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Abstract

   For the purpose of this document, a subnetwork is defined as a
   virtual topology configured over a connected IP network routing
   region and bounded by encapsulating border nodes.  These virtual
   topologies are manifested by tunnels that may span multiple IP and/or
   sub-IP layer forwarding hops, and can introduce failure modes due to
   packet duplication and/or links with diverse Maximum Transmission
   Units (MTUs).  This document specifies a Subnetwork Encapsulation and
   Adaptation Layer (SEAL) that accommodates such virtual topologies
   over diverse underlying link technologies.
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   As Internet technology and communication has grown and matured, many
   techniques have developed that use virtual topologies (including
   tunnels of one form or another) over an actual network that supports
   the Internet Protocol (IP) [RFC0791][RFC2460].  Those virtual
   topologies have elements that appear as one hop in the virtual
   topology, but are actually multiple IP or sub-IP layer hops.  These
   multiple hops often have quite diverse properties that are often not
   even visible to the endpoints of the virtual hop.  This introduces
   failure modes that are not dealt with well in current approaches.

   The use of IP encapsulation (also known as "tunneling") has long been
   considered as the means for creating such virtual topologies.
   However, the insertion of an outer IP header reduces the effective
   path MTU visible to the inner network layer.  When IPv4 is used, this
   reduced MTU can be accommodated through the use of IPv4
   fragmentation, but unmitigated in-the-network fragmentation has been
   found to be harmful through operational experience and studies
   conducted over the course of many years [FRAG][FOLK][RFC4963].
   Additionally, classical path MTU discovery [RFC1191] has known
   operational issues that are exacerbated by in-the-network tunnels
   [RFC2923][RFC4459].  The following subsections present further
   details on the motivation and approach for addressing these issues.

1.1.  Motivation

   Before discussing the approach, it is necessary to first understand
   the problems.  In both the Internet and private-use networks today,
   IPv4 is ubiquitously deployed as the Layer 3 protocol.  The two
   primary functions of IPv4 are to provide for 1) addressing, and 2) a
   fragmentation and reassembly capability used to accommodate links
   with diverse MTUs.  While it is well known that the IPv4 address
   space is rapidly becoming depleted, there is a lesser-known but
   growing consensus that other IPv4 protocol limitations have already
   or may soon become problematic.

   First, the IPv4 header Identification field is only 16 bits in
   length, meaning that at most 2^16 unique packets with the same
   (source, destination, protocol)-tuple may be active in the Internet
   at a given time [I-D.ietf-intarea-ipv4-id-update].  Due to the
   escalating deployment of high-speed links (e.g., 1Gbps Ethernet),
   however, this number may soon become too small by several orders of
   magnitude for high data rate packet sources such as tunnel endpoints
   [RFC4963].  Furthermore, there are many well-known limitations
   pertaining to IPv4 fragmentation and reassembly - even to the point
   that it has been deemed "harmful" in both classic and modern-day
   studies (see above).  In particular, IPv4 fragmentation raises issues

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc4963
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   ranging from minor annoyances (e.g., in-the-network router
   fragmentation [RFC1981]) to the potential for major integrity issues
   (e.g., mis-association of the fragments of multiple IP packets during
   reassembly [RFC4963]).

   As a result of these perceived limitations, a fragmentation-avoiding
   technique for discovering the MTU of the forward path from a source
   to a destination node was devised through the deliberations of the
   Path MTU Discovery Working Group (PMTUDWG) during the late 1980's
   through early 1990's (see Appendix D).  In this method, the source
   node provides explicit instructions to routers in the path to discard
   the packet and return an ICMP error message if an MTU restriction is
   encountered.  However, this approach has several serious shortcomings
   that lead to an overall "brittleness" [RFC2923].

   In particular, site border routers in the Internet are being
   configured more and more to discard ICMP error messages coming from
   the outside world.  This is due in large part to the fact that
   malicious spoofing of error messages in the Internet is trivial since
   there is no way to authenticate the source of the messages [RFC5927].
   Furthermore, when a source node that requires ICMP error message
   feedback when a packet is dropped due to an MTU restriction does not
   receive the messages, a path MTU-related black hole occurs.  This
   means that the source will continue to send packets that are too
   large and never receive an indication from the network that they are
   being discarded.  This behavior has been confirmed through documented
   studies showing clear evidence of path MTU discovery failures in the
   Internet today [TBIT][WAND][SIGCOMM].

   The issues with both IPv4 fragmentation and this "classical" method
   of path MTU discovery are exacerbated further when IP tunneling is
   used [RFC4459].  For example, ingress tunnel endpoints (ITEs) may be
   required to forward encapsulated packets into the subnetwork on
   behalf of hundreds, thousands, or even more original sources in the
   end site.  If the ITE allows IPv4 fragmentation on the encapsulated
   packets, persistent fragmentation could lead to undetected data
   corruption due to Identification field wrapping.  If the ITE instead
   uses classical IPv4 path MTU discovery, it may be inconvenienced by
   excessive ICMP error messages coming from the subnetwork that may be
   either suspect or contain insufficient information for translation
   into error messages to be returned to the original sources.

   Although recent works have led to the development of a robust end-to-
   end MTU determination scheme [RFC4821], this approach requires
   tunnels to present a consistent MTU the same as for ordinary links on
   the end-to-end path.  Moreover, in current practice existing
   tunneling protocols mask the MTU issues by selecting a "lowest common
   denominator" MTU that may be much smaller than necessary for most

https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821
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   paths and difficult to change at a later date.  Due to these many
   consideration, a new approach to accommodate tunnels over links with
   diverse MTUs is necessary.

1.2.  Approach

   For the purpose of this document, a subnetwork is defined as a
   virtual topology configured over a connected network routing region
   and bounded by encapsulating border nodes.  Example connected network
   routing regions include Mobile Ad hoc Networks (MANETs), enterprise
   networks and the global public Internet itself.  Subnetwork border
   nodes forward unicast and multicast packets over the virtual topology
   across multiple IP and/or sub-IP layer forwarding hops that may
   introduce packet duplication and/or traverse links with diverse
   Maximum Transmission Units (MTUs).

   This document introduces a Subnetwork Encapsulation and Adaptation
   Layer (SEAL) for tunneling network layer protocols (e.g., IP, OSI,
   etc.) over IP subnetworks that connect Ingress and Egress Tunnel
   Endpoints (ITEs/ETEs) of border nodes.  It provides a modular
   specification designed to be tailored to specific associated
   tunneling protocols.  A transport-mode of operation is also possible,
   and described in Appendix C.  SEAL accommodates links with diverse
   MTUs, protects against off-path denial-of-service attacks, and can be
   configured to enable efficient duplicate packet detection through the
   use of a minimal mid-layer encapsulation.

   SEAL specifically treats tunnels that traverse the subnetwork as
   ordinary links that must support network layer services.  As for any
   link, tunnels that use SEAL must provide suitable networking services
   including best-effort datagram delivery, integrity and consistent
   handling of packets of various sizes.  As for any link whose media
   cannot provide suitable services natively, tunnels that use SEAL
   employ link-level adaptation functions to meet the legitimate
   expectations of the network layer service.  As this is essentially a
   link level adaptation, SEAL is therefore permitted to alter packets
   within the subnetwork as long as it restores them to their original
   form when they exit the subnetwork.  The mechanisms described within
   this document are designed precisely for this purpose.

   SEAL encapsulation introduces an extended Identification field for
   per-packet and/or per-ETE identification as well as a mid-layer
   segmentation and reassembly capability that allows simplified cutting
   and pasting of packets.  Moreover, SEAL engages both tunnel endpoints
   in ensuring a functional path MTU on the path from the ITE to the
   ETE.  This is in contrast to "stateless" approaches which seek to
   avoid MTU issues by selecting a lowest common denominator MTU value
   that may be overly conservative for the vast majority of tunnel paths
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   and difficult to change even when larger MTUs become available.

   The following sections provide the SEAL normative specifications,
   while the appendices present non-normative additional considerations.

2.  Terminology and Requirements

   The following terms are defined within the scope of this document:

   subnetwork
      a virtual topology configured over a connected network routing
      region and bounded by encapsulating border nodes.

   Ingress Tunnel Endpoint
      a virtual interface over which an encapsulating border node (host
      or router) sends encapsulated packets into the subnetwork.

   Egress Tunnel Endpoint
      a virtual interface over which an encapsulating border node (host
      or router) receives encapsulated packets from the subnetwork.

   inner packet
      an unencapsulated network layer protocol packet (e.g., IPv6
      [RFC2460], IPv4 [RFC0791], OSI/CLNP [RFC1070], etc.) before any
      mid-layer or outer encapsulations are added.  Internet protocol
      numbers that identify inner packets are found in the IANA Internet
      Protocol registry [RFC3232].

   mid-layer packet
      a packet resulting from adding mid-layer encapsulating headers to
      an inner packet.

   outer IP packet
      a packet resulting from adding an outer IP header (and possibly
      other outer headers) to a mid-layer packet.

   packet-in-error
      the leading portion of an invoking data packet encapsulated in the
      body of an error control message (e.g., an ICMPv4 [RFC0792] error
      message, an ICMPv6 [RFC4443] error message, etc.).

   Packet Too Big (PTB)
      a control plane message indicating an MTU restriction, e.g., an
      ICMPv6 "Packet Too Big" message [RFC4443], an ICMPv4
      "Fragmentation Needed" message [RFC0792], an SCMP "Packet Too Big"
      message (see: Section 4.5), etc.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
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   IP, IPvX, IPvY
      used to generically refer to either IP protocol version, i.e.,
      IPv4 or IPv6.

   The following abbreviations correspond to terms used within this
   document and elsewhere in common Internetworking nomenclature:

      DF - the IPv4 header "Don't Fragment" flag [RFC0791]

      ETE - Egress Tunnel Endpoint

      HLEN - the sum of MHLEN and OHLEN

      ITE - Ingress Tunnel Endpoint

      LINK_ID - a short integer that identifies an ITE's underlying link

      MHLEN - the length of any mid-layer headers and trailers

      MRU - Maximum Reassembly Unit

      MTU - Maximum Transmission Unit

      NONCE - a short integer nonce value that identifies an ETE

      OHLEN - the length of any outer encapsulating headers and trailers

      S_IFT - SEAL Inner Fragmentation Threshold

      S_MRU - SEAL Maximum Reassembly Unit

      S_MSS - SEAL Maximum Segment Size

      SCMP - the SEAL Control Message Protocol

      SEAL - Subnetwork Encapsulation and Adaptation Layer

      SEAL_ID - a SEAL ETE identification value

      SEAL_PORT - a TCP/UDP service port number used for SEAL

      SEAL_PROTO - an IPv4 protocol number used for SEAL

      TE - Tunnel Endpoint (i.e., either ingress or egress)

      VET - Virtual Enterprise Traversal

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/rfc0791
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   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].  When used
   in lower case (e.g., must, must not, etc.), these words MUST NOT be
   interpreted as described in [RFC2119], but are rather interpreted as
   they would be in common English.

3.  Applicability Statement

   SEAL was originally motivated by the specific case of subnetwork
   abstraction for Mobile Ad hoc Networks (MANETs), however it soon
   became apparent that the domain of applicability also extends to
   subnetwork abstractions over enterprise networks, ISP networks, SOHO
   networks, the global public Internet itself, and any other connected
   network routing region.  SEAL along with the Virtual Enterprise
   Traversal (VET) [I-D.templin-intarea-vet] tunnel virtual interface
   abstraction are the functional building blocks for a new
   Internetworking architecture based on Routing and Addressing in
   Networks with Global Enterprise Recursion (RANGER)
   [RFC5720][I-D.russert-rangers] and the Internet Routing Overlay
   Network (IRON) [I-D.templin-iron].

   SEAL provides a network sublayer for encapsulation of an inner
   network layer packet within outer encapsulating headers.  For
   example, for IPvX in IPvY encapsulation (e.g., as IPv4/SEAL/IPv6),
   the SEAL header appears as a subnetwork encapsulation as seen by the
   inner IP layer.  SEAL can also be used as a sublayer within a UDP
   data payload (e.g., as IPv4/UDP/SEAL/IPv6 similar to Teredo
   [RFC4380]), where UDP encapsulation is typically used for Network
   Address Translator (NAT) traversal as well as operation over
   subnetworks that give preferential treatment to the "core" Internet
   protocols (i.e., TCP and UDP).  The SEAL header is processed the same
   as for IPv6 extension headers, i.e., it is not part of the outer IP
   header but rather allows for the creation of an arbitrarily
   extensible chain of headers in the same way that IPv6 does.

   SEAL supports a segmentation and reassembly capability for adapting
   the network layer to the underlying subnetwork characteristics, where
   the Egress Tunnel Endpoint (ETE) determines how much or how little
   reassembly it is willing to support.  In the limiting case, the ETE
   can avoid reassembly altogether and act as a passive observer that
   simply informs the Ingress Tunnel Endpoint (ITE) of any MTU
   limitations and otherwise discards all packets that arrive as
   multiple fragments.  This mode is useful for determining an
   appropriate MTU for tunnels between performance-critical routers
   connected to high data rate subnetworks such as the Internet DFZ, for
   unidirectional tunnels in which the ETE is stateless, and for other
   uses in which reassembly would present too great of a burden for the

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc4380
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   routers or end systems.

   When the ETE supports reassembly, the tunnel can be used to transport
   packets that are too large to traverse the path without
   fragmentation.  In this mode, the ITE determines the tunnel MTU based
   on the largest packet the ETE is capable of reassembling rather than
   on the MTU of the smallest link in the path.  Therefore, tunnel
   endpoints that use SEAL can transport packets that are much larger
   than the underlying subnetwork links themselves can carry in a single
   piece.

   SEAL tunnels may be configured over paths that include not only
   ordinary physical links, but also virtual links that may include
   other tunnels.  An example application would be linking two
   geographically remote supercomputer centers with large MTU links by
   configuring a SEAL tunnel across the Internet.  A second example
   would be support for sub-IP segmentation over low-end links, i.e.,
   especially over wireless transmission media such as IEEE 802.15.4,
   broadcast radio links in Mobile Ad-hoc Networks (MANETs), Very High
   Frequency (VHF) civil aviation data links, etc.

   Many other use case examples are anticipated, and will be identified
   as further experience is gained.

4.  SEAL Protocol Specification

   The following sections specify the operation of the SEAL protocol.

4.1.  VET Interface Model

   SEAL is an encapsulation sublayer used within VET non-broadcast,
   multiple access (NBMA) virtual interfaces.  Each VET interface
   connects an ITE to one or more ETE "neighbors" via tunneling across
   an underlying enterprise network, or "subnetwork".  The tunnel
   neighbor relationship between the ITE and each ETE may be either
   unidirectional or bidirectional.

   A unidirectional tunnel neighbor relationship requires no prior
   coordination between the ITE and ETE; it allows the ITE to send both
   data and control messages forward to the ETE, but only allows the ETE
   to send back control messages.  A bidirectional tunnel neighbor
   relationship requires prior coordination between the TEs (see:

Section 4.7), and is one over which both TEs can exchange both data
   and control messages.

   Implications of the VET unidirectional and bidirectional models for
   SEAL will be discussed in the following sections.
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4.2.  SEAL Model of Operation

   SEAL supports a multi-level segmentation and reassembly capability
   for the transmission of unicast and multicast packets across an
   underlying IP subnetwork with heterogeneous links.  First, the ITE
   can use IPv4 fragmentation to fragment inner IPv4 packets before SEAL
   encapsulation if necessary.  Secondly, the SEAL layer itself provides
   a simple cutting-and-pasting capability for mid-layer packets that
   can be used to avoid IP fragmentation on the outer packet.  Finally,
   ordinary IP fragmentation is permitted on the outer packet after SEAL
   encapsulation and is used to detect and tune out any in-the-network
   fragmentation.

   SEAL-enabled ITEs encapsulate each inner packet in any mid-layer
   headers and trailers, segment the resulting mid-layer packet into
   multiple segments if necessary, then append a SEAL header and any
   outer encapsulations to each segment.  As an example, for IPv6 within
   IPv4 encapsulation a single-segment inner IPv6 packet encapsulated in
   any mid-layer headers and trailers, followed by the SEAL header,
   followed by any outer headers and trailers, followed by an outer IPv4
   header would appear as shown in Figure 1:

                                       +--------------------+
                                       ~  outer IPv4 header ~
                                       +--------------------+
   I                                   ~  other outer hdrs  ~
   n                                   +--------------------+
   n                                   ~    SEAL Header     ~
   e      +--------------------+       +--------------------+
   r      ~  mid-layer headers ~       ~  mid-layer headers ~
          +--------------------+       +--------------------+
   I -->  |                    |  -->  |                    |
   P -->  ~     inner IPv6     ~  -->  ~     inner IPv6     ~
   v -->  ~       Packet       ~  -->  ~       Packet       ~
   6 -->  |                    |  -->  |                    |
          +--------------------+       +--------------------+
   P      ~ mid-layer trailers ~       ~ mid-layer trailers ~
   a      +--------------------+       +--------------------+
   c                                   ~   outer trailers   ~
   k         Mid-layer packet          +--------------------+
   e      after mid-layer encaps.
   t                                      Outer IPv4 packet
                                     after SEAL and outer encaps.

               Figure 1: SEAL Encapsulation - Single Segment

   As a second example, for IPv4 within IPv6 encapsulation an inner IPv4
   packet requiring three SEAL segments would appear as three separate
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   outer IPv6 packets, where the mid-layer headers are carried only in
   segment 0 and the mid-layer trailers are carried in segment 2 as
   shown in Figure 2:
   +------------------+                          +------------------+
   ~  outer IPv6 hdr  ~                          ~  outer IPv6 hdr  ~
   +------------------+   +------------------+   +------------------+
   ~ other outer hdrs ~   ~  outer IPv6 hdr  ~   ~ other outer hdrs ~
   +------------------+   +------------------+   +------------------+
   ~ SEAL hdr (SEG=0) ~   ~ other outer hdrs ~   ~ SEAL hdr (SEG=2) ~
   +------------------+   +------------------+   +------------------+
   ~  mid-layer hdrs  ~   ~ SEAL hdr (SEG=1) ~   |    inner IPv4    |
   +------------------+   +------------------+   ~      Packet      ~
   |    inner IPv4    |   |    inner IPv4    |   |    (Segment 2)   |
   ~      Packet      ~   ~      Packet      ~   +------------------+
   |    (Segment 0)   |   |    (Segment 1)   |   ~ mid-layer trails ~
   +------------------+   +------------------+   +------------------+
   ~  outer trailers  ~   ~  outer trailers  ~   ~  outer trailers  ~
   +------------------+   +------------------+   +------------------+

   Segment 0 (includes    Segment 1 (no mid-     Segment 2 (includes
     mid-layer hdrs)        layer encaps)         mid-layer trails)

             Figure 2: SEAL Encapsulation - Multiple Segments

   The ITE inserts the SEAL header according to the specific tunneling
   protocol.  Examples include the following:

   o  For simple encapsulation of an inner network layer packet within
      an outer IPvX header (e.g., [RFC1070][RFC2003][RFC2473][RFC4213],
      etc.), the ITE inserts the SEAL header between the inner packet
      and outer IPvX headers as: IPvX/SEAL/{inner packet}.

   o  For encapsulations over transports such as UDP (e.g., [RFC4380]),
      the ITE inserts the SEAL header between the outer transport layer
      header and the mid-layer packet, e.g., as IPvX/UDP/SEAL/{mid-layer
      packet}.  Here, the UDP header is seen as an "other outer header".

   The SEAL header includes a (LINK_ID, NONCE, SEAL_ID)-tuple that the
   ITE maintains as a per-ETE identifier.  The ITE can also include an
   extended packet Identification field in the SEAL header, which
   routers within the subnetwork can use for duplicate packet detection
   and both TEs can use for SEAL segmentation/reassembly.

   The following sections specify the SEAL header format and SEAL-
   related operations of the ITE and ETE.

https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4380
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4.3.  SEAL Header Format

   The SEAL header is formatted as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |VER|C|A|I|R|F|M|  NEXTHDR/SEG  |    LINK_ID    |     NONCE     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            SEAL_ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Identification (when present)                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 3: SEAL Header Format

   where the header fields are defined as:

   VER (2)
      a 2-bit version field.  This document specifies Version 0 of the
      SEAL protocol, i.e., the VER field encodes the value 0.

   C (1)
      the "Control/Data" bit.  Set to 1 by the ITE in SEAL Control
      Message Protocol (SCMP) control messages, and set to 0 in ordinary
      data packets.

   A (1)
      the "Acknowledgement Requested" bit.  Set to 1 by the ITE in data
      packets for which it wishes to receive an explicit acknowledgement
      from the ETE.

   I (1)
      the "Identification Field Included" bit.  Set to 1 if the SEAL
      header includes a 32-bit packet Identification field (see below);
      set to 0 otherwise.

   R (1)
      the "Redirects Permitted" bit.  Set to 1 if the ITE is willing to
      accept SCMP redirects (see: Section 4.6); set to 0 otherwise.

   F (1)
      the "First Segment" bit.  Set to 1 if this SEAL protocol packet
      contains the first segment (i.e., Segment #0) of a mid-layer
      packet.
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   M (1)
      the "More Segments" bit.  Set to 1 if this SEAL protocol packet
      contains a non-final segment of a multi-segment mid-layer packet.

   NEXTHDR/SEG (8)  an 8-bit field.  When 'F'=1, encodes the next header
      Internet Protocol number the same as for the IPv4 protocol and
      IPv6 next header fields.  When 'F'=0, encodes a segment number of
      a multi-segment mid-layer packet.  (The segment number 0 is
      reserved.)

   LINK_ID (8)
      an 8-bit link identifier.  An integer value between 1 and 255 used
      by the ITE to identify the underlying link selected for tunneling
      the current packet.  The ITE may also use the value 0 to indicate
      "underlying link unspecified", e.g., when the ETE does not keep
      track of tunnel state.

   NONCE (8)
      an 8-bit nonce field.  Set to a random value by the ITE when the
      tunnel to the ETE is established, and used as a per-ETE
      identification adjunct to the SEAL_ID.

   SEAL_ID (32)
      a 32-bit field that along with the NONCE identifies the ETE.

   Identification (32)
      a 32-bit per-packet identifier.  Present only when the I bit is
      set to 1 (see above).

   Setting of the various bits and fields of the SEAL header is
   specified in the following sections.

4.4.  ITE Specification

4.4.1.  Tunnel Interface MTU

   The tunnel interface must present a fixed MTU to the inner network
   layer as the size for admission of inner packets into the interface.
   Since VET NBMA tunnel virtual interfaces may support a large set of
   ETEs that accept widely varying maximum packet sizes, however, a
   number of factors should be taken into consideration when selecting a
   tunnel interface MTU.

   Due to the ubiquitous deployment of standard Ethernet and similar
   networking gear, the nominal Internet cell size has become 1500
   bytes; this is the de facto size that end systems have come to expect
   will either be delivered by the network without loss due to an MTU
   restriction on the path or a suitable ICMP Packet Too Big (PTB)
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   message returned.  When the 1500 byte packets sent by end systems
   incur additional encapsulation at an ITE, however, they may be
   dropped silently since the network may not always deliver the
   necessary PTBs [RFC2923].

   The ITE should therefore set a tunnel interface MTU of at least 1500
   bytes plus extra room to accommodate any additional encapsulations
   that may occur on the path from the original source.  The ITE can
   also set smaller MTU values; however, care must be taken not to set
   so small a value that original sources would experience an MTU
   underflow.  In particular, IPv6 sources must see a minimum path MTU
   of 1280 bytes, and IPv4 sources should see a minimum path MTU of 576
   bytes.

   The ITE can alternatively set an indefinite MTU on the tunnel
   interface such that all inner packets are admitted into the interface
   without regard to size.  For ITEs that host applications that use the
   tunnel interface directly, this option must be carefully coordinated
   with protocol stack upper layers since some upper layer protocols
   (e.g., TCP) derive their packet sizing parameters from the MTU of the
   outgoing interface and as such may select too large an initial size.
   This is not a problem for upper layers that use conservative initial
   maximum segment size estimates and/or when the tunnel interface can
   reduce the upper layer's maximum segment size, e.g., by reducing the
   size advertised in the MSS option of outgoing TCP messages.

   The inner network layer protocol consults the tunnel interface MTU
   when admitting a packet into the interface.  For non-SEAL inner IPv4
   packets with the IPv4 Don't Fragment (DF) bit set to 0, if the packet
   is larger than the tunnel interface MTU the inner IPv4 layer uses
   IPv4 fragmentation to break the packet into fragments no larger than
   the tunnel interface MTU.  The ITE then admits each fragment into the
   interface as an independent packet.

   For all other inner packets, the inner network layer admits the
   packet if it is no larger than the tunnel interface MTU; otherwise,
   it drops the packet and sends a PTB error message to the source with
   the MTU value set to the tunnel interface MTU.  The message must
   contain as much of the invoking packet as possible without the entire
   message exceeding the network layer minimum MTU (e.g., 576 bytes for
   IPv4, 1280 bytes for IPv6, etc.).  For SEAL packets that would
   undergo recursive encapsulation, however, the inner layer must send a
   SEAL PTB message instead of a PTB of the inner network layer (see:

Section 4.4.3).

   In light of the above considerations, the ITE SHOULD configure an
   indefinite MTU on tunnel *router* interfaces, since these may be
   required to carry recursively-nested SEAL encapsulations.  The ITE

https://datatracker.ietf.org/doc/html/rfc2923
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   MAY instead set a finite MTU on tunnel *host* interfaces.  Any
   necessary tunnel adaptations are then performed by the SEAL layer
   within the tunnel interface as described in the following sections.

4.4.2.  Tunnel Interface Soft State

   The ITE maintains per-ETE soft state within the tunnel interface,
   e.g., in a neighbor cache.  (The ITE can instead maintain only per-
   tunnel interface instead of per-ETE packet identification and sizing
   variables if it is willing to use lowest-common-denominator values
   that are acceptable for all ETEs.)  The soft state includes the
   following:

   o  a Mid-layer Header Length (MHLEN); set to the length of any mid-
      layer encapsulation headers and trailers that must be added before
      SEAL segmentation.

   o  an Outer Header Length (OHLEN); set to the length of the outer IP,
      SEAL and other outer encapsulation headers and trailers.

   o  a total Header Length (HLEN); set to MHLEN plus OHLEN.

   o  a SEAL Maximum Segment Size (S_MSS).  The ITE initializes S_MSS to
      the minimum MTU of the underlying interfaces if the underlying
      interface MTUs can be determined (otherwise, the ITE initializes
      S_MSS to "infinity").  The ITE decreases or increased S_MSS based
      on any SCMP "Packet Too Big (PTB)" messages received (see Section

4.6).

   o  a SEAL Maximum Reassembly Unit (S_MRU).  If the ITE is not
      configured to use SEAL segmentation, it initializes S_MRU to the
      constant value 0 and ignores any S_MRU values reported by the ETE.
      Otherwise, the ITE initializes S_MRU to "infinity" and decreases
      or increases S_MRU based on any SCMP PTB messages received from
      the ETE (see Section 4.6).  When (S_MRU>(S_MSS*256)), the ITE uses
      (S_MSS*256) as the effective S_MRU value.

   o  a SEAL Inner Fragmentation Threshold (S_IFT); used to determine a
      maximum fragment size for fragmentable IPv4 packets.  Required
      only for tunnels that support encapsulation with IPv4 as the inner
      network layer protocol.  The ITE should use a "safe" estimate for
      S_IFT that would be highly unlikely to trigger additional
      fragmentation on the path to the ETE.  In particular, it is
      RECOMMENDED that the ITE set S_IFT to 512 unless it can determine
      a more accurate safe value, e.g., via probing.

   o  a set of 8 bit LINK_IDs that identify the ITE's underlying links
      and are used to fill the SEAL header field of the same name for
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      packets sent to this ETE.  The ITE selects a separate randomly-
      initialized LINK_ID for each underlying link, and the ETE uses the
      LINK_ID to identify the ITE's underlying link of origin.

   o  an 8 bit NONCE that encodes a randomly-initialized constant value
      and is used to fill the SEAL header field of the same name for
      packets sent to this ETE.

   o  a 32 bit SEAL_ID that is randomly-initialized constant ETE
      identifier used to fill the SEAL header field of the same name for
      packets sent to this ETE.

   o  Optionally, a 32 bit Identification value that is randomly-
      initialized and maintained as a monotonically-increasing packet
      identifier.

   Note that S_MSS and S_MRU include the length of the outer and mid-
   layer encapsulating headers and trailers (i.e., HLEN), since the ETE
   must retain the headers and trailers during reassembly.  Note also
   that the ITE maintains S_MSS and S_MRU as 32-bit values such that
   inner packets larger than 64KB (e.g., IPv6 jumbograms [RFC2675]) can
   be accommodated when appropriate for a given subnetwork.

4.4.3.  Admitting Packets into the Tunnel

   Once an inner packet/fragment has been admitted into the tunnel
   interface, it transitions from the inner network layer and becomes
   subject to SEAL layer processing.  The ITE then examines each packet
   to determine whether it is too large for SEAL encapsulation, then
   prepares the packet for admission into the tunnel according to
   whether it is "fragmentable" (discussed in the next paragraph) or
   "unfragmentable" (discussed in the following paragraph).

   If the packet is a non-SEAL IPv4 packet with DF=0 in the IPv4 header
   (*), and the packet is larger than S_IFT, the ITE uses fragmentation
   to break the packet into IPv4 fragments no larger than S_IFT bytes
   then submits each fragment for encapsulation separately.

   For all other packets, if the packet is larger than (MAX(S_MRU,
   S_MSS) - HLEN), the ITE drops it and sends a PTB message to the
   source (**) with an MTU value of (MAX(S_MRU, S_MSS) - HLEN);
   otherwise, it submits the packet for encapsulation.  The ITE must
   include the length of the uncompressed headers and trailers when
   calculating HLEN even if the tunnel is using header compression.  The
   ITE is also permitted to admit inner packets into the tunnel that can
   be accommodated in a single SEAL segment (i.e., no larger than S_MSS)
   even if they are larger than the ETE would be willing to reassemble
   if fragmented (i.e., larger than S_MRU) - see: Section 4.5.1.

https://datatracker.ietf.org/doc/html/rfc2675
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   (*) In order to support nested encapsulations, inner SEAL-protocol
   IPv4 packets with DF=0 must be treated as unfragmentable and subject
   to drop due to an MTU restriction as for all other packets.

   (**) When the ITE needs to drop a packet and send a PTB message, it
   sends an SCMP PTB message if the packet itself is a SEAL encapsulated
   packet (see: Section 4.6.1.1).  Otherwise, it sends a PTB
   corresponding to the inner network layer protocol packet.

4.4.4.  Mid-Layer Encapsulation

   After inner IP fragmentation (if necessary), the ITE next
   encapsulates each inner packet/fragment in the MHLEN bytes of mid-
   layer headers and trailers.  The ITE then submits the mid-layer
   packet for SEAL segmentation and encapsulation.

4.4.5.  SEAL Segmentation

   If the ITE is configured to use SEAL segmentation, it checks the
   length of the resulting packet after mid-layer encapsulation to
   determine whether segmentation is needed.  If the length of the
   resulting mid-layer packet plus OHLEN is larger than S_MSS but no
   larger than S_MRU the ITE performs SEAL segmentation by breaking the
   mid-layer packet into N segments (N <= 256) that are no larger than
   (S_MSS - OHLEN) bytes each.  Each segment, except the final one, MUST
   be of equal length.  The first byte of each segment MUST begin
   immediately after the final byte of the previous segment, i.e., the
   segments MUST NOT overlap.  The ITE SHOULD generate the smallest
   number of segments possible, e.g., it SHOULD NOT generate 6 smaller
   segments when the packet could be accommodated with 4 larger
   segments.

   This SEAL segmentation process ignores the fact that the mid-layer
   packet may be unfragmentable outside of the subnetwork.  The process
   is a mid-layer (not an IP layer) operation employed by the ITE to
   adapt the mid-layer packet to the subnetwork path characteristics,
   and the ETE will restore the packet to its original form during
   reassembly.  Therefore, the fact that the packet may have been
   segmented within the subnetwork is not observable outside of the
   subnetwork.

4.4.6.  SEAL Encapsulation

   Following SEAL segmentation, the ITE next encapsulates each segment
   in a SEAL header formatted as specified in Section 4.3.  For the
   first segment, the ITE sets F=1, then sets NEXTHDR to the Internet
   Protocol number of the encapsulated inner packet, and finally sets
   M=1 if there are more segments or sets M=0 otherwise.  For each non-
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   initial segment of an N-segment mid-layer packet (N <= 256), the ITE
   sets (F=0; M=1; SEG=1) in the SEAL header of the first non-initial
   segment, sets (F=0; M=1; SEG=2) in the next non-initial segment,
   etc., and sets (F=0; M=0; SEG=N-1) in the final segment.  (Note that
   the value SEG=0 is not used, since the initial segment encodes a
   NEXTHDR value and not a SEG value.)

   For each segment, the ITE then sets C=0, sets R=1 if it is willing to
   accept SCMP redirects (see Section 4.6) and sets A=1 if explicit
   probing is desired (see Section 4.4.9).  The ITE then sets the
   LINK_ID field to an integer between 1 and 255 that identifies the
   underlying link over which this packet will be tunneled.  (The ITE
   may instead set LINK_ID to 0 if the ETE is not tracking state, e.g.,
   if the tunnel neighbor relationship is unidirectional.)  The ITE next
   sets both the NONCE and SEAL_ID fields to randomly-initialized
   constant values for this ETE.

   Finally, the ITE maintains a randomly-initialized Identification
   value as per-ETE soft state (e.g., in the neighbor cache).  For each
   SEAL packet that requires SEAL segmentation, the ITE then sets I=1
   and includes the current Identification value in a trailing 32-bit
   field in the SEAL header of the current segment.  The ITE then
   monotonically increments the Identification value for each successive
   SEAL segment it sends to the ETE.  For each SEAL packet that will be
   sent as a single segment, however, the ITE MAY set I=0 and omit the
   trailing 32-bit Identification field.

4.4.7.  Outer Encapsulation

   Following SEAL encapsulation, the ITE next encapsulates each SEAL
   segment in the requisite outer headers and trailers according to the
   specific encapsulation format (e.g., [RFC1070], [RFC2003], [RFC2473],
   [RFC4213], etc.), except that it writes 'SEAL_PROTO' in the protocol
   field of the outer IP header (when simple IP encapsulation is used)
   or writes 'SEAL_PORT' in the outer destination service port field
   (e.g., when IP/UDP encapsulation is used).

   When IPv4 is used as the outer encapsulation layer, the ITE finally
   sets the DF flag in the IPv4 header of each segment.  If the path to
   the ETE correctly implements IP fragmentation (see: Section 4.4.9),
   the ITE sets DF=0; otherwise, it sets DF=1.

   When IPv6 is used as the outer encapsulation layer, the "DF" flag is
   absent but the packet will not be fragmented within the subnetwork
   since IPv6 deprecates in-the-network fragmentation.

https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213
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4.4.8.  Sending SEAL Protocol Packets

   Following outer encapsulation, the ITE sends each outer packet that
   encapsulates a segment of the same mid-layer packet over the same
   underlying link in canonical order, i.e., segment 0 first, followed
   by segment 1, etc., and finally segment N-1.

4.4.9.  Probing Strategy

   When IPv4 is used as the outer encapsulation layer, the ITE should
   perform a qualification exchange over each underlying link to
   determine whether each subnetwork path to the ETE correctly
   implements IPv4 fragmentation.  The qualification exchange can be
   performed either as an initial probe or in-band with real data
   packets, and should be repeated periodically since the subnetwork
   paths may change due to dynamic routing.

   To perform this qualification, the ITE prepares a probe packet that
   is no larger than 576 bytes (e.g., a NULL packet with A=1 and
   NEXTHDR="No Next Header" [RFC2460] in the SEAL header), then splits
   the packet into two outer IPv4 fragments and sends both fragments to
   the ETE over the same underlying link.  If the ETE returns an SCMP
   PTB message with Code=1 (see Section 4.6.1.1), then the subnetwork
   path correctly implements IPv4 fragmentation and subsequent data
   packets can be sent with DF=0 in the outer header to enable the
   preferred method of probing.  If the ETE returns an SCMP PTB message
   with Code=2, however, the ITE is obliged to set DF=1 for future
   packets sent over that underlying link since a middlebox in the
   network is reassembling the IPv4 fragments before they are delivered
   to the ETE.

   In addition to any control plane probing, all SEAL encapsulated data
   packets sent by the ITE are considered implicit probes.  SEAL
   encapsulated packets that use IPv4 as the outer layer of
   encapsulation with DF=0 will elicit SCMP PTB messages from the ETE if
   any IPv4 fragmentation occurs in the path.  SEAL encapsulated packets
   that use either IPv6 or IPv4 with DF=1 as the outer layer of
   encapsulation may be dropped by a router on the path to the ETE which
   will also return an ICMP PTB message to the ITE.  If the message
   includes enough information (see Section 4.4.10), the ITE can then
   use the (LINK_ID, NONCE, SEAL_ID)-tuple within the packet-in-error to
   determine whether the PTB message corresponds to one of its recent
   packet transmissions.

   The ITE should also send explicit probes, periodically, to verify
   that the ETE is still reachable.  The ITE sets A=1 in the SEAL header
   of a segment to be used as an explicit probe, where the probe can be
   either an ordinary data packet segment or a NULL packet (see above).

https://datatracker.ietf.org/doc/html/rfc2460


Templin                   Expires June 17, 2011                [Page 20]



Internet-Draft                    SEAL                     December 2010

   The probe will elicit an SCMP PTB message from the ETE as an
   acknowledgement (see Section 4.6.1).

4.4.10.  Processing ICMP Messages

   When the ITE sends outer IP packets, it may receive ICMP error
   messages [RFC0792][RFC4443] from either the ETE or routers within the
   subnetwork.  The ICMP messages include an outer IP header, followed
   by an ICMP header, followed by a portion of the outer IP packet that
   generated the error (also known as the "packet-in-error").  The ITE
   can use the (LINK_ID, NONCE, SEAL_ID)-tuple encoded in the SEAL
   header within the packet-in-error to confirm that the ICMP message
   came from either the ETE or an on-path router, and can use any
   additional information to determine whether to accept or discard the
   message.

   The ITE should specifically process raw ICMPv4 Protocol Unreachable
   messages and ICMPv6 Parameter Problem messages with Code
   "Unrecognized Next Header type encountered" as a hint that the ETE
   does not implement the SEAL protocol; specific actions that the ITE
   may take in this case are out of scope.

4.4.11.  Black Hole Detection

   In some subnetwork paths, ICMP error messages may be lost due to
   filtering or may not contain enough information due to a router in
   the path not observing the recommendations of [RFC1812].  The ITE can
   use explicit probing as described in Section 4.4.9 to determine
   whether the path to the ETE is silently dropping packets (also known
   as a "black hole").  For example, when the ITE is obliged to set DF=1
   in the outer headers of data packets it should send explicit probe
   packets, periodically, in order to detect path MTU increases or
   decreases.

4.5.  ETE Specification

4.5.1.  Reassembly Buffer Requirements

   The ETE SHOULD support the minimum IP-layer reassembly requirements
   specified for IPv4 (i.e., 576 bytes [RFC1812]) and IPv6 (i.e., 1500
   bytes [RFC2460]).  The ETE SHOULD also support SEAL-layer reassembly
   for inner packets of at least 1280 bytes in length and MAY support
   reassembly for larger inner packets.  The ETE records the SEAL-layer
   reassembly buffer size in a soft-state variable "S_MRU" (see: Section

4.5.2).

   The ETE may instead omit the reassembly function altogether and set
   S_MRU=0, but this may cause tunnel MTU underruns in some environments

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2460
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   resulting in an unusable link.  When reassembly is supported, the ETE
   must retain the outer IP, SEAL and other outer headers and trailers
   during both IP-layer and SEAL-layer reassembly for the purpose of
   associating the fragments/segments of the same packet, and must also
   configure a SEAL-layer reassembly buffer that is no smaller than the
   IP-layer reassembly buffer.  Hence, the ETE:

   o  SHOULD configure an outer IP-layer reassembly buffer of at least
      the minimum specified for the outer IP protocol version.

   o  SHOULD configure a SEAL-layer reassembly buffer S_MRU size of at
      least (1280 + HELN) bytes, and

   o  MUST be capable of discarding inner packets that require IP-layer
      and/or SEAL-layer reassembly and that are larger than (S_MRU -
      HLEN).

   The ETE is permitted to accept inner packets that did not undergo IP-
   layer and/or SEAL-layer reassembly even if they are larger than
   (S_MRU - HELN) bytes.  Hence, S_MRU is a maximum *reassembly* size,
   and may be less than the largest packet size the ETE is able to
   receive when no reassembly is required.

4.5.2.  Tunnel Interface Soft State

   The ETE maintains a single per-interface S_MRU value to be applied
   for all unidirectional tunnel neighbors, and can also maintain per-
   ITE S_MRU values for any bidirectional tunnel neighbors (see: Section

4.7).  For each bidirectional ITE neighbor, the ETE also maintains
   per-ITE soft state to track the (LINK_ID, NONCE, SEAL_ID)-tuple used
   by the ITE.

   For each bidirectional tunnel neighbor, the ETE also tracks the outer
   IP source addresses (and also port numbers when outer UDP
   encapsulation is used) of packets received from the ITE and
   associates the most recent values received with the corresponding
   (LINK_ID, NONCE, SEAL_ID)-tuple.  In this way, the tuple provides a
   stable handle for the tunnel near end to use for return traffic to
   the tunnel far end even if the outer IP source address and port
   numbers in packets received from the tunnel far end change.

4.5.3.  IP-Layer Reassembly

   The ETE submits unfragmented SEAL protocol IP packets for SEAL-layer
   reassembly as specified in Section 4.5.4.  The ETE instead performs
   standard IP-layer reassembly for multi-fragment SEAL protocol IP
   packets as follows.
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   The ETE should maintain conservative IP-layer reassembly cache high-
   and low-water marks.  When the size of the reassembly cache exceeds
   this high-water mark, the ETE should actively discard incomplete
   reassemblies (e.g., using an Active Queue Management (AQM) strategy)
   until the size falls below the low-water mark.  The ETE should also
   actively discard any pending reassemblies that clearly have no
   opportunity for completion, e.g., when a considerable number of new
   fragments have been received before a fragment that completes a
   pending reassembly has arrived.  Following successful IP-layer
   reassembly, the ETE submits the reassembled packet for SEAL-layer
   reassembly as specified in Section 4.5.4.

   When the ETE processes the IP first fragment (i.e., one with MF=1 and
   Offset=0 in the IP header) of a fragmented SEAL packet, it sends an
   SCMP PTB message back to the ITE (see Section 4.6.1.1).  When the ETE
   processes an IP fragment that would cause the reassembled outer
   packet to be larger than the IP-layer reassembly buffer following
   reassembly, it discontinues the reassembly and discards any further
   fragments of the same packet.

4.5.4.  SEAL-Layer Reassembly

   Following IP reassembly (if necessary), the ETE examines each mid-
   layer data packet (i.e., those with C=0 in the SEAL header) packet)
   to determine whether an SCMP error message is required.  If the mid-
   layer data packet has an incorrect value in the SEAL header the ETE
   discards the packet and returns an SCMP "Parameter Problem" message
   (see Section 4.6.1).  Next, if the SEAL header has A=1 and the packet
   did not arrive as multiple outer IP fragments, the ETE sends an SCMP
   PTB message with Code=2 back to the ITE (see Section 4.6.1.1).  The
   ETE next submits single-segment mid-layer packets for decapsulation
   and delivery to upper layers (see Section 4.5.5).  The ETE instead
   performs SEAL-layer reassembly for multi-segment mid-layer packets
   with I=1 in the SEAL header as follows.

   The ETE adds each segment of a multi-segment mid-layer packet with
   I=1 in the SEAL header to a SEAL-layer pending-reassembly queue
   according to the (LINK_ID, NONCE, SEAL_ID)-tuple and Identification
   value found in the SEAL header.  The ETE performs SEAL-layer
   reassembly through simple in-order concatenation of the encapsulated
   segments of the same mid-layer packet from N consecutive SEAL
   segments.  SEAL-layer reassembly requires the ETE to maintain a cache
   of recently received segments for a hold time that would allow for
   nominal inter-segment delays.  When a SEAL reassembly times out, the
   ETE discards the incomplete reassembly and returns an SCMP "Time
   Exceeded" message to the ITE (see Section 4.6.1).  As for IP-layer
   reassembly, the ETE should also maintain a conservative reassembly
   cache high- and low-water mark and should actively discard any
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   pending reassemblies that clearly have no opportunity for completion,
   e.g., when a considerable number of new SEAL packets have been
   received before a packet that completes a pending reassembly has
   arrived.

   If the ETE receives a SEAL packet for which a segment with the same
   (LINK_ID, NONCE, SEAL_ID)-tuple and Identification value is already
   in the queue, it must determine whether to accept the new segment and
   release the old, or drop the new segment.  If accepting the new
   segment would cause an inconsistency with other segments already in
   the queue (e.g., differing segment lengths), the ETE drops the
   segment that is least likely to complete the reassembly.  When the
   ETE has already received the SEAL first segment (i.e., one with F=1
   and M=1 in the SEAL header) of a SEAL protocol packet that arrived as
   multiple SEAL segments, and accepting the current segment would cause
   the size of the reassembled packet to exceed S_MRU, the ETE schedules
   the reassembly resources for garbage collection and sends an SCMP PTB
   message with Code=3 back to the ITE (see Section 4.6.1.1).

   After all segments are gathered, the ETE reassembles the packet by
   concatenating the segments encapsulated in the N consecutive SEAL
   packets beginning with the initial segment (i.e., SEG=0) and followed
   by any non-initial segments 1 through N-1.  That is, for an N-segment
   mid-layer packet, reassembly entails the concatenation of the SEAL-
   encapsulated packet segments with (F=1, M=1, Identification=j) in the
   first SEAL header, followed by (F=0, M=1, SEG=1,
   Identification=(j+1)) in the next SEAL header, followed by (F=0, M=1,
   SEG=2, Identification=(j+2)), etc., up to (F=0, M=0, SEG=(N-1),
   Identification=(j + N-1)) in the final SEAL header, where modulo
   arithmetic based on the length of the Identification field is used.
   Following successful SEAL-layer reassembly, the ETE submits the
   reassembled mid-layer packet for decapsulation and delivery to upper
   layers as specified in Section 4.5.5.

   The ETE must not perform SEAL-layer reassembly for multi-segment mid-
   layer packets with I=0 in the SEAL header.  The ETE instead silently
   drops all segments with I=0 and either F=0 or (F=1; M=1) in the SEAL
   header and sends an SCMP Parameter Problem message back to the ITE.

4.5.5.  Decapsulation and Delivery to Upper Layers

   Following any necessary IP- and SEAL-layer reassembly, the ETE
   discards the outer headers and trailers and performs any mid-layer
   transformations on the mid-layer packet.  The ETE next discards the
   mid-layer headers and trailers, and delivers the inner packet to the
   upper-layer protocol indicated either in the SEAL NEXTHDR field or
   the next header field of the mid-layer packet (i.e., if the packet
   included mid-layer encapsulations).  The ETE instead silently
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   discards the inner packet if it was a NULL packet (see Section
4.4.9).

4.6.  The SEAL Control Message Protocol (SCMP)

   SEAL uses a companion SEAL Control Message Protocol (SCMP) based on
   the same message format as the Internet Control Message Protocol for
   IPv6 (ICMPv6) [RFC4443].  Each SCMP message is embedded within an
   SCMP packet which begins with the same outer header format as would
   be used for outer encapsulation of a SEAL data packet (see: Section

4.4.7).  The following sections specify the generation and processing
   of SCMP messages:

4.6.1.  Generating SCMP Messages

   SCMP messages may be generated by either ITEs or ETEs (i.e., by any
   TE) using the same message Type and Code values specified for
   ordinary ICMPv6 messages in [RFC4443].  SCMP is also used to carry
   other ICMPv6 message types and their associated options as specified
   in other documents (e.g., [RFC4191][RFC4861], etc.).  The general
   format for SCMP messages is shown in Figure 4:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     Code      |          Checksum             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ~                         Message Body                          ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  As much of invoking SEAL data                |
      ~                packet as possible without the SCMP            ~
      |                  packet exceeding 576 bytes (*)               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      (*) also known as the "packet-in-error"

                       Figure 4: SCMP Message Format

   TEs generate solicitation messages (e.g., an SCMP echo request, an
   SCMP router/neighbor solicitation, a SEAL data packet with A=1, etc.)
   for the purpose of triggering an SCMP response.  TEs generate
   solicited SCMP messages (e.g., an SCMP echo reply, an SCMP router/
   neighbor advertisement, an SCMP PTB message, etc.) in response to
   explicit solicitations, and also generate SCMP error messages in
   response to errored SEAL data packets.  As for ICMP, TEs must not
   generate SCMP error message in response to other SCMP messages.

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4191
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   As for ordinary ICMPv6 messages, the SCMP message begins with a 4
   byte header that includes 8-bit Type and Code fields followed by a
   16-bit Checksum field followed by a variable-length Message Body.
   The TE sets the Type and Code fields to the same values that would
   appear in the corresponding ICMPv6 message and also formats the
   Message Body the same as for the corresponding ICMPv6 message.

   The Message Body is followed by the leading portion of the invoking
   SEAL data packet (i.e., the "packet-in-error") IFF the packet-in-
   error would also be included in the corresponding ICMPv6 message.  If
   the SCMP message will include a packet-in-error, the TE includes as
   much of the leading portion of the invoking SEAL data packet as
   possible beginning with the outer IP header and extending to a length
   that would not cause the entire SCMP packet following outer
   encapsulation to exceed 576 bytes (see: Figure 5).

   The TE then calculates the SCMP message Checksum the same as
   specified for ICMPv6 messages except that it does not prepend a
   pseudo-header of the outer IP header since the (LINK_ID, NONCE,
   SEAL_ID)-tuple already gives sufficient assurance against mis-
   delivery.  (The Checksum calculation procedure is therefore identical
   to that used for ICMPv4 [RFC0792].)  The TE then encapsulates the
   SCMP message in the outer headers as shown in Figure 5:

                                       +--------------------+
                                       ~  outer IPv4 header ~
                                       +--------------------+
                                       ~  other outer hdrs  ~
                                       +--------------------+
                                       ~    SEAL Header     ~
          +--------------------+       +--------------------+
          ~ SCMP message header~  -->  ~ SCMP message header~
          +--------------------+  -->  +--------------------+
          ~  SCMP message body ~  -->  ~  SCMP message body ~
          +--------------------+  -->  +--------------------+
          ~   packet-in-error  ~  -->  ~  packet-in-error   ~
          +--------------------+       +--------------------+
                                       ~   outer trailers   ~
               SCMP Message            +--------------------+
           before encapsulation
                                             SCMP Packet
                                         after encapsulation

                   Figure 5: SCMP Message Encapsulation

   When a TE generates an SCMP message in response to an SCMP
   solicitation or an ordinary SEAL data packet (i.e., a "solicitation
   packet"), it sets the outer IP destination and source addresses of

https://datatracker.ietf.org/doc/html/rfc0792
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   the SCMP packet to the solicitation's source and destination
   addresses (respectively).  (If the destination address in the
   solicitation was multicast, the TE instead sets the outer IP source
   address of the SCMP packet to an address assigned to the underlying
   IP interface.)  The TE then sets the (LINK_ID, NONCE, SEAL_ID)-tuple
   and I flag in the SEAL header of the SCMP packet to the same values
   that appeared in the solicitation.  If the I flag is set to 1, the TE
   also includes the Identification field that it received in the
   solicitation.

   When a TE generates an unsolicited SCMP message, it sets the outer IP
   destination and source addresses of the SCMP packet the same as it
   would for ordinary SEAL data packets.  The TE then sets the (LINK_ID,
   NONCE, SEAL_ID)-tuple and I flag in the SEAL header of the SCMP
   packet to the same values that it would use to send an ordinary SEAL
   data packet.

   For all SCMP messages, the TE then sets the other flag bits in the
   SEAL header to C=1, A=0, R=0, F=1, and M=0.  It next sets the
   NEXTHDR/SEG field to 0 and sends the SCMP packet to the tunnel
   neighbor.

4.6.1.1.  Generating SCMP Packet Too Big (PTB) Messages

   An ETE generates an SCMP PTB message under one of the following
   cases:

   o  Case 1: when it receives the IP first fragment (i.e., one with
      MF=1 and Offset=0 in the outer IP header) of a SEAL protocol
      packet that arrived as multiple IP fragments, or:

   o  Case 2: when it receives a SEAL protocol data packet with A=1 in
      the SEAL header that did not arrive as multiple IP fragments
      (i.e., one that does not also match Case 1), or:

   o  Case 3: when it has already received the SEAL first segment (i.e.,
      one with F=1 and M=1 in the SEAL header) of a SEAL protocol packet
      that arrived as multiple SEAL segments, and accepting the current
      segment would cause the size of the reassembled packet to exceed
      S_MRU.

   The ETE prepares an SCMP PTB message the same as for the
   corresponding ICMPv6 PTB message, except that it writes the S_MRU
   value for this ITE in the MTU field (i.e., even if the S_MRU value is
   0).  For cases 1 and 2 above, the packet-in-error field includes the
   leading portion of the IP packet or fragment that triggered the
   condition.  For case 3 above, the packet-in-error field includes the
   leading portion of the SEAL first segment, beginning with the
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   encapsulating outer IP header.

   Finally, the ETE writes the value 1, 2 or 3 in the Code field of the
   PTB message according to whether the reason for generating the
   message was due to the corresponding case number from the list of
   cases above.

   NOTE CAREFULLY that, unlike cases 1 and 3 above, case 2 is not an
   error condition and does not necessarily signify packet loss.
   Instead, it is a control plane acknowledgement of a data plane probe.
   NOTE ALSO that the ETE MUST NOT generate both a Case 1 and a Case 2
   SCMP PTB message on behalf of the same SEAL segment.

4.6.1.2.  Generating SCMP Neighbor Discovery Messages

   An ITE generates an SCMP "Neighbor Solicitation" (SNS) or "Router
   Solicitation" (SRS) message when it needs to solicit a response from
   an ETE.  An ETE generates a solicited SCMP "Neighbor Advertisement"
   (SNA) or "Router Advertisement" (SRA) message when it receives an
   SNS/SRS message.  Any TE may also generate unsolicited SNA/SRA
   messages that are not triggered by a specific solicitation event.

   The TE generates SNS, SNA, SRS and SRA messages the same as described
   for the corresponding IPv6 Neighbor Discovery (ND) messages (see:
   [RFC4861]).

4.6.1.3.  Generating SCMP Redirect Messages

   An ETE generates an SCMP "Redirect" message when it receives a SEAL
   data packet with R=1 in the SEAL header and needs to inform the ITE
   of a better next hop.  The ETE generates SCMP Redirect messages the
   same as described for IPv6 ND Redirects in [RFC4861], except that it
   includes Route Information Options (RIOs) [RFC4191] to inform the ITE
   of a better next hop for an entire IP prefix instead of only a single
   destination.  The SCMP Redirect message therefore supports both
   network and host redirection instead of only host redirection.

4.6.1.4.  Generating Other SCMP Messages

   An ETE generates an SCMP "Destination Unreachable - Communication
   with Destination Administratively Prohibited" message when its
   association with the ITE is bidirectional and it receives a SEAL
   packet with a (LINK_ID, NONCE, SEAL_ID)-tuple that does not
   correspond to this ITE (see: Section 4.7).

   An ETE generates an SCMP "Destination Unreachable" message with an
   appropriate code under the same circumstances that an IPv6 system
   would generate an ICMPv6 Destination Unreachable message using the

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4191
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   same code.  The SCMP Destination Unreachable message is formatted the
   same as for ICMPv6 Destination Unreachable messages.

   An ETE generates an SCMP "Parameter Problem" message when it receives
   a SEAL packet with an incorrect value in the SEAL header, and
   generates an SCMP "Time Exceeded" message when it garbage collects an
   incomplete SEAL data packet reassembly.  The message formats used are
   the same as for the corresponding ICMPv6 messages.

   Generation of all other SCMP message types is outside the scope of
   this document.

4.6.2.  Processing SCMP Messages

   An ITE processes any solicited and error SCMP message it receives as
   long as it can verify that the corresponding SCMP packet was sent
   from an on-path ETE.  The ITE can verify that the SCMP packet came
   from an on-path ETE by checking that the (LINK_ID, NONCE, SEAL_ID)-
   tuple and Identification value in the SEAL header of the packet
   corresponds to one of its recently-sent SEAL data packets or SCMP
   solicitation packets.

   For each solicited and error SCMP message it receives, the ITE first
   verifies that the identifying information is acceptable, then
   verifies that the Checksum in the SCMP message header is correct.  If
   the identifying information and/or checksum are incorrect, the ITE
   discards the message; otherwise, it processes the message the same as
   for ordinary ICMPv6 messages.

   Any TE may also receive unsolicited SCMP messages (e.g., SNS, SRS,
   SNA, SRA, etc.) from the tunnel neighbor.  The TE sends SCMP response
   messages in response to solicitations, but does not otherwise process
   the unsolicited SCMP messages as an indication of tunnel neighbor
   liveness.

   Finally, TEs process solicited and error SCMP messages as an
   indication that the tunnel neighbor is responsive, i.e., in the same
   manner implied for IPv6 Neighbor Unreachability Detection "hints of
   forward progress" (see: [RFC4861]).

4.6.2.1.  Processing SCMP PTB Messages

   An ITE may receive an SCMP PTB message after it sends a SEAL data
   packet to an ETE (see: Section 4.6.1).  The packet-in-error within
   the PTB message consists of the encapsulating IP/*/SEAL headers
   followed by the inner packet in the form in which the ITE received it
   prior to SEAL encapsulation.

https://datatracker.ietf.org/doc/html/rfc4861
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   If the PTB message has Code=2 in the SCMP header the ITE processes
   the message as a response to an explicit probe request and discards
   the message.  If the PTB has Code=1 or Code=3 in the SCMP header,
   however, the ITE processes the message as an indication of an MTU
   limitation.

   if the PTB has Code =1, the ITE first verifies that the outer IP
   header in the packet-in-error encodes an IP first fragment, then
   examines the outer IP header length field to determine a new S_MSS
   value as follows:

   o  If the length is no less than 1280, the ITE records the length as
      the new S_MSS value.

   o  If the length is less than the current S_MSS value and also less
      than 1280, the ITE can discern that IP fragmentation is occurring
      but it cannot determine the true MTU of the restricting link due
      to the possibility that a router on the path is generating runt
      first fragments.

   In this latter case, the ITE may need to search for a reduced S_MSS
   value through an iterative searching strategy that parallels the IPv4
   Path MTU Discovery "plateau table" procedure in a similar fashion as
   described in Section 5 of [RFC1191].  This searching strategy may
   entail multiple iterations in which the ITE sends additional SEAL
   data packets using a reduced S_MSS and receives additional SCMP PTB
   messages, but the process should quickly converge.  During this
   process, it is essential that the ITE reduce S_MSS based on the first
   SCMP PTB message received under the current S_MSS size, and refrain
   from further reducing S_MSS until SCMP PTB messages pertaining to
   packets sent under the new S_MSS are received.

   For both Code=1 and Code=3 PTB messages, the ITE next records the
   value in the MTU field of the SCMP PTB message as the new S_MRU value
   for this ETE and examines the inner packet within the packet-in-
   error.  If the inner packet was unfragmentable (see: Section 4.4.3)
   and larger than (MAX(S_MRU, S_MSS) - HLEN), the ITE then sends a
   transcribed PTB message appropriate for the inner packet to the
   original source with MTU set to (MAX(S_MRU, S_MSS) - HLEN).  (In the
   case of nested SEAL encapsulations, the transcribed PTB message will
   itself be an SCMP PTB message).  If the inner packet is fragmentable,
   however, the ITE instead reduces its inner fragmentation THRESH
   estimate to a size no larger than S_MSS for this ETE (see: Section

4.4.3) and does not send a transcribed PTB.  In that case, some
   fragmentable packets may be silently discarded but future
   fragmentable packets will subsequently undergo inner fragmentation
   based on this new THRESH estimate.

https://datatracker.ietf.org/doc/html/rfc1191#section-5
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   The ITE may alternatively ignore the S_MSS and S_MRU values, thus
   disabling SEAL-layer segmentation.  In that case, the ITE sends all
   SEAL-encapsulated packets as single segments and implements stateless
   MTU discovery.  In that case, if the ITE receives an SCMP PTB message
   from the ETE with Code=1 and with a too-small length value in the
   outer IP header, it can send a translated PTB message back to the
   source listing a slightly smaller MTU size than the length value in
   the inner IP header.  For example, if the ITE receives an SCMP PTB
   message with Code=1, outer IP length 256 and inner IP length 1500, it
   can send a PTB message listing an MTU of 1400 back to the source.  If
   the ITE subsequently receives an SCMP PTB message with Code=1, outer
   IP length 256 and inner IP length 1400, it can send a PTB message
   listing an MTU of 1300 back to the source, etc.

   Actual plateau table values for this "step-down" MTU determination
   procedure are up to the implementation, which may consult Section 7
   of [RFC1191] for non-normative example guidance.

4.6.2.2.  Processing SCMP Neighbor Discovery Messages

   An ETE may receive SNS/SRS messages from an ITE as the initial leg in
   a neighbor discovery exchange.  An ITE may also receive both
   solicited and unsolicited SNA/SRA messages from an ETE.

   The TE processes SNS/SRS and SNA/SRA messages the same as described
   for the corresponding IPv6 Neighbor Discovery (ND) messages (see:
   [RFC4861]).

4.6.2.3.  Processing SCMP Redirect Messages

   An ITE may receive SCMP redirect messages after sending a SEAL data
   packet with R=1 in the SEAL header to an ETE.  The ITE processes any
   RIO options in the SCMP redirect message and updates its Forwarding
   Information Base (FIB) accordingly.

4.6.2.4.  Processing Other SCMP Messages

   An ITE may receive an SCMP "Destination Unreachable - Communication
   with Destination Administratively Prohibited" message after it sends
   a SEAL data packet.  The ITE processes the message as an indication
   that it needs to (re)synchronize with the ETE (see: Section 4.7).

   An ITE may receive an SCMP "Destination Unreachable" message with an
   appropriate code under the same circumstances that an IPv6 node would
   receive an ICMPv6 Destination Unreachable message.  The ITE processes
   the message the same as for the corresponding ICMPv6 Destination
   Unreachable messages.

https://datatracker.ietf.org/doc/html/rfc1191#section-7
https://datatracker.ietf.org/doc/html/rfc1191#section-7
https://datatracker.ietf.org/doc/html/rfc4861
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   An ITE may receive an SCMP "Parameter Problem" message when the ETE
   receives a SEAL packet with an incorrect value in the SEAL header.
   The ITE should examine the incorrect SEAL header field setting to
   determine whether a different setting should be used in subsequent
   packets.

   .An ITE may receive an SCMP "Time Exceeded" message when the ETE
   garbage collects an incomplete SEAL data packet reassembly.  The ITE
   should consider the message as an indication of congestion.

   Processing of all other SCMP message types is outside the scope of
   this document.

4.7.  Tunnel Endpoint Synchronization

   By default, the SEAL ITE retains per-ETE soft state, but the ETE does
   not retain per-ITE soft state.  In that case, the tunnel neighbor
   relationship between the ITE and ETE is said to be "unidirectional",
   and the ETE unconditionally accepts any packets coming from the ITE.
   When peer TEs need to establish a closer coordination with one
   another, however, they can establish a bidirectional tunnel neighbor
   relationship to establish both ITE and ETE soft state within both
   TEs.

   In order to establish a bidirectional tunnel neighbor relationship,
   the initiating TE (call it "A") initiates a short transaction with
   the responding TE (call it "B") carried by a reliable transport
   protocol such as TCP.  The protocol details of the transaction are
   out of scope for this document, and indeed need not be standardized
   as long as both TEs observe the same specifications.

   In the transaction, "A" and "B" first authenticate themselves to each
   other.  "A" then selects randomly-generated NONCE(A) and SEAL_ID(A)
   values and registers them with "B", while "B" in turn selects
   randomly-generated NONCE(B) and SEAL_ID(B) values and registers them
   with "A".  Both TEs then further select one or more randomly-
   generated LINK_IDs (e.g., LINK_ID(A1), LINK_ID(A2), etc.), where each
   LINK_ID represents a different underlying link over which the ITE
   function of "A" will send tunneled packets to the ETE function of "B"
   (and vice-versa).  Both TEs then use each such (LINK_ID(i), NONCE,
   SEAL_ID)-tuple to establish the appropriate bidirectional tunnel
   neighbor soft state (see Sections 4.4.2 and 4.5.2).

   Following this bidirectional tunnel neighbor establishment, the
   reliable transport transaction between the TEs concludes since the
   status of the underlying links is opaque to the transport protocol
   and the transport protocol therefore has no means for selecting
   alternate underlying links should the path through the primary
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   underlying link fail.  The soft state is then kept alive by the
   continued flow of SEAL data packets and/or SCMP messages between the
   TEs rather than by higher-layer keepalives of the transport protocol.

   Outbound and inbound traffic engineering between bidirectional tunnel
   neighbors is therefore coordinated by SCMP from within the tunnel
   interface and can remain continuous even if the paths through one or
   more of the underlying links has failed.  When one TE detects that
   most/all underlying link paths to the other TE have failed, however,
   it schedules the bidirectional state for garbage collection.

   This bidirectional tunnel neighbor establishment is most commonly
   initiated by a client TE in establishing a "connection" with a
   serving TE, e.g., when a customer router within a home network
   established a connection with a serving router in a provider network.

5.  Link Requirements

   Subnetwork designers are expected to follow the recommendations in
Section 2 of [RFC3819] when configuring link MTUs.

6.  End System Requirements

   SEAL provides robust mechanisms for returning PTB messages; however,
   end systems that send unfragmentable IP packets larger than 1500
   bytes are strongly encouraged to implement their own end-to-end MTU
   assurance, e.g., using Packetization Layer Path MTU Discovery per
   [RFC4821].

7.  Router Requirements

   IPv4 routers within the subnetwork are strongly encouraged to
   implement IPv4 fragmentation such that the first fragment is the
   largest and approximately the size of the underlying link MTU, i.e.,
   they should avoid generating runt first fragments.

   IPv6 routers within the subnetwork are required to generate the
   necessary PTB messages when they drop outer IPv6 packets due to an
   MTU restriction.

8.  IANA Considerations

   The IANA is instructed to allocate an IP protocol number for
   'SEAL_PROTO' in the 'protocol-numbers' registry.

https://datatracker.ietf.org/doc/html/rfc3819#section-2
https://datatracker.ietf.org/doc/html/rfc4821
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   The IANA is instructed to allocate a Well-Known Port number for
   'SEAL_PORT' in the 'port-numbers' registry.

   The IANA is instructed to establish a "SEAL Protocol" registry to
   record SEAL Version values.  This registry should be initialized to
   include the initial SEAL Version number, i.e., Version 0.

9.  Security Considerations

   Unlike IPv4 fragmentation, overlapping fragment attacks are not
   possible due to the requirement that SEAL segments be non-
   overlapping.  This condition is naturally enforced due to the fact
   that each consecutive SEAL segment begins at offset 0 with respect to
   the previous SEAL segment.

   An amplification/reflection attack is possible when an attacker sends
   IP first fragments with spoofed source addresses to an ETE, resulting
   in a stream of SCMP messages returned to a victim ITE.  The (LINK_ID,
   NONCE, SEAL_ID)-tuple in the encapsulated segment of the spoofed IP
   first fragment provides mitigation for the ITE to detect and discard
   spurious SCMP messages.

   The SEAL header is sent in-the-clear (outside of any IPsec/ESP
   encapsulations) the same as for the outer IP and other outer headers.
   In this respect, the threat model is no different than for IPv6
   extension headers.  As for IPv6 extension headers, the SEAL header is
   protected only by L2 integrity checks and is not covered under any L3
   integrity checks.

   SCMP messages carry the (LINK_ID, NONCE, SEAL_ID)-tuple of the
   packet-in-error.  Therefore, when an ITE receives an SCMP message it
   can unambiguously associate it with the SEAL data packet that
   triggered the error.  When the TEs are synchronized, the ETE can also
   detect off-path spoofing attacks.

   Security issues that apply to tunneling in general are discussed in
   [I-D.ietf-v6ops-tunnel-security-concerns].

10.  Related Work

Section 3.1.7 of [RFC2764] provides a high-level sketch for
   supporting large tunnel MTUs via a tunnel-level segmentation and
   reassembly capability to avoid IP level fragmentation, which is in
   part the same approach used by SEAL.  SEAL could therefore be
   considered as a fully functioned manifestation of the method
   postulated by that informational reference.

https://datatracker.ietf.org/doc/html/rfc2764#section-3.1.7
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Section 3 of [RFC4459] describes inner and outer fragmentation at the
   tunnel endpoints as alternatives for accommodating the tunnel MTU;
   however, the SEAL protocol specifies a mid-layer segmentation and
   reassembly capability that is distinct from both inner and outer
   fragmentation.

Section 4 of [RFC2460] specifies a method for inserting and
   processing extension headers between the base IPv6 header and
   transport layer protocol data.  The SEAL header is inserted and
   processed in exactly the same manner.

   The concepts of path MTU determination through the report of
   fragmentation and extending the IP Identification field were first
   proposed in deliberations of the TCP-IP mailing list and the Path MTU
   Discovery Working Group (MTUDWG) during the late 1980's and early
   1990's.  SEAL supports a report fragmentation capability using bits
   in an extension header (the original proposal used a spare bit in the
   IP header) and supports ID extension through a 16-bit field in an
   extension header (the original proposal used a new IP option).  A
   historical analysis of the evolution of these concepts, as well as
   the development of the eventual path MTU discovery mechanism for IP,
   appears in Appendix D of this document.

11.  SEAL Advantages over Classical Methods

   The SEAL approach offers a number of distinct advantages over the
   classical path MTU discovery methods [RFC1191] [RFC1981]:

   1.  Classical path MTU discovery always results in packet loss when
       an MTU restriction is encountered.  Using SEAL, IP fragmentation
       provides a short-term interim mechanism for ensuring that packets
       are delivered while SEAL adjusts its packet sizing parameters.

   2.  Classical path MTU may require several iterations of dropping
       packets and returning PTB messages until an acceptable path MTU
       value is determined.  Under normal circumstances, SEAL determines
       the correct packet sizing parameters in a single iteration.

   3.  Using SEAL, ordinary packets serve as implicit probes without
       exposing data to unnecessary loss.  SEAL also provides an
       explicit probing mode not available in the classic methods.

   4.  Using SEAL, ETEs encapsulate SCMP error messages in outer and
       mid-layer headers such that packet-filtering network middleboxes
       will not filter them the same as for "raw" ICMP messages that may
       be generated by an attacker.

https://datatracker.ietf.org/doc/html/rfc4459#section-3
https://datatracker.ietf.org/doc/html/rfc2460#section-4
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
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   5.  The SEAL approach ensures that the tunnel either delivers or
       deterministically drops packets according to their size, which is
       a required characteristic of any IP link.

   6.  Most importantly, all SEAL packets have an Identification field
       that is sufficiently long to be used for duplicate packet
       detection purposes and to associate ICMP error messages with
       actual packets sent without requiring per-packet state; hence,
       SEAL avoids certain denial-of-service attack vectors open to the
       classical methods.
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Appendix A.  Reliability

   Although a SEAL tunnel may span an arbitrarily-large subnetwork
   expanse, the IP layer sees the tunnel as a simple link that supports
   the IP service model.  Since SEAL supports segmentation at a layer
   below IP, SEAL therefore presents a case in which the link unit of
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   loss (i.e., a SEAL segment) is smaller than the end-to-end
   retransmission unit (e.g., a TCP segment).

   Links with high bit error rates (BERs) (e.g., IEEE 802.11) use
   Automatic Repeat-ReQuest (ARQ) mechanisms [RFC3366] to increase
   packet delivery ratios, while links with much lower BERs typically
   omit such mechanisms.  Since SEAL tunnels may traverse arbitrarily-
   long paths over links of various types that are already either
   performing or omitting ARQ as appropriate, it would therefore often
   be inefficient to also require the tunnel to perform ARQ.

   When the SEAL ITE has knowledge that the tunnel will traverse a
   subnetwork with non-negligible loss due to, e.g., interference, link
   errors, congestion, etc., it can solicit Segment Reports from the ETE
   periodically to discover missing segments for retransmission within a
   single round-trip time.  However, retransmission of missing segments
   may require the ITE to maintain considerable state and may also
   result in considerable delay variance and packet reordering.

   SEAL may also use alternate reliability mechanisms such as Forward
   Error Correction (FEC).  A simple FEC mechanism may merely entail
   gratuitous retransmissions of duplicate data, however more efficient
   alternatives are also possible.  Basic FEC schemes are discussed in
   [RFC5445].

   The use of ARQ and FEC mechanisms for improved reliability are for
   further study.

Appendix B.  Integrity

   Each link in the path over which a SEAL tunnel is configured is
   responsible for link layer integrity verification for packets that
   traverse the link.  As such, when a multi-segment SEAL packet with N
   segments is reassembled, its segments will have been inspected by N
   independent link layer integrity check streams instead of a single
   stream that a single segment SEAL packet of the same size would have
   received.  Intuitively, a reassembled packet subjected to N
   independent integrity check streams of shorter-length segments would
   seem to have integrity assurance that is no worse than a single-
   segment packet subjected to only a single integrity check steam,
   since the integrity check strength diminishes in inverse proportion
   with segment length.  In any case, the link-layer integrity assurance
   for a multi-segment SEAL packet is no different than for a multi-
   fragment IPv6 packet.

   Fragmentation and reassembly schemes must also consider packet-
   splicing errors, e.g., when two segments from the same packet are

https://datatracker.ietf.org/doc/html/rfc3366
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   concatenated incorrectly, when a segment from packet X is reassembled
   with segments from packet Y, etc.  The primary sources of such errors
   include implementation bugs and wrapping IP ID fields.  In terms of
   implementation bugs, the SEAL segmentation and reassembly algorithm
   is much simpler than IP fragmentation resulting in simplified
   implementations.  In terms of wrapping ID fields, when IPv4 is used
   as the outer IP protocol, the 16-bit IP ID field can wrap with only
   64K packets with the same (src, dst, protocol)-tuple alive in the
   system at a given time [RFC4963] increasing the likelihood of
   reassembly mis-associations.  However, SEAL ensures that any outer
   IPv4 fragmentation and reassembly will be short-lived and tuned out
   as soon as the ITE receives a Reassembly Repot, and SEAL segmentation
   and reassembly uses a much longer ID field.  Therefore, reassembly
   mis-associations of IP fragments nor of SEAL segments should be
   prohibitively rare.

Appendix C.  Transport Mode

   SEAL can also be used in "transport-mode", e.g., when the inner layer
   comprises upper-layer protocol data rather than an encapsulated IP
   packet.  For instance, TCP peers can negotiate the use of SEAL for
   the carriage of protocol data encapsulated as IPv4/SEAL/TCP.  In this
   sense, the "subnetwork" becomes the entire end-to-end path between
   the TCP peers and may potentially span the entire Internet.

   Section specifies the operation of SEAL in "tunnel mode", i.e., when
   there are both an inner and outer IP layer with a SEAL encapsulation
   layer between.  However, the SEAL protocol can also be used in a
   "transport mode" of operation within a subnetwork region in which the
   inner-layer corresponds to a transport layer protocol (e.g., UDP,
   TCP, etc.) instead of an inner IP layer.

   For example, two TCP endpoints connected to the same subnetwork
   region can negotiate the use of transport-mode SEAL for a connection
   by inserting a 'SEAL_OPTION' TCP option during the connection
   establishment phase.  If both TCPs agree on the use of SEAL, their
   protocol messages will be carried as TCP/SEAL/IPv4 and the connection
   will be serviced by the SEAL protocol using TCP (instead of an
   encapsulating tunnel endpoint) as the transport layer protocol.  The
   SEAL protocol for transport mode otherwise observes the same
   specifications as for Section 4.

Appendix D.  Historic Evolution of PMTUD

   The topic of Path MTU discovery (PMTUD) saw a flurry of discussion
   and numerous proposals in the late 1980's through early 1990.  The
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   initial problem was posed by Art Berggreen on May 22, 1987 in a
   message to the TCP-IP discussion group [TCP-IP].  The discussion that
   followed provided significant reference material for [FRAG].  An IETF
   Path MTU Discovery Working Group [MTUDWG] was formed in late 1989
   with charter to produce an RFC.  Several variations on a very few
   basic proposals were entertained, including:

   1.  Routers record the PMTUD estimate in ICMP-like path probe
       messages (proposed in [FRAG] and later [RFC1063])

   2.  The destination reports any fragmentation that occurs for packets
       received with the "RF" (Report Fragmentation) bit set (Steve
       Deering's 1989 adaptation of Charles Lynn's Nov. 1987 proposal)

   3.  A hybrid combination of 1) and Charles Lynn's Nov. 1987 (straw
       RFC draft by McCloughrie, Fox and Mogul on Jan 12, 1990)

   4.  Combination of the Lynn proposal with TCP (Fred Bohle, Jan 30,
       1990)

   5.  Fragmentation avoidance by setting "IP_DF" flag on all packets
       and retransmitting if ICMPv4 "fragmentation needed" messages
       occur (Geof Cooper's 1987 proposal; later adapted into [RFC1191]
       by Mogul and Deering).

   Option 1) seemed attractive to the group at the time, since it was
   believed that routers would migrate more quickly than hosts.  Option
   2) was a strong contender, but repeated attempts to secure an "RF"
   bit in the IPv4 header from the IESG failed and the proponents became
   discouraged. 3) was abandoned because it was perceived as too
   complicated, and 4) never received any apparent serious
   consideration.  Proposal 5) was a late entry into the discussion from
   Steve Deering on Feb. 24th, 1990.  The discussion group soon
   thereafter seemingly lost track of all other proposals and adopted
   5), which eventually evolved into [RFC1191] and later [RFC1981].

   In retrospect, the "RF" bit postulated in 2) is not needed if a
   "contract" is first established between the peers, as in proposal 4)
   and a message to the MTUDWG mailing list from jrd@PTT.LCS.MIT.EDU on
   Feb 19. 1990.  These proposals saw little discussion or rebuttal, and
   were dismissed based on the following the assertions:

   o  routers upgrade their software faster than hosts

   o  PCs could not reassemble fragmented packets

   o  Proteon and Wellfleet routers did not reproduce the "RF" bit
      properly in fragmented packets
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   o  Ethernet-FDDI bridges would need to perform fragmentation (i.e.,
      "translucent" not "transparent" bridging)

   o  the 16-bit IP_ID field could wrap around and disrupt reassembly at
      high packet arrival rates

   The first four assertions, although perhaps valid at the time, have
   been overcome by historical events.  The final assertion is addressed
   by the mechanisms specified in SEAL.
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