO Gateways can be any dedicated server or COTS router platform
 connected to INETs and/or EUNs. The Gateway joins the SPAN and
 engages in eBGP peering with one or more Relays as a stub AS. The
 Gateway then injects its MNPs and/or non-MNP prefixes into the BGP
 routing system, and provisions the prefixes to its downstream-
 attached networks. The Gateway can perform ROS/ROR services the same
 as for any Server, and can route between the MNP and non-MNP address
 spaces.

B.6. AERO Server Failure Implications

 AERO Servers may appear as a single point of failure in the
 architecture, but such is not the case since all Servers on the link
 provide identical services and loss of a Server does not imply
 immediate and/or comprehensive communication failures. Although
 Clients typically associate with a single Server at a time, Server
 failure is quickly detected and conveyed by Bidirectional Forward
 Detection (BFD) and/or proactive NUD allowing Clients to migrate to
 new Servers.

 If a Server fails, ongoing packet forwarding to Clients will continue
 by virtue of the asymmetric neighbor cache entries that have already
 been established in route optimization sources (ROSs). If a Client
 also experiences mobility events at roughly the same time the Server
 fails, unsolicited NA messages may be lost but proxy neighbor cache
 entries in the DEPARTED state will ensure that packet forwarding to
 the Client's new locations will continue for up to DEPART_TIME
 seconds.

 If a Client is left without a Server for an extended timeframe (e.g.,
 greater than REACHABLETIIME seconds) then existing asymmetric
 neighbor cache entries will eventually expire and both ongoing and
 new communications will fail. The original source will continue to
 retransmit until the Client has established a new Server
 relationship, after which time continuous communications will resume.

 Therefore, providing many Servers on the link with high availability
 profiles provides resilience against loss of individual Servers and
 assurance that Clients can establish new Server relationships quickly
 in event of a Server failure.

B.7. AERO Client / Server Architecture

 The AERO architectural model is client / server in the control plane,
 with route optimization in the data plane. The same as for common
 Internet services, the AERO Client discovers the addresses of AERO
 Servers and selects one Server to connect to. The AERO service is
 analogous to common Internet services such as google.com, yahoo.com,

Templin Expires October 17, 2020 [Page 80]

Internet-Draft AERO April 2020

 cnn.com, etc. However, there is only one AERO service for the link
 and all Servers provide identical services.

 Common Internet services provide differing strategies for advertising
 server addresses to clients. The strategy is conveyed through the
 DNS resource records returned in response to name resolution queries.
 As of January 2020 Internet-based 'nslookup' services were used to
 determine the following:

 o When a client resolves the domainname "google.com", the DNS always
 returns one A record (i.e., an IPv4 address) and one AAAA record
 (i.e., an IPv6 address). The client receives the same addresses
 each time it resolves the domainname via the same DNS resolver,
 but may receive different addresses when it resolves the
 domainname via different DNS resolvers. But, in each case,
 exactly one A and one AAAA record are returned.

 o When a client resolves the domainname "ietf.org", the DNS always
 returns one A record and one AAAA record with the same addresses
 regardless of which DNS resolver is used.

 o When a client resolves the domainname "yahoo.com", the DNS always
 returns a list of 4 A records and 4 AAAA records. Each time the
 client resolves the domainname via the same DNS resolver, the same
 list of addresses are returned but in randomized order (i.e.,
 consistent with a DNS round-robin strategy). But, interestingly,
 the same addresses are returned (albeit in randomized order) when
 the domainname is resolved via different DNS resolvers.

 o When a client resolves the domainname "amazon.com", the DNS always
 returns a list of 3 A records and no AAAA records. As with
 "yahoo.com", the same three A records are returned from any
 worldwide Internet connection point in randomized order.

 The above example strategies show differing approaches to Internet
 resilience and service distribution offered by major Internet
 services. The Google approach exposes only a single IPv4 and a
 single IPv6 address to clients. Clients can then select whichever IP
 protocol version offers the best response, but will always use the
 same IP address according to the current Internet connection point.
 This means that the IP address offered by the network must lead to a
 highly-available server and/or service distribution point. In other
 words, resilience is predicated on high availability within the
 network and with no client-initiated failovers expected (i.e., it is
 all-or-nothing from the client's perspective). However, Google does
 provide for worldwide distributed service distribution by virtue of
 the fact that each Internet connection point responds with a
 different IPv6 and IPv4 address. The IETF approach is like google

Templin Expires October 17, 2020 [Page 81]

Internet-Draft AERO April 2020

 (all-or-nothing from the client's perspective), but provides only a
 single IPv4 or IPv6 address on a worldwide basis. This means that
 the addresses must be made highly-available at the network level with
 no client failover possibility, and if there is any worldwide service
 distribution it would need to be conducted by a network element that
 is reached via the IP address acting as a service distribution point.

 In contrast to the Google and IETF philosophies, Yahoo and Amazon
 both provide clients with a (short) list of IP addresses with Yahoo
 providing both IP protocol versions and Amazon as IPv4-only. The
 order of the list is randomized with each name service query
 response, with the effect of round-robin load balancing for service
 distribution. With a short list of addresses, there is still
 expectation that the network will implement high availability for
 each address but in case any single address fails the client can
 switch over to using a different address. The balance then becomes
 one of function in the network vs function in the end system.

 The same implications observed for common highly-available services
 in the Internet apply also to the AERO client/server architecture.
 When an AERO Client connects to one or more ANETs, it discovers one
 or more AERO Server addresses through the mechanisms discussed in
 earlier sections. Each Server address presumably leads to a fault-
 tolerant clustering arrangement such as supported by Linux-HA,
 Extended Virtual Synchrony or Paxos. Such an arrangement has
 precedence in common Internet service deployments in lightweight
 virtual machines without requiring expensive hardware deployment.
 Similarly, common Internet service deployments set service IP
 addresses on service distribution points that may relay requests to
 many different servers.

 For AERO, the expectation is that a combination of the Google/IETF
 and Yahoo/Amazon philosophies would be employed. The AERO Client
 connects to different ANET access points and can receive 1-2 Server
 AERO addresses at each point. It then selects one AERO Server
 address, and engages in RS/RA exchanges with the same Server from all
 ANET connections. The Client remains with this Server unless or
 until the Server fails, in which case it can switch over to an
 alternate Server. The Client can likewise switch over to a different
 Server at any time if there is some reason for it to do so. So, the
 AERO expectation is for a balance of function in the network and end
 system, with fault tolerance and resilience at both levels.

Appendix C. Change Log

 << RFC Editor - remove prior to publication >>

Templin Expires October 17, 2020 [Page 82]

Internet-Draft AERO April 2020

 Changes from draft-templin-intarea-6706bis-42 to draft-templin-
intrea-6706bis-43:

 o Segment Routing.

 Changes from draft-templin-intarea-6706bis-39 to draft-templin-
intrea-6706bis-40:

 o Teredo.

 Changes from draft-templin-intarea-6706bis-38 to draft-templin-
intrea-6706bis-39:

 o Major clrifications and simplifications of SPAN fragmentation/
 reassembly.

 o Revised AERO address format to support prefix lengths up to 112.

 o New method for forming SPAN Client Prefixes and population in the
 routing system.

 o Updates RFC4443 to set a new value in the ICMP PTB Code field.

 Changes from draft-templin-intarea-6706bis-35 to draft-templin-
intrea-6706bis-36:

 o Clients in the open Internet secured using SEND/CGA.

 Changes from draft-templin-intarea-6706bis-32 to draft-templin-
intrea-6706bis-33:

 o Updated Proxy discussion with "point-to-multipoint" server
 coordination

 o Significant updates to Address Resolution and NUD to include
 correct addresses in messages

 o Differentiate between NS(AR) and NS(NUD) as their addresses and
 use cases differ.

 Changes from draft-templin-intarea-6706bis-30 to draft-templin-
intrea-6706bis-31:

 o Added "advisory PTB messages" under FAA SE2025 contract number
 DTFAWA-15-D-00030.

 Changes from draft-templin-intarea-6706bis-29 to draft-templin-
intrea-6706bis-30:

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-42
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-43
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-43
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-39
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-40
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-40
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-38
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-39
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-39
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-35
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-36
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-36
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-32
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-33
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-33
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-30
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-31
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-31
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-29
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-30
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-30

Templin Expires October 17, 2020 [Page 83]

Internet-Draft AERO April 2020

 o Deprecate "primary" concept. Now, RS/RA keepalives are
 mainatained over *all* underlying interfaces (i.e., and not just
 one primary).

 Changes from draft-templin-intarea-6706bis-28 to draft-templin-
intrea-6706bis-29:

 o Changed OMNI interface citation to "draft-templin-6man-omni-
interface"

 o Changed SPAN Service Prefix to fd80::/10.

 o Changed S/TLLAO format to include 'S' bit for ifIndex
 corresponding to the underlying interface that is Source of ND
 message.

 o Updated Path MTU

 Changes from draft-templin-intarea-6706bis-27 to draft-templin-
intrea-6706bis-28:

 o MTU and fragmentation.

 Changes from draft-templin-intarea-6706bis-26 to draft-templin-
intrea-6706bis-27:

 o MTU and fragmentation.

 o SPAN Service Prefix set to fd00::/10

 o Client SPAN addresses defined.

 Changes from draft-templin-intarea-6706bis-25 to draft-templin-
intrea-6706bis-26:

 o MTU and RA configuration information updated.

 Changes from draft-templin-intarea-6706bis-24 to draft-templin-
intrea-6706bis-25:

 o Added concept of "primary" to allow for proxyed RS/RA over only
 selected underlying interfaces.

 o General Cleanup.

 Changes from draft-templin-intarea-6706bis-23 to draft-templin-
intrea-6706bis-24:

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-28
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-29
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-29
https://datatracker.ietf.org/doc/html/draft-templin-6man-omni-interface
https://datatracker.ietf.org/doc/html/draft-templin-6man-omni-interface
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-27
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-28
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-28
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-26
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-27
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-27
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-25
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-26
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-26
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-24
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-25
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-25
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-23
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-24
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-24

Templin Expires October 17, 2020 [Page 84]

Internet-Draft AERO April 2020

 o OMNI interface spec now a normative reference.

 o Use REACHABLE_TIME as the nominal Router Lifetime to return in
 RAs.

 o General cleanup.

 Changes from draft-templin-intarea-6706bis-22 to draft-templin-
intrea-6706bis-23:

 o Choice of using either RS/RA or unsolicited NA for old Server
 notification.

 o General cleanup.

 Changes from draft-templin-intarea-6706bis-21 to draft-templin-
intrea-6706bis-22:

 o Tightened up text on Proxy.

 o Removed unnecessarily restrictive texts.

 o General cleanup.

 Changes from draft-templin-intarea-6706bis-20 to draft-templin-
intrea-6706bis-21:

 o Clarified relationship between OMNI and S/TLLAO ifIndex-tuples.

 o Important text in Section 13.15.3 on Servers timing out Clients
 that have gone silent without sending a departure notification.

 o New text on RS/RA as "hints of forward progress" for proactive
 NUD.

 Changes from draft-templin-intarea-6706bis-19 to draft-templin-
intrea-6706bis-20:

 o Included new route optimization source and destination addressing
 strategy. Now, route optimization maintenance uses the address of
 the existing Server instead of the data packet destination address
 so that less pressure is placed on the BGP routing system
 convergence time and Server constancy is supported.

 o Included new method for releasing from old MSE without requiring
 Client messaging.

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-22
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-23
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-23
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-21
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-22
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-22
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-20
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-21
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-21
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-19
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-20
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-20

Templin Expires October 17, 2020 [Page 85]

Internet-Draft AERO April 2020

 o Included references to new OMNI interface spec (including the OMNI
 option).

 o New appendix on AERO Client/Server architecture.

 Changes from draft-templin-intarea-6706bis-18 to draft-templin-
intrea-6706bis-19:

 o Changed Proxy/Server keepalives to use "proactive NUD" in a manner
 tha paralles BFD

 Changes from draft-templin-intarea-6706bis-17 to draft-templin-
intrea-6706bis-18:

 o Discuss how AERO option is used in relation to S/TLLAOs

 o New text on Bidirectional Forwarding Detection (BFD)

 o Cleaned up usage (and non-usage) of unsolicited NAs

 o New appendix on Server failures

 Changes from draft-templin-intarea-6706bis-15 to draft-templin-
intrea-6706bis-17:

 o S/TLLAO now includes multiple link-layer addresses within a single
 option instead of requiring multiple options

 o New unsolicited NA message to inform the old link that a Client
 has moved to a new link

 Changes from draft-templin-intarea-6706bis-14 to draft-templin-
intrea-6706bis-15:

 o MTU and fragmentation

 o New details in movement to new Server

 Changes from draft-templin-intarea-6706bis-13 to draft-templin-
intrea-6706bis-14:

 o Security based on secured tunnels, ingress filtering, MAP list and
 ROS list

 Changes from draft-templin-intarea-6706bis-12 to draft-templin-
intrea-6706bis-13:

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-18
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-19
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-19
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-17
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-18
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-18
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-15
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-17
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-17
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-14
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-15
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-15
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-13
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-14
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-14
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-12
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-13
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-13

Templin Expires October 17, 2020 [Page 86]

Internet-Draft AERO April 2020

 o New paragraph in Section 3.6 on AERO interface layering over
 secured tunnels

 o Removed extraneous text in Section 3.7

 o Added new detail to the forwarding algorithm in Section 3.9

 o Clarified use of fragmentation

 o Route optimization now supported for both MNP and non-MNP-based
 prefixes

 o Relays are now seen as link-layer elements in the architecture.

 o Built out multicast section in detail.

 o New Appendix on implementation considerations for route
 optimization.

 Changes from draft-templin-intarea-6706bis-11 to draft-templin-
intrea-6706bis-12:

 o Introduced Gateways as a new AERO element for connecting
 Correspondent Nodes on INET links

 o Introduced terms "Access Network (ANET)" and "Internetwork (INET)"

 o Changed "ASP" to "MSP", and "ACP" to "MNP"

 o New figure on the relation of Segments to the SPAN and AERO link

 o New "S" bit in S/TLLAO to indicate the "Source" S/TLLAO as opposed
 to additional S/TLLAOs

 o Changed Interface ID for Servers from 255 to 0xffff

 o Significant updates to Route Optimization, NUD, and Mobility
 Management

 o New Section on Multicast

 o New Section on AERO Clients in the open Internetwork

 o New Section on Operation over multiple AERO links (VLANs over the
 SPAN)

 o New Sections on DNS considerations and Transition considerations

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-11
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-12
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-12

Templin Expires October 17, 2020 [Page 87]

Internet-Draft AERO April 2020

 o

 Changes from draft-templin-intarea-6706bis-10 to draft-templin-
intrea-6706bis-11:

 o Added The SPAN

 Changes from draft-templin-intarea-6706bis-09 to draft-templin-
intrea-6706bis-10:

 o Orphaned packets in flight (e.g., when a neighbor cache entry is
 in the DEPARTED state) are now forwarded at the link layer instead
 of at the network layer. Forwarding at the network layer can
 result in routing loops and/or excessive delays of forwarded
 packets while the routing system is still reconverging.

 o Update route optimization to clarify the unsecured nature of the
 first NS used for route discovery

 o Many cleanups and clarifications on ND messaging parameters

 Changes from draft-templin-intarea-6706bis-08 to draft-templin-
intrea-6706bis-09:

 o Changed PRL to "MAP list"

 o For neighbor cache entries, changed "static" to "symmetric", and
 "dynamic" to "asymmetric"

 o Specified Proxy RS/RA exchanges with Servers on behalf of Clients

 o Added discussion of unsolicited NAs in Section 3.16, and included
 forward reference to Section 3.18

 o Added discussion of AERO Clients used as critical infrastructure
 elements to connect fixed networks.

 o Added network-based VPN under security considerations

 Changes from draft-templin-intarea-6706bis-07 to draft-templin-
intrea-6706bis-08:

 o New section on AERO-Aware Access Router

 Changes from draft-templin-intarea-6706bis-06 to draft-templin-
intrea-6706bis-07:

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-10
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-11
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-11
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-09
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-10
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-10
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-08
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-09
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-09
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-07
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-08
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-08
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-06
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-07
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-07

Templin Expires October 17, 2020 [Page 88]

Internet-Draft AERO April 2020

 o Added "R" bit for release of PDs. Now have a full RS/RA service
 that can do PD without requiring DHCPv6 messaging over-the-air

 o Clarifications on solicited vs unsolicited NAs

 o Clarified use of MAX_NEIGHBOR_ADVERTISEMENT for the purpose of
 increase reliability

 Changes from draft-templin-intarea-6706bis-05 to draft-templin-
intrea-6706bis-06:

 o Major re-work and simplification of Route Optimization function

 o Added Distributed Mobility Management (DMM) and Mobility Anchor
 Point (MAP) terminology

 o New section on "AERO Critical Infrastructure Element
 Considerations" demonstrating low overall cost for the service

 o minor text revisions and deletions

 o removed extraneous appendices

 Changes from draft-templin-intarea-6706bis-04 to draft-templin-
intrea-6706bis-05:

 o New Appendix E on S/TLLAO Extensions for special-purpose links.
 Discussed ATN/IPS as example.

 o New sentence in introduction to declare appendices as non-
 normative.

 Changes from draft-templin-intarea-6706bis-03 to draft-templin-
intrea-6706bis-04:

 o Added definitions for Potential Router List (PRL) and secure
 enclave

 o Included text on mapping transport layer port numbers to network
 layer DSCP values

 o Added reference to DTLS and DMM Distributed Mobility Anchoring
 working group document

 o Reworked Security Considerations

 o Updated references.

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-05
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-06
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-06
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-04
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-05
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-05
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-03
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-04
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-04

Templin Expires October 17, 2020 [Page 89]

Internet-Draft AERO April 2020

 Changes from draft-templin-intarea-6706bis-02 to draft-templin-
intrea-6706bis-03:

 o Added new section on SEND.

 o Clarifications on "AERO Address" section.

 o Updated references and added new reference for RFC8086.

 o Security considerations updates.

 o General text clarifications and cleanup.

 Changes from draft-templin-intarea-6706bis-01 to draft-templin-
intrea-6706bis-02:

 o Note on encapsulation avoidance in Section 4.

 Changes from draft-templin-intarea-6706bis-00 to draft-templin-
intrea-6706bis-01:

 o Remove DHCPv6 Server Release procedures that leveraged the old way
 Relays used to "route" between Server link-local addresses

 o Remove all text relating to Relays needing to do any AERO-specific
 operations

 o Proxy sends RS and receives RA from Server using SEND. Use CGAs
 as source addresses, and destination address of RA reply is to the
 AERO address corresponding to the Client's ACP.

 o Proxy uses SEND to protect RS and authenticate RA (Client does not
 use SEND, but rather relies on subnetwork security. When the
 Proxy receives an RS from the Client, it creates a new RS using
 its own addresses as the source and uses SEND with CGAs to send a
 new RS to the Server.

 o Emphasize distributed mobility management

 o AERO address-based RS injection of ACP into underlying routing
 system.

 Changes from draft-templin-aerolink-82 to draft-templin-intarea-
6706bis-00:

 o Document use of NUD (NS/NA) for reliable link-layer address
 updates as an alternative to unreliable unsolicited NA.
 Consistent with Section 7.2.6 of RFC4861.

https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-02
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-03
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-03
https://datatracker.ietf.org/doc/html/rfc8086
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-01
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-02
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-02
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-00
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-01
https://datatracker.ietf.org/doc/html/draft-templin-intrea-6706bis-01
https://datatracker.ietf.org/doc/html/draft-templin-aerolink-82
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-00
https://datatracker.ietf.org/doc/html/draft-templin-intarea-6706bis-00
https://datatracker.ietf.org/doc/html/rfc4861#section-7.2.6

Templin Expires October 17, 2020 [Page 90]

Internet-Draft AERO April 2020

 o Server adds additional layer of encapsulation between outer and
 inner headers of NS/NA messages for transmission through Relays
 that act as vanilla IPv6 routers. The messages include the AERO
 Server Subnet Router Anycast address as the source and the Subnet
 Router Anycast address corresponding to the Client's ACP as the
 destination.

 o Clients use Subnet Router Anycast address as the encapsulation
 source address when the access network does not provide a
 topologically-fixed address.

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

Templin Expires October 17, 2020 [Page 91]

