
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Intended status: Standards Track December 14, 2010
Expires: June 17, 2011

The Subnetwork Encapsulation and Adaptation Layer (SEAL)
draft-templin-intarea-seal-25.txt

Abstract

 For the purpose of this document, a subnetwork is defined as a
 virtual topology configured over a connected IP network routing
 region and bounded by encapsulating border nodes. These virtual
 topologies are manifested by tunnels that may span multiple IP and/or
 sub-IP layer forwarding hops, and can introduce failure modes due to
 packet duplication and/or links with diverse Maximum Transmission
 Units (MTUs). This document specifies a Subnetwork Encapsulation and
 Adaptation Layer (SEAL) that accommodates such virtual topologies
 over diverse underlying link technologies.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 17, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Templin Expires June 17, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SEAL December 2010

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Motivation . 4
1.2. Approach . 6

2. Terminology and Requirements 7
3. Applicability Statement 9
4. SEAL Protocol Specification 10
4.1. VET Interface Model 10
4.2. SEAL Model of Operation 11
4.3. SEAL Header Format . 13
4.4. ITE Specification . 14
4.4.1. Tunnel Interface MTU 14
4.4.2. Tunnel Interface Soft State 16
4.4.3. Admitting Packets into the Tunnel 17
4.4.4. Mid-Layer Encapsulation 18
4.4.5. SEAL Segmentation 18
4.4.6. SEAL Encapsulation 18
4.4.7. Outer Encapsulation 19
4.4.8. Sending SEAL Protocol Packets 20
4.4.9. Probing Strategy 20
4.4.10. Processing ICMP Messages 21
4.4.11. Black Hole Detection 21

4.5. ETE Specification . 21
4.5.1. Reassembly Buffer Requirements 21
4.5.2. Tunnel Interface Soft State 22
4.5.3. IP-Layer Reassembly 22
4.5.4. SEAL-Layer Reassembly 23
4.5.5. Decapsulation and Delivery to Upper Layers 24

4.6. The SEAL Control Message Protocol (SCMP) 25
4.6.1. Generating SCMP Messages 25
4.6.2. Processing SCMP Messages 29

4.7. Tunnel Endpoint Synchronization 32
5. Link Requirements . 33
6. End System Requirements 33
7. Router Requirements . 33
8. IANA Considerations . 33
9. Security Considerations 34
10. Related Work . 34
11. SEAL Advantages over Classical Methods 35
12. Acknowledgments . 36
13. References . 36

Templin Expires June 17, 2011 [Page 2]

Internet-Draft SEAL December 2010

13.1. Normative References 36
13.2. Informative References 37

Appendix A. Reliability . 39
Appendix B. Integrity . 40
Appendix C. Transport Mode 41
Appendix D. Historic Evolution of PMTUD 41

 Author's Address . 43

Templin Expires June 17, 2011 [Page 3]

Internet-Draft SEAL December 2010

1. Introduction

 As Internet technology and communication has grown and matured, many
 techniques have developed that use virtual topologies (including
 tunnels of one form or another) over an actual network that supports
 the Internet Protocol (IP) [RFC0791][RFC2460]. Those virtual
 topologies have elements that appear as one hop in the virtual
 topology, but are actually multiple IP or sub-IP layer hops. These
 multiple hops often have quite diverse properties that are often not
 even visible to the endpoints of the virtual hop. This introduces
 failure modes that are not dealt with well in current approaches.

 The use of IP encapsulation (also known as "tunneling") has long been
 considered as the means for creating such virtual topologies.
 However, the insertion of an outer IP header reduces the effective
 path MTU visible to the inner network layer. When IPv4 is used, this
 reduced MTU can be accommodated through the use of IPv4
 fragmentation, but unmitigated in-the-network fragmentation has been
 found to be harmful through operational experience and studies
 conducted over the course of many years [FRAG][FOLK][RFC4963].
 Additionally, classical path MTU discovery [RFC1191] has known
 operational issues that are exacerbated by in-the-network tunnels
 [RFC2923][RFC4459]. The following subsections present further
 details on the motivation and approach for addressing these issues.

1.1. Motivation

 Before discussing the approach, it is necessary to first understand
 the problems. In both the Internet and private-use networks today,
 IPv4 is ubiquitously deployed as the Layer 3 protocol. The two
 primary functions of IPv4 are to provide for 1) addressing, and 2) a
 fragmentation and reassembly capability used to accommodate links
 with diverse MTUs. While it is well known that the IPv4 address
 space is rapidly becoming depleted, there is a lesser-known but
 growing consensus that other IPv4 protocol limitations have already
 or may soon become problematic.

 First, the IPv4 header Identification field is only 16 bits in
 length, meaning that at most 2^16 unique packets with the same
 (source, destination, protocol)-tuple may be active in the Internet
 at a given time [I-D.ietf-intarea-ipv4-id-update]. Due to the
 escalating deployment of high-speed links (e.g., 1Gbps Ethernet),
 however, this number may soon become too small by several orders of
 magnitude for high data rate packet sources such as tunnel endpoints
 [RFC4963]. Furthermore, there are many well-known limitations
 pertaining to IPv4 fragmentation and reassembly - even to the point
 that it has been deemed "harmful" in both classic and modern-day
 studies (see above). In particular, IPv4 fragmentation raises issues

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc4963

Templin Expires June 17, 2011 [Page 4]

Internet-Draft SEAL December 2010

 ranging from minor annoyances (e.g., in-the-network router
 fragmentation [RFC1981]) to the potential for major integrity issues
 (e.g., mis-association of the fragments of multiple IP packets during
 reassembly [RFC4963]).

 As a result of these perceived limitations, a fragmentation-avoiding
 technique for discovering the MTU of the forward path from a source
 to a destination node was devised through the deliberations of the
 Path MTU Discovery Working Group (PMTUDWG) during the late 1980's
 through early 1990's (see Appendix D). In this method, the source
 node provides explicit instructions to routers in the path to discard
 the packet and return an ICMP error message if an MTU restriction is
 encountered. However, this approach has several serious shortcomings
 that lead to an overall "brittleness" [RFC2923].

 In particular, site border routers in the Internet are being
 configured more and more to discard ICMP error messages coming from
 the outside world. This is due in large part to the fact that
 malicious spoofing of error messages in the Internet is trivial since
 there is no way to authenticate the source of the messages [RFC5927].
 Furthermore, when a source node that requires ICMP error message
 feedback when a packet is dropped due to an MTU restriction does not
 receive the messages, a path MTU-related black hole occurs. This
 means that the source will continue to send packets that are too
 large and never receive an indication from the network that they are
 being discarded. This behavior has been confirmed through documented
 studies showing clear evidence of path MTU discovery failures in the
 Internet today [TBIT][WAND][SIGCOMM].

 The issues with both IPv4 fragmentation and this "classical" method
 of path MTU discovery are exacerbated further when IP tunneling is
 used [RFC4459]. For example, ingress tunnel endpoints (ITEs) may be
 required to forward encapsulated packets into the subnetwork on
 behalf of hundreds, thousands, or even more original sources in the
 end site. If the ITE allows IPv4 fragmentation on the encapsulated
 packets, persistent fragmentation could lead to undetected data
 corruption due to Identification field wrapping. If the ITE instead
 uses classical IPv4 path MTU discovery, it may be inconvenienced by
 excessive ICMP error messages coming from the subnetwork that may be
 either suspect or contain insufficient information for translation
 into error messages to be returned to the original sources.

 Although recent works have led to the development of a robust end-to-
 end MTU determination scheme [RFC4821], this approach requires
 tunnels to present a consistent MTU the same as for ordinary links on
 the end-to-end path. Moreover, in current practice existing
 tunneling protocols mask the MTU issues by selecting a "lowest common
 denominator" MTU that may be much smaller than necessary for most

https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821

Templin Expires June 17, 2011 [Page 5]

Internet-Draft SEAL December 2010

 paths and difficult to change at a later date. Due to these many
 consideration, a new approach to accommodate tunnels over links with
 diverse MTUs is necessary.

1.2. Approach

 For the purpose of this document, a subnetwork is defined as a
 virtual topology configured over a connected network routing region
 and bounded by encapsulating border nodes. Example connected network
 routing regions include Mobile Ad hoc Networks (MANETs), enterprise
 networks and the global public Internet itself. Subnetwork border
 nodes forward unicast and multicast packets over the virtual topology
 across multiple IP and/or sub-IP layer forwarding hops that may
 introduce packet duplication and/or traverse links with diverse
 Maximum Transmission Units (MTUs).

 This document introduces a Subnetwork Encapsulation and Adaptation
 Layer (SEAL) for tunneling network layer protocols (e.g., IP, OSI,
 etc.) over IP subnetworks that connect Ingress and Egress Tunnel
 Endpoints (ITEs/ETEs) of border nodes. It provides a modular
 specification designed to be tailored to specific associated
 tunneling protocols. A transport-mode of operation is also possible,
 and described in Appendix C. SEAL accommodates links with diverse
 MTUs, protects against off-path denial-of-service attacks, and can be
 configured to enable efficient duplicate packet detection through the
 use of a minimal mid-layer encapsulation.

 SEAL specifically treats tunnels that traverse the subnetwork as
 ordinary links that must support network layer services. As for any
 link, tunnels that use SEAL must provide suitable networking services
 including best-effort datagram delivery, integrity and consistent
 handling of packets of various sizes. As for any link whose media
 cannot provide suitable services natively, tunnels that use SEAL
 employ link-level adaptation functions to meet the legitimate
 expectations of the network layer service. As this is essentially a
 link level adaptation, SEAL is therefore permitted to alter packets
 within the subnetwork as long as it restores them to their original
 form when they exit the subnetwork. The mechanisms described within
 this document are designed precisely for this purpose.

 SEAL encapsulation introduces an extended Identification field for
 per-packet and/or per-ETE identification as well as a mid-layer
 segmentation and reassembly capability that allows simplified cutting
 and pasting of packets. Moreover, SEAL engages both tunnel endpoints
 in ensuring a functional path MTU on the path from the ITE to the
 ETE. This is in contrast to "stateless" approaches which seek to
 avoid MTU issues by selecting a lowest common denominator MTU value
 that may be overly conservative for the vast majority of tunnel paths

Templin Expires June 17, 2011 [Page 6]

Internet-Draft SEAL December 2010

 and difficult to change even when larger MTUs become available.

 The following sections provide the SEAL normative specifications,
 while the appendices present non-normative additional considerations.

2. Terminology and Requirements

 The following terms are defined within the scope of this document:

 subnetwork
 a virtual topology configured over a connected network routing
 region and bounded by encapsulating border nodes.

 Ingress Tunnel Endpoint
 a virtual interface over which an encapsulating border node (host
 or router) sends encapsulated packets into the subnetwork.

 Egress Tunnel Endpoint
 a virtual interface over which an encapsulating border node (host
 or router) receives encapsulated packets from the subnetwork.

 inner packet
 an unencapsulated network layer protocol packet (e.g., IPv6
 [RFC2460], IPv4 [RFC0791], OSI/CLNP [RFC1070], etc.) before any
 mid-layer or outer encapsulations are added. Internet protocol
 numbers that identify inner packets are found in the IANA Internet
 Protocol registry [RFC3232].

 mid-layer packet
 a packet resulting from adding mid-layer encapsulating headers to
 an inner packet.

 outer IP packet
 a packet resulting from adding an outer IP header (and possibly
 other outer headers) to a mid-layer packet.

 packet-in-error
 the leading portion of an invoking data packet encapsulated in the
 body of an error control message (e.g., an ICMPv4 [RFC0792] error
 message, an ICMPv6 [RFC4443] error message, etc.).

 Packet Too Big (PTB)
 a control plane message indicating an MTU restriction, e.g., an
 ICMPv6 "Packet Too Big" message [RFC4443], an ICMPv4
 "Fragmentation Needed" message [RFC0792], an SCMP "Packet Too Big"
 message (see: Section 4.5), etc.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires June 17, 2011 [Page 7]

Internet-Draft SEAL December 2010

 IP, IPvX, IPvY
 used to generically refer to either IP protocol version, i.e.,
 IPv4 or IPv6.

 The following abbreviations correspond to terms used within this
 document and elsewhere in common Internetworking nomenclature:

 DF - the IPv4 header "Don't Fragment" flag [RFC0791]

 ETE - Egress Tunnel Endpoint

 HLEN - the sum of MHLEN and OHLEN

 ITE - Ingress Tunnel Endpoint

 LINK_ID - a short integer that identifies an ITE's underlying link

 MHLEN - the length of any mid-layer headers and trailers

 MRU - Maximum Reassembly Unit

 MTU - Maximum Transmission Unit

 NONCE - a short integer nonce value that identifies an ETE

 OHLEN - the length of any outer encapsulating headers and trailers

 S_IFT - SEAL Inner Fragmentation Threshold

 S_MRU - SEAL Maximum Reassembly Unit

 S_MSS - SEAL Maximum Segment Size

 SCMP - the SEAL Control Message Protocol

 SEAL - Subnetwork Encapsulation and Adaptation Layer

 SEAL_ID - a SEAL ETE identification value

 SEAL_PORT - a TCP/UDP service port number used for SEAL

 SEAL_PROTO - an IPv4 protocol number used for SEAL

 TE - Tunnel Endpoint (i.e., either ingress or egress)

 VET - Virtual Enterprise Traversal

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/rfc0791

Templin Expires June 17, 2011 [Page 8]

Internet-Draft SEAL December 2010

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. When used
 in lower case (e.g., must, must not, etc.), these words MUST NOT be
 interpreted as described in [RFC2119], but are rather interpreted as
 they would be in common English.

3. Applicability Statement

 SEAL was originally motivated by the specific case of subnetwork
 abstraction for Mobile Ad hoc Networks (MANETs), however it soon
 became apparent that the domain of applicability also extends to
 subnetwork abstractions over enterprise networks, ISP networks, SOHO
 networks, the global public Internet itself, and any other connected
 network routing region. SEAL along with the Virtual Enterprise
 Traversal (VET) [I-D.templin-intarea-vet] tunnel virtual interface
 abstraction are the functional building blocks for a new
 Internetworking architecture based on Routing and Addressing in
 Networks with Global Enterprise Recursion (RANGER)
 [RFC5720][I-D.russert-rangers] and the Internet Routing Overlay
 Network (IRON) [I-D.templin-iron].

 SEAL provides a network sublayer for encapsulation of an inner
 network layer packet within outer encapsulating headers. For
 example, for IPvX in IPvY encapsulation (e.g., as IPv4/SEAL/IPv6),
 the SEAL header appears as a subnetwork encapsulation as seen by the
 inner IP layer. SEAL can also be used as a sublayer within a UDP
 data payload (e.g., as IPv4/UDP/SEAL/IPv6 similar to Teredo
 [RFC4380]), where UDP encapsulation is typically used for Network
 Address Translator (NAT) traversal as well as operation over
 subnetworks that give preferential treatment to the "core" Internet
 protocols (i.e., TCP and UDP). The SEAL header is processed the same
 as for IPv6 extension headers, i.e., it is not part of the outer IP
 header but rather allows for the creation of an arbitrarily
 extensible chain of headers in the same way that IPv6 does.

 SEAL supports a segmentation and reassembly capability for adapting
 the network layer to the underlying subnetwork characteristics, where
 the Egress Tunnel Endpoint (ETE) determines how much or how little
 reassembly it is willing to support. In the limiting case, the ETE
 can avoid reassembly altogether and act as a passive observer that
 simply informs the Ingress Tunnel Endpoint (ITE) of any MTU
 limitations and otherwise discards all packets that arrive as
 multiple fragments. This mode is useful for determining an
 appropriate MTU for tunnels between performance-critical routers
 connected to high data rate subnetworks such as the Internet DFZ, for
 unidirectional tunnels in which the ETE is stateless, and for other
 uses in which reassembly would present too great of a burden for the

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc4380

Templin Expires June 17, 2011 [Page 9]

Internet-Draft SEAL December 2010

 routers or end systems.

 When the ETE supports reassembly, the tunnel can be used to transport
 packets that are too large to traverse the path without
 fragmentation. In this mode, the ITE determines the tunnel MTU based
 on the largest packet the ETE is capable of reassembling rather than
 on the MTU of the smallest link in the path. Therefore, tunnel
 endpoints that use SEAL can transport packets that are much larger
 than the underlying subnetwork links themselves can carry in a single
 piece.

 SEAL tunnels may be configured over paths that include not only
 ordinary physical links, but also virtual links that may include
 other tunnels. An example application would be linking two
 geographically remote supercomputer centers with large MTU links by
 configuring a SEAL tunnel across the Internet. A second example
 would be support for sub-IP segmentation over low-end links, i.e.,
 especially over wireless transmission media such as IEEE 802.15.4,
 broadcast radio links in Mobile Ad-hoc Networks (MANETs), Very High
 Frequency (VHF) civil aviation data links, etc.

 Many other use case examples are anticipated, and will be identified
 as further experience is gained.

4. SEAL Protocol Specification

 The following sections specify the operation of the SEAL protocol.

4.1. VET Interface Model

 SEAL is an encapsulation sublayer used within VET non-broadcast,
 multiple access (NBMA) virtual interfaces. Each VET interface
 connects an ITE to one or more ETE "neighbors" via tunneling across
 an underlying enterprise network, or "subnetwork". The tunnel
 neighbor relationship between the ITE and each ETE may be either
 unidirectional or bidirectional.

 A unidirectional tunnel neighbor relationship requires no prior
 coordination between the ITE and ETE; it allows the ITE to send both
 data and control messages forward to the ETE, but only allows the ETE
 to send back control messages. A bidirectional tunnel neighbor
 relationship requires prior coordination between the TEs (see:

Section 4.7), and is one over which both TEs can exchange both data
 and control messages.

 Implications of the VET unidirectional and bidirectional models for
 SEAL will be discussed in the following sections.

Templin Expires June 17, 2011 [Page 10]

Internet-Draft SEAL December 2010

4.2. SEAL Model of Operation

 SEAL supports a multi-level segmentation and reassembly capability
 for the transmission of unicast and multicast packets across an
 underlying IP subnetwork with heterogeneous links. First, the ITE
 can use IPv4 fragmentation to fragment inner IPv4 packets before SEAL
 encapsulation if necessary. Secondly, the SEAL layer itself provides
 a simple cutting-and-pasting capability for mid-layer packets that
 can be used to avoid IP fragmentation on the outer packet. Finally,
 ordinary IP fragmentation is permitted on the outer packet after SEAL
 encapsulation and is used to detect and tune out any in-the-network
 fragmentation.

 SEAL-enabled ITEs encapsulate each inner packet in any mid-layer
 headers and trailers, segment the resulting mid-layer packet into
 multiple segments if necessary, then append a SEAL header and any
 outer encapsulations to each segment. As an example, for IPv6 within
 IPv4 encapsulation a single-segment inner IPv6 packet encapsulated in
 any mid-layer headers and trailers, followed by the SEAL header,
 followed by any outer headers and trailers, followed by an outer IPv4
 header would appear as shown in Figure 1:

 +--------------------+
 ~ outer IPv4 header ~
 +--------------------+
 I ~ other outer hdrs ~
 n +--------------------+
 n ~ SEAL Header ~
 e +--------------------+ +--------------------+
 r ~ mid-layer headers ~ ~ mid-layer headers ~
 +--------------------+ +--------------------+
 I --> | | --> | |
 P --> ~ inner IPv6 ~ --> ~ inner IPv6 ~
 v --> ~ Packet ~ --> ~ Packet ~
 6 --> | | --> | |
 +--------------------+ +--------------------+
 P ~ mid-layer trailers ~ ~ mid-layer trailers ~
 a +--------------------+ +--------------------+
 c ~ outer trailers ~
 k Mid-layer packet +--------------------+
 e after mid-layer encaps.
 t Outer IPv4 packet
 after SEAL and outer encaps.

 Figure 1: SEAL Encapsulation - Single Segment

 As a second example, for IPv4 within IPv6 encapsulation an inner IPv4
 packet requiring three SEAL segments would appear as three separate

Templin Expires June 17, 2011 [Page 11]

Internet-Draft SEAL December 2010

 outer IPv6 packets, where the mid-layer headers are carried only in
 segment 0 and the mid-layer trailers are carried in segment 2 as
 shown in Figure 2:
 +------------------+ +------------------+
 ~ outer IPv6 hdr ~ ~ outer IPv6 hdr ~
 +------------------+ +------------------+ +------------------+
 ~ other outer hdrs ~ ~ outer IPv6 hdr ~ ~ other outer hdrs ~
 +------------------+ +------------------+ +------------------+
 ~ SEAL hdr (SEG=0) ~ ~ other outer hdrs ~ ~ SEAL hdr (SEG=2) ~
 +------------------+ +------------------+ +------------------+
 ~ mid-layer hdrs ~ ~ SEAL hdr (SEG=1) ~ | inner IPv4 |
 +------------------+ +------------------+ ~ Packet ~
 | inner IPv4 | | inner IPv4 | | (Segment 2) |
 ~ Packet ~ ~ Packet ~ +------------------+
 | (Segment 0) | | (Segment 1) | ~ mid-layer trails ~
 +------------------+ +------------------+ +------------------+
 ~ outer trailers ~ ~ outer trailers ~ ~ outer trailers ~
 +------------------+ +------------------+ +------------------+

 Segment 0 (includes Segment 1 (no mid- Segment 2 (includes
 mid-layer hdrs) layer encaps) mid-layer trails)

 Figure 2: SEAL Encapsulation - Multiple Segments

 The ITE inserts the SEAL header according to the specific tunneling
 protocol. Examples include the following:

 o For simple encapsulation of an inner network layer packet within
 an outer IPvX header (e.g., [RFC1070][RFC2003][RFC2473][RFC4213],
 etc.), the ITE inserts the SEAL header between the inner packet
 and outer IPvX headers as: IPvX/SEAL/{inner packet}.

 o For encapsulations over transports such as UDP (e.g., [RFC4380]),
 the ITE inserts the SEAL header between the outer transport layer
 header and the mid-layer packet, e.g., as IPvX/UDP/SEAL/{mid-layer
 packet}. Here, the UDP header is seen as an "other outer header".

 The SEAL header includes a (LINK_ID, NONCE, SEAL_ID)-tuple that the
 ITE maintains as a per-ETE identifier. The ITE can also include an
 extended packet Identification field in the SEAL header, which
 routers within the subnetwork can use for duplicate packet detection
 and both TEs can use for SEAL segmentation/reassembly.

 The following sections specify the SEAL header format and SEAL-
 related operations of the ITE and ETE.

https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4380

Templin Expires June 17, 2011 [Page 12]

Internet-Draft SEAL December 2010

4.3. SEAL Header Format

 The SEAL header is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |VER|C|A|I|R|F|M| NEXTHDR/SEG | LINK_ID | NONCE |
 +-+
 | SEAL_ID |
 +-+
 | Identification (when present) |
 +-+

 Figure 3: SEAL Header Format

 where the header fields are defined as:

 VER (2)
 a 2-bit version field. This document specifies Version 0 of the
 SEAL protocol, i.e., the VER field encodes the value 0.

 C (1)
 the "Control/Data" bit. Set to 1 by the ITE in SEAL Control
 Message Protocol (SCMP) control messages, and set to 0 in ordinary
 data packets.

 A (1)
 the "Acknowledgement Requested" bit. Set to 1 by the ITE in data
 packets for which it wishes to receive an explicit acknowledgement
 from the ETE.

 I (1)
 the "Identification Field Included" bit. Set to 1 if the SEAL
 header includes a 32-bit packet Identification field (see below);
 set to 0 otherwise.

 R (1)
 the "Redirects Permitted" bit. Set to 1 if the ITE is willing to
 accept SCMP redirects (see: Section 4.6); set to 0 otherwise.

 F (1)
 the "First Segment" bit. Set to 1 if this SEAL protocol packet
 contains the first segment (i.e., Segment #0) of a mid-layer
 packet.

Templin Expires June 17, 2011 [Page 13]

Internet-Draft SEAL December 2010

 M (1)
 the "More Segments" bit. Set to 1 if this SEAL protocol packet
 contains a non-final segment of a multi-segment mid-layer packet.

 NEXTHDR/SEG (8) an 8-bit field. When 'F'=1, encodes the next header
 Internet Protocol number the same as for the IPv4 protocol and
 IPv6 next header fields. When 'F'=0, encodes a segment number of
 a multi-segment mid-layer packet. (The segment number 0 is
 reserved.)

 LINK_ID (8)
 an 8-bit link identifier. An integer value between 1 and 255 used
 by the ITE to identify the underlying link selected for tunneling
 the current packet. The ITE may also use the value 0 to indicate
 "underlying link unspecified", e.g., when the ETE does not keep
 track of tunnel state.

 NONCE (8)
 an 8-bit nonce field. Set to a random value by the ITE when the
 tunnel to the ETE is established, and used as a per-ETE
 identification adjunct to the SEAL_ID.

 SEAL_ID (32)
 a 32-bit field that along with the NONCE identifies the ETE.

 Identification (32)
 a 32-bit per-packet identifier. Present only when the I bit is
 set to 1 (see above).

 Setting of the various bits and fields of the SEAL header is
 specified in the following sections.

4.4. ITE Specification

4.4.1. Tunnel Interface MTU

 The tunnel interface must present a fixed MTU to the inner network
 layer as the size for admission of inner packets into the interface.
 Since VET NBMA tunnel virtual interfaces may support a large set of
 ETEs that accept widely varying maximum packet sizes, however, a
 number of factors should be taken into consideration when selecting a
 tunnel interface MTU.

 Due to the ubiquitous deployment of standard Ethernet and similar
 networking gear, the nominal Internet cell size has become 1500
 bytes; this is the de facto size that end systems have come to expect
 will either be delivered by the network without loss due to an MTU
 restriction on the path or a suitable ICMP Packet Too Big (PTB)

Templin Expires June 17, 2011 [Page 14]

Internet-Draft SEAL December 2010

 message returned. When the 1500 byte packets sent by end systems
 incur additional encapsulation at an ITE, however, they may be
 dropped silently since the network may not always deliver the
 necessary PTBs [RFC2923].

 The ITE should therefore set a tunnel interface MTU of at least 1500
 bytes plus extra room to accommodate any additional encapsulations
 that may occur on the path from the original source. The ITE can
 also set smaller MTU values; however, care must be taken not to set
 so small a value that original sources would experience an MTU
 underflow. In particular, IPv6 sources must see a minimum path MTU
 of 1280 bytes, and IPv4 sources should see a minimum path MTU of 576
 bytes.

 The ITE can alternatively set an indefinite MTU on the tunnel
 interface such that all inner packets are admitted into the interface
 without regard to size. For ITEs that host applications that use the
 tunnel interface directly, this option must be carefully coordinated
 with protocol stack upper layers since some upper layer protocols
 (e.g., TCP) derive their packet sizing parameters from the MTU of the
 outgoing interface and as such may select too large an initial size.
 This is not a problem for upper layers that use conservative initial
 maximum segment size estimates and/or when the tunnel interface can
 reduce the upper layer's maximum segment size, e.g., by reducing the
 size advertised in the MSS option of outgoing TCP messages.

 The inner network layer protocol consults the tunnel interface MTU
 when admitting a packet into the interface. For non-SEAL inner IPv4
 packets with the IPv4 Don't Fragment (DF) bit set to 0, if the packet
 is larger than the tunnel interface MTU the inner IPv4 layer uses
 IPv4 fragmentation to break the packet into fragments no larger than
 the tunnel interface MTU. The ITE then admits each fragment into the
 interface as an independent packet.

 For all other inner packets, the inner network layer admits the
 packet if it is no larger than the tunnel interface MTU; otherwise,
 it drops the packet and sends a PTB error message to the source with
 the MTU value set to the tunnel interface MTU. The message must
 contain as much of the invoking packet as possible without the entire
 message exceeding the network layer minimum MTU (e.g., 576 bytes for
 IPv4, 1280 bytes for IPv6, etc.). For SEAL packets that would
 undergo recursive encapsulation, however, the inner layer must send a
 SEAL PTB message instead of a PTB of the inner network layer (see:

Section 4.4.3).

 In light of the above considerations, the ITE SHOULD configure an
 indefinite MTU on tunnel *router* interfaces, since these may be
 required to carry recursively-nested SEAL encapsulations. The ITE

https://datatracker.ietf.org/doc/html/rfc2923

Templin Expires June 17, 2011 [Page 15]

Internet-Draft SEAL December 2010

 MAY instead set a finite MTU on tunnel *host* interfaces. Any
 necessary tunnel adaptations are then performed by the SEAL layer
 within the tunnel interface as described in the following sections.

4.4.2. Tunnel Interface Soft State

 The ITE maintains per-ETE soft state within the tunnel interface,
 e.g., in a neighbor cache. (The ITE can instead maintain only per-
 tunnel interface instead of per-ETE packet identification and sizing
 variables if it is willing to use lowest-common-denominator values
 that are acceptable for all ETEs.) The soft state includes the
 following:

 o a Mid-layer Header Length (MHLEN); set to the length of any mid-
 layer encapsulation headers and trailers that must be added before
 SEAL segmentation.

 o an Outer Header Length (OHLEN); set to the length of the outer IP,
 SEAL and other outer encapsulation headers and trailers.

 o a total Header Length (HLEN); set to MHLEN plus OHLEN.

 o a SEAL Maximum Segment Size (S_MSS). The ITE initializes S_MSS to
 the minimum MTU of the underlying interfaces if the underlying
 interface MTUs can be determined (otherwise, the ITE initializes
 S_MSS to "infinity"). The ITE decreases or increased S_MSS based
 on any SCMP "Packet Too Big (PTB)" messages received (see Section

4.6).

 o a SEAL Maximum Reassembly Unit (S_MRU). If the ITE is not
 configured to use SEAL segmentation, it initializes S_MRU to the
 constant value 0 and ignores any S_MRU values reported by the ETE.
 Otherwise, the ITE initializes S_MRU to "infinity" and decreases
 or increases S_MRU based on any SCMP PTB messages received from
 the ETE (see Section 4.6). When (S_MRU>(S_MSS*256)), the ITE uses
 (S_MSS*256) as the effective S_MRU value.

 o a SEAL Inner Fragmentation Threshold (S_IFT); used to determine a
 maximum fragment size for fragmentable IPv4 packets. Required
 only for tunnels that support encapsulation with IPv4 as the inner
 network layer protocol. The ITE should use a "safe" estimate for
 S_IFT that would be highly unlikely to trigger additional
 fragmentation on the path to the ETE. In particular, it is
 RECOMMENDED that the ITE set S_IFT to 512 unless it can determine
 a more accurate safe value, e.g., via probing.

 o a set of 8 bit LINK_IDs that identify the ITE's underlying links
 and are used to fill the SEAL header field of the same name for

Templin Expires June 17, 2011 [Page 16]

Internet-Draft SEAL December 2010

 packets sent to this ETE. The ITE selects a separate randomly-
 initialized LINK_ID for each underlying link, and the ETE uses the
 LINK_ID to identify the ITE's underlying link of origin.

 o an 8 bit NONCE that encodes a randomly-initialized constant value
 and is used to fill the SEAL header field of the same name for
 packets sent to this ETE.

 o a 32 bit SEAL_ID that is randomly-initialized constant ETE
 identifier used to fill the SEAL header field of the same name for
 packets sent to this ETE.

 o Optionally, a 32 bit Identification value that is randomly-
 initialized and maintained as a monotonically-increasing packet
 identifier.

 Note that S_MSS and S_MRU include the length of the outer and mid-
 layer encapsulating headers and trailers (i.e., HLEN), since the ETE
 must retain the headers and trailers during reassembly. Note also
 that the ITE maintains S_MSS and S_MRU as 32-bit values such that
 inner packets larger than 64KB (e.g., IPv6 jumbograms [RFC2675]) can
 be accommodated when appropriate for a given subnetwork.

4.4.3. Admitting Packets into the Tunnel

 Once an inner packet/fragment has been admitted into the tunnel
 interface, it transitions from the inner network layer and becomes
 subject to SEAL layer processing. The ITE then examines each packet
 to determine whether it is too large for SEAL encapsulation, then
 prepares the packet for admission into the tunnel according to
 whether it is "fragmentable" (discussed in the next paragraph) or
 "unfragmentable" (discussed in the following paragraph).

 If the packet is a non-SEAL IPv4 packet with DF=0 in the IPv4 header
 (*), and the packet is larger than S_IFT, the ITE uses fragmentation
 to break the packet into IPv4 fragments no larger than S_IFT bytes
 then submits each fragment for encapsulation separately.

 For all other packets, if the packet is larger than (MAX(S_MRU,
 S_MSS) - HLEN), the ITE drops it and sends a PTB message to the
 source (**) with an MTU value of (MAX(S_MRU, S_MSS) - HLEN);
 otherwise, it submits the packet for encapsulation. The ITE must
 include the length of the uncompressed headers and trailers when
 calculating HLEN even if the tunnel is using header compression. The
 ITE is also permitted to admit inner packets into the tunnel that can
 be accommodated in a single SEAL segment (i.e., no larger than S_MSS)
 even if they are larger than the ETE would be willing to reassemble
 if fragmented (i.e., larger than S_MRU) - see: Section 4.5.1.

https://datatracker.ietf.org/doc/html/rfc2675

Templin Expires June 17, 2011 [Page 17]

Internet-Draft SEAL December 2010

 (*) In order to support nested encapsulations, inner SEAL-protocol
 IPv4 packets with DF=0 must be treated as unfragmentable and subject
 to drop due to an MTU restriction as for all other packets.

 (**) When the ITE needs to drop a packet and send a PTB message, it
 sends an SCMP PTB message if the packet itself is a SEAL encapsulated
 packet (see: Section 4.6.1.1). Otherwise, it sends a PTB
 corresponding to the inner network layer protocol packet.

4.4.4. Mid-Layer Encapsulation

 After inner IP fragmentation (if necessary), the ITE next
 encapsulates each inner packet/fragment in the MHLEN bytes of mid-
 layer headers and trailers. The ITE then submits the mid-layer
 packet for SEAL segmentation and encapsulation.

4.4.5. SEAL Segmentation

 If the ITE is configured to use SEAL segmentation, it checks the
 length of the resulting packet after mid-layer encapsulation to
 determine whether segmentation is needed. If the length of the
 resulting mid-layer packet plus OHLEN is larger than S_MSS but no
 larger than S_MRU the ITE performs SEAL segmentation by breaking the
 mid-layer packet into N segments (N <= 256) that are no larger than
 (S_MSS - OHLEN) bytes each. Each segment, except the final one, MUST
 be of equal length. The first byte of each segment MUST begin
 immediately after the final byte of the previous segment, i.e., the
 segments MUST NOT overlap. The ITE SHOULD generate the smallest
 number of segments possible, e.g., it SHOULD NOT generate 6 smaller
 segments when the packet could be accommodated with 4 larger
 segments.

 This SEAL segmentation process ignores the fact that the mid-layer
 packet may be unfragmentable outside of the subnetwork. The process
 is a mid-layer (not an IP layer) operation employed by the ITE to
 adapt the mid-layer packet to the subnetwork path characteristics,
 and the ETE will restore the packet to its original form during
 reassembly. Therefore, the fact that the packet may have been
 segmented within the subnetwork is not observable outside of the
 subnetwork.

4.4.6. SEAL Encapsulation

 Following SEAL segmentation, the ITE next encapsulates each segment
 in a SEAL header formatted as specified in Section 4.3. For the
 first segment, the ITE sets F=1, then sets NEXTHDR to the Internet
 Protocol number of the encapsulated inner packet, and finally sets
 M=1 if there are more segments or sets M=0 otherwise. For each non-

Templin Expires June 17, 2011 [Page 18]

Internet-Draft SEAL December 2010

 initial segment of an N-segment mid-layer packet (N <= 256), the ITE
 sets (F=0; M=1; SEG=1) in the SEAL header of the first non-initial
 segment, sets (F=0; M=1; SEG=2) in the next non-initial segment,
 etc., and sets (F=0; M=0; SEG=N-1) in the final segment. (Note that
 the value SEG=0 is not used, since the initial segment encodes a
 NEXTHDR value and not a SEG value.)

 For each segment, the ITE then sets C=0, sets R=1 if it is willing to
 accept SCMP redirects (see Section 4.6) and sets A=1 if explicit
 probing is desired (see Section 4.4.9). The ITE then sets the
 LINK_ID field to an integer between 1 and 255 that identifies the
 underlying link over which this packet will be tunneled. (The ITE
 may instead set LINK_ID to 0 if the ETE is not tracking state, e.g.,
 if the tunnel neighbor relationship is unidirectional.) The ITE next
 sets both the NONCE and SEAL_ID fields to randomly-initialized
 constant values for this ETE.

 Finally, the ITE maintains a randomly-initialized Identification
 value as per-ETE soft state (e.g., in the neighbor cache). For each
 SEAL packet that requires SEAL segmentation, the ITE then sets I=1
 and includes the current Identification value in a trailing 32-bit
 field in the SEAL header of the current segment. The ITE then
 monotonically increments the Identification value for each successive
 SEAL segment it sends to the ETE. For each SEAL packet that will be
 sent as a single segment, however, the ITE MAY set I=0 and omit the
 trailing 32-bit Identification field.

4.4.7. Outer Encapsulation

 Following SEAL encapsulation, the ITE next encapsulates each SEAL
 segment in the requisite outer headers and trailers according to the
 specific encapsulation format (e.g., [RFC1070], [RFC2003], [RFC2473],
 [RFC4213], etc.), except that it writes 'SEAL_PROTO' in the protocol
 field of the outer IP header (when simple IP encapsulation is used)
 or writes 'SEAL_PORT' in the outer destination service port field
 (e.g., when IP/UDP encapsulation is used).

 When IPv4 is used as the outer encapsulation layer, the ITE finally
 sets the DF flag in the IPv4 header of each segment. If the path to
 the ETE correctly implements IP fragmentation (see: Section 4.4.9),
 the ITE sets DF=0; otherwise, it sets DF=1.

 When IPv6 is used as the outer encapsulation layer, the "DF" flag is
 absent but the packet will not be fragmented within the subnetwork
 since IPv6 deprecates in-the-network fragmentation.

https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213

Templin Expires June 17, 2011 [Page 19]

Internet-Draft SEAL December 2010

4.4.8. Sending SEAL Protocol Packets

 Following outer encapsulation, the ITE sends each outer packet that
 encapsulates a segment of the same mid-layer packet over the same
 underlying link in canonical order, i.e., segment 0 first, followed
 by segment 1, etc., and finally segment N-1.

4.4.9. Probing Strategy

 When IPv4 is used as the outer encapsulation layer, the ITE should
 perform a qualification exchange over each underlying link to
 determine whether each subnetwork path to the ETE correctly
 implements IPv4 fragmentation. The qualification exchange can be
 performed either as an initial probe or in-band with real data
 packets, and should be repeated periodically since the subnetwork
 paths may change due to dynamic routing.

 To perform this qualification, the ITE prepares a probe packet that
 is no larger than 576 bytes (e.g., a NULL packet with A=1 and
 NEXTHDR="No Next Header" [RFC2460] in the SEAL header), then splits
 the packet into two outer IPv4 fragments and sends both fragments to
 the ETE over the same underlying link. If the ETE returns an SCMP
 PTB message with Code=1 (see Section 4.6.1.1), then the subnetwork
 path correctly implements IPv4 fragmentation and subsequent data
 packets can be sent with DF=0 in the outer header to enable the
 preferred method of probing. If the ETE returns an SCMP PTB message
 with Code=2, however, the ITE is obliged to set DF=1 for future
 packets sent over that underlying link since a middlebox in the
 network is reassembling the IPv4 fragments before they are delivered
 to the ETE.

 In addition to any control plane probing, all SEAL encapsulated data
 packets sent by the ITE are considered implicit probes. SEAL
 encapsulated packets that use IPv4 as the outer layer of
 encapsulation with DF=0 will elicit SCMP PTB messages from the ETE if
 any IPv4 fragmentation occurs in the path. SEAL encapsulated packets
 that use either IPv6 or IPv4 with DF=1 as the outer layer of
 encapsulation may be dropped by a router on the path to the ETE which
 will also return an ICMP PTB message to the ITE. If the message
 includes enough information (see Section 4.4.10), the ITE can then
 use the (LINK_ID, NONCE, SEAL_ID)-tuple within the packet-in-error to
 determine whether the PTB message corresponds to one of its recent
 packet transmissions.

 The ITE should also send explicit probes, periodically, to verify
 that the ETE is still reachable. The ITE sets A=1 in the SEAL header
 of a segment to be used as an explicit probe, where the probe can be
 either an ordinary data packet segment or a NULL packet (see above).

https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires June 17, 2011 [Page 20]

Internet-Draft SEAL December 2010

 The probe will elicit an SCMP PTB message from the ETE as an
 acknowledgement (see Section 4.6.1).

4.4.10. Processing ICMP Messages

 When the ITE sends outer IP packets, it may receive ICMP error
 messages [RFC0792][RFC4443] from either the ETE or routers within the
 subnetwork. The ICMP messages include an outer IP header, followed
 by an ICMP header, followed by a portion of the outer IP packet that
 generated the error (also known as the "packet-in-error"). The ITE
 can use the (LINK_ID, NONCE, SEAL_ID)-tuple encoded in the SEAL
 header within the packet-in-error to confirm that the ICMP message
 came from either the ETE or an on-path router, and can use any
 additional information to determine whether to accept or discard the
 message.

 The ITE should specifically process raw ICMPv4 Protocol Unreachable
 messages and ICMPv6 Parameter Problem messages with Code
 "Unrecognized Next Header type encountered" as a hint that the ETE
 does not implement the SEAL protocol; specific actions that the ITE
 may take in this case are out of scope.

4.4.11. Black Hole Detection

 In some subnetwork paths, ICMP error messages may be lost due to
 filtering or may not contain enough information due to a router in
 the path not observing the recommendations of [RFC1812]. The ITE can
 use explicit probing as described in Section 4.4.9 to determine
 whether the path to the ETE is silently dropping packets (also known
 as a "black hole"). For example, when the ITE is obliged to set DF=1
 in the outer headers of data packets it should send explicit probe
 packets, periodically, in order to detect path MTU increases or
 decreases.

4.5. ETE Specification

4.5.1. Reassembly Buffer Requirements

 The ETE SHOULD support the minimum IP-layer reassembly requirements
 specified for IPv4 (i.e., 576 bytes [RFC1812]) and IPv6 (i.e., 1500
 bytes [RFC2460]). The ETE SHOULD also support SEAL-layer reassembly
 for inner packets of at least 1280 bytes in length and MAY support
 reassembly for larger inner packets. The ETE records the SEAL-layer
 reassembly buffer size in a soft-state variable "S_MRU" (see: Section

4.5.2).

 The ETE may instead omit the reassembly function altogether and set
 S_MRU=0, but this may cause tunnel MTU underruns in some environments

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires June 17, 2011 [Page 21]

Internet-Draft SEAL December 2010

 resulting in an unusable link. When reassembly is supported, the ETE
 must retain the outer IP, SEAL and other outer headers and trailers
 during both IP-layer and SEAL-layer reassembly for the purpose of
 associating the fragments/segments of the same packet, and must also
 configure a SEAL-layer reassembly buffer that is no smaller than the
 IP-layer reassembly buffer. Hence, the ETE:

 o SHOULD configure an outer IP-layer reassembly buffer of at least
 the minimum specified for the outer IP protocol version.

 o SHOULD configure a SEAL-layer reassembly buffer S_MRU size of at
 least (1280 + HELN) bytes, and

 o MUST be capable of discarding inner packets that require IP-layer
 and/or SEAL-layer reassembly and that are larger than (S_MRU -
 HLEN).

 The ETE is permitted to accept inner packets that did not undergo IP-
 layer and/or SEAL-layer reassembly even if they are larger than
 (S_MRU - HELN) bytes. Hence, S_MRU is a maximum *reassembly* size,
 and may be less than the largest packet size the ETE is able to
 receive when no reassembly is required.

4.5.2. Tunnel Interface Soft State

 The ETE maintains a single per-interface S_MRU value to be applied
 for all unidirectional tunnel neighbors, and can also maintain per-
 ITE S_MRU values for any bidirectional tunnel neighbors (see: Section

4.7). For each bidirectional ITE neighbor, the ETE also maintains
 per-ITE soft state to track the (LINK_ID, NONCE, SEAL_ID)-tuple used
 by the ITE.

 For each bidirectional tunnel neighbor, the ETE also tracks the outer
 IP source addresses (and also port numbers when outer UDP
 encapsulation is used) of packets received from the ITE and
 associates the most recent values received with the corresponding
 (LINK_ID, NONCE, SEAL_ID)-tuple. In this way, the tuple provides a
 stable handle for the tunnel near end to use for return traffic to
 the tunnel far end even if the outer IP source address and port
 numbers in packets received from the tunnel far end change.

4.5.3. IP-Layer Reassembly

 The ETE submits unfragmented SEAL protocol IP packets for SEAL-layer
 reassembly as specified in Section 4.5.4. The ETE instead performs
 standard IP-layer reassembly for multi-fragment SEAL protocol IP
 packets as follows.

Templin Expires June 17, 2011 [Page 22]

Internet-Draft SEAL December 2010

 The ETE should maintain conservative IP-layer reassembly cache high-
 and low-water marks. When the size of the reassembly cache exceeds
 this high-water mark, the ETE should actively discard incomplete
 reassemblies (e.g., using an Active Queue Management (AQM) strategy)
 until the size falls below the low-water mark. The ETE should also
 actively discard any pending reassemblies that clearly have no
 opportunity for completion, e.g., when a considerable number of new
 fragments have been received before a fragment that completes a
 pending reassembly has arrived. Following successful IP-layer
 reassembly, the ETE submits the reassembled packet for SEAL-layer
 reassembly as specified in Section 4.5.4.

 When the ETE processes the IP first fragment (i.e., one with MF=1 and
 Offset=0 in the IP header) of a fragmented SEAL packet, it sends an
 SCMP PTB message back to the ITE (see Section 4.6.1.1). When the ETE
 processes an IP fragment that would cause the reassembled outer
 packet to be larger than the IP-layer reassembly buffer following
 reassembly, it discontinues the reassembly and discards any further
 fragments of the same packet.

4.5.4. SEAL-Layer Reassembly

 Following IP reassembly (if necessary), the ETE examines each mid-
 layer data packet (i.e., those with C=0 in the SEAL header) packet)
 to determine whether an SCMP error message is required. If the mid-
 layer data packet has an incorrect value in the SEAL header the ETE
 discards the packet and returns an SCMP "Parameter Problem" message
 (see Section 4.6.1). Next, if the SEAL header has A=1 and the packet
 did not arrive as multiple outer IP fragments, the ETE sends an SCMP
 PTB message with Code=2 back to the ITE (see Section 4.6.1.1). The
 ETE next submits single-segment mid-layer packets for decapsulation
 and delivery to upper layers (see Section 4.5.5). The ETE instead
 performs SEAL-layer reassembly for multi-segment mid-layer packets
 with I=1 in the SEAL header as follows.

 The ETE adds each segment of a multi-segment mid-layer packet with
 I=1 in the SEAL header to a SEAL-layer pending-reassembly queue
 according to the (LINK_ID, NONCE, SEAL_ID)-tuple and Identification
 value found in the SEAL header. The ETE performs SEAL-layer
 reassembly through simple in-order concatenation of the encapsulated
 segments of the same mid-layer packet from N consecutive SEAL
 segments. SEAL-layer reassembly requires the ETE to maintain a cache
 of recently received segments for a hold time that would allow for
 nominal inter-segment delays. When a SEAL reassembly times out, the
 ETE discards the incomplete reassembly and returns an SCMP "Time
 Exceeded" message to the ITE (see Section 4.6.1). As for IP-layer
 reassembly, the ETE should also maintain a conservative reassembly
 cache high- and low-water mark and should actively discard any

Templin Expires June 17, 2011 [Page 23]

Internet-Draft SEAL December 2010

 pending reassemblies that clearly have no opportunity for completion,
 e.g., when a considerable number of new SEAL packets have been
 received before a packet that completes a pending reassembly has
 arrived.

 If the ETE receives a SEAL packet for which a segment with the same
 (LINK_ID, NONCE, SEAL_ID)-tuple and Identification value is already
 in the queue, it must determine whether to accept the new segment and
 release the old, or drop the new segment. If accepting the new
 segment would cause an inconsistency with other segments already in
 the queue (e.g., differing segment lengths), the ETE drops the
 segment that is least likely to complete the reassembly. When the
 ETE has already received the SEAL first segment (i.e., one with F=1
 and M=1 in the SEAL header) of a SEAL protocol packet that arrived as
 multiple SEAL segments, and accepting the current segment would cause
 the size of the reassembled packet to exceed S_MRU, the ETE schedules
 the reassembly resources for garbage collection and sends an SCMP PTB
 message with Code=3 back to the ITE (see Section 4.6.1.1).

 After all segments are gathered, the ETE reassembles the packet by
 concatenating the segments encapsulated in the N consecutive SEAL
 packets beginning with the initial segment (i.e., SEG=0) and followed
 by any non-initial segments 1 through N-1. That is, for an N-segment
 mid-layer packet, reassembly entails the concatenation of the SEAL-
 encapsulated packet segments with (F=1, M=1, Identification=j) in the
 first SEAL header, followed by (F=0, M=1, SEG=1,
 Identification=(j+1)) in the next SEAL header, followed by (F=0, M=1,
 SEG=2, Identification=(j+2)), etc., up to (F=0, M=0, SEG=(N-1),
 Identification=(j + N-1)) in the final SEAL header, where modulo
 arithmetic based on the length of the Identification field is used.
 Following successful SEAL-layer reassembly, the ETE submits the
 reassembled mid-layer packet for decapsulation and delivery to upper
 layers as specified in Section 4.5.5.

 The ETE must not perform SEAL-layer reassembly for multi-segment mid-
 layer packets with I=0 in the SEAL header. The ETE instead silently
 drops all segments with I=0 and either F=0 or (F=1; M=1) in the SEAL
 header and sends an SCMP Parameter Problem message back to the ITE.

4.5.5. Decapsulation and Delivery to Upper Layers

 Following any necessary IP- and SEAL-layer reassembly, the ETE
 discards the outer headers and trailers and performs any mid-layer
 transformations on the mid-layer packet. The ETE next discards the
 mid-layer headers and trailers, and delivers the inner packet to the
 upper-layer protocol indicated either in the SEAL NEXTHDR field or
 the next header field of the mid-layer packet (i.e., if the packet
 included mid-layer encapsulations). The ETE instead silently

Templin Expires June 17, 2011 [Page 24]

Internet-Draft SEAL December 2010

 discards the inner packet if it was a NULL packet (see Section
4.4.9).

4.6. The SEAL Control Message Protocol (SCMP)

 SEAL uses a companion SEAL Control Message Protocol (SCMP) based on
 the same message format as the Internet Control Message Protocol for
 IPv6 (ICMPv6) [RFC4443]. Each SCMP message is embedded within an
 SCMP packet which begins with the same outer header format as would
 be used for outer encapsulation of a SEAL data packet (see: Section

4.4.7). The following sections specify the generation and processing
 of SCMP messages:

4.6.1. Generating SCMP Messages

 SCMP messages may be generated by either ITEs or ETEs (i.e., by any
 TE) using the same message Type and Code values specified for
 ordinary ICMPv6 messages in [RFC4443]. SCMP is also used to carry
 other ICMPv6 message types and their associated options as specified
 in other documents (e.g., [RFC4191][RFC4861], etc.). The general
 format for SCMP messages is shown in Figure 4:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | |
 ~ Message Body ~
 | |
 +-+
 | As much of invoking SEAL data |
 ~ packet as possible without the SCMP ~
 | packet exceeding 576 bytes (*) |
 +-+

 (*) also known as the "packet-in-error"

 Figure 4: SCMP Message Format

 TEs generate solicitation messages (e.g., an SCMP echo request, an
 SCMP router/neighbor solicitation, a SEAL data packet with A=1, etc.)
 for the purpose of triggering an SCMP response. TEs generate
 solicited SCMP messages (e.g., an SCMP echo reply, an SCMP router/
 neighbor advertisement, an SCMP PTB message, etc.) in response to
 explicit solicitations, and also generate SCMP error messages in
 response to errored SEAL data packets. As for ICMP, TEs must not
 generate SCMP error message in response to other SCMP messages.

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4191

Templin Expires June 17, 2011 [Page 25]

Internet-Draft SEAL December 2010

 As for ordinary ICMPv6 messages, the SCMP message begins with a 4
 byte header that includes 8-bit Type and Code fields followed by a
 16-bit Checksum field followed by a variable-length Message Body.
 The TE sets the Type and Code fields to the same values that would
 appear in the corresponding ICMPv6 message and also formats the
 Message Body the same as for the corresponding ICMPv6 message.

 The Message Body is followed by the leading portion of the invoking
 SEAL data packet (i.e., the "packet-in-error") IFF the packet-in-
 error would also be included in the corresponding ICMPv6 message. If
 the SCMP message will include a packet-in-error, the TE includes as
 much of the leading portion of the invoking SEAL data packet as
 possible beginning with the outer IP header and extending to a length
 that would not cause the entire SCMP packet following outer
 encapsulation to exceed 576 bytes (see: Figure 5).

 The TE then calculates the SCMP message Checksum the same as
 specified for ICMPv6 messages except that it does not prepend a
 pseudo-header of the outer IP header since the (LINK_ID, NONCE,
 SEAL_ID)-tuple already gives sufficient assurance against mis-
 delivery. (The Checksum calculation procedure is therefore identical
 to that used for ICMPv4 [RFC0792].) The TE then encapsulates the
 SCMP message in the outer headers as shown in Figure 5:

 +--------------------+
 ~ outer IPv4 header ~
 +--------------------+
 ~ other outer hdrs ~
 +--------------------+
 ~ SEAL Header ~
 +--------------------+ +--------------------+
 ~ SCMP message header~ --> ~ SCMP message header~
 +--------------------+ --> +--------------------+
 ~ SCMP message body ~ --> ~ SCMP message body ~
 +--------------------+ --> +--------------------+
 ~ packet-in-error ~ --> ~ packet-in-error ~
 +--------------------+ +--------------------+
 ~ outer trailers ~
 SCMP Message +--------------------+
 before encapsulation
 SCMP Packet
 after encapsulation

 Figure 5: SCMP Message Encapsulation

 When a TE generates an SCMP message in response to an SCMP
 solicitation or an ordinary SEAL data packet (i.e., a "solicitation
 packet"), it sets the outer IP destination and source addresses of

https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires June 17, 2011 [Page 26]

Internet-Draft SEAL December 2010

 the SCMP packet to the solicitation's source and destination
 addresses (respectively). (If the destination address in the
 solicitation was multicast, the TE instead sets the outer IP source
 address of the SCMP packet to an address assigned to the underlying
 IP interface.) The TE then sets the (LINK_ID, NONCE, SEAL_ID)-tuple
 and I flag in the SEAL header of the SCMP packet to the same values
 that appeared in the solicitation. If the I flag is set to 1, the TE
 also includes the Identification field that it received in the
 solicitation.

 When a TE generates an unsolicited SCMP message, it sets the outer IP
 destination and source addresses of the SCMP packet the same as it
 would for ordinary SEAL data packets. The TE then sets the (LINK_ID,
 NONCE, SEAL_ID)-tuple and I flag in the SEAL header of the SCMP
 packet to the same values that it would use to send an ordinary SEAL
 data packet.

 For all SCMP messages, the TE then sets the other flag bits in the
 SEAL header to C=1, A=0, R=0, F=1, and M=0. It next sets the
 NEXTHDR/SEG field to 0 and sends the SCMP packet to the tunnel
 neighbor.

4.6.1.1. Generating SCMP Packet Too Big (PTB) Messages

 An ETE generates an SCMP PTB message under one of the following
 cases:

 o Case 1: when it receives the IP first fragment (i.e., one with
 MF=1 and Offset=0 in the outer IP header) of a SEAL protocol
 packet that arrived as multiple IP fragments, or:

 o Case 2: when it receives a SEAL protocol data packet with A=1 in
 the SEAL header that did not arrive as multiple IP fragments
 (i.e., one that does not also match Case 1), or:

 o Case 3: when it has already received the SEAL first segment (i.e.,
 one with F=1 and M=1 in the SEAL header) of a SEAL protocol packet
 that arrived as multiple SEAL segments, and accepting the current
 segment would cause the size of the reassembled packet to exceed
 S_MRU.

 The ETE prepares an SCMP PTB message the same as for the
 corresponding ICMPv6 PTB message, except that it writes the S_MRU
 value for this ITE in the MTU field (i.e., even if the S_MRU value is
 0). For cases 1 and 2 above, the packet-in-error field includes the
 leading portion of the IP packet or fragment that triggered the
 condition. For case 3 above, the packet-in-error field includes the
 leading portion of the SEAL first segment, beginning with the

Templin Expires June 17, 2011 [Page 27]

Internet-Draft SEAL December 2010

 encapsulating outer IP header.

 Finally, the ETE writes the value 1, 2 or 3 in the Code field of the
 PTB message according to whether the reason for generating the
 message was due to the corresponding case number from the list of
 cases above.

 NOTE CAREFULLY that, unlike cases 1 and 3 above, case 2 is not an
 error condition and does not necessarily signify packet loss.
 Instead, it is a control plane acknowledgement of a data plane probe.
 NOTE ALSO that the ETE MUST NOT generate both a Case 1 and a Case 2
 SCMP PTB message on behalf of the same SEAL segment.

4.6.1.2. Generating SCMP Neighbor Discovery Messages

 An ITE generates an SCMP "Neighbor Solicitation" (SNS) or "Router
 Solicitation" (SRS) message when it needs to solicit a response from
 an ETE. An ETE generates a solicited SCMP "Neighbor Advertisement"
 (SNA) or "Router Advertisement" (SRA) message when it receives an
 SNS/SRS message. Any TE may also generate unsolicited SNA/SRA
 messages that are not triggered by a specific solicitation event.

 The TE generates SNS, SNA, SRS and SRA messages the same as described
 for the corresponding IPv6 Neighbor Discovery (ND) messages (see:
 [RFC4861]).

4.6.1.3. Generating SCMP Redirect Messages

 An ETE generates an SCMP "Redirect" message when it receives a SEAL
 data packet with R=1 in the SEAL header and needs to inform the ITE
 of a better next hop. The ETE generates SCMP Redirect messages the
 same as described for IPv6 ND Redirects in [RFC4861], except that it
 includes Route Information Options (RIOs) [RFC4191] to inform the ITE
 of a better next hop for an entire IP prefix instead of only a single
 destination. The SCMP Redirect message therefore supports both
 network and host redirection instead of only host redirection.

4.6.1.4. Generating Other SCMP Messages

 An ETE generates an SCMP "Destination Unreachable - Communication
 with Destination Administratively Prohibited" message when its
 association with the ITE is bidirectional and it receives a SEAL
 packet with a (LINK_ID, NONCE, SEAL_ID)-tuple that does not
 correspond to this ITE (see: Section 4.7).

 An ETE generates an SCMP "Destination Unreachable" message with an
 appropriate code under the same circumstances that an IPv6 system
 would generate an ICMPv6 Destination Unreachable message using the

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4191

Templin Expires June 17, 2011 [Page 28]

Internet-Draft SEAL December 2010

 same code. The SCMP Destination Unreachable message is formatted the
 same as for ICMPv6 Destination Unreachable messages.

 An ETE generates an SCMP "Parameter Problem" message when it receives
 a SEAL packet with an incorrect value in the SEAL header, and
 generates an SCMP "Time Exceeded" message when it garbage collects an
 incomplete SEAL data packet reassembly. The message formats used are
 the same as for the corresponding ICMPv6 messages.

 Generation of all other SCMP message types is outside the scope of
 this document.

4.6.2. Processing SCMP Messages

 An ITE processes any solicited and error SCMP message it receives as
 long as it can verify that the corresponding SCMP packet was sent
 from an on-path ETE. The ITE can verify that the SCMP packet came
 from an on-path ETE by checking that the (LINK_ID, NONCE, SEAL_ID)-
 tuple and Identification value in the SEAL header of the packet
 corresponds to one of its recently-sent SEAL data packets or SCMP
 solicitation packets.

 For each solicited and error SCMP message it receives, the ITE first
 verifies that the identifying information is acceptable, then
 verifies that the Checksum in the SCMP message header is correct. If
 the identifying information and/or checksum are incorrect, the ITE
 discards the message; otherwise, it processes the message the same as
 for ordinary ICMPv6 messages.

 Any TE may also receive unsolicited SCMP messages (e.g., SNS, SRS,
 SNA, SRA, etc.) from the tunnel neighbor. The TE sends SCMP response
 messages in response to solicitations, but does not otherwise process
 the unsolicited SCMP messages as an indication of tunnel neighbor
 liveness.

 Finally, TEs process solicited and error SCMP messages as an
 indication that the tunnel neighbor is responsive, i.e., in the same
 manner implied for IPv6 Neighbor Unreachability Detection "hints of
 forward progress" (see: [RFC4861]).

4.6.2.1. Processing SCMP PTB Messages

 An ITE may receive an SCMP PTB message after it sends a SEAL data
 packet to an ETE (see: Section 4.6.1). The packet-in-error within
 the PTB message consists of the encapsulating IP/*/SEAL headers
 followed by the inner packet in the form in which the ITE received it
 prior to SEAL encapsulation.

https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires June 17, 2011 [Page 29]

Internet-Draft SEAL December 2010

 If the PTB message has Code=2 in the SCMP header the ITE processes
 the message as a response to an explicit probe request and discards
 the message. If the PTB has Code=1 or Code=3 in the SCMP header,
 however, the ITE processes the message as an indication of an MTU
 limitation.

 if the PTB has Code =1, the ITE first verifies that the outer IP
 header in the packet-in-error encodes an IP first fragment, then
 examines the outer IP header length field to determine a new S_MSS
 value as follows:

 o If the length is no less than 1280, the ITE records the length as
 the new S_MSS value.

 o If the length is less than the current S_MSS value and also less
 than 1280, the ITE can discern that IP fragmentation is occurring
 but it cannot determine the true MTU of the restricting link due
 to the possibility that a router on the path is generating runt
 first fragments.

 In this latter case, the ITE may need to search for a reduced S_MSS
 value through an iterative searching strategy that parallels the IPv4
 Path MTU Discovery "plateau table" procedure in a similar fashion as
 described in Section 5 of [RFC1191]. This searching strategy may
 entail multiple iterations in which the ITE sends additional SEAL
 data packets using a reduced S_MSS and receives additional SCMP PTB
 messages, but the process should quickly converge. During this
 process, it is essential that the ITE reduce S_MSS based on the first
 SCMP PTB message received under the current S_MSS size, and refrain
 from further reducing S_MSS until SCMP PTB messages pertaining to
 packets sent under the new S_MSS are received.

 For both Code=1 and Code=3 PTB messages, the ITE next records the
 value in the MTU field of the SCMP PTB message as the new S_MRU value
 for this ETE and examines the inner packet within the packet-in-
 error. If the inner packet was unfragmentable (see: Section 4.4.3)
 and larger than (MAX(S_MRU, S_MSS) - HLEN), the ITE then sends a
 transcribed PTB message appropriate for the inner packet to the
 original source with MTU set to (MAX(S_MRU, S_MSS) - HLEN). (In the
 case of nested SEAL encapsulations, the transcribed PTB message will
 itself be an SCMP PTB message). If the inner packet is fragmentable,
 however, the ITE instead reduces its inner fragmentation THRESH
 estimate to a size no larger than S_MSS for this ETE (see: Section

4.4.3) and does not send a transcribed PTB. In that case, some
 fragmentable packets may be silently discarded but future
 fragmentable packets will subsequently undergo inner fragmentation
 based on this new THRESH estimate.

https://datatracker.ietf.org/doc/html/rfc1191#section-5

Templin Expires June 17, 2011 [Page 30]

Internet-Draft SEAL December 2010

 The ITE may alternatively ignore the S_MSS and S_MRU values, thus
 disabling SEAL-layer segmentation. In that case, the ITE sends all
 SEAL-encapsulated packets as single segments and implements stateless
 MTU discovery. In that case, if the ITE receives an SCMP PTB message
 from the ETE with Code=1 and with a too-small length value in the
 outer IP header, it can send a translated PTB message back to the
 source listing a slightly smaller MTU size than the length value in
 the inner IP header. For example, if the ITE receives an SCMP PTB
 message with Code=1, outer IP length 256 and inner IP length 1500, it
 can send a PTB message listing an MTU of 1400 back to the source. If
 the ITE subsequently receives an SCMP PTB message with Code=1, outer
 IP length 256 and inner IP length 1400, it can send a PTB message
 listing an MTU of 1300 back to the source, etc.

 Actual plateau table values for this "step-down" MTU determination
 procedure are up to the implementation, which may consult Section 7
 of [RFC1191] for non-normative example guidance.

4.6.2.2. Processing SCMP Neighbor Discovery Messages

 An ETE may receive SNS/SRS messages from an ITE as the initial leg in
 a neighbor discovery exchange. An ITE may also receive both
 solicited and unsolicited SNA/SRA messages from an ETE.

 The TE processes SNS/SRS and SNA/SRA messages the same as described
 for the corresponding IPv6 Neighbor Discovery (ND) messages (see:
 [RFC4861]).

4.6.2.3. Processing SCMP Redirect Messages

 An ITE may receive SCMP redirect messages after sending a SEAL data
 packet with R=1 in the SEAL header to an ETE. The ITE processes any
 RIO options in the SCMP redirect message and updates its Forwarding
 Information Base (FIB) accordingly.

4.6.2.4. Processing Other SCMP Messages

 An ITE may receive an SCMP "Destination Unreachable - Communication
 with Destination Administratively Prohibited" message after it sends
 a SEAL data packet. The ITE processes the message as an indication
 that it needs to (re)synchronize with the ETE (see: Section 4.7).

 An ITE may receive an SCMP "Destination Unreachable" message with an
 appropriate code under the same circumstances that an IPv6 node would
 receive an ICMPv6 Destination Unreachable message. The ITE processes
 the message the same as for the corresponding ICMPv6 Destination
 Unreachable messages.

https://datatracker.ietf.org/doc/html/rfc1191#section-7
https://datatracker.ietf.org/doc/html/rfc1191#section-7
https://datatracker.ietf.org/doc/html/rfc4861

Templin Expires June 17, 2011 [Page 31]

Internet-Draft SEAL December 2010

 An ITE may receive an SCMP "Parameter Problem" message when the ETE
 receives a SEAL packet with an incorrect value in the SEAL header.
 The ITE should examine the incorrect SEAL header field setting to
 determine whether a different setting should be used in subsequent
 packets.

 .An ITE may receive an SCMP "Time Exceeded" message when the ETE
 garbage collects an incomplete SEAL data packet reassembly. The ITE
 should consider the message as an indication of congestion.

 Processing of all other SCMP message types is outside the scope of
 this document.

4.7. Tunnel Endpoint Synchronization

 By default, the SEAL ITE retains per-ETE soft state, but the ETE does
 not retain per-ITE soft state. In that case, the tunnel neighbor
 relationship between the ITE and ETE is said to be "unidirectional",
 and the ETE unconditionally accepts any packets coming from the ITE.
 When peer TEs need to establish a closer coordination with one
 another, however, they can establish a bidirectional tunnel neighbor
 relationship to establish both ITE and ETE soft state within both
 TEs.

 In order to establish a bidirectional tunnel neighbor relationship,
 the initiating TE (call it "A") initiates a short transaction with
 the responding TE (call it "B") carried by a reliable transport
 protocol such as TCP. The protocol details of the transaction are
 out of scope for this document, and indeed need not be standardized
 as long as both TEs observe the same specifications.

 In the transaction, "A" and "B" first authenticate themselves to each
 other. "A" then selects randomly-generated NONCE(A) and SEAL_ID(A)
 values and registers them with "B", while "B" in turn selects
 randomly-generated NONCE(B) and SEAL_ID(B) values and registers them
 with "A". Both TEs then further select one or more randomly-
 generated LINK_IDs (e.g., LINK_ID(A1), LINK_ID(A2), etc.), where each
 LINK_ID represents a different underlying link over which the ITE
 function of "A" will send tunneled packets to the ETE function of "B"
 (and vice-versa). Both TEs then use each such (LINK_ID(i), NONCE,
 SEAL_ID)-tuple to establish the appropriate bidirectional tunnel
 neighbor soft state (see Sections 4.4.2 and 4.5.2).

 Following this bidirectional tunnel neighbor establishment, the
 reliable transport transaction between the TEs concludes since the
 status of the underlying links is opaque to the transport protocol
 and the transport protocol therefore has no means for selecting
 alternate underlying links should the path through the primary

Templin Expires June 17, 2011 [Page 32]

Internet-Draft SEAL December 2010

 underlying link fail. The soft state is then kept alive by the
 continued flow of SEAL data packets and/or SCMP messages between the
 TEs rather than by higher-layer keepalives of the transport protocol.

 Outbound and inbound traffic engineering between bidirectional tunnel
 neighbors is therefore coordinated by SCMP from within the tunnel
 interface and can remain continuous even if the paths through one or
 more of the underlying links has failed. When one TE detects that
 most/all underlying link paths to the other TE have failed, however,
 it schedules the bidirectional state for garbage collection.

 This bidirectional tunnel neighbor establishment is most commonly
 initiated by a client TE in establishing a "connection" with a
 serving TE, e.g., when a customer router within a home network
 established a connection with a serving router in a provider network.

5. Link Requirements

 Subnetwork designers are expected to follow the recommendations in
Section 2 of [RFC3819] when configuring link MTUs.

6. End System Requirements

 SEAL provides robust mechanisms for returning PTB messages; however,
 end systems that send unfragmentable IP packets larger than 1500
 bytes are strongly encouraged to implement their own end-to-end MTU
 assurance, e.g., using Packetization Layer Path MTU Discovery per
 [RFC4821].

7. Router Requirements

 IPv4 routers within the subnetwork are strongly encouraged to
 implement IPv4 fragmentation such that the first fragment is the
 largest and approximately the size of the underlying link MTU, i.e.,
 they should avoid generating runt first fragments.

 IPv6 routers within the subnetwork are required to generate the
 necessary PTB messages when they drop outer IPv6 packets due to an
 MTU restriction.

8. IANA Considerations

 The IANA is instructed to allocate an IP protocol number for
 'SEAL_PROTO' in the 'protocol-numbers' registry.

https://datatracker.ietf.org/doc/html/rfc3819#section-2
https://datatracker.ietf.org/doc/html/rfc4821

Templin Expires June 17, 2011 [Page 33]

Internet-Draft SEAL December 2010

 The IANA is instructed to allocate a Well-Known Port number for
 'SEAL_PORT' in the 'port-numbers' registry.

 The IANA is instructed to establish a "SEAL Protocol" registry to
 record SEAL Version values. This registry should be initialized to
 include the initial SEAL Version number, i.e., Version 0.

9. Security Considerations

 Unlike IPv4 fragmentation, overlapping fragment attacks are not
 possible due to the requirement that SEAL segments be non-
 overlapping. This condition is naturally enforced due to the fact
 that each consecutive SEAL segment begins at offset 0 with respect to
 the previous SEAL segment.

 An amplification/reflection attack is possible when an attacker sends
 IP first fragments with spoofed source addresses to an ETE, resulting
 in a stream of SCMP messages returned to a victim ITE. The (LINK_ID,
 NONCE, SEAL_ID)-tuple in the encapsulated segment of the spoofed IP
 first fragment provides mitigation for the ITE to detect and discard
 spurious SCMP messages.

 The SEAL header is sent in-the-clear (outside of any IPsec/ESP
 encapsulations) the same as for the outer IP and other outer headers.
 In this respect, the threat model is no different than for IPv6
 extension headers. As for IPv6 extension headers, the SEAL header is
 protected only by L2 integrity checks and is not covered under any L3
 integrity checks.

 SCMP messages carry the (LINK_ID, NONCE, SEAL_ID)-tuple of the
 packet-in-error. Therefore, when an ITE receives an SCMP message it
 can unambiguously associate it with the SEAL data packet that
 triggered the error. When the TEs are synchronized, the ETE can also
 detect off-path spoofing attacks.

 Security issues that apply to tunneling in general are discussed in
 [I-D.ietf-v6ops-tunnel-security-concerns].

10. Related Work

Section 3.1.7 of [RFC2764] provides a high-level sketch for
 supporting large tunnel MTUs via a tunnel-level segmentation and
 reassembly capability to avoid IP level fragmentation, which is in
 part the same approach used by SEAL. SEAL could therefore be
 considered as a fully functioned manifestation of the method
 postulated by that informational reference.

https://datatracker.ietf.org/doc/html/rfc2764#section-3.1.7

Templin Expires June 17, 2011 [Page 34]

Internet-Draft SEAL December 2010

Section 3 of [RFC4459] describes inner and outer fragmentation at the
 tunnel endpoints as alternatives for accommodating the tunnel MTU;
 however, the SEAL protocol specifies a mid-layer segmentation and
 reassembly capability that is distinct from both inner and outer
 fragmentation.

Section 4 of [RFC2460] specifies a method for inserting and
 processing extension headers between the base IPv6 header and
 transport layer protocol data. The SEAL header is inserted and
 processed in exactly the same manner.

 The concepts of path MTU determination through the report of
 fragmentation and extending the IP Identification field were first
 proposed in deliberations of the TCP-IP mailing list and the Path MTU
 Discovery Working Group (MTUDWG) during the late 1980's and early
 1990's. SEAL supports a report fragmentation capability using bits
 in an extension header (the original proposal used a spare bit in the
 IP header) and supports ID extension through a 16-bit field in an
 extension header (the original proposal used a new IP option). A
 historical analysis of the evolution of these concepts, as well as
 the development of the eventual path MTU discovery mechanism for IP,
 appears in Appendix D of this document.

11. SEAL Advantages over Classical Methods

 The SEAL approach offers a number of distinct advantages over the
 classical path MTU discovery methods [RFC1191] [RFC1981]:

 1. Classical path MTU discovery always results in packet loss when
 an MTU restriction is encountered. Using SEAL, IP fragmentation
 provides a short-term interim mechanism for ensuring that packets
 are delivered while SEAL adjusts its packet sizing parameters.

 2. Classical path MTU may require several iterations of dropping
 packets and returning PTB messages until an acceptable path MTU
 value is determined. Under normal circumstances, SEAL determines
 the correct packet sizing parameters in a single iteration.

 3. Using SEAL, ordinary packets serve as implicit probes without
 exposing data to unnecessary loss. SEAL also provides an
 explicit probing mode not available in the classic methods.

 4. Using SEAL, ETEs encapsulate SCMP error messages in outer and
 mid-layer headers such that packet-filtering network middleboxes
 will not filter them the same as for "raw" ICMP messages that may
 be generated by an attacker.

https://datatracker.ietf.org/doc/html/rfc4459#section-3
https://datatracker.ietf.org/doc/html/rfc2460#section-4
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Templin Expires June 17, 2011 [Page 35]

Internet-Draft SEAL December 2010

 5. The SEAL approach ensures that the tunnel either delivers or
 deterministically drops packets according to their size, which is
 a required characteristic of any IP link.

 6. Most importantly, all SEAL packets have an Identification field
 that is sufficiently long to be used for duplicate packet
 detection purposes and to associate ICMP error messages with
 actual packets sent without requiring per-packet state; hence,
 SEAL avoids certain denial-of-service attack vectors open to the
 classical methods.

12. Acknowledgments

 The following individuals are acknowledged for helpful comments and
 suggestions: Jari Arkko, Fred Baker, Iljitsch van Beijnum, Oliver
 Bonaventure, Teco Boot, Bob Braden, Brian Carpenter, Steve Casner,
 Ian Chakeres, Noel Chiappa, Remi Denis-Courmont, Remi Despres, Ralph
 Droms, Aurnaud Ebalard, Gorry Fairhurst, Washam Fan, Dino Farinacci,
 Joel Halpern, Sam Hartman, John Heffner, Thomas Henderson, Bob
 Hinden, Christian Huitema, Eliot Lear, Darrel Lewis, Joe Macker, Matt
 Mathis, Erik Nordmark, Dan Romascanu, Dave Thaler, Joe Touch, Mark
 Townsley, Ole Troan, Margaret Wasserman, Magnus Westerlund, Robin
 Whittle, James Woodyatt, and members of the Boeing Research &
 Technology NST DC&NT group.

 Path MTU determination through the report of fragmentation was first
 proposed by Charles Lynn on the TCP-IP mailing list in 1987.
 Extending the IP identification field was first proposed by Steve
 Deering on the MTUDWG mailing list in 1989.

13. References

13.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires June 17, 2011 [Page 36]

Internet-Draft SEAL December 2010

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

13.2. Informative References

 [FOLK] Shannon, C., Moore, D., and k. claffy, "Beyond Folklore:
 Observations on Fragmented Traffic", December 2002.

 [FRAG] Kent, C. and J. Mogul, "Fragmentation Considered Harmful",
 October 1987.

 [I-D.ietf-intarea-ipv4-id-update]
 Touch, J., "Updated Specification of the IPv4 ID Field",

draft-ietf-intarea-ipv4-id-update-01 (work in progress),
 October 2010.

 [I-D.ietf-v6ops-tunnel-security-concerns]
 Krishnan, S., Thaler, D., and J. Hoagland, "Security
 Concerns With IP Tunneling",

draft-ietf-v6ops-tunnel-security-concerns-04 (work in
 progress), October 2010.

 [I-D.russert-rangers]
 Russert, S., Fleischman, E., and F. Templin, "RANGER
 Scenarios", draft-russert-rangers-05 (work in progress),
 July 2010.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)",

draft-templin-intarea-vet-19 (work in progress),
 December 2010.

 [I-D.templin-iron]
 Templin, F., "The Internet Routing Overlay Network
 (IRON)", draft-templin-iron-13 (work in progress),
 October 2010.

 [MTUDWG] "IETF MTU Discovery Working Group mailing list,
 gatekeeper.dec.com/pub/DEC/WRL/mogul/mtudwg-log, November
 1989 - February 1995.".

https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-ipv4-id-update-01
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-tunnel-security-concerns-04
https://datatracker.ietf.org/doc/html/draft-russert-rangers-05
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-19
https://datatracker.ietf.org/doc/html/draft-templin-iron-13

Templin Expires June 17, 2011 [Page 37]

Internet-Draft SEAL December 2010

 [RFC1063] Mogul, J., Kent, C., Partridge, C., and K. McCloghrie, "IP
 MTU discovery options", RFC 1063, July 1988.

 [RFC1070] Hagens, R., Hall, N., and M. Rose, "Use of the Internet as
 a subnetwork for experimentation with the OSI network
 layer", RFC 1070, February 1989.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers",
RFC 1812, June 1995.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.

 [RFC2764] Gleeson, B., Heinanen, J., Lin, A., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, February 2000.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, September 2000.

 [RFC3232] Reynolds, J., "Assigned Numbers: RFC 1700 is Replaced by
 an On-line Database", RFC 3232, January 2002.

 [RFC3366] Fairhurst, G. and L. Wood, "Advice to link designers on
 link Automatic Repeat reQuest (ARQ)", BCP 62, RFC 3366,
 August 2002.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, July 2004.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, November 2005.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms

https://datatracker.ietf.org/doc/html/rfc1063
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc2764
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/bcp62
https://datatracker.ietf.org/doc/html/rfc3366
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4191

Templin Expires June 17, 2011 [Page 38]

Internet-Draft SEAL December 2010

 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)", RFC 4380,
 February 2006.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, April 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC5445] Watson, M., "Basic Forward Error Correction (FEC)
 Schemes", RFC 5445, March 2009.

 [RFC5720] Templin, F., "Routing and Addressing in Networks with
 Global Enterprise Recursion (RANGER)", RFC 5720,
 February 2010.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927, July 2010.

 [SIGCOMM] Luckie, M. and B. Stasiewicz, "Measuring Path MTU
 Discovery Behavior", November 2010.

 [TBIT] Medina, A., Allman, M., and S. Floyd, "Measuring
 Interactions Between Transport Protocols and Middleboxes",
 October 2004.

 [TCP-IP] "Archive/Hypermail of Early TCP-IP Mail List,
http://www-mice.cs.ucl.ac.uk/multimedia/misc/tcp_ip/, May

 1987 - May 1990.".

 [WAND] Luckie, M., Cho, K., and B. Owens, "Inferring and
 Debugging Path MTU Discovery Failures", October 2005.

Appendix A. Reliability

 Although a SEAL tunnel may span an arbitrarily-large subnetwork
 expanse, the IP layer sees the tunnel as a simple link that supports
 the IP service model. Since SEAL supports segmentation at a layer
 below IP, SEAL therefore presents a case in which the link unit of

https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4380
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc5445
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc5927
http://www-mice.cs.ucl.ac.uk/multimedia/misc/tcp_ip/

Templin Expires June 17, 2011 [Page 39]

Internet-Draft SEAL December 2010

 loss (i.e., a SEAL segment) is smaller than the end-to-end
 retransmission unit (e.g., a TCP segment).

 Links with high bit error rates (BERs) (e.g., IEEE 802.11) use
 Automatic Repeat-ReQuest (ARQ) mechanisms [RFC3366] to increase
 packet delivery ratios, while links with much lower BERs typically
 omit such mechanisms. Since SEAL tunnels may traverse arbitrarily-
 long paths over links of various types that are already either
 performing or omitting ARQ as appropriate, it would therefore often
 be inefficient to also require the tunnel to perform ARQ.

 When the SEAL ITE has knowledge that the tunnel will traverse a
 subnetwork with non-negligible loss due to, e.g., interference, link
 errors, congestion, etc., it can solicit Segment Reports from the ETE
 periodically to discover missing segments for retransmission within a
 single round-trip time. However, retransmission of missing segments
 may require the ITE to maintain considerable state and may also
 result in considerable delay variance and packet reordering.

 SEAL may also use alternate reliability mechanisms such as Forward
 Error Correction (FEC). A simple FEC mechanism may merely entail
 gratuitous retransmissions of duplicate data, however more efficient
 alternatives are also possible. Basic FEC schemes are discussed in
 [RFC5445].

 The use of ARQ and FEC mechanisms for improved reliability are for
 further study.

Appendix B. Integrity

 Each link in the path over which a SEAL tunnel is configured is
 responsible for link layer integrity verification for packets that
 traverse the link. As such, when a multi-segment SEAL packet with N
 segments is reassembled, its segments will have been inspected by N
 independent link layer integrity check streams instead of a single
 stream that a single segment SEAL packet of the same size would have
 received. Intuitively, a reassembled packet subjected to N
 independent integrity check streams of shorter-length segments would
 seem to have integrity assurance that is no worse than a single-
 segment packet subjected to only a single integrity check steam,
 since the integrity check strength diminishes in inverse proportion
 with segment length. In any case, the link-layer integrity assurance
 for a multi-segment SEAL packet is no different than for a multi-
 fragment IPv6 packet.

 Fragmentation and reassembly schemes must also consider packet-
 splicing errors, e.g., when two segments from the same packet are

https://datatracker.ietf.org/doc/html/rfc3366
https://datatracker.ietf.org/doc/html/rfc5445

Templin Expires June 17, 2011 [Page 40]

Internet-Draft SEAL December 2010

 concatenated incorrectly, when a segment from packet X is reassembled
 with segments from packet Y, etc. The primary sources of such errors
 include implementation bugs and wrapping IP ID fields. In terms of
 implementation bugs, the SEAL segmentation and reassembly algorithm
 is much simpler than IP fragmentation resulting in simplified
 implementations. In terms of wrapping ID fields, when IPv4 is used
 as the outer IP protocol, the 16-bit IP ID field can wrap with only
 64K packets with the same (src, dst, protocol)-tuple alive in the
 system at a given time [RFC4963] increasing the likelihood of
 reassembly mis-associations. However, SEAL ensures that any outer
 IPv4 fragmentation and reassembly will be short-lived and tuned out
 as soon as the ITE receives a Reassembly Repot, and SEAL segmentation
 and reassembly uses a much longer ID field. Therefore, reassembly
 mis-associations of IP fragments nor of SEAL segments should be
 prohibitively rare.

Appendix C. Transport Mode

 SEAL can also be used in "transport-mode", e.g., when the inner layer
 comprises upper-layer protocol data rather than an encapsulated IP
 packet. For instance, TCP peers can negotiate the use of SEAL for
 the carriage of protocol data encapsulated as IPv4/SEAL/TCP. In this
 sense, the "subnetwork" becomes the entire end-to-end path between
 the TCP peers and may potentially span the entire Internet.

 Section specifies the operation of SEAL in "tunnel mode", i.e., when
 there are both an inner and outer IP layer with a SEAL encapsulation
 layer between. However, the SEAL protocol can also be used in a
 "transport mode" of operation within a subnetwork region in which the
 inner-layer corresponds to a transport layer protocol (e.g., UDP,
 TCP, etc.) instead of an inner IP layer.

 For example, two TCP endpoints connected to the same subnetwork
 region can negotiate the use of transport-mode SEAL for a connection
 by inserting a 'SEAL_OPTION' TCP option during the connection
 establishment phase. If both TCPs agree on the use of SEAL, their
 protocol messages will be carried as TCP/SEAL/IPv4 and the connection
 will be serviced by the SEAL protocol using TCP (instead of an
 encapsulating tunnel endpoint) as the transport layer protocol. The
 SEAL protocol for transport mode otherwise observes the same
 specifications as for Section 4.

Appendix D. Historic Evolution of PMTUD

 The topic of Path MTU discovery (PMTUD) saw a flurry of discussion
 and numerous proposals in the late 1980's through early 1990. The

https://datatracker.ietf.org/doc/html/rfc4963

Templin Expires June 17, 2011 [Page 41]

Internet-Draft SEAL December 2010

 initial problem was posed by Art Berggreen on May 22, 1987 in a
 message to the TCP-IP discussion group [TCP-IP]. The discussion that
 followed provided significant reference material for [FRAG]. An IETF
 Path MTU Discovery Working Group [MTUDWG] was formed in late 1989
 with charter to produce an RFC. Several variations on a very few
 basic proposals were entertained, including:

 1. Routers record the PMTUD estimate in ICMP-like path probe
 messages (proposed in [FRAG] and later [RFC1063])

 2. The destination reports any fragmentation that occurs for packets
 received with the "RF" (Report Fragmentation) bit set (Steve
 Deering's 1989 adaptation of Charles Lynn's Nov. 1987 proposal)

 3. A hybrid combination of 1) and Charles Lynn's Nov. 1987 (straw
 RFC draft by McCloughrie, Fox and Mogul on Jan 12, 1990)

 4. Combination of the Lynn proposal with TCP (Fred Bohle, Jan 30,
 1990)

 5. Fragmentation avoidance by setting "IP_DF" flag on all packets
 and retransmitting if ICMPv4 "fragmentation needed" messages
 occur (Geof Cooper's 1987 proposal; later adapted into [RFC1191]
 by Mogul and Deering).

 Option 1) seemed attractive to the group at the time, since it was
 believed that routers would migrate more quickly than hosts. Option
 2) was a strong contender, but repeated attempts to secure an "RF"
 bit in the IPv4 header from the IESG failed and the proponents became
 discouraged. 3) was abandoned because it was perceived as too
 complicated, and 4) never received any apparent serious
 consideration. Proposal 5) was a late entry into the discussion from
 Steve Deering on Feb. 24th, 1990. The discussion group soon
 thereafter seemingly lost track of all other proposals and adopted
 5), which eventually evolved into [RFC1191] and later [RFC1981].

 In retrospect, the "RF" bit postulated in 2) is not needed if a
 "contract" is first established between the peers, as in proposal 4)
 and a message to the MTUDWG mailing list from jrd@PTT.LCS.MIT.EDU on
 Feb 19. 1990. These proposals saw little discussion or rebuttal, and
 were dismissed based on the following the assertions:

 o routers upgrade their software faster than hosts

 o PCs could not reassemble fragmented packets

 o Proteon and Wellfleet routers did not reproduce the "RF" bit
 properly in fragmented packets

https://datatracker.ietf.org/doc/html/rfc1063
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Templin Expires June 17, 2011 [Page 42]

Internet-Draft SEAL December 2010

 o Ethernet-FDDI bridges would need to perform fragmentation (i.e.,
 "translucent" not "transparent" bridging)

 o the 16-bit IP_ID field could wrap around and disrupt reassembly at
 high packet arrival rates

 The first four assertions, although perhaps valid at the time, have
 been overcome by historical events. The final assertion is addressed
 by the mechanisms specified in SEAL.

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

Templin Expires June 17, 2011 [Page 43]

