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Abstract

IP packets (both IPv4 and IPv6) are understood to contain a unit of

data which becomes the retransmission unit in case of loss. Upper

layer protocols including the Transmission Control Protocol (TCP)

and transports over the User Datagram Protocol (UDP) prepare data

units known as "segments", with traditional arrangements including a

single segment per IP packet. This document presents a new construct

known as the "IP Parcel" which permits a single packet to carry

multiple segments, essentially creating a "packet-of-packets". IP

parcels provide an essential building block for accommodating larger

Maximum Transmission Units (MTUs) in the Internet as discussed in

this document.
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1. Introduction

IP packets (both IPv4 [RFC0791] and IPv6 [RFC8200]) are understood

to contain a unit of data which becomes the retransmission unit in

case of loss. Upper layer protocols including the Transmission

Control Protocol (TCP) [RFC0793] and transports over the User

Datagram Protocol (UDP) [RFC0768] (including QUIC [RFC9000], LTP 

[RFC5326] and others) prepare data units known as "segments", with

traditional arrangements including a single segment per IP packet.

This document presents a new construct known as the "IP Parcel"

which permits a single packet to carry multiple segments. This

essentially creates a "packet-of-packets" with the IP layer and full

TCP/UDP headers appearing only once but with possibly multiple upper

layer protocol segments included.

Parcels are formed when an upper layer protocol entity identified by

the "5-tuple" (source IP, source port, destination IP, destination

port, protocol number) prepares a data buffer with the concatenation

of up to 64 properly-formed segments that can be broken out into
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smaller parcels using a copy of the IP and TCP/UDP header. All

segments except the final segment must be equal in size and no

larger than 65535 octets (minus headers), while the final segment

must not be larger than the others but may be smaller. The upper

layer protocol entity then delivers the buffer and non-final segment

size to the IP layer, which appends the necessary IP header plus

extensions to identify this as a parcel and not an ordinary packet.

Parcels can be forwarded over consecutive parcel-capable IP links in

the path until arriving at an ingress middlebox at the edge of an

intermediate Internetwork. Each such ingress middlebox may break the

parcel out into smaller (sub-)parcels and encapsulate them in

headers suitable for traversing the Internetwork. These smaller

parcels may then be rejoined into one or more larger parcels at an

egress middlebox which either delivers them locally or forwards them

further over parcel-capable IP links toward the final destination.

Middlebox repackaging of parcels is therefore possible, making

reordering and even loss of individual segments possible. But, what

matters is that the number of parcels delivered to the final

destination should be kept to a minimum for the sake of efficiency,

and that loss or receipt of individual segments (and not parcel

size) determines the retransmission unit.

The following sections discuss rationale for creating and shipping

parcels as well as the actual protocol constructs and procedures

involved. IP parcels provide an essential building block for

accommodating larger Maximum Transmission Units (MTUs) in the

Internet. It is further expected that the parcel concept may drive

future innovation in applications, operating systems, network

equipment and data links.

2. Terminology

A "parcel" is defined as "a thing or collection of things wrapped in

paper in order to be carried or sent by mail". Indeed, there are

many examples of parcel delivery services worldwide that provide an

essential transit backbone for efficient business and consumer

transactions.

In this same spirit, an "IP parcel" is simply a collection of up to

64 upper layer protocol segments wrapped in an efficient package for

transmission and delivery (i.e., a "packet-of-packets") while a

"singleton IP parcel" is simply a parcel that contains a single

segment. IP parcels are distinguished from ordinary packets through

the special header constructions discussed in this document.

The IP parcels construct is defined for both IPv4 and IPv6. Where

the document refers to "IPv4 header length", it means the total

length of the base IPv4 header plus all included options, i.e., as
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determined by consulting the Internet Header Length (IHL) field.

Where the document refers to "IPv6 header length", however, it means

only the length of the base IPv6 header (i.e., 40 octets), while the

length of any extension headers is referred to separately as the

"extension header length". Finally, the term "IP header plus

extensions" refers generically to an IPv4 header plus all included

options or an IPv6 header plus all included extension headers.

When the document refers to "upper layer header length", it means

the length of either the UDP header (8 octets) or the TCP header

plus options (20 octets or more). It is important to note that only

a single IP header and a single (full) TCP/UDP header appears in

each parcel regardless of the number of segments included. This

distinction often provides a significant savings in overhead made

possible only by parcels.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Background and Motivation

Studies have shown that applications can realize greater performance

by sending and receiving larger packets due to reduced numbers of

system calls and interrupts as well as larger atomic data copies

between kernel and user space. Large packets also result in reduced

numbers of network device interrupts and better network utilization

in comparison with smaller packet sizes.

A first study [QUIC] involved performance enhancement of the QUIC

protocol [RFC9000] using the linux Generic Segment/Receive Offload

(GSO/GRO) facility. GSO/GRO provide a robust (but non-standard)

service very similar in nature to the IP parcel service described

here, and its application has shown significant performance

increases due to the increased transfer unit size between the

operating system kernel and QUIC application.

A second study [I-D.templin-dtn-ltpfrag] showed that GSO/GRO also

improved performance for the Licklider Transmission Protocol (LTP) 

[RFC5326] for small- to medium-sized segments. Historically, the NFS

protocol also saw significant performance increases using larger

(single-segment) UDP datagrams even when IP fragmentation is

invoked, and LTP still follows this profile today. Moreover, LTP

shows this (single-segment) performance increase profile extending

to the largest possible segment size which suggests that additional

performance gains may be possible using (multi-segment) IP parcels

that exceed 65535 octets.
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TCP also benefits from larger packet sizes and efforts have

investigated TCP performance using jumbograms internally with

changes to the linux GSO/GRO facilities [BIG-TCP]. The idea is to

use the jumbo payload internally and to allow GSO/GRO to use buffer

sizes larger than 65535 octets, but with the understanding that

links that support jumbos natively are not yet widely available.

Hence, IP parcels provides a packaging that can be considered in the

near term under current deployment limitations.

A limiting consideration for sending large packets is that they are

often lost at links with smaller Maximum Transmission Units (MTUs),

and the resulting Packet Too Big (PTB) message may be lost somewhere

in the path back to the original source. This "Path MTU black hole"

condition can degrade performance unless robust path probing

techniques are used, however the best case performance always occurs

when no packets are lost due to size restrictions.

These considerations therefore motivate a design where transport

protocols should employ a maximum segment size no larger than 65535

octets (minus headers), while parcels that carry the segments may

themselves be significantly larger. Then, even if a middlebox needs

to sub-divide the parcels into smaller sub-parcels to forward

further toward the final destination, an important performance

optimization for the original source, final destination and network

middleboxes can be realized.

An analogy: when a consumer orders 50 small items from a major

online retailer, the retailer does not ship the order in 50 separate

small boxes. Instead, the retailer puts as many of the small items

as possible into one or a few larger boxes (i.e., parcels) then

places the parcels on a semi-truck or airplane. The parcels may then

pass through one or more regional distribution centers where they

may be repackaged into different parcel configurations and forwarded

further until they are finally delivered to the consumer. But most

often, the consumer will only find one or a few parcels at their

doorstep and not 50 separate small boxes. This flexible parcel

delivery service greatly reduces shipping and handling cost for all

including the retailer, regional distribution centers and finally

the consumer.

4. IP Parcel Formation

IP parcel formation is invoked by an upper layer protocol

(identified by the 5-tuple described above) when it prepares a data

buffer containing the concatenation of up to 64 segments. All non-

final segments MUST be equal in length while the final segment MUST

NOT be larger and MAY be smaller. Each non-final segment MUST NOT be

larger than 65535 octets minus the length of the IPv4 header or IPv6

extension headers, minus the length of an additional IPv6 header in
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case an encapsulation middlebox is visited on the path (see: Section

7). The upper layer protocol then presents the buffer and non-final

segment size to the IP layer which appends a single IP header (plus

extensions) and a single (full) TCP/UDP header before presenting the

parcel either to an adaptation layer interface or directly to an

ordinary network interface without engaging the adaptation layer

(see: Section 7).

For IPv4, the IP layer prepares the parcel by appending an IPv4

header with a Jumbo Payload option formed as follows:

The IPv4 Jumbo Payload option format is identical to that defined in

[RFC2675], except that the IP layer sets option type to '00001011'

and option length to '00000110' noting that the length distinguishes

this type from its deprecated use as the IPv4 "Probe MTU" option 

[RFC1063]. The IP layer then sets "Jumbo Payload Length" to the

lengths of the IPv4 header plus the combined length of all

concatenated segments (i.e., as a 32-bit value in network byte

order). The IP layer next sets the IPv4 header DF bit to 1, then

sets the IPv4 header Total Length field to the length of the IPv4

header plus the length of the first segment only. Note that the IP

layer can form true IPv4 jumbograms (as opposed to parcels) by

instead setting the IPv4 header Total Length field to the length of

the IPv4 header only (see: Section 11).

For IPv6, the IP layer forms a parcel by appending an IPv6 header

with a Hop-by-Hop Options extension header containing a Jumbo

Payload option formatted the same as for IPv4 above, but with option

type set to '11000010' and option length set to '00000100'. The IP

layer then sets "Jumbo Payload Length" to the lengths of all IPv6

extension headers present plus the combined length of all

concatenated segments. The IP layer next sets the IPv6 header

Payload Length field to the lengths of all IPv6 extension headers

present plus the length of the first segment only. Note that the IP

layer can form true IPv6 jumbograms (as opposed to parcels) by

instead setting the IPv6 header Payload Length field to 0 (see: 

[RFC2675]).

An IP parcel therefore has the following structure:
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where J is the total number of segments (between 1 and 64), L is the

length of each non-final segment which MUST NOT be larger than 65535

octets (minus headers as above) and K is the length of the final

segment which MUST NOT be larger than L. The values M and N are then

set to the length of the full UDP or TCP header (plus options), plus

the length of the IP header for IPv4 or to the length of the

extension headers only for IPv6. The values M and N are then further

calculated as follows:

M = M + ((J-1) ? L : K)

N = N + (((J-1) * L) + K) + ((J-1) * shim_length))

Note: a "singleton" parcel is one that includes only the {TCP, UDP}/

IP headers plus extensions with J=1 and a single segment of length

K, while a "null" parcel is a singleton with (J=1; K=0), i.e., a

parcel consisting of only the IP header plus extensions with no

octets beyond.

5. UDP Parcels

A UDP Parcel is an IP Parcel that includes a full UDP header

immediately following the IP header plus extensions. The UDP header

is then followed by J segments prepared by the transport layer user

+--------+--------+--------+--------+

|                                   |

~        Segment J (K octets)       ~

|          (UDP/TCP "shim")         |

+--------+--------+--------+--------+

~                                   ~

~                                   ~

+--------+--------+--------+--------+

|                                   |

~        Segment 3 (L octets)       ~

|          (UDP/TCP "shim")         |

+--------+--------+--------+--------+

|                                   |

~        Segment 2 (L octets)       ~

|          (UDP/TCP "shim")         |

+--------+--------+--------+--------+

|                                   |

~        Segment 1 (L octets)       ~

|(Full UDP/TCP header plus options) |

+--------+--------+--------+--------+

|     IP Header Plus Extensions     |

~    {Total, Payload} Length = M    ~

|      Jumbo Payload Length = N     |

+--------+--------+--------+--------+
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of UDP, where the first segment begins with a transport-specific

start delimiter (e.g., a sequence number field) and each non-first

segment begins with a "shim" UDP header including only the 2-octet

checksum field followed by the start delimiter. The length of each

segment is determined by the IP header {Total, Payload} length field

as discussed above, noting that only the first segment includes the

full UDP header and only the final segment may be of a different

length no larger than the others.

The UDP Parcel is prepared in a similar fashion as for UDP

jumbograms [RFC2675], except that the UDP checksum for each segment

is calculated independently and written into the full/shim UDP

header checksum fields (while using the full UDP header for checksum

calculation for all segments). The same as for UDP jumbograms, the

full UDP header length field is set to 0.

6. TCP Parcels

A TCP Parcel is an IP Parcel that includes a full TCP header (plus

options) immediately following the IP header plus extensions. The

TCP header is then followed by J segments, where each non-first

segment begins with a "shim" TCP header including only the 2-octet

checksum field followed by a 4-octet sequence number field that

encodes the starting (TCP) sequence number for this segment. The

length of each segment is determined by the IP header {Total,

Payload} length field as discussed above, noting that only the first

segment includes the full TCP header and only the final segment may

be of a different length no larger than the others.

The TCP Parcel is prepared in a similar fashion as for TCP

jumbograms [RFC2675], except that the TCP checksum for each segment

is calculated independently and written into the full/shim TCP

header checksum fields (while using the full TCP header for checksum

calculation for all segments).

7. Transmission of IP Parcels

The IP layer next presents the parcel to the outgoing network

interface. For ordinary IP interfaces, the interface simply forwards

the parcel over the underlying link the same as for any IP packet

after which it may then be forwarded by any number of routers over

additional consecutive parcel-capable IP links. If any next hop IP

link in the path either does not support parcels or configures an

MTU that is too small to transit the parcel without fragmentation,

the router instead opens the parcel and forwards each enclosed

segment as a separate IP packet. The router forwards each segment by

appending a copy of the parcel's IP header to each segment but with

the Jumbo Payload option removed according to the standards 

[RFC0791][RFC8200]) and also replacing the "shim" TCP/UDP header
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with a copy of the full TCP/UDP header (while updating the sequence

number and checksum as necessary). Or, if the router does not

recognize parcels at all, it drops the parcel and may return an ICMP

"Parameter Problem" message.

If the outgoing network interface is an OMNI interface [I-

D.templin-6man-omni], the OMNI Adaptation Layer (OAL) of this First

Hop Segment (FHS) OAL source node forwards the parcel to the next

OAL hop which may be either an OAL intermediate node or a Last Hop

Segment (LHS) OAL destination node (which may also be the final

destination itself). The OAL source assigns a monotonically-

incrementing (modulo 127) "Parcel ID" and subdivides the parcel into

sub-parcels no larger than the maximum of the path MTU to the next

hop or 65535 octets (minus headers) by determining the number of

segments of length L that can fit into each sub-parcel under these

size constraints. For example, if the OAL source determines that a

sub-parcel can contain 3 segments of length L, it creates sub-

parcels with the first containing segments 1-3, the second

containing segments 4-6, etc. and with the final containing any

remaining segments. The OAL source then appends identical {TCP,

UDP}/IP headers plus extensions to each sub-parcel while resetting M

and N in each according to the above equations with J set to 3 (and

K = L) for each non-final sub-parcel and with J set to the remaining

number of segments for the final sub-parcel.

The OAL source next performs IP encapsulation on each sub-parcel

with destination set to the next hop IP address then inserts an IPv6

Fragment Header after the IP encapsulation header, i.e., even if the

encapsulation header is IPv4, even if no actual fragmentation is

needed and/or even if the Jumbo Payload option is present. The OAL

source then assigns a randomly-initialized 32-bit Identification

number that is monotonically-incremented for each consecutive sub-

parcel, then performs IPv6 fragmentation over the sub-parcel if

necessary to create fragments small enough to traverse the path to

the next OAL hop while writing the Parcel ID and setting or clearing

the "Parcel (P)" and "(More) Sub-Parcels (S)" bits in the Fragment

Header of the first fragment (see: [I-D.templin-6man-fragrep]). (The

OAL source sets P to 1 for a parcel or to 0 for a non-parcel. When P

is 1, the OAL source next sets S to 1 for non-final sub-parcels or

to 0 if the sub-parcel contains the final segment.) The OAL source

then forwards each IP encapsulated packet/fragment to the next OAL

hop.

When the next OAL hop receives the encapsulated IP fragments or

whole packets, it reassembles if necessary. If the P flag in the

first fragment is 0, the next hop then processes the reassembled

entity as an ordinary IP packet; otherwise it continues processing

as a sub-parcel. If the next hop is an OAL intermediate node, it may

retain the sub-parcels along with their Parcel ID and Identification
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values for a brief time in hopes of re-combining with peer sub-

parcels of the same original parcel identified by the 4-tuple

consisting of the IP encapsulation source and destination,

Identification and Parcel ID. The combining entails the

concatenation of the segments included in sub-parcels with the same

Parcel ID and with Identification values within 64 of one another to

create a larger sub-parcel possibly even as large as the entire

original parcel. Order of concatenation is not critical, with the

exception that the final sub-parcel (i.e., the one with S set to 0)

must occur as the final concatenation before transmission. The OAL

intermediate node then appends a common {TCP, UDP}/IP header plus

extensions to each re-combined sub-parcel while resetting M and N in

each according to the above equations with J, K and L set

accordingly.

This OAL intermediate node next forwards the re-combined sub-

parcel(s) to the next hop toward the OAL destination using

encapsulation the same as specified above. (The intermediate node

MUST ensure that the S flag remains set to 0 in the sub-parcel that

contains the final segment.) When the sub-parcel(s) arrive at the

OAL destination, the OAL destination re-combines them into the

largest possible sub-parcels while honoring the S flag as above. If

the OAL destination is also the final destination, it delivers the

sub-parcels to the IP layer which acts on the enclosed 5-tuple

information supplied by the original source. Otherwise, the OAL

destination forwards each sub-parcel toward the final destination

the same as for an ordinary IP packet the same as discussed above.

Note: while the OAL destination and/or final destination could

theoretically re-combine the sub-parcels of multiple different

parcels with identical upper layer protocol 5-tuples and with non-

final segments of identical length, this process could become

complicated when the different parcels each have final segments of

diverse lengths. Since this might interfere with any perceived

performance advantages, the decision of whether and how to perform

inter-parcel concatenation is an implementation matter.

Note: some IPv6 fragmentation and reassembly implementations may

require a well-formed IPv6 header to perform their operations. When

the encapsulation is based on IPv4, such implementations translate

the encapsulation header into an IPv6 header with IPv4-Mapped IPv6

addresses before performing the fragmentation/reassembly operation,

then restore the original IPv4 header before further processing.

Note: sub-dividing a larger parcel into two or more sub-parcels

entails the translation of the {TCP,UDP} "shim" header of the first

segment in each sub-parcel into a full {TCP, UDP} header. For TCP,

the translation is based on copying the full TCP header from the

original parcel while replacing the sequence number and checksum
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values with the shim header information. For UDP, the translation is

based on copying the full UDP header from the original parcel while

replacing only the checksum value. Note that the checksum values

found in the shim headers are still valid and need not be

recalculated.

Note: combining two or more sub-parcels into a larger parcel entails

the translation of each former first segment's full {TCP, UDP}

headers into a {TCP, UDP} "shim" header. For TCP, the translation is

based on copying the sequence number and checksum values into the

shim header while discarding the full header. For UDP, the

translation is based on copying only the checksum value into the

shim header while discarding the full header. Note as above that the

checksum values need not be recalculated.

8. Parcel Path Qualification

To determine whether parcels are supported over at least a leading

portion of the forward path toward the final destination, the

original source can send a singleton IP parcel formatted as a

"Parcel Probe" that may include an upper layer protocol probe

segment (e.g., a data segment, an ICMP Echo Request message, etc.).

The purpose of the probe is to elicit a "Parcel Reply" and possibly

also an ordinary upper layer protocol probe reply from the final

destination.

If the original source receives a positive Parcel Reply, it marks

the path as "parcels supported" and ignores any ICMP [RFC0792]

[RFC4443] and/or Packet Too Big (PTB) messages [RFC1191][RFC8201]

concerning the probe. If the original source instead receives a

negative Parcel Reply or no reply, it marks the path as "parcels not

supported" and may regard any ICMP and/or PTB messages concerning

the probe (or its contents) as indications of a possible path MTU

restriction.

The original source can therefore send Parcel Probes in parallel

with sending real data as ordinary IP packets. If the original

source receives a positive Parcel Reply, it can begin using IP

parcels.

Parcel Probes use the Jumbo Payload option type (see: Section 4) but

set a different option length and replace the option value with

control information plus a 4-octet "Path MTU" value into which

conformant middleboxes write the minimum link MTU observed in a

similar fashion as described in [RFC1063][I-D.ietf-6man-mtu-option].

Parcel Probes can also include an upper layer protocol probe

segment, e.g., per [RFC4821][RFC8899]. When an upper layer protocol

probe segment is included, it appears immediately after the IP

header plus extensions.
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The original source sends Parcel Probes unidirectionally in the

forward path toward the final destination to elicit a Parcel Reply,

since it will often be the case that IP parcels are supported only

in the forward path and not in the return path. Parcel Probes may be

dropped in the forward path by any node that does not recognize IP

parcels, but a Parcel Reply must not be dropped even if IP parcels

are not recognized along portions of the return path. For this

reason, Parcel Probes are packaged as IPv4 (header) options or IPv6

Hop-by-Hop options while Parcel Replys are always packaged as IPv6

Destination Options (i.e., regardless of the IP protocol version).

Original sources send Parcel Probes and Replys that include a Jumbo

Payload option coded in an alternate format as follows:

For IPv4, the original source includes the option as an IPv4 option

with Type set to '00001011' the same as for an ordinary IPv4 parcel

(see: Section 4) but with Length set to '00001110' to distinguish

this as a probe/reply. The original source sets Nonce-1 to 0xffff,

sets Nonce-2 to a (pseudo)-random 32-bit value and sets PMTU to the

MTU of the outgoing IPv4 interface. The original source then sets

Code to 0, sets Check to the same value that will appear in the TTL

of the outgoing IPv4 header, then finally sets IPv4 Total Length to

the lengths of the IPv4 header plus the upper layer protocol probe

segment (if any) and sends the Parcel Probe via the outgoing IPv4

interface. According to [RFC7126], middleboxes (i.e., routers,

security gateways, firewalls, etc.) that do not observe this

specification SHOULD drop IP packets that contain option type

'00001011' ("IPv4 Probe MTU") but some might instead either attempt

to implement [RFC1063] or ignore the option altogether. IPv4

middleboxes that observe this specification instead MUST process the

option as a Parcel Probe as specified below.

For IPv6, the original source includes the probe option as an IPv6

Hop-by-Hop option with Type set to '11000010' the same as for an

ordinary IPv6 parcel (see: Section 4) but with Length set to

'00001100' to distinguish this as a probe. The original source sets

the concatenation of Nonce-1 and Nonce-2 to a (pseudo)-random 48-bit

value and sets PMTU to the MTU of the outgoing IPv6 interface. The

original source then sets Code to 0, sets Check to the same value
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that will appear in the Hop Limit of the outgoing IPv6 header, then

finally sets IPv6 Payload Length to the lengths of the IPv6

extension headers plus the upper layer protocol probe segment (if

any) and sends the Parcel Probe via the outgoing IPv6 interface.

According to [RFC2675], middleboxes (i.e., routers, security

gateways, firewalls, etc.) that recognize the IPv6 Jumbo Payload

option but do not observe this specification SHOULD return an ICMPv6

Parameter Problem message (and presumably also drop the packet).

IPv6 middleboxes that observe this specification instead MUST

process the option as a Parcel Probe as specified below.

When a middlebox that observes this specification receives a Parcel

Probe it first compares the Check value with the IP header Hop

Limit/TTL; if the values differ, the middlebox MUST return a

negative Parcel Reply (see below) and drop the probe. Otherwise, if

the next hop IP link either does not support parcels or configures

an MTU that is too small to pass the probe, the middlebox compares

the PMTU value with the MTU of the inbound link for the probe and

MUST (re)set PMTU to the lower MTU. The middlebox then MUST return a

positive Parcel Reply (see below) and convert the probe into an

ordinary IP packet by removing the probe option according to 

[RFC0791] or [RFC8200]. If the next hop IP link configures a

sufficiently large MTU to pass the packet, the middlebox then MUST

forward the packet to the next hop; otherwise, it MUST drop the

packet and return a suitable PTB. If the next hop IP link both

supports parcels and configures an MTU that is large enough to pass

the probe, the middlebox instead compares the probe PMTU value with

the MTUs of both the inbound and outbound links for the probe and

MUST (re)set PMTU to the lower MTU. The middlebox then MUST reset

Check to the same value that will appear in the TTL/Hop Limit of the

outgoing IP header, and MUST forward the Parcel Probe to the next

hop.

The final destination may therefore receive either an ordinary IP

packet containing an upper layer protocol probe or a Parcel Probe.

If the final destination receives an ordinary IP packet, it performs

any necessary integrity checks then delivers the packet to upper

layers which will return an upper layer probe response. If the final

destination instead receives a Parcel Probe, it first compares the

Check value with the IP header Hop Limit/TTL; if the values differ,

the final destination MUST drop the probe and return a negative

Parcel Reply (see below). Otherwise, the final destination compares

the probe PMTU value with the MTU of the inbound link and MUST

(re)set PMTU to the lower MTU. The final destination then MUST

return a positive Parcel Reply (see below) and convert the probe

into an ordinary IP packet by removing the Parcel Probe option

according to the standards [RFC0791][RFC8200].The final destination

then performs any necessary integrity checks and delivers the packet

to upper layers.
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When the middlebox or final destination returns a Parcel Reply, it

prepares an IP header of the same protocol version that appeared in

the Parcel Probe with source and destination addresses reversed,

with {Protocol, Next Header} set to the value '60' (i.e., "IPv6

Destination Option") and with an IPv6 Destination Option header with

Next Header set to the value '59' (i.e., "IPv6 No Next Header") 

[RFC8200]. The node next copies the body of the Parcel Probe option

as the sole Parcel Reply Destination Option (and for IPv4 resets

Type to '11000010' and Length to '00001100') and includes no other

octets beyond the end of the option. The node then MUST (re)set

Check to 1 for a positive or to 0 for a negative Parcel Reply, then

MUST finally set the IP header {Total, Payload} Length field

according to the length of the included Destination Option and

return the Parcel Reply to the source. (Since filtering middleboxes

may drop IPv4 packets with Protocol '60' the destination MUST wrap

an IPv4 Parcel Reply in UDP/IPv4 headers with the IPv4 source and

destination addresses copied from the Parcel Reply and with UDP port

numbers set to the UDP port number for OMNI [I-D.templin-6man-

omni].)

After sending a Parcel Probe the original source may therefore

receive a Parcel Reply (see above) and/or an upper layer protocol

probe reply. If the source receives a Parcel Reply, it first matches

Nonce-2 (and for IPv6 only also matches Nonce-1) with the values it

had included in the Parcel Probe. If the values do not match, the

source discards the Parcel Reply. Next, the source examines the

Check value and marks the path as "parcels supported" if the value

is 1 or "parcels not supported" otherwise. If the source marks the

path as "parcels supported", it also records the PMTU value as the

maximum parcel size for the forward path to this destination.

After receiving a positive Parcel Reply, the original source can

begin sending IP parcels addressed to the final destination up to

the size recorded in the PMTU. Any upper layer protocol probe

replies will determine the maximum segment size that can be included

in the parcel, but this is an upper layer consideration. The

original source should then periodically re-initiate Parcel Path

Qualification as long as it continues to forward parcels toward the

final destination (i.e., in case the forward path fluctuates). If at

any time performance appears to degrade, the original source should

cease sending IP parcels and/or re-initiate Parcel Path

Qualification.

Note: For IPv4, the original source sets the Parcel Probe Nonce-1

field to 0xffff on transmission and ignores the Nonce-1 field value

in any corresponding Parcel Replys. This avoids any possible

confusion in case an IPv4 router on the path rewrites the Nonce-1

field in a wayward attempt to implement [RFC1063].
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Note: The PMTU value returned in a positive Parcel Reply determines

only the maximum IP parcel size for the path, while the maximum

upper layer protocol segment size may be significantly smaller. The

upper layer protocol segment size is instead determined separately

according to any upper layer protocol probes and must be assumed to

be no larger than 1/64th of the maximum IP parcel size unless a

larger size is discovered by probing.

Note: Parcel probes should include an (expendable) segment of the

same upper layer protocol 5-tuple that would be used to transport

ordinary data packets. This ensures that the probes will travel over

the same paths as for ordinary data packets.

9. Integrity

Each segment of a (multi-segment) IP parcel includes its own upper

layer protocol integrity check. This means that IP parcels can

support stronger integrity for the same amount of upper layer

protocol data in comparison with an ordinary IP packet or Jumbogram

containing only a single segment. The integrity checks must then be

verified at the final destination, which accepts any segments with

correct integrity while discarding all other segments and counting

them as a loss event.

IP parcels can range in length from as small as only the IP headers

themselves to as large as the IP headers plus (64 * (65535 minus

headers)) octets. Although link layer integrity checks provide

sufficient protection for contiguous data blocks up to approximately

9KB, reliance on the presence of link-layer integrity checks may not

be possible over links such as tunnels. Moreover, the segment

contents of a received parcel may arrive in an incomplete and/or

rearranged order with respect to their original packaging.

For these reasons, the OAL at each hop of an OMNI link includes an

integrity check when it performs IP fragmentation on a sub-parcel,

with the integrity verified during reassembly at the next hop.

10. RFC2675 Updates

Section 3 of [RFC2675] provides a list of certain conditions to be

considered as errors. In particular:

error: IPv6 Payload Length != 0 and Jumbo Payload option present

error: Jumbo Payload option present and Jumbo Payload Length <

65,536

Implementations that obey this specification ignore these conditions

and do not consider them as errors.
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11. IPv4 Jumbograms

By defining a new IPv4 Jumbo Payload option, this document also

implicitly enables a true IPv4 jumbogram service defined as an IPv4

packet with a Jumbo Payload option included and with Total Length

set to the length of the IPv4 header only. All other aspects of IPv4

jumbograms are the same as for IPv6 jumbograms [RFC2675].

12. Implementation Status

Common widely-deployed implementations include services such as TCP

Segmentation Offload (TSO) and Generic Segmentation/Receive Offload

(GSO/GRO). These services support a robust (but not standardized)

service that has been shown to improve performance in many

instances. Implementation of the IP parcel service is a work in

progress.

13. IANA Considerations

The IANA is instructed to change the "MTUP - MTU Probe" entry in the

'ip option numbers' registry to the "JUMBO - IPv4 Jumbo Payload"

option. The Copy and Class fields must both be set to 0, and the

Number and Value fields must both be set to 11'. The reference must

be changed to this document [RFCXXXX].

14. Security Considerations

Original sources match the Nonce values in received Parcel Replies

with their corresponding Parcel Probes. If the values match, the

Parcel Reply is likely an authentic response to the Parcel Probe. In

environments where stronger authentication is necessary, the message

authentication services of OMNI can be applied [I-D.templin-6man-

omni].

Multi-layer security solutions may be necessary to ensure

confidentiality, integrity and availability in some environments.
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