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Abstract

For the purpose of this document, a subnetwork is defined as a virtual

topology configured over a connected IP network routing region and

bounded by encapsulating border nodes. These virtual topologies are

manifested by tunnels that may span multiple IP and/or sub-IP layer

forwarding hops, and can introduce failure modes due to packet

duplication and/or links with diverse Maximum Transmission Units

(MTUs). This document specifies a Subnetwork Encapsulation and

Adaptation Layer (SEAL) that accommodates such virtual topologies over

diverse underlying link technologies.
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1. Introduction

As Internet technology and communication has grown and matured, many

techniques have developed that use virtual topologies (including

tunnels of one form or another) over an actual network that supports

the Internet Protocol (IP) [RFC0791][RFC2460]. Those virtual topologies

have elements that appear as one hop in the virtual topology, but are
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actually multiple IP or sub-IP layer hops. These multiple hops often

have quite diverse properties that are often not even visible to the

endpoints of the virtual hop. This introduces failure modes that are

not dealt with well in current approaches.

The use of IP encapsulation (also known as "tunneling") has long been

considered as the means for creating such virtual topologies. However,

the insertion of an outer IP header reduces the effective path MTU

visible to the inner network layer. When IPv4 is used, this reduced MTU

can be accommodated through the use of IPv4 fragmentation, but

unmitigated in-the-network fragmentation has been found to be harmful

through operational experience and studies conducted over the course of

many years [FRAG][FOLK][RFC4963]. Additionally, classical path MTU

discovery [RFC1191] has known operational issues that are exacerbated

by in-the-network tunnels [RFC2923][RFC4459]. The following subsections

present further details on the motivation and approach for addressing

these issues.

1.1. Motivation

Before discussing the approach, it is necessary to first understand the

problems. In both the Internet and private-use networks today, IPv4 is

ubiquitously deployed as the Layer 3 protocol. The primary functions of

IPv4 are to provide for routing, addressing, and a fragmentation and

reassembly capability used to accommodate links with diverse MTUs.

While it is well known that the IPv4 address space is rapidly becoming

depleted, there is a lesser-known but growing consensus that other IPv4

protocol limitations have already or may soon become problematic.

First, the IPv4 header Identification field is only 16 bits in length,

meaning that at most 2^16 unique packets with the same (source,

destination, protocol)-tuple may be active in the Internet at a given

time [I-D.ietf-intarea-ipv4-id-update]. Due to the escalating

deployment of high-speed links, however, this number has become too

small by several orders of magnitude for high data rate packet sources

such as tunnel endpoints [RFC4963]. Furthermore, there are many well-

known limitations pertaining to IPv4 fragmentation and reassembly –

even to the point that it has been deemed “harmful” in both classic and

modern-day studies (see above). In particular, IPv4 fragmentation

raises issues ranging from minor annoyances (e.g., in-the-network

router fragmentation [RFC1981]) to the potential for major integrity

issues (e.g., mis-association of the fragments of multiple IP packets

during reassembly [RFC4963]).

As a result of these perceived limitations, a fragmentation-avoiding

technique for discovering the MTU of the forward path from a source to

a destination node was devised through the deliberations of the Path

MTU Discovery Working Group (PMTUDWG) during the late 1980’s through

early 1990’s (see Appendix D). In this method, the source node provides

explicit instructions to routers in the path to discard the packet and

return an ICMP error message if an MTU restriction is encountered.



However, this approach has several serious shortcomings that lead to an

overall “brittleness” [RFC2923].

In particular, site border routers in the Internet have been known to

discard ICMP error messages coming from the outside world. This is due

in large part to the fact that malicious spoofing of error messages in

the Internet is trivial since there is no way to authenticate the

source of the messages [RFC5927]. Furthermore, when a source node that

requires ICMP error message feedback when a packet is dropped due to an

MTU restriction does not receive the messages, a path MTU-related black

hole occurs. This means that the source will continue to send packets

that are too large and never receive an indication from the network

that they are being discarded. This behavior has been confirmed through

documented studies showing clear evidence of path MTU discovery

failures in the Internet today [TBIT][WAND][SIGCOMM].

The issues with both IPv4 fragmentation and this “classical” method of

path MTU discovery are exacerbated further when IP tunneling is used 

[RFC4459]. For example, an ingress tunnel endpoint (ITE) may be

required to forward encapsulated packets into the subnetwork on behalf

of hundreds, thousands, or even more original sources within the end

site that it serves. If the ITE allows IPv4 fragmentation on the

encapsulated packets, persistent fragmentation could lead to undetected

data corruption due to Identification field wrapping. If the ITE

instead uses classical IPv4 path MTU discovery, it must rely on ICMP

error messages coming from the subnetwork that may be suspect, subject

to loss due to filtering middleboxes, or insufficiently provisioned for

translation into error messages to be returned to the original sources.

Although recent works have led to the development of a robust end-to-

end MTU determination scheme [RFC4821], they do not excuse tunnels from

delivering path MTU discovery feedback when packets are lost due to

size restrictions. Moreover, in current practice existing tunneling

protocols mask the MTU issues by selecting a "lowest common

denominator" MTU that may be much smaller than necessary for most paths

and difficult to change at a later date. Therefore, a new approach to

accommodate tunnels over links with diverse MTUs is necessary.

1.2. Approach

For the purpose of this document, a subnetwork is defined as a virtual

topology configured over a connected network routing region and bounded

by encapsulating border nodes. Example connected network routing

regions include Mobile Ad hoc Networks (MANETs), enterprise networks

and the global public Internet itself. Subnetwork border nodes forward

unicast and multicast packets over the virtual topology across multiple

IP and/or sub-IP layer forwarding hops that may introduce packet

duplication and/or traverse links with diverse Maximum Transmission

Units (MTUs).

This document introduces a Subnetwork Encapsulation and Adaptation

Layer (SEAL) for tunneling network layer protocols (e.g., IPv4, IPv6,

OSI, etc.) over IP subnetworks that connect Ingress and Egress Tunnel



subnetwork

Ingress Tunnel Endpoint (ITE)

Egress Tunnel Endpoint (ETE)

ETE Link Path

inner packet

Endpoints (ITEs/ETEs) of border nodes. It provides a modular

specification designed to be tailored to specific associated tunneling

protocols. A transport-mode of operation is also possible, and

described in Appendix C.

SEAL provides a mid-layer encapsulation that accommodates links with

diverse MTUs and allows routers in the subnetwork to perform efficient

duplicate packet detection. The encapsulation further ensures data

origin authentication, packet header integrity and anti-replay.

SEAL treats tunnels that traverse the subnetwork as ordinary links that

must support network layer services. Moreover, SEAL provides dynamic

mechanisms to ensure a maximal path MTU over the tunnel. This is in

contrast to static approaches which avoid MTU issues by selecting a

lowest common denominator MTU value that may be overly conservative for

the vast majority of tunnel paths and difficult to change even when

larger MTUs become available.

The following sections provide the SEAL normative specifications, while

the appendices present non-normative additional considerations.

2. Terminology and Requirements

The following terms are defined within the scope of this document:

a virtual topology configured over a connected network

routing region and bounded by encapsulating border nodes.

a virtual interface over which an

encapsulating border node (host or router) sends encapsulated

packets into the subnetwork.

a virtual interface over which an

encapsulating border node (host or router) receives encapsulated

packets from the subnetwork.

a subnetwork path from an ITE to an ETE beginning with

an underlying link of the ITE as the first hop.

an unencapsulated network layer protocol packet (e.g.,

IPv6 [RFC2460], IPv4 [RFC0791], OSI/CLNP [RFC1070], etc.) before any

outer encapsulations are added. Internet protocol numbers that

identify inner packets are found in the IANA Internet Protocol



outer IP packet

packet-in-error

Packet Too Big (PTB)

IP

registry [RFC3232]. SEAL protocol packets that incur an additional

layer of SEAL encapsulation are also considered inner packets.

a packet resulting from adding an outer IP header (and

possibly other outer headers) to a SEAL-encapsulated inner packet.

the leading portion of an invoking data packet

encapsulated in the body of an error control message (e.g., an

ICMPv4 [RFC0792] error message, an ICMPv6 [RFC4443] error message,

etc.).

a control plane message indicating an MTU

restriction (e.g., an ICMPv6 "Packet Too Big" message [RFC4443], an

ICMPv4 "Fragmentation Needed" message [RFC0792], etc.).

used to generically refer to either Internet Protocol (IP) version,

i.e., IPv4 or IPv6.

The following abbreviations correspond to terms used within this

document and/or elsewhere in common Internetworking nomenclature:

DF - the IPv4 header "Don't Fragment" flag [RFC0791]

ETE - Egress Tunnel Endpoint

HLEN - the length of the SEAL header plus outer headers

ICV - Integrity Check Vector

ITE - Ingress Tunnel Endpoint

MTU - Maximum Transmission Unit

SCMP - the SEAL Control Message Protocol

SDU - SCMP Destination Unreachable message

SNA - SCMP Neighbor Advertisement message

SNS - SCMP Neighbor Solicitation message

SPP - SCMP Parameter Problem message

SPTB - SCMP Packet Too Big message

SEAL - Subnetwork Encapsulation and Adaptation Layer
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SEAL_PORT - a transport-layer service port number used for SEAL

SEAL_PROTO - an IP protocol number used for SEAL

TE - Tunnel Endpoint (i.e., either ingress or egress) 

VET - Virtual Enterprise Traversal

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119]. When used in

lower case (e.g., must, must not, etc.), these words MUST NOT be

interpreted as described in [RFC2119], but are rather interpreted as

they would be in common English.

3. Applicability Statement

SEAL was originally motivated by the specific case of subnetwork

abstraction for Mobile Ad hoc Networks (MANETs), however the domain of

applicability also extends to subnetwork abstractions over enterprise

networks, ISP networks, SOHO networks, the global public Internet

itself, and any other connected network routing region. SEAL, along

with the Virtual Enterprise Traversal (VET) [I-D.templin-intarea-vet]

tunnel virtual interface abstraction, are the functional building

blocks for the Internet Routing Overlay Network (IRON) [I-D.templin-

ironbis] and Routing and Addressing in Networks with Global Enterprise

Recursion (RANGER) [RFC5720][RFC6139] architectures.

SEAL provides a network sublayer for encapsulation of an inner network

layer packet within outer encapsulating headers. SEAL can also be used

as a sublayer within a transport layer protocol data payload, where

transport layer encapsulation is typically used for Network Address

Translator (NAT) traversal as well as operation over subnetworks that

give preferential treatment to certain "core" Internet protocols (e.g.,

TCP, UDP, etc.). The SEAL header is processed the same as for IPv6

extension headers, i.e., it is not part of the outer IP header but

rather allows for the creation of an arbitrarily extensible chain of

headers in the same way that IPv6 does.

To accommodate MTU diversity, the Egress Tunnel Endpoint (ETE) acts as

a passive observer that simply informs the Ingress Tunnel Endpoint

(ITE) of any packet size limitations. This allows the ITE to return

appropriate path MTU discovery feedback even if the network path

between the ITE and ETE filters ICMP messages.

SEAL further ensures data origin authentication, packet header

integrity, and anti-replay. The SEAL framework is therefore similar to

the IP Security (IPsec) Authentication Header (AH) [RFC4301][RFC4302],

however it provides only minimal hop-by-hop authenticating services

along a path while leaving full data integrity, authentication and

confidentiality services as an end-to-end consideration. While SEAL

performs data origin authentication, the origin site must also perform

*
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the necessary ingress filtering in order to provide full source address

verification [I-D.ietf-savi-framework].

4. SEAL Specification

The following sections specify the operation of SEAL:

4.1. VET Interface Model

SEAL is an encapsulation sublayer used within VET non-broadcast,

multiple access (NBMA) tunnel virtual interfaces. Each VET interface is

configured over one or more underlying interfaces attached to

subnetwork links. The VET interface connects an ITE to one or more ETE

"neighbors" via tunneling across an underlying subnetwork, where tunnel

neighbor relationship may be either unidirectional or bidirectional.

A unidirectional tunnel neighbor relationship allows the near end ITE

to send data packets forward to the far end ETE, while the ETE only

returns control messages when necessary. A bidirectional tunnel

neighbor relationship is one over which both TEs can exchange both data

and control messages.

Implications of the VET unidirectional and bidirectional models are

discussed in [I-D.templin-intarea-vet].

4.2. SEAL Model of Operation

SEAL-enabled ITEs encapsulate each inner packet in a SEAL header, any

outer header encapsulations, and in some instances a SEAL trailer as

shown in Figure 1:

                             +--------------------+

                             ~   outer IP header  ~

                             +--------------------+

                             ~  other outer hdrs  ~

                             +--------------------+

                             ~    SEAL Header     ~

+--------------------+       +--------------------+

|                    |  -->  |                    |

~        Inner       ~  -->  ~        Inner       ~

~       Packet       ~  -->  ~       Packet       ~

|                    |  -->  |                    |

+--------------------+       +--------------------+

                             |    SEAL Trailer    |

                             +--------------------+

The ITE inserts the SEAL header according to the specific tunneling

protocol. For simple encapsulation of an inner network layer packet

within an outer IP header (e.g., [RFC1070][RFC2003][RFC2473][RFC4213],

etc.), the ITE inserts the SEAL header between the inner packet and

outer IP headers as: IP/SEAL/{inner packet}.



VER (2)

For encapsulations over transports such as UDP, the ITE inserts the

SEAL header between the outer transport layer header and the inner

packet, e.g., as IP/UDP/SEAL/{inner packet} (similar to [RFC4380]). In

that case, the UDP header is seen as an "other outer header" as

depicted in Figure 1.

When necessary, the ITE also appends a SEAL trailer at the end of the

SEAL packet. In that case, the trailer is added after the final byte of

the encapsulated packet.

SEAL supports both "nested" tunneling and "re-encapsulating" tunneling.

Nested tunneling occurs when a first tunnel is encapsulated within a

second tunnel, which may then further be encapsulated within additional

tunnels. Nested tunneling can be useful, and stands in contrast to

"recursive" tunneling which is an anomalous condition incurred due to

misconfiguration or a routing loop. Considerations for nested tunneling

are discussed in Section 4 of [RFC2473].

Re-encapsulating tunneling occurs when a packet arrives at a first ETE,

which then acts as an ITE to re-encapsulate and forward the packet to a

second ETE connected to the same subnetwork. In that case each ITE/ETE

transition represents a segment of a bridged path between the ITE

nearest the source and the ETE nearest the destination. Combinations of

nested and re-encapsulating tunneling are also naturally supported by

SEAL.

The SEAL ITE considers each {underlying interface, IP address} pair as

the ingress attachment point to a subnetwork link path to the ETE. The

ITE therefore maintains path MTU state on a per ETE link path basis,

although it may instead maintain only the lowest-common-denominator

values for all of the ETE's link paths in order to reduce state.

Finally, the SEAL ITE ensures that the inner network layer protocol

will see a minimum MTU of 1280 bytes over each ETE link path regardless

of the outer network layer protocol version, i.e., even if a small

amount of fragmentation and reassembly are necessary.

4.3. SEAL Header and Trailer Format

The SEAL header is formatted as follows:

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |VER|C|P|R|T|U|Z|     NEXTHDR   |    PREFLEN    | LINK_ID |LEVEL|

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                             PKT_ID                            |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                              ICV1                             |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   ~                      PREFIX (when present)                    ~

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



C (1)

P (1)

R (1)

T (1)

U (1)

Z (1)

NEXTHDR (8)

PREFLEN (8)

LINK_ID (5)

LEVEL (3)

a 2-bit version field. This document specifies Version 0 of the SEAL

protocol, i.e., the VER field encodes the value 0.

the "Control/Data" bit. Set to 1 by the ITE in SEAL Control

Message Protocol (SCMP) control messages, and set to 0 in ordinary

data packets.

the "Prefix Included" bit. Set to 1 if the header includes a

Prefix Field. Used for SCMP messages that do not include a packet-

in-error (see: [I-D.templin-intarea-vet]), and for NULL SEAL data

packets used as probes (see: Section 4.4.6).

the "Redirects Permitted" bit. For data packets, set to 1 by the

ITE to inform the ETE that the source is accepting Redirects (see:

[I-D.templin-intarea-vet]).

the "Trailer Included" bit. Set to 1 if the ITE was obliged to

include a trailer.

the "Unfragmented Packet" bit. Set to 1 by the ITE in SEAL data

packets for which it wishes to receive an explicit acknowledgement

from the ETE if the packet arrives unfragmented.

the "Reserved" bit. Must be set to 0 for this version of the

SEAL specification.

an 8-bit field that encodes the next header Internet

Protocol number the same as for the IPv4 protocol and IPv6 next

header fields.

an 8-bit field that encodes the length of the prefix to be

applied to the source address of the inner packets (when P==0) or

the prefix included in the PREFIX field (when P==1).

a 5-bit link identification value, set to a unique value

by the ITE for each underlying link as the first hop of a path over

which it will send encapsulated packets to ETEs. Up to 32 ETE link

paths are therefore supported for each ETE.

a 3-bit nesting level; use to limit the number of tunnel

nesting levels. Set to an integer value up to 7 in the innermost



PKT_ID (32)

ICV1 (32)

PREFIX (variable)

ICV2 (32)

SEAL encapsulation, and decremented by 1 for each successive

additional SEAL encapsulation nesting level. Up to 8 levels of

nesting are therefore supported.

a 32-bit per-packet identification field. Set to a

monotonically-incrementing 32-bit value for each SEAL packet

transmitted to this ETE, beginning with 0.

a 32-bit header integrity check value that covers the

leading 128 bytes of the packet beginning with the SEAL header. The

value 128 is chosen so that at least the SEAL header as well as the

inner packet network and transport layer headers are covered by the

integrity check.

a variable-length string of bytes; present only when

P==1. The field length is determined by calculating

Len=(Ceiling(PREFLEN / 32) * 4). For example, if PREFLEN==63, the

field is 8 bytes in length and encodes the leading 63 bits of the

inner network layer prefix beginning with the most significant bit.

When T==1, SEAL encapsulation also includes a trailer formatted as

follows:

     0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                              ICV2                             |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

a 32-bit packet integrity check value. Present only when

T==1, and covers the remaining length of the encapsulated packet

beyond the leading 128 bytes (i.e., the remaining portion that was

not covered by ICV1). Added as a trailing 32 bit field following the

final byte of the encapsulated SEAL packet and used to detect

reassembly misassociations. Need not be aligned on an even byte

boundary.

4.4. ITE Specification

4.4.1. Tunnel Interface MTU

The tunnel interface must present a constant MTU value to the inner

network layer as the size for admission of inner packets into the

interface. Since VET NBMA tunnel virtual interfaces may support a large

set of ETE link paths that accept widely varying maximum packet sizes,



however, a number of factors should be taken into consideration when

selecting a tunnel interface MTU.

Due to the ubiquitous deployment of standard Ethernet and similar

networking gear, the nominal Internet cell size has become 1500 bytes;

this is the de facto size that end systems have come to expect will

either be delivered by the network without loss due to an MTU

restriction on the path or a suitable ICMP Packet Too Big (PTB) message

returned. When large packets sent by end systems incur additional

encapsulation at an ITE, however, they may be dropped silently within

the tunnel since the network may not always deliver the necessary PTBs 

[RFC2923].

The ITE should therefore set a tunnel interface MTU of at least 1500

bytes plus extra room to accommodate any additional encapsulations that

may occur on the path from the original source. The ITE can also set

smaller MTU values; however, care must be taken not to set so small a

value that original sources would experience an MTU underflow. In

particular, IPv6 sources must see a minimum path MTU of 1280 bytes, and

IPv4 sources should see a minimum path MTU of 576 bytes.

The inner network layer protocol consults the tunnel interface MTU when

admitting a packet into the interface. For non-SEAL inner IPv4 packets

with the IPv4 Don't Fragment (DF) bit set to 0, if the packet is larger

than the tunnel interface MTU the inner IPv4 layer uses IPv4

fragmentation to break the packet into fragments no larger than the

tunnel interface MTU. The ITE then admits each fragment into the

interface as an independent packet.

For all other inner packets, the inner network layer admits the packet

if it is no larger than the tunnel interface MTU; otherwise, it drops

the packet and sends a PTB error message to the source with the MTU

value set to the tunnel interface MTU. The message contains as much of

the invoking packet as possible without the entire message exceeding

the network layer minimum MTU (e.g., 1280 bytes for IPv6, 576 bytes for

IPv4, etc.).

The ITE can alternatively set an indefinite MTU on the tunnel interface

such that all inner packets are admitted into the interface regardless

of their size. For ITEs that host applications that use the tunnel

interface directly, this option must be carefully coordinated with

protocol stack upper layers since some upper layer protocols (e.g.,

TCP) derive their packet sizing parameters from the MTU of the outgoing

interface and as such may select too large an initial size. This is not

a problem for upper layers that use conservative initial maximum

segment size estimates and/or when the tunnel interface can reduce the

upper layer's maximum segment size, e.g., by reducing the size

advertised in the MSS option of outgoing TCP messages (sometimes known

as "MSS clamping").

In light of the above considerations, the ITE SHOULD configure an

indefinite MTU on tunnel *router* interfaces so that subnetwork

adaptation is handled from within the interface. The ITE MAY instead

set a finite MTU on tunnel *host* interfaces.



4.4.2. Tunnel Neighbor Soft State

Within the tunnel virtual interface, the ITE maintains a per tunnel

neighbor (i.e., a per-ETE) integrity check vector (ICV) calculation

algorithm and (when data origin authentication is required) a symmetric

secret key to calculate the ICV(s) in packets it will send to this ETE.

The ITE also maintains a window of PKT_ID values for the packets it has

recently sent to this ETE.

For each ETE link path, the ITE must account for the lengths of the

headers to be used for encapsulation. The ITE therefore maintains the

per ETE link path constant values "SHLEN" set to length of the SEAL

header, "UHLEN" set to the length of the UDP encapsulating header (or 0

if UDP encapsulation is not used), "IHLEN" set to the length of the

outer IP layer header, and "HLEN" set to (SHLEN+UHLEN+IHLEN). (The ITE

must include the length of the uncompressed headers even if header

compression is enabled when calculating these lengths.) In addition,

the ETE maintains a constant value "MIN_MTU" set to 1280+HLEN as well

as a variable "PATH_MTU" initialized to the MTU of the underlying link.

For IPv4, the ITE also maintains the per ETE link path boolean

variables "USE_DF" (initialized to "FALSE") and "USE_TRAILER"

(initialized to "TRUE" if PATH_MTU is less than MIN_MTU; otherwise

initialized to "FALSE") .

The ITE may instead maintain *HLEN, MIN_MTU, PATH_MTU, USE_DF, and

USE_TRAILER as per ETE (rather than per ETE link path) values. In that

case, the values reflect the lowest-common-denominator MTU across all

of the ETE's link paths.

4.4.3. Pre-Encapsulation

For each inner packet admitted into the tunnel interface, if the packet

is itself a SEAL packet (i.e., one with either SEAL_PROTO in the IP

protocol/next-header field, or with SEAL_PORT in the transport layer

destination port field) and the LEVEL field of the SEAL header contains

the value 0, the ITE silently discards the packet.

Otherwise, for IPv4 inner packets with DF==0 in the IPv4 header, if the

packet is larger than 512 bytes and is not the first fragment of a SEAL

packet (i.e., not a packet that includes a SEAL header) the ITE

fragments the packet into inner fragments no larger than 512 bytes. The

ITE then submits each inner fragment for SEAL encapsulation as

specified in Section 4.4.4.

For all other packets, if the packet is no larger than (MAX(PATH_MTU,

MIN_MTU)-HLEN) for the corresponding ETE link path, the ITE submits it

for SEAL encapsulation as specified in Section 4.4.4. Otherwise, the

ITE sends a PTB error message toward the source address of the inner

packet.

To send the PTB message, the ITE first checks its forwarding tables to

discover the previous hop toward the source address of the inner

packet. If the previous hop is reached via the same tunnel interface,

the ITE sends an SCMP PTB (SPTB) message to the previous hop (see:



Section 4.6.1.1) with the MTU field set to (MAX(PATH_MTU, MIN_MTU)-

HLEN). Otherwise, the ITE sends an ordinary PTB message appropriate to

the inner protocol version with the MTU field set to (MAX(PATH_MTU,

MIN_MTU)-HLEN).

After sending the (S)PTB message, the ITE discards the inner packet.

4.4.4. SEAL Encapsulation

The ITE next encapsulates the inner packet in a SEAL header formatted

as specified in Section 4.3. The ITE sets NEXTHDR to the protocol

number corresponding to the address family of the encapsulated inner

packet. For example, the ITE sets NEXTHDR to the value '4' for

encapsulated IPv4 packets [RFC2003], '41' for encapsulated IPv6

packets [RFC2473][RFC4213], '80' for encapsulated OSI/CLNP packets 

[RFC1070], etc.

The ITE then sets R=1 if redirects are permitted (see: [I-D.templin-

intarea-vet]) and sets PREFLEN to the length of the prefix to be

applied to the inner source address. The ITE's claimed PREFLEN is

subject to verification by the ETE; hence, the ITE MUST set PREFLEN to

the exact prefix length that it is authorized to use. (Note that if

this process is entered via re-encapsulation (see: Section 4.5.4),

PREFLEN and R are instead copied from the SEAL header of the re-

encapsulated packet. This implies that the PREFLEN and R values are

propagated across a re-encapsulating chain of ITE/ETEs that must all be

authorized to represent the prefix.)

Next, the ITE sets (C=0; P=0; Z=0), then sets LINK_ID to the value

assigned to the underlying ETE link path and sets PKT_ID to a

monotonically-increasing integer value for this ETE, beginning with 0

in the first packet transmitted. The ITE also sets U=1 if it needs to

determine whether the ETE will receive the packet without

fragmentation, e.g., for ETE reachability determination (see: Section

4.4.6), to test whether a middlebox on the path is reassembling

fragmented packets before they arrive at the ETE (see: Section 4.4.8),

for stateful MTU determination (see Section 4.4.9), etc. Otherwise, the

ITE sets U=0.

Next, if the inner packet is not itself a SEAL packet the ITE sets

LEVEL to an integer value between 0 and 7 as a specification of the

number of additional layers of nested SEAL encapsulations permitted. If

the inner packet is a SEAL packet that is undergoing nested

encapsulation, the ITE instead sets LEVEL to the value that appears in

the inner packet's SEAL header minus 1. If the inner packet is

undergoing SEAL re-encapsulation, the ITE instead copies the LEVEL

value from the SEAL header of the packet to be re-encapsulated.

Next, if this is an IPv4 ETE link path with USE_TRAILER==TRUE, and the

inner packet is larger than (128-SHLEN-UHLEN) bytes but no larger than

1280 bytes, the ITE sets T=1. Otherwise, the ITE sets T=0. The ITE then

adds the outer encapsulating headers, calculates the ICV(s) and

performs any necessary outer fragmentation as specified in Section

4.4.5.



4.4.5. Outer Encapsulation

Following SEAL encapsulation, the ITE next encapsulates the packet in

the requisite outer headers according to the specific encapsulation

format (e.g., [RFC1070], [RFC2003], [RFC2473], [RFC4213], etc.), except

that it writes 'SEAL_PROTO' in the protocol field of the outer IP

header (when simple IP encapsulation is used) or writes 'SEAL_PORT' in

the outer destination transport service port field (e.g., when IP/UDP

encapsulation is used).

When UDP encapsulation is used, the ITE sets the UDP header fields as

specified in Section 5.5.4 of [I-D.templin-intarea-vet] (where the UDP

header length field includes the length of the SEAL trailer, if

present). The ITE then performs outer IP header encapsulation as

specified in Section 5.5.5 of [I-D.templin-intarea-vet]. If this

process is entered via re-encapsulation (see: Section 4.5.4), the ITE

instead follows the outer IP/UDP re-encapsulation procedures specified

in Section 5.5.6 of [I-D.templin-intarea-vet].

When IPv4 is used as the outer encapsulation layer, if USE_DF==FALSE

the ITE sets DF=0 in the IPv4 header to allow the packet to be

fragmented within the subnetwork if it encounters a restricting link.

Otherwise, the ITE sets DF=1.

When IPv6 is used as the outer encapsulation layer, the "DF" flag is

absent but implicitly set to 1. The packet therefore will not be

fragmented within the subnetwork, since IPv6 deprecates in-the-network

fragmentation.

The ITE next sets ICV1=0 in the SEAL header and calculates the packet

ICVs. The ICVs are calculated using an algorithm agreed on by the ITE

and ETE. When data origin authentication is required, the algorithm

uses a symmetric secret key so that the ETE can verify that the ICVs

were generated by the ITE.

The ITE first calculates the ICV over the leading 128 bytes of the

packet (or up to the end of the packet if there are fewer than 128

bytes) beginning with the UDP header (if present) then places result in

the ICV1 field in the header. If T==1, the ITE next calculates the ICV

over the remainder of the packet and places the result in the ICV2

field in the SEAL trailer. The ITE then submits the packet for outer

encapsulation.

Next, the ITE uses IP fragmentation if necessary to fragment the

encapsulated packet into outer IP fragments that are no larger than

PATH_MTU. By virtue of the pre-encapsulation packet size calculations

specified in Section 4.4.3, fragmentation will therefore only occur for

outer packets that are larger than PATH_MTU but no larger than MIN_MTU.

(Note that, for IPv6, fragmentation must be performed by the ITE

itself, while for IPv4 the fragmentation could instead be performed by

a router in the ETE link path.)

The ITE then sends each outer packet/fragment via the underlying link

corresponding to LINK_ID.



4.4.6. Path Probing and ETE Reachability Verification

All SEAL data packets sent by the ITE are considered implicit probes.

SEAL data packets will elicit an SCMP message from the ETE if it needs

to acknowledge a probe and/or report an error condition. SEAL data

packets may also be dropped by either the ETE or a router on the path,

which will return an ICMP message.

The ITE can also send an SCMP Router/Neighbor Solicitation message to

elicit an SCMP Router/Neighbor Advertisement response (see: [I-

D.templin-intarea-vet]) as verification that the ETE is still reachable

via a specific link path.

The ITE processes ICMP messages as specified in Section 4.4.7.

The ITE processes SCMP messages as specified in Section 4.6.2.

4.4.7. Processing ICMP Messages

When the ITE sends SEAL packets, it may receive ICMP error

messages[RFC0792][RFC4443] from another ITE on the path to the ETE

(i.e., in case of nested encapsulations) or from an ordinary router

within the subnetwork. Each ICMP message includes an outer IP header,

followed by an ICMP header, followed by a portion of the SEAL data

packet that generated the error (also known as the "packet-in-error")

beginning with the outer IP header.

The ITE should process ICMPv4 Protocol Unreachable messages and ICMPv6

Parameter Problem messages with Code "Unrecognized Next Header type

encountered" as a hint that the ETE does not implement the SEAL

protocol. The ITE can also process other ICMP messages that do not

include sufficient information in the packet-in-error as a hint that

the ETE link path may be failing. Specific actions that the ITE may

take in these cases are out of scope.

For other ICMP messages, the should use any outer header information

available as a first-pass authentication filter (e.g., to determine if

the source of the message is within the same administrative domain as

the ITE) and discards the message if first pass filtering fails.

Next, the ITE examines the packet-in-error beginning with the SEAL

header. If the value in the PKT_ID field is not within the window of

packets the ITE has recently sent to this ETE, or if the value in the

SEAL header ICV1 field is incorrect, the ITE discards the message.

Next, if the received ICMP message is a PTB the ITE sets the temporary

variable "PMTU" for this ETE link path to the MTU value in the PTB

message. If PMTU==0, the ITE consults a plateau table (e.g., as

described in [RFC1191]) to determine PMTU based on the length field in

the outer IP header of the packet-in-error. (For example, if the ITE

receives a PTB message with MTU==0 and length 1500, it can set

PMTU=1450. If the ITE subsequently receives a PTB message with MTU==0

and length 1450, it can set PMTU=1400, etc.) If the ITE is performing

stateful MTU determination for this ETE link path (see Section 4.4.9),

the ITE next sets PATH_MTU=PMTU. If PMTU is less than MIN_MTU, the ITE



sets PATH_MTU=PMTU (and for IPv4 also sets USE_TRAILER=TRUE), then

discards the message.

If the ICMP message was not discarded, the ITE then transcribes it into

a message to return to the previous hop. If the previous hop toward the

inner source address within the packet-in-error is reached via the same

tunnel interface the SEAL data packet was sent on, the ITE transcribes

the ICMP message into an SCMP message. Otherwise, the ITE transcribes

the ICMP message into a message appropriate for the inner protocol

version.

To transcribe the message, the ITE extracts the inner packet from

within the ICMP message packet-in-error field and uses it to generate a

new message corresponding to the type of the received ICMP message. For

SCMP messages, the ITE generates the message the same as described for

ETE generation of SCMP messages in Section 4.6.1. For (S)PTB messages,

the ITE writes (PMTU-HLEN) in the MTU field.

The ITE finally forwards the transcribed message to the previous hop

toward the inner source address.

4.4.8. IPv4 Middlebox Reassembly Testing

For IPv4, the ITE can perform a qualification exchange over an ETE link

path to ensure that the subnetwork correctly delivers fragments to the

ETE. This procedure can be used, e.g., to determine whether there are

middleboxes on the path that violate the [RFC1812], Section 5.2.6

requirement that: "A router MUST NOT reassemble any datagram before

forwarding it".

When possible, the ITE should use knowledge of its topological

arrangement as an aid in determining when middlebox reassembly testing

is necessary. For example, if the ITE is aware that the ETE is located

somewhere in the public Internet, middlebox reassembly testing is

unnecessary. If the ITE is aware that the ETE is located behind a NAT

or a firewall, however, then middlebox reassembly testing is

recommended.

The ITE can perform a middlebox reassembly test by setting U=1 in the

header of a SEAL data packet to be used as a probe. Next, the ITE

encapsulates the packet in the appropriate outer headers, splits it

into two outer IPv4 fragments, then sends both fragments over the same

ETE link path.

While performing the test, the ITE should select only inner packets

that are no larger than 1280 bytes for testing purposes in order to

avoid reassembly buffer overruns. The ITE can also construct a NULL

test packet instead of using ordinary SEAL data packets for testing.

To create the NULL packet, the ITE prepares a data packet with (C=0;

P=1; R=0; T=0; U=1; Z=0) in the SEAL header, writes the length of the

ITE's claimed prefix in the PREFLEN field, and writes the ITE's claimed

prefix in the PREFIX field. The ITE then sets NEXTHDR according to the

address family of the PREFIX, i.e., it sets NEXTHDR to the value '4'

for an IPv4 prefix, '41' for an IPv6 prefix , '80' for an OSI/CLNP

prefix, etc.



The ITE can further add padding following the PREFIX field to a length

that would not cause the size of the NULL packet to exceed 1280 bytes

before encapsulation. The ITE then sets LINK_ID, LEVEL and PKT_ID to

the appropriate values for this ETE link path and calculates ICV1 the

same as for an ordinary SEAL data packet.

The ITE should send a series of test packets (e.g., 3-5 tests with 1sec

intervals between tests) instead of a single isolated test in case of

packet loss, and will eventually receive an SPTB message from the ITE

(see: Section 4.6.2.1). If the ETE returns an SCMP PTB message with MTU

!= 0, then the ETE link path correctly supports fragmentation.

If the ETE returns an SCMP PTB message with MTU==0, however, then a

middlebox in the subnetwork is reassembling the fragments before

forwarding them to the ETE. In that case, the ITE sets PATH_MTU=MIN_MTU

and sets (USE_TRAILER=TRUE; USE_DF=FALSE). The ITE may instead enable

stateful MTU determination for this ETE link path as specified in

Section 4.4.9 to attempt to discover larger MTUs.

NB: Examples of middleboxes that may perform reassembly include

stateful NATs and firewalls. Such devices could still allow for

stateless MTU determination if they gather the fragments of a

fragmented IPv4 SEAL data packet for packet analysis purposes but then

forward the fragments on to the final destination rather than

forwarding the reassembled packet.

4.4.9. Stateful MTU Determination

SEAL supports a stateless MTU determination capability, however the ITE

may in some instances wish to impose a stateful MTU limit on a

particular ETE link path. For example, when the ETE is situated behind

a middlebox that performs IPv4 reassembly (see: Section 4.4.8) it is

imperative that fragmentation of large packets be avoided on the path

to the middlebox. In other instances (e.g., when the ETE link path

includes performance-constrained links), the ITE may deem it necessary

to cache a conservative static MTU in order to avoid sending large

packets that would only be dropped due to an MTU restriction somewhere

on the path.

To determine a static MTU value, the ITE can send a series of probe

packets of various sizes to the ETE with U=1 in the SEAL header and

DF=1 in the outer IP header. The ITE can then cache the size of the

largest packet for which it receives a probe reply from the ETE as the

PATH_MTU value this ETE link path.

For example, the ITE could send NULL probe packets of 1500 bytes,

followed by 1450 bytes, followed by 1400 bytes, etc. then set PATH_MTU

for this ETE link path to the size of the largest probe packet for

which it receives an SPTB reply message. While probing with NULL probe

packets, the ITE processes any ICMP PTB message it receives as a

potential indication of probe failure then discards the message.

For IPv4, if the largest successful probe is larger than MIN_MTU the

ITE then sets (USE_TRAILER=FALSE; USE_DF=TRUE) for this ETE link path;

otherwise, the ITE sets (USE_TRAILER=TRUE; USE_DF=FALSE).



4.4.10. Detecting Path MTU Changes

For IPv6, the ITE can periodically reset PATH_MTU to the MTU of the

underlying link to determine whether the ETE link path now supports

larger packet sizes. If the path still has a too-small MTU, the ITE

will receive a PTB message that reports a smaller size.

For IPv4, when USE_TRAILER==TRUE and PATH_MTU is larger than MIN_MTU

the ITE can periodically reset USE_TRAILER=FALSE to determine whether

the ETE link path still requires trailers. If the ITE receives an SPTB

message for an inner packet that is no larger than 1280 bytes (see:

Section 4.6.1.1), the ITE should again set USE_TRAILER=TRUE.

When stateful MTU determination is used, the ITE should periodically

re-probe the path as described in Section 4.4.9 to determine whether

routing changes have resulted in a reduced or increased PATH_MTU.

4.5. ETE Specification

4.5.1. Tunnel Neighbor Soft State

The ETE maintains a per-ITE ICV calculation algorithm and (when data

origin authentication is required) a symmetric secret key to verify the

ICV(s) in the SEAL header and trailer. The ETE also maintains a window

of PKT_ID values for the packets it has recently received from this

ITE.

4.5.2. IP-Layer Reassembly

The ETE must maintain a minimum IP-layer reassembly buffer size of 1500

bytes for both IPv4 [RFC0791] and IPv6 [RFC2460].

The ETE should maintain conservative reassembly cache high- and low-

water marks. When the size of the reassembly cache exceeds this high-

water mark, the ETE should actively discard stale incomplete

reassemblies (e.g., using an Active Queue Management (AQM) strategy)

until the size falls below the low-water mark. The ETE should also

actively discard any pending reassemblies that clearly have no

opportunity for completion, e.g., when a considerable number of new

fragments have arrived before a fragment that completes a pending

reassembly arrives.

The ETE processes non-SEAL IP packets as specified in the normative

references, i.e., it performs any necessary IP reassembly then discards

the packet if it is larger than the reassembly buffer size or delivers

the (fully-reassembled) packet to the appropriate upper layer protocol

module.

For SEAL packets, the ITE performs any necessary IP reassembly until it

has received at least the first 1280 bytes beyond the SEAL header or up

to the end of the packet. For IPv4, the ETE then submits the (fully- or

partially-reassembled) packet for decapsulation as specified in Section

4.5.3. For IPv6, the ETE only submits the packet if it was fully-

reassembled and no larger than the reassembly buffer size.



4.5.3. Decapsulation and Re-Encapsulation

For each SEAL packet submitted for decapsulation, the ETE first

examines the PKT_ID and ICV1 fields. If the PKT_ID is not within the

window of acceptable values for this ITE, or if the ICV1 field includes

an incorrect value, the ETE silently discards the packet.

Next, if the SEAL header has T==1 and the inner packet is larger than

1280 bytes the ETE silently discards the packet. If the SEAL header has

T==1 and the inner packet is no larger than 1280 bytes, the ETE instead

verifies the ICV2 value and silently discards the packet if the value

is incorrect.

Next, if the SEAL header has C==0 and there is an incorrect value in a

SEAL header field (e.g., an incorrect "VER" field value), the ETE

returns an SCMP "Parameter Problem" (SPP) message (see Section 4.6.1.2)

and discards the packet.

Next, if the packet arrived as multiple IPv4 fragments and the inner

packet is larger than 1280 bytes, the ETE sends an SPTB message back to

the ITE with MTU set to the size of the largest fragment received minus

HLEN (see: Section 4.6.1.1) then discards the packet. If the packet

arrived as multiple IPv6 fragments and the inner packet is larger than

1280 bytes, the ETE instead silently discards the packet.

Next, if the packet arrived as multiple IPv4 fragments, the SEAL header

has (C==0; T==0), and the inner packet is larger than (128-SHLEN-UHLEN)

bytes, the ETE sends an SPTB message back to the ITE with MTU set to

the size of the largest fragment received minus HLEN (see: Section

4.6.1.1) then continues to process the packet.

Next, if the SEAL header has C==1, the ETE processes the packet as an

SCMP packet as specified in Section 4.6.2. Otherwise, the ETE continues

to process the packet as a SEAL data packet.

Next, if the packet arrived unfragmented and the SEAL header has U==1,

the ETE sends an SPTB message back to the ITE with MTU=0 (see: Section

4.6.1.1).

Next, if the SEAL header has P==1 the ETE discards the (NULL) packet.

Finally, the ETE discards the outer headers and processes the inner

packet according to the header type indicated in the SEAL NEXTHDR

field. If the next hop toward the inner destination address is via a

different interface than the SEAL packet arrived on, the ETE discards

the SEAL header and delivers the inner packet either to the local host

or to the next hop interface if the packet is not destined to the local

host.

If the next hop is on the same interface the SEAL packet arrived on,

however, the ETE submits the packet for SEAL re-encapsulation beginning

with the specification in Section 4.4.3 above. In this process, the

packet remains within the tunnel interface (i.e., it does not exit and

then re-enter the interface); hence, the packet is not discarded if the

LEVEL field in the SEAL header contains the value 0.



4.6. The SEAL Control Message Protocol (SCMP)

SEAL provides a companion SEAL Control Message Protocol (SCMP) that

uses the same message types and formats as for the Internet Control

Message Protocol for IPv6 (ICMPv6) [RFC4443]. As for ICMPv6, each SCMP

message includes a 4-byte header and a variable-length body. The TE

encapsulates the SCMP message in a SEAL header and outer headers as

shown in Figure 4:

                                    +--------------------+

                                    ~   outer IP header  ~

                                    +--------------------+

                                    ~  other outer hdrs  ~

                                    +--------------------+

                                    ~    SEAL Header     ~

       +--------------------+       +--------------------+

       | SCMP message header|  -->  | SCMP message header|

       +--------------------+       +--------------------+

       |                    |  -->  |                    |

       ~  SCMP message body ~  -->  ~  SCMP message body ~

       |                    |  -->  |                    |

       +--------------------+       +--------------------+

            SCMP Message                  SCMP Packet

        before encapsulation          after encapsulation

The following sections specify the generation, processing and relaying

of SCMP messages.

4.6.1. Generating SCMP Error Messages

ETEs generate SCMP error messages in response to receiving certain SEAL

data packets using the format shown in Figure 5:

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |     Type      |     Code      |           Checksum            |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                      Type-Specific Data                       |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |      As much of the inner packet within the invoking          |

   ~       SEAL data packet as possible without the SCMP           ~

   |              packet exceeding 576 bytes (*)                   |

   (*) also known as the "packet-in-error"

When the ETE processes a SEAL data packet for which the ICVs are

correct but an error must be returned, it prepares an SCMP error

message as shown in Figure 5. The ETE sets the Type and Code fields to



the same values that would appear in the corresponding ICMPv6 message

and calculates the Checksum beginning with the SCMP message header and

continuing to the end of the message. (When calculating the Checksum,

the TE sets the Checksum field itself to 0.)

The ETE next encapsulates the SCMP message in the requisite SEAL

header, outer headers and SEAL trailer as shown in Figure 4. During

encapsulation, the ETE sets the outer destination address/port numbers

of the SCMP packet to the outer source address/port numbers of the

original SEAL data packet and sets the outer source address/port

numbers to its own outer address/port numbers.

The ETE then sets (C=1; R=0; T=0; U=0; Z=0) in the SEAL header, then

sets NEXTHDR, PREFLEN, LINK_ID, LEVEL, and PKT_ID to the same values

that appeared in the SEAL header of the data packet. If the SEAL data

packet header had P==1, the ETE also copies the PREFIX field from the

data packet into the SEAL header and sets P=1; otherwise, it sets P=0.

The ETE then calculates and sets the ICV1 field the same as specified

for SEAL data packet encapsulation in Section 4.4.4. Next, the ETE

encapsulates the SCMP message in the requisite outer encapsulations and

sends the resulting SCMP packet to the ITE the same as specified for

SEAL data packets in Section 4.4.5.

The following sections describe additional considerations for various

SCMP error messages:

4.6.1.1. Generating SCMP Packet Too Big (SPTB) Messages

An ETE generates an SCMP "Packet Too Big" (SPTB) message when it

receives a SEAL data packet that arrived as multiple outer IPv4

fragments and for which the reassembled inner packet would be larger

than 1280 bytes. The ETE also generates an SPTB when it receives the

fragments of a fragmented IPv4-encapsulated SEAL data packet with T==0

in the SEAL header but that following reassembly would be larger than

(128-SHLEN-UHLEN) bytes but no larger than 1280 bytes. The ETE prepares

the SPTB message the same as for the corresponding ICMPv6 PTB message,

and writes the length of the largest outer IP fragment received minus

HLEN in the MTU field of the message.

The ETE also generates an SPTB message when it accepts a SEAL protocol

data packet which did not undergo IP fragmentation and with U==1 in the

SEAL header. The ETE prepares the SPTB message the same as above,

except that it writes the value 0 in the MTU field.

4.6.1.2. Generating Other SCMP Error Messages

An ETE generates an SCMP "Destination Unreachable" (SDU) message under

the same circumstances that an IPv6 system would generate an ICMPv6

Destination Unreachable message.

An ETE generates an SCMP "Parameter Problem" (SPP) message when it

receives a SEAL packet with an incorrect value in the SEAL header. IN

THIS CASE ALONE, the ETE prepares the packet-in-error beginning with

the SEAL header instead of beginning immediately after the SEAL header.



TEs generate other SCMP message types using methods and procedures

specified in other documents. For example, SCMP message types used for

tunnel neighbor coordinations are specified in VET [I-D.templin-

intarea-vet].

4.6.2. Processing SCMP Error Messages

An ITE may receive SCMP messages after sending packets to an ETE. The

ITE first verifies that the outer addresses of the SCMP packet are

correct, and that the PKT_ID is within its window of values for this

ETE. The ITE next verifies that the SEAL header fields are set

correctly as specified in Section 4.6.1. The ITE then verifies the ICV1

value. If the outer addresses, SEAL header information and/or ICV1

value are incorrect, the ITE silently discards the message; otherwise,

it processes the message as follows:

4.6.2.1. Processing SCMP PTB Messages

After an ITE sends a SEAL data packet to an ETE, it may receive an SPTB

message with a packet-in-error containing the leading portion of the

inner packet (see: Section 4.6.1.1). For IP SPTB messages with MTU==0,

the ITE processes the message as confirmation that the ETE received an

unfragmented SEAL data packet with U==1 in the SEAL header. The ITE

then discards the message.

For IPv4 SPTB messages with MTU != 0, the ITE instead processes the

message as an indication of a packet size limitation as follows. The

ITE first determines the inner packet length by subtracting SHLEN from

the length field in the UDP header within the packet-in-error (and also

subtracting the length of the SEAL trailer when T=1). If the inner

packet is no larger than 1280 bytes, the ITE sets USE_TRAILER=TRUE. If

the inner packet is larger than 1280 bytes, the ITE instead examines

the SPTB message MTU field. If the MTU value is not substantially less

than (1500-HLEN), the value is likely to reflect the true MTU of the

restricting link on the path to the ETE; otherwise, a router on the

path may be generating runt fragments.

In that case, the ITE can consult a plateau table (e.g., as described

in [RFC1191]) to rewrite the MTU value to a reduced size. For example,

if the ITE receives an IPv4 SPTB message with MTU==256 and inner packet

length 1500, it can rewrite the MTU to 1450. If the ITE subsequently

receives an IPv4 SPTB message with MTU==256 and inner packet length

1450, it can rewrite the MTU to 1400, etc. If the ITE is performing

stateful MTU determination for this ETE link path, it then writes the

new MTU value in PATH_MTU.

The ITE then checks its forwarding tables to discover the previous hop

toward the source address of the inner packet. If the previous hop is

reached via the same tunnel interface the SPTB message arrived on, the

ITE relays the message to the previous hop. In order to relay the

message, the ITE rewrites the SEAL header fields with values

corresponding to the previous hop and recalculates the ICV1 values



using the ICV calculation parameters associated with the previous hop.

Next, the ITE replaces the SPTB's outer headers with headers of the

appropriate protocol version and fills in the header fields as

specified in Sections 5.5.4-5.5.6 of [I-D.templin-intarea-vet], where

the destination address/port correspond to the previous hop and the

source address/port correspond to the ITE. The ITE then sends the

message to the previous hop the same as if it were issuing a new SPTB

message.

If the previous hop is not reached via the same tunnel interface, the

ITE instead transcribes the message into a format appropriate for the

inner packet (i.e., the same as described for transcribing ICMP

messages in Section 4.4.7) and sends the resulting transcribed message

to the original source. The ITE then discards the SPTB message.

4.6.2.2. Processing Other SCMP Error Messages

An ITE may receive an SDU message with an appropriate code under the

same circumstances that an IPv6 node would receive an ICMPv6

Destination Unreachable message. The ITE either transcribes or relays

the message toward the source address of the inner packet within the

packet-in-error the same as specified for SPTB messages in Section

4.6.2.1.

An ITE may receive an SPP message when the ETE receives a SEAL packet

with an incorrect value in the SEAL header. The ITE should examine the

SEAL header within the packet-in-error to determine whether a different

setting should be used in subsequent packets, but does not relay the

message further.

TEs process other SCMP message types using methods and procedures

specified in other documents. For example, SCMP message types used for

tunnel neighbor coordinations are specified in VET [I-D.templin-

intarea-vet].

5. Link Requirements

Subnetwork designers are expected to follow the recommendations in

Section 2 of [RFC3819] when configuring link MTUs.

6. End System Requirements

End systems are encouraged to implement end-to-end MTU assurance (e.g.,

using Packetization Layer Path MTU Discovery per [RFC4821]) even if the

subnetwork is using SEAL.

7. Router Requirements

Routers within the subnetwork are expected to observe the router

requirements found in the normative references, including the

implementation of IP fragmentation and reassembly [RFC1812][RFC2460] as

well as the generation of ICMP messages [RFC0792][RFC4443].



8. Nested Encapsulation Considerations

SEAL supports nested tunneling for up to 8 layers of encapsulation. In

this model, the SEAL ITE has a tunnel neighbor relationship only with

ETEs at its own nesting level, i.e., it does not have a tunnel neighbor

relationship with any ITEs/ETEs at other nesting levels.

Therefore, when an ITE 'A' within an inner nesting level needs to

return an error message to an ITE 'B' within an outer nesting level, it

generates an ordinary ICMP error message the same as if it were an

ordinary router within the subnetwork. 'B' can then perform message

validation as specified in Section 4.4.7, but full message origin

authentication is not possible.

Since ordinary ICMP messages are used for coordinations between ITEs at

different nesting levels, nested SEAL encapsulations should only be

used when the ITEs are within a common administrative domain and/or

when there is no ICMP filtering middlebox such as a firewall or NAT

between them. An example would be a recursive nesting of mobile

networks, where the first network receives service from an ISP, the

second network receives service from the first network, the third

network receives service from the second network, etc.

9. IANA Considerations

The IANA is instructed to allocate an IP protocol number for

'SEAL_PROTO' in the 'protocol-numbers' registry.

The IANA is instructed to allocate a Well-Known Port number for

'SEAL_PORT' in the 'port-numbers' registry.

The IANA is instructed to establish a "SEAL Protocol" registry to

record SEAL Version values. This registry should be initialized to

include the initial SEAL Version number, i.e., Version 0.

10. Security Considerations

SEAL provides a segment-by-segment data origin authentication and anti-

replay service across the (potentially) multiple segments of a re-

encapsulating tunnel. It further provides a segment-by-segment

integrity check of the headers of encapsulated packets, but does not

verify the integrity of the rest of the packet beyond the headers

unless fragmentation is unavoidable. SEAL therefore considers full

message integrity checking, authentication and confidentiality as end-

to-end considerations in a manner that is compatible with securing

mechanisms such as TLS/SSL [RFC5246].

An amplification/reflection/buffer overflow attack is possible when an

attacker sends IP fragments with spoofed source addresses to an ETE in

an attempt to clog the ETE's reassembly buffer and/or cause the ETE to

generate a stream of SCMP messages returned to a victim ITE. The SCMP

message ICVs, PKT_ID, as well as the inner headers of the packet-in-

error, provide mitigation for the ETE to detect and discard SEAL

segments with spoofed source addresses.



The SEAL header is sent in-the-clear the same as for the outer IP and

other outer headers. In this respect, the threat model is no different

than for IPv6 extension headers. Unlike IPv6 extension headers,

however, the SEAL header is protected by an integrity check that also

covers the inner packet headers.

Security issues that apply to tunneling in general are discussed in 

[RFC6169].

11. Related Work

Section 3.1.7 of [RFC2764] provides a high-level sketch for supporting

large tunnel MTUs via a tunnel-level segmentation and reassembly

capability to avoid IP level fragmentation. This capability was

implemented in the first edition of SEAL, but is now deprecated.

Section 3 of [RFC4459] describes inner and outer fragmentation at the

tunnel endpoints as alternatives for accommodating the tunnel MTU.

Section 4 of [RFC2460] specifies a method for inserting and processing

extension headers between the base IPv6 header and transport layer

protocol data. The SEAL header is inserted and processed in exactly the

same manner.

IPsec/AH is [RFC4301][RFC4301] is used for full message integrity

verification between tunnel endpoints, whereas SEAL only ensures

integrity for the inner packet headers. The AYIYA proposal [I-D.massar-

v6ops-ayiya] uses similar means for providing full message

authentication and integrity.

The concepts of path MTU determination through the report of

fragmentation and extending the IPv4 Identification field were first

proposed in deliberations of the TCP-IP mailing list and the Path MTU

Discovery Working Group (MTUDWG) during the late 1980's and early

1990's. An historical analysis of the evolution of these concepts, as

well as the development of the eventual path MTU discovery mechanism,

appears in Appendix D of this document.
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proposed by Charles Lynn on the TCP-IP mailing list in 1987. Extending

the IP identification field was first proposed by Steve Deering on the

MTUDWG mailing list in 1989.
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Appendix A. Reliability

Although a SEAL tunnel may span an arbitrarily-large subnetwork

expanse, the IP layer sees the tunnel as a simple link that supports

the IP service model. Links with high bit error rates (BERs) (e.g.,

IEEE 802.11) use Automatic Repeat-ReQuest (ARQ) mechanisms [RFC3366] to

increase packet delivery ratios, while links with much lower BERs

typically omit such mechanisms. Since SEAL tunnels may traverse

arbitrarily-long paths over links of various types that are already

either performing or omitting ARQ as appropriate, it would therefore

often be inefficient to also require the tunnel endpoints to also

perform ARQ.

Appendix B. Integrity

The SEAL header includes an ICV field that covers the SEAL header and

at least the inner packet headers. This provides for header integrity

verification on a segment-by-segment basis for a segmented re-

encapsulating tunnel path. When IPv4 fragmentation is needed, the SEAL

packet also contains a trailer with a secondary ICV that covers the

remainder of the packet.

Fragmentation and reassembly schemes must consider packet-splicing

errors, e.g., when two fragments from the same packet are concatenated

incorrectly, when a fragment from packet X is reassembled with

fragments from packet Y, etc. The primary sources of such errors

include implementation bugs and wrapping IPv4 ID fields.

In terms of wrapping ID fields, the IPv4 16-bit ID field can wrap with

only 64K packets with the same (src, dst, protocol)-tuple alive in the

system at a given time [RFC4963] increasing the likelihood of

reassembly mis-associations

When reassembly is unavoidable, SEAL provides an extended ICV to detect

reassembly mis-associations for packets no larger than 1280 bytes and

also discards any reassembled packets larger than 1280 bytes.

Appendix C. Transport Mode

SEAL can also be used in "transport-mode", e.g., when the inner layer

comprises upper-layer protocol data rather than an encapsulated IP

packet. For instance, TCP peers can negotiate the use of SEAL (e.g., by

inserting a 'SEAL_OPTION' TCP option during connection establishment)

for the carriage of protocol data encapsulated as IP/SEAL/TCP. In this

sense, the "subnetwork" becomes the entire end-to-end path between the

TCP peers and may potentially span the entire Internet.

If both TCPs agree on the use of SEAL, their protocol messages will be

carried as IP/SEAL/TCP and the connection will be serviced by the SEAL

protocol using TCP (instead of an encapsulating tunnel endpoint) as the

transport layer protocol. The SEAL protocol for transport mode

otherwise observes the same specifications as for Section 4.



Appendix D. Historic Evolution of PMTUD

The topic of Path MTU discovery (PMTUD) saw a flurry of discussion and

numerous proposals in the late 1980's through early 1990. The initial

problem was posed by Art Berggreen on May 22, 1987 in a message to the

TCP-IP discussion group [TCP-IP]. The discussion that followed provided

significant reference material for [FRAG]. An IETF Path MTU Discovery

Working Group [MTUDWG] was formed in late 1989 with charter to produce

an RFC. Several variations on a very few basic proposals were

entertained, including:

Routers record the PMTUD estimate in ICMP-like path probe

messages (proposed in [FRAG] and later [RFC1063])

The destination reports any fragmentation that occurs for

packets received with the "RF" (Report Fragmentation) bit set

(Steve Deering's 1989 adaptation of Charles Lynn's Nov. 1987

proposal)

A hybrid combination of 1) and Charles Lynn's Nov. 1987 (straw

RFC draft by McCloughrie, Fox and Mogul on Jan 12, 1990)

Combination of the Lynn proposal with TCP (Fred Bohle, Jan 30,

1990)

Fragmentation avoidance by setting "IP_DF" flag on all packets

and retransmitting if ICMPv4 "fragmentation needed" messages

occur (Geof Cooper's 1987 proposal; later adapted into 

[RFC1191] by Mogul and Deering).

Option 1) seemed attractive to the group at the time, since it was

believed that routers would migrate more quickly than hosts. Option 2)

was a strong contender, but repeated attempts to secure an "RF" bit in

the IPv4 header from the IESG failed and the proponents became

discouraged. 3) was abandoned because it was perceived as too

complicated, and 4) never received any apparent serious consideration.

Proposal 5) was a late entry into the discussion from Steve Deering on

Feb. 24th, 1990. The discussion group soon thereafter seemingly lost

track of all other proposals and adopted 5), which eventually evolved

into [RFC1191] and later [RFC1981].

In retrospect, the "RF" bit postulated in 2) is not needed if a

"contract" is first established between the peers, as in proposal 4)

and a message to the MTUDWG mailing list from jrd@PTT.LCS.MIT.EDU on

Feb 19. 1990. These proposals saw little discussion or rebuttal, and

were dismissed based on the following the assertions:

routers upgrade their software faster than hosts

PCs could not reassemble fragmented packets

1. 

2. 

3. 

4. 

5. 

*

*



Proteon and Wellfleet routers did not reproduce the "RF" bit

properly in fragmented packets

Ethernet-FDDI bridges would need to perform fragmentation (i.e.,

"translucent" not "transparent" bridging)

the 16-bit IP_ID field could wrap around and disrupt reassembly

at high packet arrival rates

The first four assertions, although perhaps valid at the time, have

been overcome by historical events. The final assertion is addressed by

the mechanisms specified in SEAL.
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