
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Intended status: Standards Track June 7, 2010
Expires: December 9, 2010

The Subnetwork Encapsulation and Adaptation Layer (SEAL)
draft-templin-intarea-seal-15.txt

Abstract

 For the purpose of this document, a subnetwork is defined as a
 virtual topology configured over a connected IP network routing
 region and bounded by encapsulating border nodes. These virtual
 topologies may span multiple IP and/or sub-IP layer forwarding hops,
 and can introduce failure modes due to packet duplication and/or
 links with diverse Maximum Transmission Units (MTUs). This document
 specifies a Subnetwork Encapsulation and Adaptation Layer (SEAL) that
 accommodates such virtual topologies over diverse underlying link
 technologies.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 9, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Templin Expires December 9, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SEAL June 2010

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Templin Expires December 9, 2010 [Page 2]

Internet-Draft SEAL June 2010

Table of Contents

1. Introduction . 4
1.1. Motivation . 4
1.2. Approach . 6

2. Terminology and Requirements 7
3. Applicability Statement 9
4. SEAL Protocol Specification 10
4.1. Model of Operation . 10
4.2. SEAL Header Format . 12
4.3. ITE Specification . 14
4.3.1. Tunnel Interface MTU 14
4.3.2. Tunnel Interface Soft State 15
4.3.3. Admitting Packets into the Tunnel 16
4.3.4. Mid-Layer Encapsulation 17
4.3.5. SEAL Segmentation 17
4.3.6. Outer Encapsulation 17
4.3.7. Probing Strategy 18
4.3.8. Packet Identification 18
4.3.9. Sending SEAL Protocol Packets 19
4.3.10. Processing Raw ICMP Messages 19

4.4. ETE Specification . 19
4.4.1. Reassembly Buffer Requirements 19
4.4.2. IP-Layer Reassembly 20
4.4.3. SEAL-Layer Reassembly 21
4.4.4. Decapsulation and Delivery to Upper Layers 22

4.5. The SEAL Control Message Protocol (SCMP) 22
4.5.1. Generating SCMP Messages 22
4.5.2. Processing SCMP Messages 25

4.6. Tunnel Endpoint Synchronization 27
5. Link Requirements . 29
6. End System Requirements 29
7. Router Requirements . 30
8. IANA Considerations . 30
9. Security Considerations 30
10. Related Work . 31
11. SEAL Advantages over Classical Methods 31
12. Acknowledgments . 32
13. References . 33
13.1. Normative References 33
13.2. Informative References 33

Appendix A. Reliability . 36
Appendix B. Integrity . 36
Appendix C. Transport Mode 37
Appendix D. Historic Evolution of PMTUD 38

 Author's Address . 39

Templin Expires December 9, 2010 [Page 3]

Internet-Draft SEAL June 2010

1. Introduction

 As Internet technology and communication has grown and matured, many
 techniques have developed that use virtual topologies (including
 tunnels of one form or another) over an actual network that supports
 the Internet Protocol (IP) [RFC0791][RFC2460]. Those virtual
 topologies have elements that appear as one hop in the virtual
 topology, but are actually multiple IP or sub-IP layer hops. These
 multiple hops often have quite diverse properties that are often not
 even visible to the endpoints of the virtual hop. This introduces
 failure modes that are not dealt with well in current approaches.

 The use of IP encapsulation has long been considered as the means for
 creating such virtual topologies. However, the insertion of an outer
 IP header reduces the effective path MTU visible to the inner network
 layer. When IPv4 is used, this reduced MTU can be accommodated
 through the use of IPv4 fragmentation, but unmitigated in-the-network
 fragmentation has been found to be harmful through operational
 experience and studies conducted over the course of many years
 [FRAG][FOLK][RFC4963]. Additionally, classical path MTU discovery
 [RFC1191] has known operational issues that are exacerbated by in-
 the-network tunnels [RFC2923][RFC4459]. The following subsections
 present further details on the motivation and approach for addressing
 these issues.

1.1. Motivation

 Before discussing the approach, it is necessary to first understand
 the problems. In both the Internet and private-use networks today,
 IPv4 is ubiquitously deployed as the Layer 3 protocol. The two
 primary functions of IPv4 are to provide for 1) addressing, and 2) a
 fragmentation and reassembly capability used to accommodate links
 with diverse MTUs. While it is well known that the IPv4 address
 space is rapidly becoming depleted, there is a lesser-known but
 growing consensus that other IPv4 protocol limitations have already
 or may soon become problematic.

 First, the IPv4 header Identification field is only 16 bits in
 length, meaning that at most 2^16 unique packets with the same
 (source, destination, protocol)-tuple may be active in the Internet
 at a given time [I-D.ietf-intarea-ipv4-id-update]. Due to the
 escalating deployment of high-speed links (e.g., 1Gbps Ethernet),
 however, this number may soon become too small by several orders of
 magnitude for high data rate packet sources such as tunnel endpoints
 [RFC4963]. Furthermore, there are many well-known limitations
 pertaining to IPv4 fragmentation and reassembly - even to the point
 that it has been deemed "harmful" in both classic and modern-day
 studies (cited above). In particular, IPv4 fragmentation raises

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc4963

Templin Expires December 9, 2010 [Page 4]

Internet-Draft SEAL June 2010

 issues ranging from minor annoyances (e.g., in-the-network router
 fragmentation) to the potential for major integrity issues (e.g.,
 mis-association of the fragments of multiple IP packets during
 reassembly [RFC4963]).

 As a result of these perceived limitations, a fragmentation-avoiding
 technique for discovering the MTU of the forward path from a source
 to a destination node was devised through the deliberations of the
 Path MTU Discovery Working Group (PMTUDWG) during the late 1980's
 through early 1990's (see Appendix D). In this method, the source
 node provides explicit instructions to routers in the path to discard
 the packet and return an ICMP error message if an MTU restriction is
 encountered. However, this approach has several serious shortcomings
 that lead to an overall "brittleness" [RFC2923].

 In particular, site border routers in the Internet are being
 configured more and more to discard ICMP error messages coming from
 the outside world. This is due in large part to the fact that
 malicious spoofing of error messages in the Internet is made simple
 since there is no way to authenticate the source of the messages
 [I-D.ietf-tcpm-icmp-attacks]. Furthermore, when a source node that
 requires ICMP error message feedback when a packet is dropped due to
 an MTU restriction does not receive the messages, a path MTU-related
 black hole occurs. This means that the source will continue to send
 packets that are too large and never receive an indication from the
 network that they are being discarded. This behavior has been
 confirmed through documented studies showing clear evidence of path
 MTU discovery failures in the Internet today [TBIT][WAND].

 The issues with both IPv4 fragmentation and this "classical" method
 of path MTU discovery are exacerbated further when IP tunneling is
 used [RFC4459]. For example, ingress tunnel endpoints (ITEs) may be
 required to forward encapsulated packets into the subnetwork on
 behalf of hundreds, thousands, or even more original sources in the
 end site. If the ITE allows IPv4 fragmentation on the encapsulated
 packets, persistent fragmentation could lead to undetected data
 corruption due to Identification field wrapping. If the ITE instead
 uses classical IPv4 path MTU discovery, it may be inconvenienced by
 excessive ICMP error messages coming from the subnetwork that may be
 either suspect or contain insufficient information for translation
 into error messages to be returned to the original sources.

 Although recent works have led to the development of a robust end-to-
 end MTU determination scheme [RFC4821], this approach requires
 tunnels to present a consistent MTU the same as for ordinary links on
 the end-to-end path. Moreover, in current practice existing
 tunneling protocols mask the MTU issues by selecting a "lowest common
 denominator" MTU that may be much smaller than necessary for most

https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821

Templin Expires December 9, 2010 [Page 5]

Internet-Draft SEAL June 2010

 paths and difficult to change at a later date. Due to these many
 consideration, a new approach to accommodate tunnels over links with
 diverse MTUs is necessary.

1.2. Approach

 For the purpose of this document, a subnetwork is defined as a
 virtual topology configured over a connected network routing region
 and bounded by encapsulating border nodes. Examples include the
 global Internet interdomain routing core, Mobile Ad hoc Networks
 (MANETs) and enterprise networks. Subnetwork border nodes forward
 unicast and multicast packets over the virtual topology across
 multiple IP and/or sub-IP layer forwarding hops that may introduce
 packet duplication and/or traverse links with diverse Maximum
 Transmission Units (MTUs).

 This document introduces a Subnetwork Encapsulation and Adaptation
 Layer (SEAL) for tunneling network layer protocols (e.g., IP, OSI,
 etc.) over IP subnetworks that connect Ingress and Egress Tunnel
 Endpoints (ITEs/ETEs) of border nodes. It provides a modular
 specification designed to be tailored to specific associated
 tunneling protocols. A transport-mode of operation is also possible,
 and described in Appendix C. SEAL accommodates links with diverse
 MTUs, protects against off-path denial-of-service attacks, and
 supports efficient duplicate packet detection through the use of a
 minimal mid-layer encapsulation.

 SEAL specifically treats tunnels that traverse the subnetwork as
 unidirectional links that must support network layer services. As
 for any link, tunnels that use SEAL must provide suitable networking
 services including best-effort datagram delivery, integrity and
 consistent handling of packets of various sizes. As for any link
 whose media cannot provide suitable services natively, tunnels that
 use SEAL employ link-level adaptation functions to meet the
 legitimate expectations of the network layer service. As this is
 essentially a link level adaptation, SEAL is therefore permitted to
 alter packets within the subnetwork as long as it restores them to
 their original form when they exit the subnetwork. The mechanisms
 described within this document are designed precisely for this
 purpose.

 SEAL encapsulation introduces an extended Identification field for
 packet identification and a mid-layer segmentation and reassembly
 capability that allows simplified cutting and pasting of packets.
 Moreover, SEAL senses in-the-network fragmentation as a "noise"
 indication that packet sizing parameters are "out of tune" with
 respect to the network path. As a result, SEAL can naturally tune
 its packet sizing parameters to eliminate the in-the-network

Templin Expires December 9, 2010 [Page 6]

Internet-Draft SEAL June 2010

 fragmentation. This approach is in contrast to existing tunneling
 protocol practices which seek to avoid MTU issues by selecting a
 "lowest common denominator" MTU that may be overly conservative for
 many tunnels and difficult to change even when larger MTUs become
 available.

 The following sections provide the SEAL normative specifications,
 while the appendices present non-normative additional considerations.

2. Terminology and Requirements

 The following terms are defined within the scope of this document:

 subnetwork
 a virtual topology configured over a connected network routing
 region and bounded by encapsulating border nodes.

 Ingress Tunnel Endpoint
 a virtual interface over which an encapsulating border node (host
 or router) sends encapsulated packets into the subnetwork.

 Egress Tunnel Endpoint
 a virtual interface over which an encapsulating border node (host
 or router) receives encapsulated packets from the subnetwork.

 inner packet
 an unencapsulated network layer protocol packet (e.g., IPv6
 [RFC2460], IPv4 [RFC0791], OSI/CLNP [RFC1070], etc.) before any
 mid-layer or outer encapsulations are added. Internet protocol
 numbers that identify inner packets are found in the IANA Internet
 Protocol registry [RFC3232].

 mid-layer packet
 a packet resulting from adding mid-layer encapsulating headers to
 an inner packet.

 outer IP packet
 a packet resulting from adding an outer IP header to a mid-layer
 packet.

 packet-in-error
 the leading portion of an invoking data packet encapsulated in the
 body of an error control message (e.g., an ICMPv4 [RFC0792] error
 message, an ICMPv6 [RFC4443] error message, etc.).

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443

Templin Expires December 9, 2010 [Page 7]

Internet-Draft SEAL June 2010

 IP, IPvX, IPvY
 used to generically refer to either IP protocol version, i.e.,
 IPv4 or IPv6.

 The following abbreviations correspond to terms used within this
 document and elsewhere in common Internetworking nomenclature:

 DF - the IPv4 header "Don't Fragment" flag [RFC0791]

 ETE - Egress Tunnel Endpoint

 HLEN - the sum of MHLEN and OHLEN

 ITE - Ingress Tunnel Endpoint

 MHLEN - the length of any mid-layer headers and trailers

 OHLEN - the length of the outer encapsulating headers and
 trailers, including the outer IP header, the SEAL header and any
 other outer headers and trailers.

 PTB - a Packet Too Big message recognized by the inner network
 layer, e.g., an ICMPv6 "Packet Too Big" message [RFC4443], an
 ICMPv4 "Fragmentation Needed" message [RFC0792], etc.

 S_MRU - the SEAL Maximum Reassembly Unit

 S_MSS - the SEAL Maximum Segment Size

 SCMP - the SEAL Control Message Protocol

 SEAL_ID - an Identification value, randomly initialized and
 monotonically incremented for each SEAL protocol packet

 SEAL_PORT - a TCP/UDP service port number used for SEAL

 SEAL_PROTO - an IPv4 protocol number used for SEAL

 TE - Tunnel Endpoint (i.e., either ingress or egress)

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. When used
 in lower case (e.g., must, must not, etc.), these words MUST NOT be
 interpreted as described in [RFC2119], but are rather interpreted as
 they would be in common English.

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires December 9, 2010 [Page 8]

Internet-Draft SEAL June 2010

3. Applicability Statement

 SEAL was originally motivated by the specific case of subnetwork
 abstraction for Mobile Ad hoc Networks (MANETs), however it soon
 became apparent that the domain of applicability also extends to
 subnetwork abstractions of enterprise networks, ISP networks, SOHO
 networks, the interdomain routing core, and any other networking
 scenario involving IP encapsulation. SEAL and its associated
 technologies (including Virtual Enterprise Traversal (VET)
 [I-D.templin-intarea-vet]) are functional building blocks for a new
 Internetworking architecture based on Routing and Addressing in
 Networks with Global Enterprise Recursion (RANGER)
 [RFC5720][I-D.russert-rangers] and the Internet Routing Overlay
 Network (IRON) [I-D.templin-iron].

 SEAL provides a network sublayer for encapsulation of an inner
 network layer packet within outer encapsulating headers. For
 example, for IPvX in IPvY encapsulation (e.g., as IPv4/SEAL/IPv6),
 the SEAL header appears as a subnetwork encapsulation as seen by the
 inner IP layer. SEAL can also be used as a sublayer within a UDP
 data payload (e.g., as IPv4/UDP/SEAL/IPv6 similar to Teredo
 [RFC4380]), where UDP encapsulation is typically used for operation
 over subnetworks that give preferential treatment to the "core"
 Internet protocols (i.e., TCP and UDP). The SEAL header is processed
 the same as for IPv6 extension headers, i.e., it is not part of the
 outer IP header but rather allows for the creation of an arbitrarily
 extensible chain of headers in the same way that IPv6 does.

 SEAL supports a segmentation and reassembly capability for adapting
 the network layer to the underlying subnetwork characteristics, where
 the Egress Tunnel Endpoint (ETE) determines how much or how little
 reassembly it is willing to support. In the limiting case, the ETE
 acts as a passive observer that simply informs the Ingress Tunnel
 Endpoint (ITE) of any MTU limitations and otherwise discards all
 packets that arrive as multiple fragments. This mode is useful for
 determining an appropriate MTU for tunnels between performance-
 critical routers connected to high data rate subnetworks such as the
 Internet DFZ, as well as for other uses in which reassembly would
 present too great of a burden for the routers or end systems.

 When the ETE supports reassembly, the tunnel can be used to transport
 packets that are too large to traverse the path without
 fragmentation. In this mode, the ITE determines the tunnel MTU based
 on the largest packet the ETE is capable of reassembling rather than
 on the MTU of the smallest link in the path. Therefore, tunnel
 endpoints that use SEAL can transport packets that are much larger
 than the underlying subnetwork links themselves can carry in a single
 piece.

https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc4380

Templin Expires December 9, 2010 [Page 9]

Internet-Draft SEAL June 2010

 SEAL tunnels may be configured over paths that include not only
 ordinary physical links, but also virtual links that may include
 other SEAL tunnels. An example application would be linking two
 geographically remote supercomputer centers with large MTU links by
 configuring a SEAL tunnel across the Internet. A second example
 would be support for sub-IP segmentation over low-end links, i.e.,
 especially over wireless transmission media such as IEEE 802.15.4,
 broadcast radio links in Mobile Ad-hoc Networks (MANETs), Very High
 Frequency (VHF) civil aviation data links, etc.

 Many other use case examples are anticipated, and will be identified
 as further experience is gained.

4. SEAL Protocol Specification

 The following sections specify the operation of the SEAL protocol.

4.1. Model of Operation

 SEAL is an encapsulation sublayer that supports a multi-level
 segmentation and reassembly capability for the transmission of
 unicast and multicast packets across an underlying IP subnetwork with
 heterogeneous links. First, the ITE can use IPv4 fragmentation to
 fragment inner IPv4 packets before SEAL encapsulation if necessary.
 Secondly, the SEAL layer itself provides a simple cutting-and-pasting
 capability for mid-layer packets to avoid IP fragmentation on the
 outer packet. Finally, ordinary IP fragmentation is permitted on the
 outer packet after SEAL encapsulation and is used to detect and tune
 out any in-the-network fragmentation.

 SEAL-enabled ITEs encapsulate each inner packet in any mid-layer
 headers and trailers, segment the resulting mid-layer packet into
 multiple segments if necessary, then append a SEAL header and any
 outer encapsulations to each segment. As an example, for IPv6-in-
 IPv4 encapsulation a single-segment inner IPv6 packet encapsulated in
 any mid-layer headers and trailers, followed by the SEAL header,
 followed by any outer headers and trailers, followed by an outer IPv4
 header would appear as shown in Figure 1:

Templin Expires December 9, 2010 [Page 10]

Internet-Draft SEAL June 2010

 +--------------------+
 ~ outer IPv4 header ~
 +--------------------+
 I ~ other outer hdrs ~
 n +--------------------+
 n ~ SEAL Header ~
 e +--------------------+ +--------------------+
 r ~ mid-layer headers ~ ~ mid-layer headers ~
 +--------------------+ +--------------------+
 I --> | | --> | |
 P --> ~ inner IPv6 ~ --> ~ inner IPv6 ~
 v --> ~ Packet ~ --> ~ Packet ~
 6 --> | | --> | |
 +--------------------+ +--------------------+
 P ~ mid-layer trailers ~ ~ mid-layer trailers ~
 a +--------------------+ +--------------------+
 c ~ outer trailers ~
 k Mid-layer packet +--------------------+
 e after mid-layer encaps.
 t Outer IPv4 packet
 after SEAL and outer encaps.

 Figure 1: SEAL Encapsulation - Single Segment

 As a second example, for IPv4-in-IPv6 encapsulation an inner IPv4
 packet requiring three SEAL segments would appear as three separate
 outer IPv6 packets, where the mid-layer headers are carried only in
 segment 0 and the mid-layer trailers are carried in segment 2 as
 shown in Figure 2:

Templin Expires December 9, 2010 [Page 11]

Internet-Draft SEAL June 2010

 +------------------+ +------------------+
 ~ outer IPv6 hdr ~ ~ outer IPv6 hdr ~
 +------------------+ +------------------+ +------------------+
 ~ other outer hdrs ~ ~ outer IPv6 hdr ~ ~ other outer hdrs ~
 +------------------+ +------------------+ +------------------+
 ~ SEAL hdr (SEG=0) ~ ~ other outer hdrs ~ ~ SEAL hdr (SEG=2) ~
 +------------------+ +------------------+ +------------------+
 ~ mid-layer hdrs ~ ~ SEAL hdr (SEG=1) ~ | inner IPv4 |
 +------------------+ +------------------+ ~ Packet ~
 | inner IPv4 | | inner IPv4 | | (Segment 2) |
 ~ Packet ~ ~ Packet ~ +------------------+
 | (Segment 0) | | (Segment 1) | ~ mid-layer trails ~
 +------------------+ +------------------+ +------------------+
 ~ outer trailers ~ ~ outer trailers ~ ~ outer trailers ~
 +------------------+ +------------------+ +------------------+

 Segment 0 (includes Segment 1 (no mid- Segment 2 (includes
 mid-layer hdrs) layer encaps) mid-layer trails)

 Figure 2: SEAL Encapsulation - Multiple Segments

 The SEAL header itself is inserted according to the specific
 tunneling protocol. Examples include the following:

 o For simple encapsulation of an inner network layer packet within
 an outer IPvX header (e.g., [RFC1070][RFC2003][RFC2473][RFC4213],
 etc.), the SEAL header is inserted between the inner packet and
 outer IPvX headers as: IPvX/SEAL/{inner packet}.

 o For encapsulations over transports such as UDP (e.g., [RFC4380]),
 the SEAL header is inserted between the outer transport layer
 header and the mid-layer packet, e.g., as IPvX/UDP/SEAL/{mid-layer
 packet}. Here, the UDP header is seen as an "other outer header".

 SEAL-encapsulated packets include a SEAL_ID to uniquely identify each
 packet. Routers within the subnetwork use the SEAL_ID for duplicate
 packet detection, and TEs use the SEAL_ID for SEAL segmentation/
 reassembly and protection against off-path attacks. The following
 sections specify the SEAL header format and SEAL-related operations
 of the ITE and ETE, respectively.

4.2. SEAL Header Format

 The SEAL header is formatted as follows:

https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4380

Templin Expires December 9, 2010 [Page 12]

Internet-Draft SEAL June 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |VER|A|R|D|F|M|Z| NEXTHDR/SEG | SEAL_ID (bits 48 - 32) |
 +-+
 | SEAL_ID (bits 31 - 0) |
 +-+

 Figure 3: SEAL Header Format

 where the header fields are defined as:

 VER (2)
 a 2-bit version field. This document specifies Version 0 of the
 SEAL protocol, i.e., the VER field encodes the value 0.

 A (1)
 the "Acknowledgement Requested" bit. Set to 1 by the ITE in data
 packets if it wishes to receive an explicit acknowledgement from
 the ETE.

 R (1)
 the "Redirect" bit. Set to 0 unless otherwise specified in other
 documents.

 D (1)
 the "Discard" bit. Set to 0 unless otherwise specified in other
 documents.

 F (1)
 the "First Segment" bit. Set to 1 if this SEAL protocol packet
 contains the first segment (i.e., Segment #0) of a mid-layer
 packet.

 M (1)
 the "More Segments" bit. Set to 1 if this SEAL protocol packet
 contains a non-final segment of a multi-segment mid-layer packet.

 Z (1)
 a 1-bit "Reserved" field. Set to zero by the ITE and ignored by
 the ETE.

 NEXTHDR/SEG (8) an 8-bit field. When 'F'=1, encodes the next header
 Internet Protocol number the same as for the IPv4 protocol and
 IPv6 next header fields. When 'F'=0, encodes a segment number of
 a multi-segment mid-layer packet. (The segment number 0 is
 reserved.)

Templin Expires December 9, 2010 [Page 13]

Internet-Draft SEAL June 2010

 SEAL_ID (48)
 a 48-bit Identification field.

 Setting of the various bits and fields of the SEAL header is
 specified in the following sections.

4.3. ITE Specification

4.3.1. Tunnel Interface MTU

 The ITE configures a tunnel virtual interface over one or more
 underlying links that connect the border node to the subnetwork. The
 tunnel interface must present a fixed MTU to Layer 3 as the size for
 admission of inner packets into the tunnel. Since the tunnel
 interface may support a large set of ETEs that accept widely varying
 maximum packet sizes, however, a number of factors should be taken
 into consideration when selecting a tunnel interface MTU.

 Due to the ubiquitous deployment of standard Ethernet and similar
 networking gear, the nominal Internet cell size has become 1500
 bytes; this is the de facto size that end systems have come to expect
 will either be delivered by the network without loss due to an MTU
 restriction on the path or a suitable ICMP Packet Too Big (PTB)
 message returned. When the 1500 byte packets sent by end systems
 incur additional encapsulation at an ITE, however, they may be
 dropped silently since the network may not always deliver the
 necessary PTBs [RFC2923].

 The ITE should therefore set a tunnel virtual interface MTU of at
 least 1500 bytes plus extra room to accommodate any additional
 encapsulations that may occur on the path from the original source.
 The ITE can set larger MTU values still, but should select a value
 that is not so large as to cause excessive PTBs coming from within
 the tunnel interface. The ITE can also set smaller MTU values;
 however, care must be taken not to set so small a value that original
 sources would experience an MTU underflow. In particular, IPv6
 sources must see a minimum path MTU of 1280 bytes, and IPv4 sources
 should see a minimum path MTU of 576 bytes.

 The ITE can alternatively set an indefinite MTU on the tunnel virtual
 interface such that all inner packets are admitted into the interface
 without regard to size. For ITEs that host applications, this option
 must be carefully coordinated with protocol stack upper layers, since
 some upper layer protocols (e.g., TCP) derive their packet sizing
 parameters from the MTU of the outgoing interface and as such may
 select too large an initial size. This is not a problem for upper
 layers that use conservative initial maximum segment size estimates
 and/or when the tunnel interface can reduce the upper layer's maximum

https://datatracker.ietf.org/doc/html/rfc2923

Templin Expires December 9, 2010 [Page 14]

Internet-Draft SEAL June 2010

 segment size (e.g., the size advertised in the TCP MSS option) based
 on the per-neighbor MTU.

 The inner network layer protocol consults the tunnel interface MTU
 when admitting a packet into the interface. For inner IPv4 packets
 with the IPv4 Don't Fragment (DF) bit set to 0, if the packet is
 larger than the tunnel interface MTU the inner IPv4 layer uses IPv4
 fragmentation to break the packet into fragments no larger than the
 tunnel interface MTU. The ITE then admits each fragment into the
 tunnel as an independent packet.

 For all other inner packets, the ITE admits the packet if it is no
 larger than the tunnel interface MTU; otherwise, it drops the packet
 and sends a PTB error message to the source with the MTU value set to
 the tunnel interface MTU. The message must contain as much of the
 invoking packet as possible without the entire message exceeding the
 network layer minimum MTU (e.g., 576 bytes for IPv4, 1280 bytes for
 IPv6, etc.).

 Note that when the tunnel interface sets an indefinite MTU the ITE
 unconditionally admits all packets into the interface without
 fragmentation. In light of the above considerations, it is
 RECOMMENDED that the ITE configure an indefinite MTU on the tunnel
 virtual interface and adapt to any per-neighbor MTU limitations
 within the tunnel virtual interface as described in the following
 sections.

4.3.2. Tunnel Interface Soft State

 For each ETE, the ITE maintains soft state within the tunnel
 interface (e.g., in a neighbor cache) used to support inner
 fragmentation and SEAL segmentation for packets admitted into the
 tunnel interface. The soft state includes the following:

 o a Mid-layer Header Length (MHLEN); set to the length of any mid-
 layer encapsulation headers and trailers that must be added before
 SEAL segmentation.

 o an Outer Header Length (OHLEN); set to the length of the outer IP,
 SEAL and other outer encapsulation headers and trailers.

 o a total Header Length (HLEN); set to MHLEN plus OHLEN.

 o a SEAL Maximum Segment Size (S_MSS). The ITE initializes S_MSS to
 the underlying interface MTU if the underlying interface MTU can
 be determined (otherwise, the ITE initializes S_MSS to
 "infinity"). The ITE decreases or increased S_MSS based on any
 SCMP "MTU Report" messages received (see Section 4.5).

Templin Expires December 9, 2010 [Page 15]

Internet-Draft SEAL June 2010

 o a SEAL Maximum Reassembly Unit (S_MRU). The ITE initializes S_MRU
 to "infinity" and decreases or increases S_MRU based on any SCMP
 MTU Report messages received (see Section 4.5). When
 (S_MRU>(S_MSS*256)), the ITE uses (S_MSS*256) as the effective
 S_MRU value.

 Note that S_MSS and S_MRU include the length of the outer and mid-
 layer encapsulating headers and trailers (i.e., HLEN), since the ETE
 must retain the headers and trailers during reassembly. Note also
 that the ITE maintains S_MSS and S_MRU as 32-bit values such that
 inner packets larger than 64KB (e.g., IPv6 jumbograms [RFC2675]) can
 be accommodated when appropriate for a given subnetwork.

4.3.3. Admitting Packets into the Tunnel

 After the ITE admits an inner packet/fragment into the tunnel
 interface, it uses the following algorithm to determine whether the
 packet can be accommodated and (if so) whether (further) inner IP
 fragmentation is needed:

 o if the inner packet is unfragmentable (e.g., an IPv6 packet, an
 IPv4 packet with DF=1, etc.), and the packet is larger than
 (MAX(S_MRU, S_MSS) - HLEN), the ITE drops the packet and sends a
 PTB message to the original source with an MTU value of
 (MAX(S_MRU, S_MSS) - HLEN); else,

 o if the inner packet is fragmentable (e.g., an IPv4 packet with
 DF=0), and the packet is larger than (foo) bytes, the ITE uses
 inner fragmentation to break the packet into fragments no larger
 than (foo) bytes; else,

 o the ITE processes the packet without inner fragmentation.

 In the above, the ITE must track whether the tunnel interface is
 using header compression. If so, the ITE must include the length of
 the uncompressed headers and trailers when calculating HLEN. Note
 also in the above that the ITE is permitted to admit inner packets
 into the tunnel that can be accommodated in a single SEAL segment
 (i.e., no larger than S_MSS) even if they are larger than the ETE
 would be willing to reassemble if fragmented (i.e., larger than
 S_MRU) - see: Section 4.4.1.

 When the ITE uses inner fragmentation, it should use a "safe"
 fragment size of (foo) bytes that would be highly unlikely to incur
 an outer IP MTU restriction within the tunnel. If the ITE can
 determine a larger fragment size (e.g., via probing), it should use
 the larger size for inner fragmentation. In the absence of
 deterministic information, it is RECOMMENDED that the ITE set (foo)

https://datatracker.ietf.org/doc/html/rfc2675

Templin Expires December 9, 2010 [Page 16]

Internet-Draft SEAL June 2010

 to 1280.

4.3.4. Mid-Layer Encapsulation

 After inner IP fragmentation (if necessary), the ITE next
 encapsulates each inner packet/fragment in the MHLEN bytes of mid-
 layer headers and trailers. The ITE then presents the mid-layer
 packet for SEAL segmentation and outer encapsulation.

4.3.5. SEAL Segmentation

 After mid-layer encapsulation, if the length of the resulting mid-
 layer packet plus OHLEN is greater than S_MSS the ITE must
 additionally perform SEAL segmentation. To do so, it breaks the mid-
 layer packet into N segments (N <= 256) that are no larger than
 (S_MSS - OHLEN) bytes each. Each segment, except the final one, MUST
 be of equal length. The first byte of each segment MUST begin
 immediately after the final byte of the previous segment, i.e., the
 segments MUST NOT overlap. The ITE SHOULD generate the smallest
 number of segments possible, e.g., it SHOULD NOT generate 6 smaller
 segments when the packet could be accommodated with 4 larger
 segments.

 Note that this SEAL segmentation ignores the fact that the mid-layer
 packet may be unfragmentable outside of the subnetwork. This
 segmentation process is a mid-layer (not an IP layer) operation
 employed by the ITE to adapt the mid-layer packet to the subnetwork
 path characteristics, and the ETE will restore the packet to its
 original form during reassembly. Therefore, the fact that the packet
 may have been segmented within the subnetwork is not observable
 outside of the subnetwork.

4.3.6. Outer Encapsulation

 Following SEAL segmentation, the ITE next encapsulates each segment
 in a SEAL header formatted as specified in Section 4.2. For the
 first segment, the ITE sets F=1, then sets NEXTHDR to the Internet
 Protocol number of the encapsulated inner packet, and finally sets
 M=1 if there are more segments or sets M=0 otherwise. For each non-
 initial segment of an N-segment mid-layer packet (N <= 256), the ITE
 sets (F=0; M=1; SEG=1) in the SEAL header of the first non-initial
 segment, sets (F=0; M=1; SEG=2) in the next non-initial segment,
 etc., and sets (F=0; M=0; SEG=N-1) in the final segment. (Note that
 the value SEG=0 is not used, since the initial segment encodes a
 NEXTHDR value and not a SEG value.)

 The ITE next encapsulates each segment in the requisite outer headers
 and trailers according to the specific encapsulation format (e.g.,

Templin Expires December 9, 2010 [Page 17]

Internet-Draft SEAL June 2010

 [RFC1070], [RFC2003], [RFC2473], [RFC4213], etc.), except that it
 writes 'SEAL_PROTO' in the protocol field of the outer IP header
 (when simple IP encapsulation is used) or writes 'SEAL_PORT' in the
 outer destination service port field (e.g., when IP/UDP encapsulation
 is used). The ITE finally sets A=1 if probing is necessary as
 specified in Section 4.3.7, sets the packet identification values as
 specified in Section 4.3.8 and sends the packets as specified in

Section 4.3.9.

4.3.7. Probing Strategy

 All SEAL encapsulated packets sent by the ITE are considered implicit
 probes. SEAL encapsulated packets that use IPv4 as the outer layer
 of encapsulation will elicit SCMP PTB messages from the ETE (see:

Section 4.5) if any IPv4 fragmentation occurs in the path. SEAL
 encapsulated packets that use IPv6 as the outer layer of
 encapsulation may be dropped by an IPv6 router on the path to the ETE
 which will also return an ICMPv6 PTB message to the ITE. The ITE can
 then use the SEAL_ID within the packet-in-error to determine whether
 the PTB message corresponds to one of its recent packet
 transmissions.

 The ITE should also send explicit probes, periodically, to verify
 that the ETE is still reachable. The ITE sets A=1 in the SEAL header
 of a segment to be used as an explicit probe, where the probe can be
 either an ordinary data packet or a NULL packet created by setting
 the NEXTHDR field to a value of "No Next Header" (see Section 4.7 of
 [RFC2460]). The probe will elicit a solicited SCMP Neighbor
 Advertisement (NA) message from the ETE as an acknowledgement (see

Section 4.5.1).

 Finally, the ITE MAY send "expendable" outer IP probe packets (see
Section 4.3.9) as explicit probes in order to detect increases in the

 path MTU to the ETE. One possible strategy is to send expendable
 packets with A=1 in the SEAL header and DF=1 in the IP header. In
 all cases, the ITE MUST be conservative in its use of the A bit in
 order to limit the resultant control message overhead.

4.3.8. Packet Identification

 The ITE maintains a randomly-initialized SEAL_ID value as per-ETE
 soft state (e.g., in the neighbor cache) and monotonically increments
 it for each successive SEAL protocol packet it sends to the ETE. For
 each successive SEAL protocol packet, the ITE writes the current
 SEAL_ID value into the header field of the same name in the SEAL
 header.

https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2460#section-4.7
https://datatracker.ietf.org/doc/html/rfc2460#section-4.7

Templin Expires December 9, 2010 [Page 18]

Internet-Draft SEAL June 2010

4.3.9. Sending SEAL Protocol Packets

 Following SEAL segmentation and encapsulation, the ITE sets DF=0 in
 the header of each outer IPv4 packet to ensure that they will be
 delivered to the ETE even if they are fragmented within the
 subnetwork. (The ITE can instead set DF=1 for "expendable" outer
 IPv4 packets (e.g., for NULL packets used as probes -- see Section

4.3.7), but these may be lost due to an MTU restriction). For outer
 IPv6 packets, the "DF" bit is always implicitly set to 1; hence, they
 will not be fragmented within the subnetwork.

 The ITE sends each outer packet that encapsulates a segment of the
 same mid-layer packet into the tunnel in canonical order, i.e.,
 segment 0 first, followed by segment 1, etc., and finally segment
 N-1.

4.3.10. Processing Raw ICMP Messages

 The ITE may receive "raw" ICMP error messages [RFC0792][RFC4443] from
 either the ETE or routers within the subnetwork that comprise an
 outer IP header, followed by an ICMP header, followed by a portion of
 the SEAL packet that generated the error (also known as the "packet-
 in-error"). The ITE can use the SEAL_ID encoded in the packet-in-
 error as a nonce to confirm that the ICMP message came from either
 the ETE or an on-path router, and can use any additional information
 to determine whether to accept or discard the message.

 The ITE should specifically process raw ICMPv4 Protocol Unreachable
 messages and ICMPv6 Parameter Problem messages with Code
 "Unrecognized Next Header type encountered" as a hint that the ETE
 does not implement the SEAL protocol; specific actions that the ITE
 may take in this case are out of scope.

4.4. ETE Specification

4.4.1. Reassembly Buffer Requirements

 The ETE SHOULD support IP-layer and SEAL-layer reassembly for inner
 packets of at least 1280 bytes in length and MAY support reassembly
 for larger inner packets; the ETE may instead support only a minimum-
 sized reassembly buffer, but this may cause MTU underruns in some
 environments. The ETE must retain the outer IP, SEAL and other outer
 headers and trailers during both IP-layer and SEAL-layer reassembly
 for the purpose of associating the fragments/segments of the same
 packet, and must also configure a SEAL-layer reassembly buffer that
 is no smaller than the IP-layer reassembly buffer. Hence, the ETE:

https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires December 9, 2010 [Page 19]

Internet-Draft SEAL June 2010

 o SHOULD configure an outer IP-layer reassembly buffer size of at
 least (1280 + HELN) bytes.

 o MUST configure a SEAL-layer reassembly buffer size (i.e., S_MRU)
 that is no smaller than the IP-layer reassembly buffer size.

 o MUST be capable of discarding inner packets that require IP-layer
 or SEAL-layer reassembly and that are larger than (S_MRU - HLEN).

 The ETE can maintain S_MRU either as a single value to be applied for
 all ITEs, or as a per-ITE value. In that case, the ETE can manage
 each per-ITE S_MRU value separately (e.g., to reduce congestion
 caused by excessive segmentation from specific ITEs) but should seek
 to maintain as stable a value as possible for each ITE.

 Note that the ETE is permitted to accept inner packets that did not
 undergo IP-layer and/or SEAL-layer reassembly even if they are larger
 than (S_MRU - HELN) bytes. Hence, S_MRU is a maximum *reassembly*
 size, and may be less than the ETE is able to receive without
 reassembly.

4.4.2. IP-Layer Reassembly

 The ETE submits unfragmented SEAL protocol IP packets for SEAL-layer
 reassembly as specified in Section 4.4.3. The ETE instead performs
 standard IP-layer reassembly for multi-fragment SEAL protocol IP
 packets as follows.

 The ETE should maintain conservative IP-layer reassembly cache high-
 and low-water marks. When the size of the reassembly cache exceeds
 this high-water mark, the ETE should actively discard incomplete
 reassemblies (e.g., using an Active Queue Management (AQM) strategy)
 until the size falls below the low-water mark. The ETE should also
 actively discard any pending reassemblies that clearly have no
 opportunity for completion, e.g., when a considerable number of new
 fragments have been received before a fragment that completes a
 pending reassembly has arrived. Following successful IP-layer
 reassembly, the ETE submits the reassembled packet for SEAL-layer
 reassembly as specified in Section 4.4.3.

 When the ETE processes the IP first fragment (i.e., one with MF=1 and
 Offset=0 in the IP header) of a fragmented SEAL packet, it sends an
 SCMP PTB message back to the ITE (see Section 4.5.1). When the ETE
 processes an IP fragment that would cause the reassembled outer
 packet to be larger than the IP-layer reassembly buffer following
 reassembly, it discontinues the reassembly and discards any further
 fragments of the same packet.

Templin Expires December 9, 2010 [Page 20]

Internet-Draft SEAL June 2010

4.4.3. SEAL-Layer Reassembly

 Following IP reassembly (if necessary), if the mid-layer packet has
 an incorrect value in the SEAL header the ETE discards the packet and
 returns an SCMP "Parameter Problem" message (see Section 4.5.1).
 Next, if the SEAL header has A=1, the ETE sends a solicited SCMP
 Neighbor Advertisement (NA) message back to the ITE (see Section

4.5.1). The ETE next submits single-segment mid-layer packets for
 decapsulation and delivery to upper layers as specified in Section

4.4.4. The ETE instead performs SEAL-layer reassembly for multi-
 segment mid-layer packets as follows.

 The ETE adds each segment of a multi-segment mid-layer packet to a
 SEAL-layer pending-reassembly queue according to the (Source,
 Destination, SEAL_ID)-tuple found in the outer IP and SEAL headers.
 The ETE performs SEAL-layer reassembly through simple in-order
 concatenation of the encapsulated segments of the same mid-layer
 packet from N consecutive SEAL segments. SEAL-layer reassembly
 requires the ETE to maintain a cache of recently received segments
 for a hold time that would allow for nominal inter-segment delays.
 When a SEAL reassembly times out, the ETE discards the incomplete
 reassembly and returns an SCMP "Time Exceeded" message to the ITE
 (see Section 4.5.1). As for IP-layer reassembly, the ETE should also
 maintain a conservative reassembly cache high- and low-water mark and
 should actively discard any pending reassemblies that clearly have no
 opportunity for completion, e.g., when a considerable number of new
 SEAL packets have been received before a packet that completes a
 pending reassembly has arrived.

 If the ETE receives a SEAL packet for which a segment with the same
 (Source, Destination, SEAL_ID)-tuple is already in the queue, it must
 determine whether to accept the new segment and release the old, or
 drop the new segment. If accepting the new segment would cause an
 inconsistency with other segments already in the queue (e.g.,
 differing segment lengths), the ETE drops the segment that is least
 likely to complete the reassembly. If the ETE accepts a new SEAL
 segment that would cause the reassembled outer packet to be larger
 than S_MRU following reassembly, it schedules the reassembly
 resources for garbage collection and sends an SCMP PTB message back
 to the ITE (see Section 4.5.1).

 After all segments are gathered, the ETE reassembles the packet by
 concatenating the segments encapsulated in the N consecutive SEAL
 packets beginning with the initial segment (i.e., SEG=0) and followed
 by any non-initial segments 1 through N-1. That is, for an N-segment
 mid-layer packet, reassembly entails the concatenation of the SEAL-
 encapsulated packet segments with (F=1, M=1, SEAL_ID=j) in the first
 SEAL header, followed by (F=0, M=1, SEG=1, SEAL_ID=(j+1)) in the next

Templin Expires December 9, 2010 [Page 21]

Internet-Draft SEAL June 2010

 SEAL header, followed by (F=0, M=1, SEG=2, SEAL_ID=(j+2)), etc., up
 to (F=0, M=0, SEG=(N-1), SEAL_ID=(j + N-1)) in the final SEAL header.
 (Note that modulo arithmetic based on the length of the SEAL_ID field
 is used). Following successful SEAL-layer reassembly, the ETE
 submits the reassembled mid-layer packet for decapsulation and
 delivery to upper layers as specified in Section 4.4.4.

4.4.4. Decapsulation and Delivery to Upper Layers

 Following any necessary IP- and SEAL-layer reassembly, the ETE
 discards the outer headers and trailers and performs any mid-layer
 transformations on the mid-layer packet. The ETE next discards the
 mid-layer headers and trailers, and delivers the inner packet to the
 upper-layer protocol indicated either in the SEAL NEXTHDR field or
 the next header field of the mid-layer packet (i.e., if the packet
 included mid-layer encapsulations). The ETE instead silently
 discards the inner packet if it was a NULL packet (see Section

4.3.9).

4.5. The SEAL Control Message Protocol (SCMP)

 SEAL uses a companion SEAL Control Message Protocol (SCMP) based on
 the same message format as the Internet Control Message Protocol for
 IPv6 (ICMPv6) [RFC4443]. SCMP messages are further identified by the
 NEXTHDR value '58' the same as for ICMPv6 messages, however the SCMP
 message is *not* immediately preceded by an inner IPv6 header.
 Instead, SCMP messages appear immediately following the SEAL header
 which allows TEs to differentiate them from ordinary ICMPv6 messages.
 Unlike ICMPv6 messages, SCMP messages are used only for the purpose
 of conveying information between TEs, i.e., they are used only for
 sharing control information within the tunnel and not beyond the
 tunnel.

 The following sections specify the generation and processing of SCMP
 messages:

4.5.1. Generating SCMP Messages

 SCMP messages may be generated by either ITEs or ETEs (i.e., by any
 TE) using use the same message Type and Code values specified for
 ordinary ICMPv6 messages in [RFC4443]. SCMP can also be used to
 carry other message types and their associated options as specified
 in other documents (e.g., [RFC4191][RFC4861]). The general format
 for SCMP messages is shown in Figure 4:

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4191

Templin Expires December 9, 2010 [Page 22]

Internet-Draft SEAL June 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | |
 ~ Message Body ~
 | |
 +-+
 | As much of invoking SEAL data |
 ~ packet as possible without the SCMP ~
 | packet exceeding 576 bytes (*) |
 +-+

 (*) also known as the "packet-in-error"

 Figure 4: SCMP Message Format

 As for ordinary ICMPv6 messages, the SCMP message begins with a 4
 byte header that includes 8-bit Type and Code fields followed by a
 16-bit Checksum field followed by a variable-length Message Body.
 The Message Body is followed by the leading portion of the invoking
 SEAL data packet (i.e., the "packet-in-error") IFF the packet-in-
 error would also be included in the corresponding ICMPv6 message.
 The TE sets the Type and Code fields to the same values that would
 appear in the corresponding ICMPv6 message and also formats the
 message body the same as for the corresponding ICMPv6 message except
 as otherwise specified.

 If the SCMP message will include a packet-in-error, the TE then
 includes as much of the leading portion of the invoking SEAL data
 packet as possible beginning with the outer IP header and extending
 to a length that would not cause the entire SCMP message following
 encapsulation to exceed 576 bytes. The ITE finally calculates the
 Checksum the same as specified for ICMPv4 messages [RFC0792] and does
 not include a pseudo-header of the outer IP header since the SEAL_ID
 gives sufficient assurance against mis-delivery. The TE then
 encapsulates the SCMP message in the outer headers as shown in
 Figure 5:

https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires December 9, 2010 [Page 23]

Internet-Draft SEAL June 2010

 +--------------------+
 ~ outer IPv4 header ~
 +--------------------+
 ~ other outer hdrs ~
 +--------------------+
 ~ SEAL Header ~
 +--------------------+ +--------------------+
 ~ SCMP message header~ --> ~ SCMP message header~
 +--------------------+ --> +--------------------+
 ~ SCMP message body ~ --> ~ SCMP message body ~
 +--------------------+ --> +--------------------+
 ~ packet-in-error ~ --> ~ packet-in-error ~
 +--------------------+ +--------------------+
 ~ outer trailers ~
 SCMP Message +--------------------+
 before encapsulation
 SCMP Message
 after encapsulation

 Figure 5: SCMP Message Encapsulation

 When a TE generates an SCMP message in response to a packet-in-error,
 it sets the outer IP destination and source addresses of the SCMP
 packet to the packet-in-error's source and destination addresses
 (respectively). (If the destination address in the packet-in-error
 was multicast, the TE instead sets the outer IP source address of the
 SCMP packet to an address assigned to the underlying IP interface.)
 When a TE generates an SCMP message that is not due to a packet-in-
 error, it sets the outer IP destination and source addresses of the
 SCMP packet the same as for ordinary data packets. The TE finally
 sets the NEXTHDR field in the SEAL header to the value '58' (i.e.,
 the official IANA protocol number for the ICMPv6 protocol) and sends
 the SCMP message to the tunnel far end.

4.5.1.1. Generating SCMP Packet Too Big (PTB) Messages

 An ETE generates an SCMP Packet Too Big (PTB) message when it
 receives the IP first fragment (i.e., one with MF=1 and Offset=0 in
 the outer IP header) of a SEAL protocol packet that arrived as
 multiple IP fragments, or when it discontinues reassembly of a SEAL
 protocol packet that arrived as multiple IP fragments and/or multiple
 SEAL segments and would exceed S_MRU following reassembly.

 The ETE prepares an SCMP PTB message the same as for the
 corresponding ICMPv6 PTB message, except that it writes the value 0
 in the MTU field of the message if the PTB is generated as a result
 of receiving an IP first fragment and writes the S_MRU value for this
 ITE in the MTU field otherwise.

Templin Expires December 9, 2010 [Page 24]

Internet-Draft SEAL June 2010

4.5.1.2. Generating SCMP Neighbor Discovery Messages

 An ITE generates an SCMP "Neighbor Solicitation" (NS) or "Router
 Solicitation" (RS) message when it needs to solicit a response from
 an ETE. An ETE generates a solicited SCMP "Neighbor Advertisement"
 (NA) or "Router Advertisement" (RA) message when it receives an NS/RS
 message, and also generates a solicited NA message when it receives a
 SEAL protocol packet with A=1 in the SEAL header. Any TE may also
 generate unsolicited NA/RA messages that are not triggered by a
 specific solicitation event.

 The TE generates NS/RS and NA/RA messages the same as described for
 the corresponding IPv6 Neighbor Discovery (ND) messages (see:
 [RFC4861]), except that for solicited NA/RA messages it also includes
 a Redirected Header option formatted the same as for an IPv6 ND
 Redirect message. The messages may also be used in conjunction with
 the tunnel endpoint synchronization procedure specified in Section

4.6.

4.5.1.3. Generating Other SCMP Messages

 An ETE generates an SCMP "Destination Unreachable - Communication
 with Destination Administratively Prohibited" message when it is
 operating in synchronized mode and receives a SEAL packet with a
 SEAL_ID that is outside of the current window for this ITE (see:

Section 4.6). An ETE also generates an SCMP "Destination
 Unreachable" message with an appropriate code under the same
 circumstances that an IPv6 system would generate an ICMPv6
 Destination Unreachable message using the same code. The SCMP
 Destination Unreachable message is formatted the same as for ICMPv6
 Destination Unreachable messages.

 An ETE generates an SCMP "Parameter Problem" message when it receives
 a SEAL packet with an incorrect value in the SEAL header, and
 generates an SCMP "Time Exceeded" message when it garbage collects an
 incomplete SEAL data packet reassembly. The message formats used are
 the same as for the corresponding ICMPv6 messages.

 Generation of all other SCMP message types is outside the scope of
 this document.

4.5.2. Processing SCMP Messages

 An ITE processes any SCMP messages it receives as long as it can
 verify that the message was sent from an on-path ETE. The ITE can
 verify that the SCMP message came from an on-path ETE by checking
 that the SEAL_ID in the encapsulated packet-in-error corresponds to
 one of its recently-sent SEAL data packets.

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires December 9, 2010 [Page 25]

Internet-Draft SEAL June 2010

 An ITE maintains a window of SEAL_IDs of packets that it has recently
 sent to each ETE. For each SCMP message it receives, the ITE first
 verifies that the SEAL_ID encoded in the packet-in-error is within
 the window of packets that it has recently sent to the ETE. The ITE
 then verifies that the Checksum in the SCMP message header is
 correct. If the SEAL_ID is outside of the window and/or the checksum
 is incorrect, the ITE discards the message; otherwise, it processes
 the message the same as for ordinary ICMPv6 messages.

 Any TE may also receive unsolicited SCMP messages from the tunnel far
 end. When the TEs are synchronized, they can also check that the
 SEAL_ID in the SEAL header of an SCMP message is within the window of
 recently received packets from this tunnel far end (see Section 4.6).

 Finally, TEs process SCMP messages as an indication that the tunnel
 far end is responsive, i.e., in the same manner implied for IPv6
 Neighbor Unreachability Detection "hints of forward progress" (see:
 [RFC4861]).

4.5.2.1. Processing SCMP PTB Messages

 An ITE may receive an SCMP PTB message after it sends a SEAL data
 packet (see: Section 4.5.1). When the ITE receives an SCMP PTB
 message, it examines the MTU field in the message. If the MTU field
 is non-zero, the PTB was the result of a reassembly buffer
 limitation; in that case, the ITE records the value in the MTU field
 as the new S_MRU value for this ETE then (optionally) sends a
 translated PTB message of the inner network layer protocol to the
 original source with MTU set to (MAX(S_MRU, S_MSS) - HLEN). If the
 MTU field is zero, however, the PTB was the result of an IP
 fragmentation event; in that case, the ITE does not send back a
 translated PTB message but determines a new S_MSS value according to
 the length recorded in the IP header of the packet-in-error as
 follows:

 o If the length is no less than 1280, the ITE records the length as
 the new S_MSS value.

 o If the length is less than the current S_MSS value and also less
 than 1280, the ITE can discern that IP fragmentation is occurring
 but it cannot determine the true MTU of the restricting link due
 to the possibility that a router on the path is generating runt
 first fragments.

 In this latter case, the ITE must search for a reduced S_MSS value
 through an iterative searching strategy that parallels (Section 5 of
 [RFC1191]). This searching strategy may require multiple iterations
 in which the ITE sends SEAL data packets using a reduced S_MSS and

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc1191#section-5
https://datatracker.ietf.org/doc/html/rfc1191#section-5

Templin Expires December 9, 2010 [Page 26]

Internet-Draft SEAL June 2010

 receives additional SCMP MTU Report messages. During this process,
 it is essential that the ITE reduce S_MSS based on the first SCMP MTU
 Report message received under the current S_MSS size, and refrain
 from further reducing S_MSS until SCMP MTU Report messages pertaining
 to packets sent under the new S_MSS are received.

4.5.2.2. Processing SCMP Neighbor Discovery Messages

 An ETE may received NS/RS messages from an ITE as an the initial leg
 in a neighbor discovery exchange. An ITE may receive both solicited
 and unsolicited NA/RA messages from an ETE, where solicited NA/RA
 messages are distinguished by their inclusion of a Redirected header
 option (see: Section 4.5.1).

 The TE processes NS/RS and NA/RA messages the same as described for
 the corresponding IPv6 Neighbor Discovery (ND) messages (see:
 [RFC4861]). The messages may also be used in conjunction with the
 tunnel endpoint synchronization procedure specified in Section 4.6.

4.5.2.3. Processing Other SCMP Messages

 An ITE may receive an SCMP "Destination Unreachable - Communication
 with Destination Administratively Prohibited" message after it sends
 a SEAL data packet. The ITE processes this message as an indication
 that it needs to (re)synchronize with the ETE (see: Section 4.6). An
 ITE may also receive an SCMP "Destination Unreachable" message with
 an appropriate code under the same circumstances that an IPv6 host
 would receive an ICMPv6 Destination Unreachable message.

 An ITE may receive an SCMP "Parameter Problem" message when the ETE
 receives a SEAL packet with an incorrect value in the SEAL header.
 The ITE should examine the incorrect SEAL header field setting to
 determine whether a different setting should be used in subsequent
 packets.

 .An ITE may receive an SCMP "Time Exceeded" message when the ETE
 garbage collects an incomplete SEAL data packet reassembly. The ITE
 should consider the message as an indication of congestion.

 Processing of all other SCMP message types is outside the scope of
 this document.

4.6. Tunnel Endpoint Synchronization

 The SEAL ITE maintains a per-ETE window of SEAL_IDs of its recently-
 sent packets, but by default the SEAL ETE does not retain inter-
 packet state. When closer synchronization is required, SEAL Tunnel
 Endpoints (TEs) can exchange initial sequence numbers in a procedure

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires December 9, 2010 [Page 27]

Internet-Draft SEAL June 2010

 that parallels IPv6 neighbor discovery and the TCP 3-way handshake.
 When the TEs are synchronized, the ETE can also maintain a per-ITE
 window of SEAL_IDs of its recently-received packets.

 When an initiating TE ("TE(A)") needs to synchronize with a new
 tunnel far end ("TE(B)"), it first chooses a randomly-initialized 48-
 bit SEAL_ID value that it would like TE(B) to use (i.e.,
 "SEAL_ID(B)"). TE(A) then creates a neighbor cache entry for TE(B)
 and records SEAL_ID(B) in the neighbor cache entry. Next, TE(A)
 creates an SCMP NS or RS message that includes a Nonce option (see:

[RFC3971], Section 5.3). TE(A) then writes the value SEAL_ID(B) in
 the Nonce option, writes the value 0 in the SEAL_ID field of the SEAL
 header and sends the NS/RS message to TE(B).

 When TE(B) receives an NS/RS message with a Nonce option and with the
 value 0 in the SEAL_ID of the SEAL header, it considers the message
 as a potential synchronization request. TE(B) first extracts the
 value SEAL_ID(B) from the Nonce option then chooses a randomly-
 initialized 48-bit SEAL_ID value that it would like TE(A) to use
 (i.e., "SEAL_ID(A)"). TE(B) then stores the tuple (ip_src,
 SEAL_ID(A), SEAL_ID(B)) in a minimal temporary fast path data
 structure, where "ip_src" is the outer IP source address of the SCMP
 message. (For efficiency and security purposes, the data structure
 should be indexed, e.g., by a secret hash of the -tuple). TE(B) then
 creates a solicited SCMP NA or RA message that includes a Nonce
 option. It then writes the value SEAL_ID(A) in the Nonce option,
 writes the value SEAL_ID(B) in the SEAL_ID field of the SEAL header
 and sends the NA/RA message back to TE(A).

 When TE(A) receives the NA/RA, it considers the message as a
 potential synchronization acknowledgement. TE(A) first verifies that
 the value encoded in the SEAL_ID of the SEAL header matches the
 SEAL_ID(B) in the neighbor cache entry. If the values match, TE(A)
 extracts SEAL_ID(A) from the nonce option and records it in the
 neighbor cache entry; otherwise, it drops the packet. If instead
 TE(A) does not receive a timely NA/RA response, it retransmits the
 initial NS/RS message for a total of 3 tries before giving up the
 same as for ordinary IPv6 neighbor discovery.

 After TE(A) receives the synchronization acknowledgement, it begins
 sending either unsolicited NA/RA messages or ordinary data packets
 back to TE(B) using SEAL_ID(A) as the initial sequence number. When
 TE(B) receives these packets, it first checks its neighbor cache to
 see if there is a matching neighbor cache entry. If there is a
 neighbor cache entry, and the SEAL_ID in the header of the packet is
 within the window of the SEAL_ID recorded in the neighbor cache
 entry, TE(B) accepts the packet. If the SEAL_ID in the packet is
 newer than the SEAL_ID in the neighbor cache entry, TE(B) also

https://datatracker.ietf.org/doc/html/rfc3971#section-5.3

Templin Expires December 9, 2010 [Page 28]

Internet-Draft SEAL June 2010

 updates the neighbor cache value. If there is no neighbor cache
 entry, TE(B) instead checks the fast path cache to see if the packet
 is a match for an in-progress synchronization event. If there is a
 fast path cache entry with a SEAL_ID(A) that is within the window of
 the SEAL_ID in the packet header, TE(B) accepts the packet and also
 creates a new neighbor cache entry with the tuple (ip_src,
 SEAL_ID(A), SEAL_ID(B)). If there is no matching fast path cache
 entry, TE(B) instead simply discards the packet.

 By maintaining the fast path cache, each TE is able to mitigate
 buffer exhaustion attacks that may be launched by off-path attackers
 [RFC4987]. The TE will receive positive confirmation that the
 synchronization request came from an on-path tunnel far end after it
 receives a stream of in-window packets as the "third leg" of this
 three-way handshake as described above. The TEs should maintain
 neighbor cache entries as long as they receive hints of forward
 progress from the tunnel far end, but should delete the neighbor
 cache entries after a nominal stale time (e.g., 30 seconds). The TEs
 should also purge fast-path cache entries for which no window
 synchronization messages are received within a nominal stale time
 (e.g., 5 seconds).

 After synchronization is complete, when a TE receives a SEAL packet
 it checks in its neighbor cache to determine whether the SEAL_ID is
 within the current window, and discards any packets that are outside
 the window. Since packets may be lost or reordered, and since SEAL
 presents only a best effort (i.e., and not reliable) link model, the
 TE should set a coarse-grained window size (e.g., 32768) and accept
 any packet with a SEAL_ID that is within the window.

5. Link Requirements

 Subnetwork designers are expected to follow the recommendations in
Section 2 of [RFC3819] when configuring link MTUs.

6. End System Requirements

 SEAL provides robust mechanisms for returning PTB messages; however,
 end systems that send unfragmentable IP packets larger than 1500
 bytes are strongly encouraged to implement their own end-to-end MTU
 assurance, e.g., using Packetization Layer Path MTU Discovery per
 [RFC4821].

https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc3819#section-2
https://datatracker.ietf.org/doc/html/rfc4821

Templin Expires December 9, 2010 [Page 29]

Internet-Draft SEAL June 2010

7. Router Requirements

 IPv4 routers within the subnetwork are strongly encouraged to
 implement IPv4 fragmentation such that the first fragment is the
 largest and approximately the size of the underlying link MTU, i.e.,
 they should avoid generating runt first fragments.

 IPv6 routers within the subnetwork are required to generate the
 necessary PTB messages when they drop outer IPv6 packets due to an
 MTU restriction.

8. IANA Considerations

 The IANA is instructed to allocate an IP protocol number for
 'SEAL_PROTO' in the 'protocol-numbers' registry.

 The IANA is instructed to allocate a Well-Known Port number for
 'SEAL_PORT' in the 'port-numbers' registry.

 The IANA is instructed to establish a "SEAL Protocol" registry to
 record SEAL Version values. This registry should be initialized to
 include the initial SEAL Version number, i.e., Version 0.

9. Security Considerations

 Unlike IPv4 fragmentation, overlapping fragment attacks are not
 possible due to the requirement that SEAL segments be non-
 overlapping. This condition is naturally enforced due to the fact
 that each consecutive SEAL segment begins at offset 0 with respect to
 the previous SEAL segment.

 An amplification/reflection attack is possible when an attacker sends
 IP first fragments with spoofed source addresses to an ETE, resulting
 in a stream of SCMP messages returned to a victim ITE. The SEAL_ID
 in the encapsulated segment of the spoofed IP first fragment provides
 mitigation for the ITE to detect and discard spurious SCMP messages.

 The SEAL header is sent in-the-clear (outside of any IPsec/ESP
 encapsulations) the same as for the outer IP and other outer headers.
 In this respect, the threat model is no different than for IPv6
 extension headers. As for IPv6 extension headers, the SEAL header is
 protected only by L2 integrity checks and is not covered under any L3
 integrity checks.

 SCMP messages carry the SEAL_ID of the packet-in-error. Therefore,
 when an ITE receives an SCMP message it can unambiguously associate

Templin Expires December 9, 2010 [Page 30]

Internet-Draft SEAL June 2010

 it with the SEAL data packet that triggered the error. When the TEs
 are synchronized, the ETE can also detect off-path spoofing attacks.

 Security issues that apply to tunneling in general are discussed in
 [I-D.ietf-v6ops-tunnel-security-concerns].

10. Related Work

Section 3.1.7 of [RFC2764] provides a high-level sketch for
 supporting large tunnel MTUs via a tunnel-level segmentation and
 reassembly capability to avoid IP level fragmentation, which is in
 part the same approach used by SEAL. SEAL could therefore be
 considered as a fully functioned manifestation of the method
 postulated by that informational reference.

Section 3 of [RFC4459] describes inner and outer fragmentation at the
 tunnel endpoints as alternatives for accommodating the tunnel MTU;
 however, the SEAL protocol specifies a mid-layer segmentation and
 reassembly capability that is distinct from both inner and outer
 fragmentation.

Section 4 of [RFC2460] specifies a method for inserting and
 processing extension headers between the base IPv6 header and
 transport layer protocol data. The SEAL header is inserted and
 processed in exactly the same manner.

 The concepts of path MTU determination through the report of
 fragmentation and extending the IP Identification field were first
 proposed in deliberations of the TCP-IP mailing list and the Path MTU
 Discovery Working Group (MTUDWG) during the late 1980's and early
 1990's. SEAL supports a report fragmentation capability using bits
 in an extension header (the original proposal used a spare bit in the
 IP header) and supports ID extension through a 16-bit field in an
 extension header (the original proposal used a new IP option). A
 historical analysis of the evolution of these concepts, as well as
 the development of the eventual path MTU discovery mechanism for IP,
 appears in Appendix D of this document.

11. SEAL Advantages over Classical Methods

 The SEAL approach offers a number of distinct advantages over the
 classical path MTU discovery methods [RFC1191] [RFC1981]:

 1. Classical path MTU discovery always results in packet loss when
 an MTU restriction is encountered. Using SEAL, IP fragmentation
 provides a short-term interim mechanism for ensuring that packets

https://datatracker.ietf.org/doc/html/rfc2764#section-3.1.7
https://datatracker.ietf.org/doc/html/rfc4459#section-3
https://datatracker.ietf.org/doc/html/rfc2460#section-4
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Templin Expires December 9, 2010 [Page 31]

Internet-Draft SEAL June 2010

 are delivered while SEAL adjusts its packet sizing parameters.

 2. Classical path MTU may require several iterations of dropping
 packets and returning PTB messages until an acceptable path MTU
 value is determined. Under normal circumstances, SEAL determines
 the correct packet sizing parameters in a single iteration.

 3. Using SEAL, ordinary packets serve as implicit probes without
 exposing data to unnecessary loss. SEAL also provides an
 explicit probing mode not available in the classic methods.

 4. Using SEAL, ETEs encapsulate SCMP error messages in outer and
 mid-layer headers such that packet-filtering network middleboxes
 will not filter them the same as for "raw" ICMP messages that may
 be generated by an attacker.

 5. The SEAL approach ensures that the tunnel either delivers or
 deterministically drops packets according to their size, which is
 a required characteristic of any IP link.

 6. Most importantly, all SEAL packets have an Identification field
 that is sufficiently long to be used for duplicate packet
 detection purposes and to associate ICMP error messages with
 actual packets sent without requiring per-packet state; hence,
 SEAL avoids certain denial-of-service attack vectors open to the
 classical methods.

12. Acknowledgments

 The following individuals are acknowledged for helpful comments and
 suggestions: Jari Arkko, Fred Baker, Iljitsch van Beijnum, Oliver
 Bonaventure, Teco Boot, Bob Braden, Brian Carpenter, Steve Casner,
 Ian Chakeres, Noel Chiappa, Remi Denis-Courmont, Remi Despres, Ralph
 Droms, Aurnaud Ebalard, Gorry Fairhurst, Dino Farinacci, Joel
 Halpern, Sam Hartman, John Heffner, Thomas Henderson, Bob Hinden,
 Christian Huitema, Eliot Lear, Darrel Lewis, Joe Macker, Matt Mathis,
 Erik Nordmark, Dan Romascanu, Dave Thaler, Joe Touch, Mark Townsley,
 Ole Troan, Margaret Wasserman, Magnus Westerlund, Robin Whittle,
 James Woodyatt, and members of the Boeing Research & Technology NST
 DC&NT group.

 Path MTU determination through the report of fragmentation was first
 proposed by Charles Lynn on the TCP-IP mailing list in 1987.
 Extending the IP identification field was first proposed by Steve
 Deering on the MTUDWG mailing list in 1989.

Templin Expires December 9, 2010 [Page 32]

Internet-Draft SEAL June 2010

13. References

13.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

13.2. Informative References

 [FOLK] Shannon, C., Moore, D., and k. claffy, "Beyond Folklore:
 Observations on Fragmented Traffic", December 2002.

 [FRAG] Kent, C. and J. Mogul, "Fragmentation Considered Harmful",
 October 1987.

 [I-D.ietf-intarea-ipv4-id-update]
 Touch, J., "Updated Specification of the IPv4 ID Field",

draft-ietf-intarea-ipv4-id-update-00 (work in progress),
 March 2010.

 [I-D.ietf-tcpm-icmp-attacks]
 Gont, F., "ICMP attacks against TCP",

draft-ietf-tcpm-icmp-attacks-12 (work in progress),
 March 2010.

 [I-D.ietf-v6ops-tunnel-security-concerns]
 Hoagland, J., Krishnan, S., and D. Thaler, "Security
 Concerns With IP Tunneling",

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-ipv4-id-update-00
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-12

Templin Expires December 9, 2010 [Page 33]

Internet-Draft SEAL June 2010

draft-ietf-v6ops-tunnel-security-concerns-02 (work in
 progress), March 2010.

 [I-D.russert-rangers]
 Russert, S., Fleischman, E., and F. Templin, "Operational
 Scenarios for IRON and RANGER", draft-russert-rangers-03
 (work in progress), June 2010.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)",

draft-templin-intarea-vet-13 (work in progress),
 June 2010.

 [I-D.templin-iron]
 Templin, F., "The Internet Routing Overlay Network
 (IRON)", draft-templin-iron-02 (work in progress),
 June 2010.

 [MTUDWG] "IETF MTU Discovery Working Group mailing list,
 gatekeeper.dec.com/pub/DEC/WRL/mogul/mtudwg-log, November
 1989 - February 1995.".

 [RFC1063] Mogul, J., Kent, C., Partridge, C., and K. McCloghrie, "IP
 MTU discovery options", RFC 1063, July 1988.

 [RFC1070] Hagens, R., Hall, N., and M. Rose, "Use of the Internet as
 a subnetwork for experimentation with the OSI network
 layer", RFC 1070, February 1989.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.

 [RFC2764] Gleeson, B., Heinanen, J., Lin, A., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, February 2000.

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-tunnel-security-concerns-02
https://datatracker.ietf.org/doc/html/draft-russert-rangers-03
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-13
https://datatracker.ietf.org/doc/html/draft-templin-iron-02
https://datatracker.ietf.org/doc/html/rfc1063
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc2764

Templin Expires December 9, 2010 [Page 34]

Internet-Draft SEAL June 2010

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, September 2000.

 [RFC3232] Reynolds, J., "Assigned Numbers: RFC 1700 is Replaced by
 an On-line Database", RFC 3232, January 2002.

 [RFC3366] Fairhurst, G. and L. Wood, "Advice to link designers on
 link Automatic Repeat reQuest (ARQ)", BCP 62, RFC 3366,
 August 2002.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, July 2004.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, November 2005.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)", RFC 4380,
 February 2006.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, April 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC5445] Watson, M., "Basic Forward Error Correction (FEC)
 Schemes", RFC 5445, March 2009.

 [RFC5720] Templin, F., "Routing and Addressing in Networks with
 Global Enterprise Recursion (RANGER)", RFC 5720,
 February 2010.

 [TBIT] Medina, A., Allman, M., and S. Floyd, "Measuring
 Interactions Between Transport Protocols and Middleboxes",
 October 2004.

https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/bcp62
https://datatracker.ietf.org/doc/html/rfc3366
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4191
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4380
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc5445
https://datatracker.ietf.org/doc/html/rfc5720

Templin Expires December 9, 2010 [Page 35]

Internet-Draft SEAL June 2010

 [TCP-IP] "Archive/Hypermail of Early TCP-IP Mail List,
http://www-mice.cs.ucl.ac.uk/multimedia/misc/tcp_ip/, May

 1987 - May 1990.".

 [WAND] Luckie, M., Cho, K., and B. Owens, "Inferring and
 Debugging Path MTU Discovery Failures", October 2005.

Appendix A. Reliability

 Although a SEAL tunnel may span an arbitrarily-large subnetwork
 expanse, the IP layer sees the tunnel as a simple link that supports
 the IP service model. Since SEAL supports segmentation at a layer
 below IP, SEAL therefore presents a case in which the link unit of
 loss (i.e., a SEAL segment) is smaller than the end-to-end
 retransmission unit (e.g., a TCP segment).

 Links with high bit error rates (BERs) (e.g., IEEE 802.11) use
 Automatic Repeat-ReQuest (ARQ) mechanisms [RFC3366] to increase
 packet delivery ratios, while links with much lower BERs typically
 omit such mechanisms. Since SEAL tunnels may traverse arbitrarily-
 long paths over links of various types that are already either
 performing or omitting ARQ as appropriate, it would therefore often
 be inefficient to also require the tunnel to perform ARQ.

 When the SEAL ITE has knowledge that the tunnel will traverse a
 subnetwork with non-negligible loss due to, e.g., interference, link
 errors, congestion, etc., it can solicit Segment Reports from the ETE
 periodically to discover missing segments for retransmission within a
 single round-trip time. However, retransmission of missing segments
 may require the ITE to maintain considerable state and may also
 result in considerable delay variance and packet reordering.

 SEAL may also use alternate reliability mechanisms such as Forward
 Error Correction (FEC). A simple FEC mechanism may merely entail
 gratuitous retransmissions of duplicate data, however more efficient
 alternatives are also possible. Basic FEC schemes are discussed in
 [RFC5445].

 The use of ARQ and FEC mechanisms for improved reliability are for
 further study.

Appendix B. Integrity

 Each link in the path over which a SEAL tunnel is configured is
 responsible for link layer integrity verification for packets that
 traverse the link. As such, when a multi-segment SEAL packet with N

http://www-mice.cs.ucl.ac.uk/multimedia/misc/tcp_ip/
https://datatracker.ietf.org/doc/html/rfc3366
https://datatracker.ietf.org/doc/html/rfc5445

Templin Expires December 9, 2010 [Page 36]

Internet-Draft SEAL June 2010

 segments is reassembled, its segments will have been inspected by N
 independent link layer integrity check streams instead of a single
 stream that a single segment SEAL packet of the same size would have
 received. Intuitively, a reassembled packet subjected to N
 independent integrity check streams of shorter-length segments would
 seem to have integrity assurance that is no worse than a single-
 segment packet subjected to only a single integrity check steam,
 since the integrity check strength diminishes in inverse proportion
 with segment length. In any case, the link-layer integrity assurance
 for a multi-segment SEAL packet is no different than for a multi-
 fragment IPv6 packet.

 Fragmentation and reassembly schemes must also consider packet-
 splicing errors, e.g., when two segments from the same packet are
 concatenated incorrectly, when a segment from packet X is reassembled
 with segments from packet Y, etc. The primary sources of such errors
 include implementation bugs and wrapping IP ID fields. In terms of
 implementation bugs, the SEAL segmentation and reassembly algorithm
 is much simpler than IP fragmentation resulting in simplified
 implementations. In terms of wrapping ID fields, when IPv4 is used
 as the outer IP protocol, the 16-bit IP ID field can wrap with only
 64K packets with the same (src, dst, protocol)-tuple alive in the
 system at a given time [RFC4963] increasing the likelihood of
 reassembly mis-associations. However, SEAL ensures that any outer
 IPv4 fragmentation and reassembly will be short-lived and tuned out
 as soon as the ITE receives a Reassembly Repot, and SEAL segmentation
 and reassembly uses a much longer ID field. Therefore, reassembly
 mis-associations of IP fragments nor of SEAL segments should be
 prohibitively rare.

Appendix C. Transport Mode

 SEAL can also be used in "transport-mode", e.g., when the inner layer
 comprises upper-layer protocol data rather than an encapsulated IP
 packet. For instance, TCP peers can negotiate the use of SEAL for
 the carriage of protocol data encapsulated as IPv4/SEAL/TCP. In this
 sense, the "subnetwork" becomes the entire end-to-end path between
 the TCP peers and may potentially span the entire Internet.

 Section specifies the operation of SEAL in "tunnel mode", i.e., when
 there are both an inner and outer IP layer with a SEAL encapsulation
 layer between. However, the SEAL protocol can also be used in a
 "transport mode" of operation within a subnetwork region in which the
 inner-layer corresponds to a transport layer protocol (e.g., UDP,
 TCP, etc.) instead of an inner IP layer.

 For example, two TCP endpoints connected to the same subnetwork

https://datatracker.ietf.org/doc/html/rfc4963

Templin Expires December 9, 2010 [Page 37]

Internet-Draft SEAL June 2010

 region can negotiate the use of transport-mode SEAL for a connection
 by inserting a 'SEAL_OPTION' TCP option during the connection
 establishment phase. If both TCPs agree on the use of SEAL, their
 protocol messages will be carried as TCP/SEAL/IPv4 and the connection
 will be serviced by the SEAL protocol using TCP (instead of an
 encapsulating tunnel endpoint) as the transport layer protocol. The
 SEAL protocol for transport mode otherwise observes the same
 specifications as for Section 4.

Appendix D. Historic Evolution of PMTUD

 The topic of Path MTU discovery (PMTUD) saw a flurry of discussion
 and numerous proposals in the late 1980's through early 1990. The
 initial problem was posed by Art Berggreen on May 22, 1987 in a
 message to the TCP-IP discussion group [TCP-IP]. The discussion that
 followed provided significant reference material for [FRAG]. An IETF
 Path MTU Discovery Working Group [MTUDWG] was formed in late 1989
 with charter to produce an RFC. Several variations on a very few
 basic proposals were entertained, including:

 1. Routers record the PMTUD estimate in ICMP-like path probe
 messages (proposed in [FRAG] and later [RFC1063])

 2. The destination reports any fragmentation that occurs for packets
 received with the "RF" (Report Fragmentation) bit set (Steve
 Deering's 1989 adaptation of Charles Lynn's Nov. 1987 proposal)

 3. A hybrid combination of 1) and Charles Lynn's Nov. 1987 (straw
 RFC draft by McCloughrie, Fox and Mogul on Jan 12, 1990)

 4. Combination of the Lynn proposal with TCP (Fred Bohle, Jan 30,
 1990)

 5. Fragmentation avoidance by setting "IP_DF" flag on all packets
 and retransmitting if ICMPv4 "fragmentation needed" messages
 occur (Geof Cooper's 1987 proposal; later adapted into [RFC1191]
 by Mogul and Deering).

 Option 1) seemed attractive to the group at the time, since it was
 believed that routers would migrate more quickly than hosts. Option
 2) was a strong contender, but repeated attempts to secure an "RF"
 bit in the IPv4 header from the IESG failed and the proponents became
 discouraged. 3) was abandoned because it was perceived as too
 complicated, and 4) never received any apparent serious
 consideration. Proposal 5) was a late entry into the discussion from
 Steve Deering on Feb. 24th, 1990. The discussion group soon
 thereafter seemingly lost track of all other proposals and adopted

https://datatracker.ietf.org/doc/html/rfc1063
https://datatracker.ietf.org/doc/html/rfc1191

Templin Expires December 9, 2010 [Page 38]

Internet-Draft SEAL June 2010

 5), which eventually evolved into [RFC1191] and later [RFC1981].

 In retrospect, the "RF" bit postulated in 2) is not needed if a
 "contract" is first established between the peers, as in proposal 4)
 and a message to the MTUDWG mailing list from jrd@PTT.LCS.MIT.EDU on
 Feb 19. 1990. These proposals saw little discussion or rebuttal, and
 were dismissed based on the following the assertions:

 o routers upgrade their software faster than hosts

 o PCs could not reassemble fragmented packets

 o Proteon and Wellfleet routers did not reproduce the "RF" bit
 properly in fragmented packets

 o Ethernet-FDDI bridges would need to perform fragmentation (i.e.,
 "translucent" not "transparent" bridging)

 o the 16-bit IP_ID field could wrap around and disrupt reassembly at
 high packet arrival rates

 The first four assertions, although perhaps valid at the time, have
 been overcome by historical events. The final assertion is addressed
 by the mechanisms specified in SEAL.

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Templin Expires December 9, 2010 [Page 39]

