
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320 (if approved) July 02, 2013
Intended status: Informational
Expires: January 3, 2014

The Subnetwork Encapsulation and Adaptation Layer (SEAL)
draft-templin-intarea-seal-59.txt

Abstract

 This document specifies a Subnetwork Encapsulation and Adaptation
 Layer (SEAL). SEAL operates over virtual topologies configured over
 connected IP network routing regions bounded by encapsulating border
 nodes. These virtual topologies are manifested by tunnels that may
 span multiple IP and/or sub-IP layer forwarding hops, where they may
 incur packet duplication, packet reordering, source address spoofing
 and traversal of links with diverse Maximum Transmission Units
 (MTUs). SEAL addresses these issues through the encapsulation and
 messaging mechanisms specified in this document.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Templin Expires January 3, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SEAL July 2013

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Templin Expires January 3, 2014 [Page 2]

Internet-Draft SEAL July 2013

Table of Contents

1. Introduction . 4
1.1. Motivation . 4
1.2. Approach . 6
1.3. Differences with RFC5320 7

2. Terminology . 8
3. Requirements . 10
4. Applicability Statement 10
5. SEAL Specification . 11
5.1. SEAL Tunnel Model . 11
5.2. SEAL Model of Operation 11
5.3. SEAL Header and Trailer Format 13
5.4. ITE Specification . 15
5.4.1. Tunnel Interface MTU 15
5.4.2. Tunnel Neighbor Soft State 16
5.4.3. SEAL Layer Pre-Processing 17
5.4.4. SEAL Encapsulation and Segmentation 18
5.4.5. Outer Encapsulation 20
5.4.6. Path Probing and ETE Reachability Verification 21
5.4.7. Processing ICMP Messages 21
5.4.8. IPv4 Middlebox Reassembly Testing 23
5.4.9. Stateful MTU Determination 24
5.4.10. Detecting Path MTU Changes 24

5.5. ETE Specification . 24
5.5.1. Reassembly Buffer Requirements 24
5.5.2. Tunnel Neighbor Soft State 25
5.5.3. IP-Layer Reassembly 25

 5.5.4. Decapsulation, SEAL-Layer Reassembly, and
 Re-Encapsulation 26

5.6. The SEAL Control Message Protocol (SCMP) 27
5.6.1. Generating SCMP Error Messages 28
5.6.2. Processing SCMP Error Messages 30

6. Link Requirements . 32
7. End System Requirements 32
8. Router Requirements . 32
9. Nested Encapsulation Considerations 33
10. Reliability Considerations 33
11. Integrity Considerations 34
12. IANA Considerations . 34
13. Security Considerations 34
14. Related Work . 35
15. Implementation Status . 36
16. Acknowledgments . 36
17. References . 36
17.1. Normative References 36
17.2. Informative References 37

 Author's Address . 41

https://datatracker.ietf.org/doc/html/rfc5320

Templin Expires January 3, 2014 [Page 3]

Internet-Draft SEAL July 2013

1. Introduction

 As Internet technology and communication has grown and matured, many
 techniques have developed that use virtual topologies (manifested by
 tunnels of one form or another) over an actual network that supports
 the Internet Protocol (IP) [RFC0791][RFC2460]. Those virtual
 topologies have elements that appear as one network layer hop, but
 are actually multiple IP or sub-IP layer hops. These multiple hops
 often have quite diverse properties that are often not even visible
 to the endpoints of the virtual hop. This introduces failure modes
 that are not dealt with well in current approaches.

 The use of IP encapsulation (also known as "tunneling") has long been
 considered as the means for creating such virtual topologies (e.g.,
 see [RFC2003][RFC2473]). However, the encapsulation headers often
 include insufficiently provisioned per-packet identification values.
 IP encapsulation also allows an attacker to produce encapsulated
 packets with spoofed source addresses even if the source address in
 the encapsulating header cannot be spoofed. A denial-of-service
 vector that is not possible in non-tunneled subnetworks is therefore
 presented.

 Additionally, the insertion of an outer IP header reduces the
 effective path MTU visible to the inner network layer. When IPv6 is
 used as the encapsulation protocol, original sources expect to be
 informed of the MTU limitation through IPv6 Path MTU discovery
 (PMTUD) [RFC1981]. When IPv4 is used, this reduced MTU can be
 accommodated through the use of IPv4 fragmentation, but unmitigated
 in-the-network fragmentation has been found to be harmful through
 operational experience and studies conducted over the course of many
 years [FRAG][FOLK][RFC4963]. Additionally, classical IPv4 PMTUD
 [RFC1191] has known operational issues that are exacerbated by in-
 the-network tunnels [RFC2923][RFC4459].

 The following subsections present further details on the motivation
 and approach for addressing these issues.

1.1. Motivation

 Before discussing the approach, it is necessary to first understand
 the problems. In both the Internet and private-use networks today,
 IP is ubiquitously deployed as the Layer 3 protocol. The primary
 functions of IP are to provide for routing, addressing, and a
 fragmentation and reassembly capability used to accommodate links
 with diverse MTUs. While it is well known that the IP address space
 is rapidly becoming depleted, there is also a growing awareness that
 other IP protocol limitations have already or may soon become
 problematic.

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923

Templin Expires January 3, 2014 [Page 4]

Internet-Draft SEAL July 2013

 First, the Internet historically provided no means for discerning
 whether the source addresses of IP packets are authentic. This
 shortcoming is being addressed more and more through the deployment
 of site border router ingress filters [RFC2827], however the use of
 encapsulation provides a vector for an attacker to circumvent
 filtering for the encapsulated packet even if filtering is correctly
 applied to the encapsulation header. Secondly, the IP header does
 not include a well-behaved identification value unless the source has
 included a fragment header for IPv6 or unless the source permits
 fragmentation for IPv4. These limitations preclude an efficient
 means for routers to detect duplicate packets and packets that have
 been re-ordered within the subnetwork. Additionally, recent studies
 have shown that the arrival of fragments at high data rates can cause
 denial-of-service (DoS) attacks on performance-sensitive networking
 gear, prompting some administrators to configure their equipment to
 drop fragments unconditionally [I-D.taylor-v6ops-fragdrop].

 For IPv4 encapsulation, when fragmentation is permitted the header
 includes a 16-bit Identification field, meaning that at most 2^16
 unique packets with the same (source, destination, protocol)-tuple
 can be active in the network at the same time [RFC6864]. (When
 middleboxes such as Network Address Translators (NATs) re-write the
 Identification field to random values, the number of unique packets
 is even further reduced.) Due to the escalating deployment of high-
 speed links, however, these numbers have become too small by several
 orders of magnitude for high data rate packet sources such as tunnel
 endpoints [RFC4963].

 Furthermore, there are many well-known limitations pertaining to IPv4
 fragmentation and reassembly - even to the point that it has been
 deemed "harmful" in both classic and modern-day studies (see above).
 In particular, IPv4 fragmentation raises issues ranging from minor
 annoyances (e.g., in-the-network router fragmentation [RFC1981]) to
 the potential for major integrity issues (e.g., mis-association of
 the fragments of multiple IP packets during reassembly [RFC4963]).

 As a result of these perceived limitations, a fragmentation-avoiding
 technique for discovering the MTU of the forward path from a source
 to a destination node was devised through the deliberations of the
 Path MTU Discovery Working Group (PMTUDWG) during the late 1980's
 through early 1990's which resulted in the publication of [RFC1191].
 In this negative feedback-based method, the source node provides
 explicit instructions to routers in the path to discard the packet
 and return an ICMP error message if an MTU restriction is
 encountered. However, this approach has several serious shortcomings
 that lead to an overall "brittleness" [RFC2923].

 In particular, site border routers in the Internet have been known to

https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923

Templin Expires January 3, 2014 [Page 5]

Internet-Draft SEAL July 2013

 discard ICMP error messages coming from the outside world. This is
 due in large part to the fact that malicious spoofing of error
 messages in the Internet is trivial since there is no way to
 authenticate the source of the messages [RFC5927]. Furthermore, when
 a source node that requires ICMP error message feedback when a packet
 is dropped due to an MTU restriction does not receive the messages, a
 path MTU-related black hole occurs. This means that the source will
 continue to send packets that are too large and never receive an
 indication from the network that they are being discarded. This
 behavior has been confirmed through documented studies showing clear
 evidence of PMTUD failures for both IPv4 and IPv6 in the Internet
 today [TBIT][WAND][SIGCOMM][RIPE].

 The issues with both IP fragmentation and this "classical" PMTUD
 method are exacerbated further when IP tunneling is used [RFC4459].
 For example, an ingress tunnel endpoint (ITE) may be required to
 forward encapsulated packets into the subnetwork on behalf of
 hundreds, thousands, or even more original sources. If the ITE
 allows IP fragmentation on the encapsulated packets, persistent
 fragmentation could lead to undetected data corruption due to
 Identification field wrapping and/or reassembly congestion at the
 ETE. If the ITE instead uses classical IP PMTUD it must rely on ICMP
 error messages coming from the subnetwork that may be suspect,
 subject to loss due to filtering middleboxes, or insufficiently
 provisioned for translation into error messages to be returned to the
 original sources.

 Although recent works have led to the development of a positive
 feedback-based end-to-end MTU determination scheme [RFC4821], they do
 not excuse tunnels from accounting for the encapsulation overhead
 they add to packets. Moreover, in current practice existing
 tunneling protocols mask the MTU issues by selecting a "lowest common
 denominator" MTU that may be much smaller than necessary for most
 paths and difficult to change at a later date. Therefore, a new
 approach to accommodate tunnels over links with diverse MTUs is
 necessary.

1.2. Approach

 This document concerns subnetworks manifested through a virtual
 topology configured over a connected network routing region and
 bounded by encapsulating border nodes. Example connected network
 routing regions include Mobile Ad hoc Networks (MANETs), enterprise
 networks and the global public Internet itself. Subnetwork border
 nodes forward unicast and multicast packets over the virtual topology
 across multiple IP and/or sub-IP layer forwarding hops that may
 introduce packet duplication and/or traverse links with diverse
 Maximum Transmission Units (MTUs).

https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821

Templin Expires January 3, 2014 [Page 6]

Internet-Draft SEAL July 2013

 This document introduces a Subnetwork Encapsulation and Adaptation
 Layer (SEAL) for tunneling inner network layer protocol packets over
 IP subnetworks that connect Ingress and Egress Tunnel Endpoints
 (ITEs/ETEs) of border nodes. It provides a modular specification
 designed to be tailored to specific associated tunneling protocols.
 (A transport-mode of operation is also possible, but out of scope for
 this document.)

 SEAL provides a mid-layer encapsulation that accommodates links with
 diverse MTUs, and allows routers in the subnetwork to perform
 efficient duplicate packet and packet reordering detection. The
 encapsulation further ensures message origin authentication, packet
 header integrity and anti-replay in environments in which these
 functions are necessary.

 SEAL treats tunnels that traverse the subnetwork as ordinary links
 that must support network layer services. Moreover, SEAL provides
 dynamic mechanisms (including limited segmentation and reassembly) to
 ensure a maximal path MTU over the tunnel. This is in contrast to
 static approaches which avoid MTU issues by selecting a lowest common
 denominator MTU value that may be overly conservative for the vast
 majority of tunnel paths and difficult to change even when larger
 MTUs become available.

1.3. Differences with RFC5320

 This specification of SEAL is descended from an experimental
 independent RFC publication of the same name [RFC5320]. However,
 this specification introduces a number of important differences from
 the earlier publication.

 First, this specification includes a protocol version field in the
 SEAL header whereas [RFC5320] does not, and therefore cannot be
 updated by future revisions. This specification therefore obsoletes
 (i.e., and does not update) [RFC5320].

 Secondly, [RFC5320] forms a 32-bit Identification value by
 concatenating the 16-bit IPv4 Identification field with a 16-bit
 Identification "extension" field in the SEAL header. This means that
 [RFC5320] can only operate over IPv4 networks (since IPv6 headers do
 not include a 16-bit version number) and that the SEAL Identification
 value can be corrupted if the Identification in the outer IPv4 header
 is rewritten. In contrast, this specification includes a 32-bit
 Identification value that is independent of any identification fields
 found in the inner or outer IP headers, and is therefore compatible
 with any inner and outer IP protocol version combinations.

 Additionally, the SEAL segmentation and reassembly procedures defined

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320

Templin Expires January 3, 2014 [Page 7]

Internet-Draft SEAL July 2013

 in [RFC5320] differ significantly from those found in this
 specification. In particular, this specification defines an 8-bit
 Offset field that allows for smaller segment sizes when SEAL
 segmentation is necessary. In contrast, [RFC5320] includes a 3-bit
 Segment field and performs reassembly through concatenation of
 consecutive segments.

 The SEAL header in this specification also includes an optional
 Integrity Check Vector (ICV) that can be used to digitally sign the
 SEAL header and the leading portion of the encapsulated inner packet.
 This allows for a lightweight integrity check and a loose message
 origin authentication capability. The header further includes new
 control bits as well as a link identification and encapsulation level
 field for additional control capabilities.

 Finally, this version of SEAL includes a new messaging protocol known
 as the SEAL Control Message Protocol (SCMP), whereas [RFC5320]
 performs signalling through the use of SEAL-encapsulated ICMP
 messages. The use of SCMP allows SEAL-specific departures from ICMP,
 as well as a control messaging capability that extends to other
 specifications, including Virtual Enterprise Traversal (VET)
 [I-D.templin-intarea-vet].

2. Terminology

 The following terms are defined within the scope of this document:

 subnetwork
 a virtual topology configured over a connected network routing
 region and bounded by encapsulating border nodes.

 IP
 used to generically refer to either Internet Protocol (IP)
 version, i.e., IPv4 or IPv6.

 Ingress Tunnel Endpoint (ITE)
 a virtual interface over which an encapsulating border node (host
 or router) sends encapsulated packets into the subnetwork.

 Egress Tunnel Endpoint (ETE)
 a virtual interface over which an encapsulating border node (host
 or router) receives encapsulated packets from the subnetwork.

 SEAL Path
 a subnetwork path from an ITE to an ETE beginning with an
 underlying link of the ITE as the first hop. Note that, if the
 ITE's interface connection to the underlying link assigns multiple

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320

Templin Expires January 3, 2014 [Page 8]

Internet-Draft SEAL July 2013

 IP addresses, each address represents a separate SEAL path.

 inner packet
 an unencapsulated network layer protocol packet (e.g., IPv4
 [RFC0791], OSI/CLNP [RFC0994], IPv6 [RFC2460], etc.) before any
 outer encapsulations are added. Internet protocol numbers that
 identify inner packets are found in the IANA Internet Protocol
 registry [RFC3232]. SEAL protocol packets that incur an
 additional layer of SEAL encapsulation are also considered inner
 packets.

 outer IP packet
 a packet resulting from adding an outer IP header (and possibly
 other outer headers) to a SEAL-encapsulated inner packet.

 packet-in-error
 the leading portion of an invoking data packet encapsulated in the
 body of an error control message (e.g., an ICMPv4 [RFC0792] error
 message, an ICMPv6 [RFC4443] error message, etc.).

 Packet Too Big (PTB) message
 a control plane message indicating an MTU restriction (e.g., an
 ICMPv6 "Packet Too Big" message [RFC4443], an ICMPv4
 "Fragmentation Needed" message [RFC0792], etc.).

 Don't Fragment (DF) bit
 a bit that indicates whether the packet may be fragmented by the
 network. The DF bit is explicitly included in the IPv4 header
 [RFC0791] and may be set to '0' to allow fragmentation or '1' to
 disallow further in-network fragmentation. The bit is absent from
 the IPv6 header [RFC2460], but implicitly set to '1' becauuse
 fragmentation can occur only at IPv6 sources.

 The following abbreviations correspond to terms used within this
 document and/or elsewhere in common Internetworking nomenclature:

 HLEN - the length of the SEAL header plus outer headers

 ICV - Integrity Check Vector

 MAC - Message Authentication Code

 MTU - Maximum Transmission Unit

 SCMP - the SEAL Control Message Protocol

 SDU - SCMP Destination Unreachable message

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc0994
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires January 3, 2014 [Page 9]

Internet-Draft SEAL July 2013

 SPP - SCMP Parameter Problem message

 SPTB - SCMP Packet Too Big message

 SEAL - Subnetwork Encapsulation and Adaptation Layer

 TE - Tunnel Endpoint (i.e., either ingress or egress)

 VET - Virtual Enterprise Traversal

3. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. When used
 in lower case (e.g., must, must not, etc.), these words MUST NOT be
 interpreted as described in [RFC2119], but are rather interpreted as
 they would be in common English.

4. Applicability Statement

 SEAL was originally motivated by the specific case of subnetwork
 abstraction for Mobile Ad hoc Networks (MANETs), however the domain
 of applicability also extends to subnetwork abstractions over
 enterprise networks, ISP networks, SO/HO networks, the global public
 Internet itself, and any other connected network routing region.

 SEAL provides a network sublayer for encapsulation of an inner
 network layer packet within outer encapsulating headers. SEAL can
 also be used as a sublayer within a transport layer protocol data
 payload, where transport layer encapsulation is typically used for
 Network Address Translator (NAT) traversal as well as operation over
 subnetworks that give preferential treatment to certain "core"
 Internet protocols, e.g., TCP, UDP, etc.. (However, note that TCP
 encapsulation may not be appropriate for all use cases; particularly
 those that require low delay and/or delay variance.) The SEAL header
 is processed in a similar manner as for IPv6 extension headers, i.e.,
 it is not part of the outer IP header but rather allows for the
 creation of an arbitrarily extensible chain of headers in the same
 way that IPv6 does.

 To accommodate MTU diversity, the Ingress Tunnel Endpoint (ITE) may
 need to perform limited segmentation which the Egress Tunnel Endpoint
 (ETE) reassembles. The ETE further acts as a passive observer that
 informs the ITE of any packet size limitations. This allows the ITE
 to return appropriate PMTUD feedback even if the network path between

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires January 3, 2014 [Page 10]

Internet-Draft SEAL July 2013

 the ITE and ETE filters ICMP messages.

 SEAL further provides mechanisms to ensure message origin
 authentication, packet header integrity, and anti-replay. The SEAL
 framework is therefore similar to the IP Security (IPsec)
 Authentication Header (AH) [RFC4301][RFC4302], however it provides
 only minimal hop-by-hop authenticating services while leaving full
 data integrity, authentication and confidentiality services as an
 end-to-end consideration.

 In many aspects, SEAL also very closely resembles the Generic Routing
 Encapsulation (GRE) framework [RFC1701]. SEAL can therefore be
 applied in the same use cases that are traditionally addressed by
 GRE, but goes beyond GRE to also provide additional capabilities
 (e.,g., path MTU accommodation, message origin authentication, etc.)
 as described in this document.

5. SEAL Specification

 The following sections specify the operation of SEAL:

5.1. SEAL Tunnel Model

 SEAL is an encapsulation sublayer used within point-to-point, point-
 to-multipoint, and non-broadcast, multiple access (NBMA) tunnels.
 Each SEAL path is configured over one or more underlying interfaces
 attached to subnetwork links. The SEAL tunnel connects an ITE to one
 or more ETE "neighbors" via encapsulation across an underlying
 subnetwork, where the tunnel neighbor relationship may be either
 unidirectional or bidirectional.

 A unidirectional tunnel neighbor relationship allows the near end ITE
 to send data packets forward to the far end ETE, while the ETE only
 returns control messages when necessary. A bidirectional tunnel
 neighbor relationship is one over which both TEs can exchange both
 data and control messages.

 Implications of the SEAL unidirectional and bidirectional models are
 the same as discussed in [I-D.templin-intarea-vet].

5.2. SEAL Model of Operation

 SEAL-enabled ITEs encapsulate each inner packet in a SEAL header and
 any outer header encapsulations as shown in Figure 1:

https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc1701

Templin Expires January 3, 2014 [Page 11]

Internet-Draft SEAL July 2013

 +--------------------+
 ~ outer IP header ~
 +--------------------+
 ~ other outer hdrs ~
 +--------------------+
 ~ SEAL Header ~
 +--------------------+ +--------------------+
 | | --> | |
 ~ Inner ~ --> ~ Inner ~
 ~ Packet ~ --> ~ Packet ~
 | | --> | |
 +--------------------+ +----------+---------+

 Figure 1: SEAL Encapsulation

 The ITE inserts the SEAL header according to the specific tunneling
 protocol. For simple encapsulation of an inner network layer packet
 within an outer IP header, the ITE inserts the SEAL header following
 the outer IP header and before the inner packet as: IP/SEAL/{inner
 packet}.

 For encapsulations over transports such as UDP, the ITE inserts the
 SEAL header following the outer transport layer header and before the
 inner packet, e.g., as IP/UDP/SEAL/{inner packet}. In that case, the
 UDP header is seen as an "other outer header" as depicted in Figure 1
 and the outer IP and transport layer headers are together seen as the
 outer encapsulation headers.

 SEAL supports both "nested" tunneling and "re-encapsulating"
 tunneling. Nested tunneling occurs when a first tunnel is
 encapsulated within a second tunnel, which may then further be
 encapsulated within additional tunnels. Nested tunneling can be
 useful, and stands in contrast to "recursive" tunneling which is an
 anomalous condition incurred due to misconfiguration or a routing
 loop. Considerations for nested tunneling and avoiding recursive
 tunneling are discussed in Section 4 of [RFC2473].

 Re-encapsulating tunneling occurs when a packet arrives at a first
 ETE, which then acts as an ITE to re-encapsulate and forward the
 packet to a second ETE connected to the same subnetwork. In that
 case each ITE/ETE transition represents a segment of a bridged path
 between the ITE nearest the source and the ETE nearest the
 destination. Considerations for re-encapsulating tunneling are
 discussed in[I-D.templin-ironbis]. Combinations of nested and re-
 encapsulating tunneling are also naturally supported by SEAL.

 The SEAL ITE considers each underlying interface as the ingress
 attachment point to a SEAL path to the ETE. The ITE therefore may

https://datatracker.ietf.org/doc/html/rfc2473#section-4

Templin Expires January 3, 2014 [Page 12]

Internet-Draft SEAL July 2013

 experience different path MTUs on different SEAL paths.

 Finally, the SEAL ITE ensures that the inner network layer protocol
 will see a minimum MTU of 1500 bytes over each SEAL path regardless
 of the outer network layer protocol version, i.e., even if a small
 amount of segmentation and reassembly are necessary. This is to
 avoid path MTU "black holes" for the minimum MTU configured by the
 vast majority of links in the Internet. Note that in some scenarios,
 however, reassembly may place a heavy burden on the ETE. In that
 case, the ITE should avoid invoking segmentation and instead report
 an MTU smaller than 1500 bytes to the original source.

5.3. SEAL Header and Trailer Format

 The SEAL header is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |VER|C|A|I|V|R|M| Offset | NEXTHDR | LINK_ID |LEVEL|
 +-+
 | Identification (optional) |
 +-+
 | Integrity Check Vector (optional) |
 +-+ ...

 Figure 2: SEAL Header Format

 VER (2)
 a 2-bit version field. This document specifies Version 0 of the
 SEAL protocol, i.e., the VER field encodes the value 0.

 C (1)
 the "Control/Data" bit. Set to 1 by the ITE in SEAL Control
 Message Protocol (SCMP) control messages, and set to 0 in ordinary
 data packets.

 A (1)
 the "Acknowledgement Requested" bit. Set to 1 by the ITE in SEAL
 data packets for which it wishes to receive an explicit
 acknowledgement from the ETE.

 I (1)
 the "Identification Included" bit.

Templin Expires January 3, 2014 [Page 13]

Internet-Draft SEAL July 2013

 V (1)
 the "Integrity Check Vector included" bit.

 R (1)
 the "Redirects Permitted" bit when used by VET (see:
 [I-D.templin-intarea-vet]); reserved for future use in other
 contexts.

 M (1) the "More Segments" bit. Set to 1 in a non-final segment and
 set to 0 in the final segment of the SEAL packet.

 Offset (8) an 8-bit Offset field. Set to 0 in the first segment of
 a segmented SEAL packet. Set to an integral number of 256 byte
 blocks in subsequent segments (e.g., an Offset of 4 indicates a
 block that begins at the 1024th byte in the packet).

 NEXTHDR (8) an 8-bit field that encodes the next header Internet
 Protocol number the same as for the IPv4 protocol and IPv6 next
 header fields.

 LINK_ID (5)
 a 5-bit link identification value, set to a unique value by the
 ITE for each SEAL path over which it will send encapsulated
 packets to the ETE (up to 32 SEAL paths per ETE are therefore
 supported). Note that, if the ITE's interface connection to the
 underlying link assigns multiple IP addresses, each address
 represents a separate SEAL path that must be assigned a separate
 LINK_ID.

 LEVEL (3)
 a 3-bit nesting level; use to limit the number of tunnel nesting
 levels. Set to an integer value up to 7 in the innermost SEAL
 encapsulation, and decremented by 1 for each successive additional
 SEAL encapsulation nesting level. Up to 8 levels of nesting are
 therefore supported.

 Identification (32)
 an optional 32-bit per-packet identification field; present when
 I==1. Set to a 32-bit value (beginning with 0) that is
 monotonically-incremented for each SEAL packet transmitted to this
 ETE.

 Integrity Check Vector (ICV) (variable)
 an optional variable-length integrity check vector field; present
 when V==1.

Templin Expires January 3, 2014 [Page 14]

Internet-Draft SEAL July 2013

5.4. ITE Specification

5.4.1. Tunnel Interface MTU

 The tunnel interface must present a constant MTU value to the inner
 network layer as the size for admission of inner packets into the
 interface. Since NBMA tunnel virtual interfaces may support a large
 set of SEAL paths that accept widely varying maximum packet sizes,
 however, a number of factors should be taken into consideration when
 selecting a tunnel interface MTU.

 Due to the ubiquitous deployment of standard Ethernet and similar
 networking gear, the nominal Internet cell size has become 1500
 bytes; this is the de facto size that end systems have come to expect
 will either be delivered by the network without loss due to an MTU
 restriction on the path or a suitable ICMP Packet Too Big (PTB)
 message returned. When large packets sent by end systems incur
 additional encapsulation at an ITE, however, they may be dropped
 silently within the tunnel since the network may not always deliver
 the necessary PTBs [RFC2923]. The ITE SHOULD therefore set a tunnel
 interface MTU of at least 1500 bytes.

 The inner network layer protocol consults the tunnel interface MTU
 when admitting a packet into the interface. For non-SEAL inner IPv4
 packets with the IPv4 Don't Fragment (DF) bit cleared (i.e, DF==0),
 if the packet is larger than the tunnel interface MTU the inner IPv4
 layer uses IPv4 fragmentation to break the packet into fragments no
 larger than the tunnel interface MTU. The ITE then admits each
 fragment into the interface as an independent packet.

 For all other inner packets, the inner network layer admits the
 packet if it is no larger than the tunnel interface MTU; otherwise,
 it drops the packet and sends a PTB error message to the source with
 the MTU value set to the tunnel interface MTU. The message contains
 as much of the invoking packet as possible without the entire message
 exceeding the network layer minimum MTU size.

 The ITE can alternatively set an indefinite MTU on the tunnel
 interface such that all inner packets are admitted into the interface
 regardless of their size. For ITEs that host applications that use
 the tunnel interface directly, this option must be carefully
 coordinated with protocol stack upper layers since some upper layer
 protocols (e.g., TCP) derive their packet sizing parameters from the
 MTU of the outgoing interface and as such may select too large an
 initial size. This is not a problem for upper layers that use
 conservative initial maximum segment size estimates and/or when the
 tunnel interface can reduce the upper layer's maximum segment size,
 e.g., by reducing the size advertised in the MSS option of outgoing

https://datatracker.ietf.org/doc/html/rfc2923

Templin Expires January 3, 2014 [Page 15]

Internet-Draft SEAL July 2013

 TCP messages (sometimes known as "MSS clamping").

 In light of the above considerations, the ITE SHOULD configure an
 indefinite MTU on tunnel *router* interfaces so that SEAL performs
 all subnetwork adaptation from within the interface as specified in

Section 5.4.3. The ITE can instead set a smaller MTU on tunnel
 host interfaces, e.g., the maximum of 1500 bytes and the smallest
 MTU among all of the underlying links minus the size of the
 encapsulation headers.

5.4.2. Tunnel Neighbor Soft State

 The tunnel virtual interface maintains a number of soft state
 variables for each ETE and for each SEAL path.

 When per-packet identification is required, the ITE maintains a per
 ETE window of Identification values for the packets it has recently
 sent to this ETE. The ITE then sets a variable "USE_ID" to TRUE, and
 includes an Identification in each packet it sends to this ETE;
 otherwise, it sets USE_ID to FALSE.

 When message origin authentication and integrity checking is
 required, the ITE also includes an ICV in the packets it sends to the
 ETE. The ICV format is shown in Figure 3:

 +-+
 |F|Key|Algorithm| Message Authentication Code (MAC) |
 +-+ ...

 Figure 3: Integrity Check Vector (ICV) Format

 As shown in the figure, the ICV begins with a 1-octet control field
 with a 1-bit (F)lag, a 2-bit Key identifier and a 5-bit Algorithm
 identifier. The control octet is followed by a variable-length
 Message Authentication Code (MAC). The ITE maintains a per ETE
 algorithm and secret key to calculate the MAC in each packet it will
 send to this ETE. (By default, the ITE sets the F bit and Algorithm
 fields to 0 to indicate use of the HMAC-SHA-1 algorithm with a 160
 bit shared secret key to calculate an 80 bit MAC per [RFC2104] over
 the leading 128 bytes of the packet. Other values for F and
 Algorithm are out of scope.) The ITE then sets a variable "USE_ICV"
 to TRUE, and includes an ICV in each packet it sends to this ETE;
 otherwise, it sets USE_ICV to FALSE.

 For each SEAL path, the ITE must also account for encapsulation
 header lengths. The ITE therefore maintains the per SEAL path
 constant values "SHLEN" set to the length of the SEAL header, "THLEN"
 set to the length of the outer encapsulating transport layer headers

https://datatracker.ietf.org/doc/html/rfc2104

Templin Expires January 3, 2014 [Page 16]

Internet-Draft SEAL July 2013

 (or 0 if outer transport layer encapsulation is not used), "IHLEN"
 set to the length of the outer IP layer header, and "HLEN" set to
 (SHLEN+THLEN+IHLEN). (The ITE must include the length of the
 uncompressed headers even if header compression is enabled when
 calculating these lengths.) In addition, the ITE maintains a per
 SEAL path variable "MAXMTU" initialized to the maximum of 1500 bytes
 and the MTU of the underlying link minus HLEN.

 The ITE further sets a variable 'MINMTU' to the minimum MTU for the
 SEAL path over which encapsulated packets will travel. For IPv6
 paths, the ITE sets MINMTU=1280 per [RFC2460]. For IPv4 paths, the
 ITE sets MINMTU=576 based on practical interpretation of [RFC1122]
 even though the theoretical MINMTU for IPv4 is only 68 bytes
 [RFC0791].

 The ITE can also set MINMTU to a larger value if there is reason to
 believe that the minimum path MTU is larger, or to a smaller value if
 there is reason to believe the MTU is smaller, e.g., if there may be
 additional encapsulations on the path. If this value proves too
 large, the ITE will receive PTB message feedback either from the ETE
 or from a router on the path and will be able to reduce its MINMTU to
 a smaller value.

 The ITE may instead maintain the packet sizing variables and
 constants as per ETE (rather than per SEAL path) values. In that
 case, the values reflect the lowest-common-denominator size across
 all of the SEAL paths associated with this ETE.

5.4.3. SEAL Layer Pre-Processing

 The SEAL layer is logically positioned between the inner and outer
 network protocol layers, where the inner layer is seen as the (true)
 network layer and the outer layer is seen as the (virtual) data link
 layer. Each packet to be processed by the SEAL layer is either
 admitted into the tunnel interface by the inner network layer
 protocol as described in Section 5.4.1 or is undergoing re-
 encapsulation from within the tunnel interface. The SEAL layer sees
 the former class of packets as inner packets that include inner
 network and transport layer headers, and sees the latter class of
 packets as transitional SEAL packets that include the outer and SEAL
 layer headers that were inserted by the previous hop SEAL ITE. For
 these transitional packets, the SEAL layer re-encapsulates the packet
 with new outer and SEAL layer headers when it forwards the packet to
 the next hop SEAL ITE.

 We now discuss the SEAL layer pre-processing actions for these two
 classes of packets.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0791

Templin Expires January 3, 2014 [Page 17]

Internet-Draft SEAL July 2013

5.4.3.1. Inner Packet Pre-Processing

 For each inner packet admitted into the tunnel interface, if the
 packet is itself a SEAL packet (i.e., one with the port number for
 SEAL in the transport layer header or one with the protocol number
 for SEAL in the IP layer header) and the LEVEL field of the SEAL
 header contains the value 0, the ITE silently discards the packet.

 Otherwise, for non-SEAL IPv4 inner packets with DF==0 in the IP
 header and IPv6 inner packets with a fragment header and with (MF=0;
 Offset=0), if the packet is larger than (MINMTU-HLEN) the ITE uses IP
 fragmentation to fragment the packet into N roughly equal-length
 pieces, where N is minimized and each fragment is significantly
 smaller than (MINMTU-HLEN) to allow for additional encapsulations in
 the path. The ITE then submits each fragment for SEAL encapsulation
 as specified in Section 5.4.4.

 For all other inner packets, if the packet is no larger than MAXMTU
 for the corresponding SEAL path the ITE submits it for SEAL
 encapsulation as specified in Section 5.4.4. Otherwise, the ITE
 drops the packet and sends an ordinary PTB message appropriate to the
 inner protocol version (subject to rate limiting) with the MTU field
 set to MAXMTU. (For IPv4 SEAL packets with DF==0, the ITE should set
 DF=1 and re-calculate the IPv4 header checksum before generating the
 PTB message in order to avoid bogon filters.) After sending the PTB
 message, the ITE discards the inner packet.

5.4.3.2. Transitional SEAL Packet Pre-Processing

 For each transitional packet that is to be processed by the SEAL
 layer from within the tunnel interface, the ITE sets aside the SEAL
 encapsulation headers that were received from the previous hop.
 Next, if the packet is no larger than MAXMTU for the next hop SEAL
 path the ITE submits it for SEAL encapsulation as specified in

Section 5.4.4. Otherwise, the ITE drops the packet and sends an SCMP
 Packet Too Big (SPTB) message to the previous hop subject to rate
 limiting (see: Section 5.6.1.1) with the MTU field set to MAXMTU.
 After sending the SPTB message, the ITE discards the packet.

5.4.4. SEAL Encapsulation and Segmentation

 For each inner packet/fragment submitted for SEAL encapsulation, the
 ITE next encapsulates the packet in a SEAL header formatted as
 specified in Section 5.3. The SEAL header includes an Identification
 field when USE_ID is TRUE, followed by an ICV field when USE_ICV is
 TRUE.

 The ITE next sets C=0 in the SEAL header. The ITE also sets A=1 if

Templin Expires January 3, 2014 [Page 18]

Internet-Draft SEAL July 2013

 ETE reachability determination is necessary (see: Section 5.4.6) or
 for stateful MTU determination (see Section 5.4.9). Otherwise, the
 ITE sets A=0.

 The ITE then sets LINK_ID to the value assigned to the underlying
 SEAL path, and sets NEXTHDR to the protocol number corresponding to
 the address family of the encapsulated inner packet. For example,
 the ITE sets NEXTHDR to the value '4' for encapsulated IPv4 packets
 [RFC2003], '41' for encapsulated IPv6 packets [RFC2473][RFC4213],
 '80' for encapsulated OSI/CLNP packets [RFC1070], etc.

 Next, if the inner packet is not itself a SEAL packet the ITE sets
 LEVEL to an integer value between 0 and 7 as a specification of the
 number of additional layers of nested SEAL encapsulations permitted.
 If the inner packet is a SEAL packet that is undergoing nested
 encapsulation, the ITE instead sets LEVEL to the value that appears
 in the inner packet's SEAL header minus 1. If the inner packet is
 undergoing SEAL re-encapsulation, the ITE instead copies the LEVEL
 value from the SEAL header of the packet to be re-encapsulated.

 Next, if the inner packet is no larger than (MINMTU-HLEN) or larger
 than 1500, the ITE sets (M=0; Offset=0). Otherwise, if the path MTU
 is indeterminant or insufficient (see Section 5.4.6) the ITE breaks
 the inner packet into N non-overlapping segments (where N is
 minimized and each segment is significantly smaller than (MINMTU-
 HLEN) to allow for additional encapsulations in the path). In this
 process, the ITE MUST ensure that each segment except the final
 segment contains an integral number of 256 byte blocks, and that the
 inner packet's network and transport layer headers are included in
 the first segment. The ITE then appends a clone of the SEAL header
 from the first segment onto the head of each additional segment. The
 ITE MUST also include an Identification field and set USE_ID=TRUE for
 each segment. The ITE then sets (M=1; Offset=0) in the first
 segment, sets (M=0/1; Offset=O(1)) in the second segment, sets
 (M=0/1; Offset=O(2)) in the third segment (if needed), etc., then
 finally sets (M=0; Offset=O(n)) in the final segment (where O(i) is
 the number of 256 byte blocks that preceded this segment).

 When USE_ID is FALSE, the ITE next sets I=0. Otherwise, the ITE sets
 I=1 and writes a monotonically-incrementing integer value for this
 ETE in the Identification field beginning with 0 in the first packet
 transmitted. (For SEAL packets that have been split into multiple
 pieces, the ITE writes the same Identification value in each piece.)
 The monotonically-incrementing requirement is to satisfy ETEs that
 use this value for anti-replay purposes. The value is incremented
 modulo 2^32, i.e., it wraps back to 0 when the previous value was
 (2^32 - 1).

https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc1070

Templin Expires January 3, 2014 [Page 19]

Internet-Draft SEAL July 2013

 When USE_ICV is FALSE, the ITE next sets V=0. Otherwise, the ITE
 sets V=1, includes an ICV and calculates the MAC using HMAC-SHA-1
 with a 160 bit secret key and 80 bit MAC field. Beginning with the
 SEAL header, the ITE sets the ICV field to 0, calculates the MAC over
 the leading 128 bytes of the packet (or up to the end of the packet
 if there are fewer than 128 bytes) and places the result in the MAC
 field. (For SEAL packets that have been split into multiple pieces,
 each piece calculates its own MAC.) The ITE then writes the value 0
 in the F flag and 0x00 in the Algorithm field of the ICV control
 octet (other values for these fields, and other MAC calculation
 disciplines, are outside the scope of this document and may be
 specified in future documents.)

 The ITE then adds the outer encapsulating headers as specified in
Section 5.4.5.

5.4.5. Outer Encapsulation

 Following SEAL encapsulation, the ITE next encapsulates each segment
 in the requisite outer transport (when necessary) and IP layer
 headers. When a transport layer header such as UDP or TCP is
 included, the ITE writes the port number for SEAL in the transport
 destination service port field.

 When UDP encapsulation is used, the ITE sets the UDP checksum field
 to zero for IPv4 packets and also sets the UDP checksum field to zero
 for IPv6 packets even though IPv6 generally requires UDP checksums.
 Further considerations for setting the UDP checksum field for IPv6
 packets are discussed in [RFC6935][RFC6936].

 The ITE then sets the outer IP layer headers the same as specified
 for ordinary IP encapsulation (e.g., [RFC1070][RFC2003], [RFC2473],
 [RFC4213], etc.) except that for ordinary SEAL packets the ITE copies
 the "TTL/Hop Limit", "Type of Service/Traffic Class" and "Congestion
 Experienced" values in the inner network layer header into the
 corresponding fields in the outer IP header. For transitional SEAL
 packets undergoing re-encapsulation, the ITE instead copies the "TTL/
 Hop Limit", "Type of Service/Traffic Class" and "Congestion
 Experienced" values in the outer IP header of the received packet
 into the corresponding fields in the outer IP header of the packet to
 be forwarded (i.e., the values are transferred between outer headers
 and *not* copied from the inner network layer header).

 The ITE also sets the IP protocol number to the appropriate value for
 the first protocol layer within the encapsulation (e.g., UDP, TCP,
 SEAL, etc.). When IPv6 is used as the outer IP protocol, the ITE
 then sets the flow label value in the outer IPv6 header the same as
 described in [RFC6438]. When IPv4 is used as the outer IP protocol,

https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc6438

Templin Expires January 3, 2014 [Page 20]

Internet-Draft SEAL July 2013

 the ITE instead sets DF=0 in the IPv4 header to allow the packet to
 be fragmented if it encounters a restricting link (for IPv6 SEAL
 paths, the DF bit is implicitly set to 1).

 The ITE finally sends each outer packet via the underlying link
 corresponding to LINK_ID.

5.4.6. Path Probing and ETE Reachability Verification

 All SEAL data packets sent by the ITE are considered implicit probes
 to test for in-the-network fragmentation, and explicit probe packets
 can be constructed to probe the path MTU. These probes will elicit
 an SCMP message from the ETE if it needs to send an acknowledgement
 and/or report an error condition. The probe packets may also be
 dropped by either the ETE or a router on the path, which may or may
 not result in an ICMP message being returned to the ITE.

 To generate an explicit probe packet, the ITE creates a packet buffer
 beginning with the same outer headers, SEAL header and inner network
 layer header that would appear in an ordinary data packet, then pads
 the packet with random data. The ITE then writes the value '0' in
 the inner network layer TTL (for IPv4) or Hop Limit (for IPv6) field,
 sets (A=1; C=0) in the SEAL header of the probe packet and sets the
 NEXTHDR field to the inner network layer protocol type. The ITE also
 sets DF=1 in the outer IP header when IPv4 is used.

 The ITE can use explicit probing, e.g., to determine whether SEAL
 segmentation is still necessary (see Section 5.4.4). If a probe size
 of (1500+HLEN) bytes succeeds, the ITE can then be assured that the
 path MTU is large enough so that the segmentation/reassembly process
 can be suspended. This probing method parallels Packetization Layer
 Path MTU Discovery [RFC4821].

 The ITE processes ICMP messages as specified in Section 5.4.7.

 The ITE processes SCMP messages as specified in Section 5.6.2.

5.4.7. Processing ICMP Messages

 When the ITE sends SEAL packets, it may receive ICMP error messages
 [RFC0792][RFC4443] from an ordinary router within the subnetwork.
 Each ICMP message includes an outer IP header, followed by an ICMP
 header, followed by a portion of the SEAL data packet that generated
 the error (also known as the "packet-in-error") beginning with the
 outer IP header.

 The ITE should process ICMPv4 Protocol Unreachable messages and
 ICMPv6 Parameter Problem messages with Code "Unrecognized Next Header

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires January 3, 2014 [Page 21]

Internet-Draft SEAL July 2013

 type encountered" as a hint that the IP destination address does not
 implement SEAL. The ITE can optionally ignore ICMP messages that do
 not include sufficient information in the packet-in-error, or process
 them as a hint that the SEAL path may be failing.

 For other ICMP messages, the ITE should use any outer header
 information available as a first-pass authentication filter (e.g., to
 determine if the source of the message is within the same
 administrative domain as the ITE) and discards the message if first
 pass filtering fails.

 Next, the ITE examines the packet-in-error beginning with the SEAL
 header. If the value in the Identification field (if present) is not
 within the window of packets the ITE has recently sent to this ETE,
 or if the MAC value in the SEAL header ICV field (if present) is
 incorrect, the ITE discards the message.

 Next, if the received ICMP message is a PTB the ITE sets the
 temporary variable "PMTU" for this SEAL path to the MTU value in the
 PTB message. If PMTU==0, the ITE consults a plateau table (e.g., as
 described in [RFC1191]) to determine PMTU based on the length field
 in the outer IP header of the packet-in-error. For example, if the
 ITE receives a PTB message with MTU==0 and length 4KB, it can set
 PMTU=2KB. If the ITE subsequently receives a PTB message with MTU==0
 and length 2KB, it can set PMTU=1792, etc. to a minimum value of
 PMTU=(1500+HLEN). If the ITE is performing stateful MTU
 determination for this SEAL path (see Section 5.4.9), the ITE next
 sets MAXMTU=MAX((PMTU-HLEN), 1500).

 If the ICMP message was not discarded, the ITE then transcribes it
 into a message to return to the previous hop. If the inner packet
 was a SEAL data packet, the ITE transcribes the ICMP message into an
 SCMP message. Otherwise, the ITE transcribes the ICMP message into a
 message appropriate for the inner protocol version.

 To transcribe the message, the ITE extracts the inner packet from
 within the ICMP message packet-in-error field and uses it to generate
 a new message corresponding to the type of the received ICMP message.
 For SCMP messages, the ITE generates the message the same as
 described for ETE generation of SCMP messages in Section 5.6.1. For
 (S)PTB messages, the ITE writes (PMTU-HLEN) in the MTU field.

 The ITE finally forwards the transcribed message to the previous hop
 toward the inner source address.

https://datatracker.ietf.org/doc/html/rfc1191

Templin Expires January 3, 2014 [Page 22]

Internet-Draft SEAL July 2013

5.4.8. IPv4 Middlebox Reassembly Testing

 The ITE can perform a qualification exchange to ensure that the
 subnetwork correctly delivers fragments to the ETE. This procedure
 can be used, e.g., to determine whether there are middleboxes on the
 path that violate the [RFC1812], Section 5.2.6 requirement that: "A
 router MUST NOT reassemble any datagram before forwarding it".

 The ITE should use knowledge of its topological arrangement as an aid
 in determining when middlebox reassembly testing is necessary. For
 example, if the ITE is aware that the ETE is located somewhere in the
 public Internet, middlebox reassembly testing should not be
 necessary. If the ITE is aware that the ETE is located behind a NAT
 or a firewall, however, then reassembly testing can be used to detect
 middleboxes that do not conform to specifications.

 The ITE can perform a middlebox reassembly test by selecting a data
 packet to be used as a probe. While performing the test with real
 data packets, the ITE should select only inner packets that are no
 larger than (1500-HLEN) bytes for testing purposes since the most an
 ordinary node can be expected to reassemble is 1500 bytes. The ITE
 can also construct an explicit probe packet instead of using ordinary
 SEAL data packets.

 To generate an explicit probe packet, the ITE creates a packet buffer
 beginning with the same outer headers, SEAL header and inner network
 layer header that would appear in an ordinary data packet, then pads
 the packet with random data to a length that is at least 128 bytes
 but no longer than (1500-HLEN) bytes. The ITE then writes the value
 '0' in the inner network layer TTL (for IPv4) or Hop Limit (for IPv6)
 field.

 The ITE then sets C=0 in the SEAL header of the probe packet and sets
 the NEXTHDR field to the inner network layer protocol type. (The ITE
 may also set A=1 if it requires a positive acknowledgement;
 otherwise, it sets A=0.) Next, the ITE sets LINK_ID and LEVEL to the
 appropriate values for this SEAL path, sets Identification and I=1
 (when USE_ID is TRUE), then finally calculates the ICV and sets V=1
 (when USE_ICV is TRUE).

 The ITE then encapsulates the probe packet in the appropriate outer
 headers, splits it into two outer IP fragments, then sends both
 fragments over the same SEAL path.

 The ITE should send a series of probe packets (e.g., 3-5 probes with
 1sec intervals between tests) instead of a single isolated probe in
 case of packet loss. If the ETE returns an SCMP PTB message with MTU
 != 0, then the SEAL path correctly supports fragmentation; otherwise,

https://datatracker.ietf.org/doc/html/rfc1812#section-5.2.6

Templin Expires January 3, 2014 [Page 23]

Internet-Draft SEAL July 2013

 the ITE enables stateful MTU determination for this SEAL path as
 specified in Section 5.4.9.

 (Examples of middleboxes that may perform reassembly include stateful
 NATs and firewalls. Such devices could still allow for stateless MTU
 determination if they gather the fragments of a fragmented IPv4 SEAL
 data packet for packet analysis purposes but then forward the
 fragments on to the final destination rather than forwarding the
 reassembled packet.)

5.4.9. Stateful MTU Determination

 SEAL supports a stateless MTU determination capability, however the
 ITE may in some instances wish to impose a stateful MTU limit on a
 particular SEAL path. For example, when the ETE is situated behind a
 middlebox that performs IPv4 reassembly (see: Section 5.4.8) it is
 imperative that fragmentation be avoided. In other instances (e.g.,
 when the SEAL path includes performance-constrained links), the ITE
 may deem it necessary to cache a conservative static MTU in order to
 avoid sending large packets that would only be dropped due to an MTU
 restriction somewhere on the path.

 To determine a static MTU value, the ITE sends a series of probe
 packets of various sizes to the ETE with A=1 in the SEAL header and
 DF=1 in the outer IP header. The ITE then caches the size 'S' of the
 largest packet for which it receives a probe reply from the ETE by
 setting MAXMTU=MAX((S-HLEN), 1500) for this SEAL path.

 For example, the ITE could send probe packets of 4KB, followed by
 2KB, followed by 1792 bytes, etc. While probing, the ITE processes
 any ICMP PTB message it receives as a potential indication of probe
 failure then discards the message.

5.4.10. Detecting Path MTU Changes

 When stateful MTU determination is used, the ITE SHOULD periodically
 reset MAXMTU and/or re-probe the path to determine whether MAXMTU has
 increased. If the path still has a too-small MTU, the ITE will
 receive a PTB message that reports a smaller size.

5.5. ETE Specification

5.5.1. Reassembly Buffer Requirements

 For IPv6, the ETE configures a minimum reassembly buffer size of
 (1500 + HLEN) bytes for the reassembly of outer IPv6 packets, i.e.,
 even though the true minimum reassembly size for IPv6 is only 1500
 bytes [RFC2460]. For IPv4, the ETE also configures a minimum

https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires January 3, 2014 [Page 24]

Internet-Draft SEAL July 2013

 reassembly buffer size of (1500 + HLEN) bytes for the reassembly of
 outer IPv4 packets, i.e., even though the true minimum reassembly
 size for IPv4 is only 576 bytes [RFC1122].

 In addition to this outer reassembly buffer requirement, the ETE
 further configures a minimum SEAL reassembly buffer size of (1500 +
 HLEN) bytes for the reassembly of segmented SEAL packets (see:

Section 5.5.4).

 Note that the value "HLEN" may be variable and would typically range
 from a few bytes to a few tens of bytes. It is therefore RECOMMENDED
 that the ETE configure minmum IP/SEAL reassembly buffer sizes of 2048
 bytes (2KB).

5.5.2. Tunnel Neighbor Soft State

 When message origin authentication and integrity checking is
 required, the ETE maintains a per-ITE MAC calculation algorithm and a
 symmetric secret key to verify the MAC. When per-packet
 identification is required, the ETE also maintains a window of
 Identification values for the packets it has recently received from
 this ITE.

 When the tunnel neighbor relationship is bidirectional, the ETE
 further maintains a per SEAL path mapping of outer IP and transport
 layer addresses to the LINK_ID that appears in packets received from
 the ITE.

5.5.3. IP-Layer Reassembly

 The ETE reassembles fragmented IP packets that are explcitly
 addressed to itself. For IP fragments that are received via a SEAL
 tunnel, the ETE SHOULD maintain conservative reassembly cache high-
 and low-water marks. When the size of the reassembly cache exceeds
 this high-water mark, the ETE SHOULD actively discard stale
 incomplete reassemblies (e.g., using an Active Queue Management (AQM)
 strategy) until the size falls below the low-water mark. The ETE
 SHOULD also actively discard any pending reassemblies that clearly
 have no opportunity for completion, e.g., when a considerable number
 of new fragments have arrived before a fragment that completes a
 pending reassembly arrives.

 The ETE processes non-SEAL IP packets as specified in the normative
 references, i.e., it performs any necessary IP reassembly then
 discards the packet if it is larger than the reassembly buffer size
 or delivers the (fully-reassembled) packet to the appropriate upper
 layer protocol module.

https://datatracker.ietf.org/doc/html/rfc1122

Templin Expires January 3, 2014 [Page 25]

Internet-Draft SEAL July 2013

 For SEAL packets, the ETE performs any necessary IP reassembly then
 submits the packet for SEAL decapsulation as specified in Section

5.5.4. (Note that if the packet is larger than the reassembly buffer
 size, the ETE still examines the leading portion of the (partially)
 reassembled packet during decapsulation.)

5.5.4. Decapsulation, SEAL-Layer Reassembly, and Re-Encapsulation

 For each SEAL packet accepted for decapsulation, when I==1 the ETE
 first examines the Identification field. If the Identification is
 not within the window of acceptable values for this ITE, the ETE
 silently discards the packet.

 Next, if V==1 the ETE SHOULD verify the MAC value (with the MAC field
 itself reset to 0) and silently discard the packet if the value is
 incorrect.

 Next, if the packet arrived as multiple IP fragments, the ETE sends
 an SPTB message back to the ITE with MTU set to the size of the
 largest fragment received minus HLEN (see: Section 5.6.1.1).

 Next, if the packet arrived as multiple IP fragments and the inner
 packet is larger than 1500 bytes, the ETE silently discards the
 packet; otherwise, it continues to process the packet.

 Next, if there is an incorrect value in a SEAL header field (e.g., an
 incorrect "VER" field value), the ETE discards the packet. If the
 SEAL header has C==0, the ETE also returns an SCMP "Parameter
 Problem" (SPP) message (see Section 5.6.1.2).

 Next, if the SEAL header has C==1, the ETE processes the packet as an
 SCMP packet as specified in Section 5.6.2. Otherwise, the ETE
 continues to process the packet as a SEAL data packet.

 Next, if the SEAL header has (M==1 || Offset!=0) the ETE checks to
 see if the other segments of this already-segmented SEAL packet have
 arrived, i.e., by looking for additional segments that have the same
 outer IP source address, destination address, source transport port
 number (if present) and SEAL Identification value. If the other
 segments have already arrived, the ETE discards the SEAL header and
 other outer headers from the non-initial segments and appends them
 onto the end of the first segment according to their offset value.
 Otherwise, the ETE caches the segment for at most 60 seconds while
 awaiting the arrival of its partners. During this process, the ETE
 discards any segments that are overlapping with respect to segments
 that have already been received, and also discards any segments that
 have M==1 in the SEAL header but do not contain an integral number of
 256 byte blocks. The ETE further SHOULD manage the SEAL reassembly

Templin Expires January 3, 2014 [Page 26]

Internet-Draft SEAL July 2013

 cache the same as described for the IP-Layer Reassembly cache in
Section 5.5.3, i.e., it SHOULD perform an early discard for any

 pending reassemblies that have low probability of completion.

 Next, if the SEAL header in the (reassembled) packet has A==1, the
 ETE sends an SPTB message back to the ITE with MTU=0 (see: Section

5.6.1.1).

 Finally, the ETE discards the outer headers and processes the inner
 packet according to the header type indicated in the SEAL NEXTHDR
 field. If the inner (TTL / Hop Limit) field encodes the value 0, the
 ETE silently discards the packet. Otherwise, if the next hop toward
 the inner destination address is via a different interface than the
 SEAL packet arrived on, the ETE discards the SEAL header and delivers
 the inner packet either to the local host or to the next hop
 interface if the packet is not destined to the local host.

 If the next hop is on the same interface the SEAL packet arrived on,
 however, the ETE submits the packet for SEAL re-encapsulation
 beginning with the specification in Section 5.4.3 above and without
 decrementing the value in the inner (TTL / Hop Limit) field. In this
 process, the packet remains within the tunnel (i.e., it does not exit
 and then re-enter the tunnel); hence, the packet is not discarded if
 the LEVEL field in the SEAL header contains the value 0.

5.6. The SEAL Control Message Protocol (SCMP)

 SEAL provides a companion SEAL Control Message Protocol (SCMP) that
 uses the same message types and formats as for the Internet Control
 Message Protocol for IPv6 (ICMPv6) [RFC4443]. As for ICMPv6, each
 SCMP message includes a 32-bit header and a variable-length body.
 The ITE encapsulates the SCMP message in a SEAL header and outer
 headers as shown in Figure 4:

https://datatracker.ietf.org/doc/html/rfc4443

Templin Expires January 3, 2014 [Page 27]

Internet-Draft SEAL July 2013

 +--------------------+
 ~ outer IP header ~
 +--------------------+
 ~ other outer hdrs ~
 +--------------------+
 ~ SEAL Header ~
 +--------------------+ +--------------------+
 | SCMP message header| --> | SCMP message header|
 +--------------------+ +--------------------+
 | | --> | |
 ~ SCMP message body ~ --> ~ SCMP message body ~
 | | --> | |
 +--------------------+ +--------------------+

 SCMP Message SCMP Packet
 before encapsulation after encapsulation

 Figure 4: SCMP Message Encapsulation

 The following sections specify the generation, processing and
 relaying of SCMP messages.

5.6.1. Generating SCMP Error Messages

 ETEs generate SCMP error messages in response to receiving certain
 SEAL data packets using the format shown in Figure 5:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Type-Specific Data |
 +-+
 | As much of the invoking SEAL data packet as possible |
 ~ (beginning with the SEAL header) without the SCMP ~
 | packet exceeding MINMTU bytes (*) |

 (*) also known as the "packet-in-error"

 Figure 5: SCMP Error Message Format

 The error message includes the 32-bit SCMP message header, followed
 by a 32-bit Type-Specific Data field, followed by the leading portion
 of the invoking SEAL data packet beginning with the SEAL header as
 the "packet-in-error". The packet-in-error includes as much of the
 invoking packet as possible extending to a length that would not
 cause the entire SCMP packet following outer encapsulation to exceed

Templin Expires January 3, 2014 [Page 28]

Internet-Draft SEAL July 2013

 MINMTU bytes.

 When the ETE processes a SEAL data packet for which the
 Identification and ICV values are correct but an error must be
 returned, it prepares an SCMP error message as shown in Figure 5.
 The ETE sets the Type and Code fields to the same values that would
 appear in the corresponding ICMPv6 message [RFC4443], but calculates
 the Checksum beginning with the SCMP message header using the
 algorithm specified for ICMPv4 in [RFC0792].

 The ETE next encapsulates the SCMP message in the requisite SEAL and
 outer headers as shown in Figure 4. During encapsulation, the ETE
 sets the outer destination address/port numbers of the SCMP packet to
 the values associated with the ITE and sets the outer source address/
 port numbers to its own outer address/port numbers.

 The ETE then sets (C=1; A=0; M=0; Offset=0) in the SEAL header, then
 sets I, V, NEXTHDR and LEVEL to the same values that appeared in the
 SEAL header of the data packet. If the neighbor relationship between
 the ITE and ETE is unidirectional, the ETE next sets the LINK_ID
 field to the same value that appeared in the SEAL header of the data
 packet. Otherwise, the ETE sets the LINK_ID field to the value it
 would use in sending a SEAL packet to this ITE.

 When I==1, the ETE next sets the Identification field to an
 appropriate value for the ITE. If the neighbor relationship between
 the ITE and ETE is unidirectional, the ETE sets the Identification
 field to the same value that appeared in the SEAL header of the data
 packet. Otherwise, the ETE sets the Identification field to the
 value it would use in sending the next SEAL packet to this ITE.

 When V==1, the ETE then prepares the ICV field the same as specified
 for SEAL data packet encapsulation in Section 5.4.4.

 Finally, the ETE sends the resulting SCMP packet to the ITE the same
 as specified for SEAL data packets in Section 5.4.5.

 The following sections describe additional considerations for various
 SCMP error messages:

5.6.1.1. Generating SCMP Packet Too Big (SPTB) Messages

 An ETE generates an SPTB message when it receives a SEAL data packet
 that arrived as multiple outer IP fragments. The ETE prepares the
 SPTB message the same as for the corresponding ICMPv6 PTB message,
 and writes the length of the largest outer IP fragment received minus
 HLEN in the MTU field of the message.

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires January 3, 2014 [Page 29]

Internet-Draft SEAL July 2013

 The ETE also generates an SPTB message when it accepts a SEAL
 protocol data packet with A==1 in the SEAL header. The ETE prepares
 the SPTB message the same as above, except that it writes the value 0
 in the MTU field.

5.6.1.2. Generating Other SCMP Error Messages

 An ETE generates an SCMP "Destination Unreachable" (SDU) message
 under the same circumstances that an IPv6 system would generate an
 ICMPv6 Destination Unreachable message.

 An ETE generates an SCMP "Parameter Problem" (SPP) message when it
 receives a SEAL packet with an incorrect value in the SEAL header.

 TEs generate other SCMP message types using methods and procedures
 specified in other documents. For example, SCMP message types used
 for tunnel neighbor coordinations are specified in VET
 [I-D.templin-intarea-vet].

5.6.2. Processing SCMP Error Messages

 An ITE may receive SCMP messages with C==1 in the SEAL header after
 sending packets to an ETE. The ITE first verifies that the outer
 addresses of the SCMP packet are correct, and (when I==1) that the
 Identification field contains an acceptable value. The ITE next
 verifies that the SEAL header fields are set correctly as specified
 in Section 5.6.1. When V==1, the ITE then verifies the ICV. The ITE
 next verifies the Checksum value in the SCMP message header. If any
 of these values are incorrect, the ITE silently discards the message;
 otherwise, it processes the message as follows:

5.6.2.1. Processing SCMP PTB Messages

 After an ITE sends a SEAL data packet to an ETE, it may receive an
 SPTB message with a packet-in-error containing the leading portion of
 the packet (see: Section 5.6.1.1). For SPTB messages with MTU==0,
 the ITE processes the message as confirmation that the ETE received a
 SEAL data packet with A==1 in the SEAL header. The ITE then discards
 the message.

 For SPTB messages with MTU!=0, the ITE processes the message as an
 indication of a packet size limitation as follows. If the inner
 packet is no larger than 1500 bytes, the ITE reduces its MINMTU value
 for this ITE. If the inner packet length is larger than 1500 and the
 MTU value is not substantially less than MINMTU bytes, the value is
 likely to reflect the true MTU of the restricting link on the path to
 the ETE; otherwise, a router on the path may be generating runt
 fragments.

Templin Expires January 3, 2014 [Page 30]

Internet-Draft SEAL July 2013

 In that case, the ITE can consult a plateau table (e.g., as described
 in [RFC1191]) to rewrite the MTU value to a reduced size. For
 example, if the ITE receives an IPv4 SPTB message with MTU==256 and
 inner packet length 4KB, it can rewrite the MTU to 2KB. If the ITE
 subsequently receives an IPv4 SPTB message with MTU==256 and inner
 packet length 2KB, it can rewrite the MTU to 1792, etc., to a minimum
 of 1500 bytes. If the ITE is performing stateful MTU determination
 for this SEAL path, it then writes the new MTU value minus HLEN in
 MAXMTU.

 The ITE then checks its forwarding tables to discover the previous
 hop toward the source address of the inner packet. If the previous
 hop is reached via the same tunnel interface the SPTB message arrived
 on, the ITE relays the message to the previous hop. In order to
 relay the message, the first writes zero in the Identification and
 ICV fields of the SEAL header within the packet-in-error. The ITE
 next rewrites the outer SEAL header fields with values corresponding
 to the previous hop and recalculates the MAC using the MAC
 calculation parameters associated with the previous hop. Next, the
 ITE replaces the SPTB's outer headers with headers of the appropriate
 protocol version and fills in the header fields as specified in

Section 5.4.5, where the destination address/port correspond to the
 previous hop and the source address/port correspond to the ITE. The
 ITE then sends the message to the previous hop the same as if it were
 issuing a new SPTB message. (Note that, in this process, the values
 within the SEAL header of the packet-in-error are meaningless to the
 previous hop and therefore cannot be used by the previous hop for
 authentication purposes.)

 If the previous hop is not reached via the same tunnel interface, the
 ITE instead transcribes the message into a format appropriate for the
 inner packet (i.e., the same as described for transcribing ICMP
 messages in Section 5.4.7) and sends the resulting transcribed
 message to the original source. (NB: if the inner packet within the
 SPTB message is an IPv4 SEAL packet with DF==0, the ITE should set
 DF=1 and re-calculate the IPv4 header checksum while transcribing the
 message in order to avoid bogon filters.) The ITE then discards the
 SPTB message.

 Note that the ITE may receive an SPTB message from another ITE that
 is at the head end of a nested level of encapsulation. The ITE has
 no security associations with this nested ITE, hence it should
 consider this SPTB message the same as if it had received an ICMP PTB
 message from an ordinary router on the path to the ETE. That is, the
 ITE should examine the packet-in-error field of the SPTB message and
 only process the message if it is able to recognize the packet as one
 it had previously sent.

https://datatracker.ietf.org/doc/html/rfc1191

Templin Expires January 3, 2014 [Page 31]

Internet-Draft SEAL July 2013

5.6.2.2. Processing Other SCMP Error Messages

 An ITE may receive an SDU message with an appropriate code under the
 same circumstances that an IPv6 node would receive an ICMPv6
 Destination Unreachable message. The ITE either transcribes or
 relays the message toward the source address of the inner packet
 within the packet-in-error the same as specified for SPTB messages in

Section 5.6.2.1.

 An ITE may receive an SPP message when the ETE receives a SEAL packet
 with an incorrect value in the SEAL header. The ITE should examine
 the SEAL header within the packet-in-error to determine whether a
 different setting should be used in subsequent packets, but does not
 relay the message further.

 TEs process other SCMP message types using methods and procedures
 specified in other documents. For example, SCMP message types used
 for tunnel neighbor coordinations are specified in VET
 [I-D.templin-intarea-vet].

6. Link Requirements

 Subnetwork designers are expected to follow the recommendations in
Section 2 of [RFC3819] when configuring link MTUs.

7. End System Requirements

 End systems are encouraged to implement end-to-end MTU assurance
 (e.g., using Packetization Layer Path MTU Discovery (PLPMTUD) per
 [RFC4821]) even if the subnetwork is using SEAL.

 When end systems use PLPMTUD, SEAL will ensure that the tunnel
 behaves as a link in the path that assures an MTU of at least 1500
 bytes while not precluding discovery of larger MTUs. The PMPMTUD
 mechanism will therefore be able to function as designed in order to
 discover and utilize larger MTUs.

8. Router Requirements

 Routers within the subnetwork are expected to observe the standard IP
 router requirements, including the implementation of IP fragmentation
 and reassembly as well as the generation of ICMP messages
 [RFC0792][RFC1122][RFC1812][RFC2460][RFC4443][RFC6434].

 Note that, even when routers support existing requirements for the

https://datatracker.ietf.org/doc/html/rfc3819#section-2
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc4443

Templin Expires January 3, 2014 [Page 32]

Internet-Draft SEAL July 2013

 generation of ICMP messages, these messages are often filtered and
 discarded by middleboxes on the path to the original source of the
 message that triggered the ICMP. It is therefore not possible to
 assume delivery of ICMP messages even when routers are correctly
 implemented.

9. Nested Encapsulation Considerations

 SEAL supports nested tunneling for up to 8 layers of encapsulation.
 In this model, the SEAL ITE has a tunnel neighbor relationship only
 with ETEs at its own nesting level, i.e., it does not have a tunnel
 neighbor relationship with other ITEs, nor with ETEs at other nesting
 levels.

 Therefore, when an ITE 'A' within an outer nesting level needs to
 return an error message to an ITE 'B' within an inner nesting level,
 it generates an ordinary ICMP error message the same as if it were an
 ordinary router within the subnetwork. 'B' can then perform message
 validation as specified in Section 5.4.7, but full message origin
 authentication is not possible.

 Since ordinary ICMP messages are used for coordinations between ITEs
 at different nesting levels, nested SEAL encapsulations should only
 be used when the ITEs are within a common administrative domain
 and/or when there is no ICMP filtering middlebox such as a firewall
 or NAT between them. An example would be a recursive nesting of
 mobile networks, where the first network receives service from an
 ISP, the second network receives service from the first network, the
 third network receives service from the second network, etc.

 NB: As an alternative, the SCMP protocol could be extended to allow
 ITE 'A' to return an SCMP message to ITE 'B' rather than return an
 ICMP message. This would conceptually allow the control messages to
 pass through firewalls and NATs, however it would give no more
 message origin authentication assurance than for ordinary ICMP
 messages. It was therefore determined that the complexity of
 extending the SCMP protocol was of little value within the context of
 the anticipated use cases for nested encapsulations.

10. Reliability Considerations

 Although a SEAL tunnel may span an arbitrarily-large subnetwork
 expanse, the IP layer sees the tunnel as a simple link that supports
 the IP service model. Links with high bit error rates (BERs) (e.g.,
 IEEE 802.11) use Automatic Repeat-ReQuest (ARQ) mechanisms [RFC3366]
 to increase packet delivery ratios, while links with much lower BERs

https://datatracker.ietf.org/doc/html/rfc3366

Templin Expires January 3, 2014 [Page 33]

Internet-Draft SEAL July 2013

 typically omit such mechanisms. Since SEAL tunnels may traverse
 arbitrarily-long paths over links of various types that are already
 either performing or omitting ARQ as appropriate, it would therefore
 be inefficient to require the tunnel endpoints to also perform ARQ.

11. Integrity Considerations

 The SEAL header includes an integrity check field that covers the
 SEAL header and at least the inner packet headers. This provides for
 header integrity verification on a segment-by-segment basis for a
 segmented re-encapsulating tunnel path.

 Fragmentation and reassembly schemes must also consider packet-
 splicing errors, e.g., when two fragments from the same packet are
 concatenated incorrectly, when a fragment from packet X is
 reassembled with fragments from packet Y, etc. The primary sources
 of such errors include implementation bugs and wrapping IPv4 ID
 fields.

 In particular, the IPv4 16-bit ID field can wrap with only 64K
 packets with the same (src, dst, protocol)-tuple alive in the system
 at a given time [RFC4963]. When the IPv4 ID field is re-written by a
 middlebox such as a NAT or Firewall, ID field wrapping can occur with
 even fewer packets alive in the system. It is therefore essential
 that IPv4 fragmentation and reassembly be avoided.

12. IANA Considerations

 The IANA is requested to allocate a User Port number for "SEAL" in
 the 'port-numbers' registry. The Service Name is "SEAL", and the
 Transport Protocols are TCP and UDP. The Assignee is the IESG
 (iesg@ietf.org) and the Contact is the IETF Chair (chair@ietf.org).
 The Description is "Subnetwork Encapsulation and Adaptation Layer
 (SEAL)", and the Reference is the RFC-to-be currently known as
 'draft-templin-intarea.seal'.

13. Security Considerations

 SEAL provides a segment-by-segment message origin authentication,
 integrity and anti-replay service. The SEAL header is sent in-the-
 clear the same as for the outer IP and other outer headers. In this
 respect, the threat model is no different than for IPv6 extension
 headers. Unlike IPv6 extension headers, however, the SEAL header can
 be protected by an integrity check that also covers the inner packet
 headers.

https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/draft-templin-intarea

Templin Expires January 3, 2014 [Page 34]

Internet-Draft SEAL July 2013

 An amplification/reflection/buffer overflow attack is possible when
 an attacker sends IP fragments with spoofed source addresses to an
 ETE in an attempt to clog the ETE's reassembly buffer and/or cause
 the ETE to generate a stream of SCMP messages returned to a victim
 ITE. The SCMP message ICV, Identification, as well as the inner
 headers of the packet-in-error, provide mitigation for the ETE to
 detect and discard SEAL segments with spoofed source addresses.

 Security issues that apply to tunneling in general are discussed in
 [RFC6169].

14. Related Work

Section 3.1.7 of [RFC2764] provides a high-level sketch for
 supporting large tunnel MTUs via a tunnel-level segmentation and
 reassembly capability to avoid IP level fragmentation.

Section 3 of [RFC4459] describes inner and outer fragmentation at the
 tunnel endpoints as alternatives for accommodating the tunnel MTU.

Section 4 of [RFC2460] specifies a method for inserting and
 processing extension headers between the base IPv6 header and
 transport layer protocol data. The SEAL header is inserted and
 processed in exactly the same manner.

 IPsec/AH is [RFC4301][RFC4301] is used for full message integrity
 verification between tunnel endpoints, whereas SEAL only ensures
 integrity for the inner packet headers. The AYIYA proposal
 [I-D.massar-v6ops-ayiya] uses similar means for providing message
 authentication and integrity.

 SEAL, along with the Virtual Enterprise Traversal (VET)
 [I-D.templin-intarea-vet] tunnel virtual interface abstraction, are
 the functional building blocks for the Interior Routing Overlay
 Network (IRON) [I-D.templin-ironbis] and Routing and Addressing in
 Networks with Global Enterprise Recursion (RANGER) [RFC5720][RFC6139]
 architectures.

 The concepts of path MTU determination through the report of
 fragmentation and extending the IPv4 Identification field were first
 proposed in deliberations of the TCP-IP mailing list and the Path MTU
 Discovery Working Group (MTUDWG) during the late 1980's and early
 1990's. An historical analysis of the evolution of these concepts,
 as well as the development of the eventual PMTUD mechanism, appears
 in [RFC5320].

https://datatracker.ietf.org/doc/html/rfc6169
https://datatracker.ietf.org/doc/html/rfc2764#section-3.1.7
https://datatracker.ietf.org/doc/html/rfc4459#section-3
https://datatracker.ietf.org/doc/html/rfc2460#section-4
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc5320

Templin Expires January 3, 2014 [Page 35]

Internet-Draft SEAL July 2013

15. Implementation Status

 An early implementation of the first revision of SEAL [RFC5320] is
 available at: http://isatap.com/seal.

16. Acknowledgments

 The following individuals are acknowledged for helpful comments and
 suggestions: Jari Arkko, Fred Baker, Iljitsch van Beijnum, Oliver
 Bonaventure, Teco Boot, Bob Braden, Brian Carpenter, Steve Casner,
 Ian Chakeres, Noel Chiappa, Remi Denis-Courmont, Remi Despres, Ralph
 Droms, Aurnaud Ebalard, Gorry Fairhurst, Washam Fan, Dino Farinacci,
 Joel Halpern, Sam Hartman, John Heffner, Thomas Henderson, Bob
 Hinden, Christian Huitema, Eliot Lear, Darrel Lewis, Joe Macker, Matt
 Mathis, Erik Nordmark, Dan Romascanu, Dave Thaler, Joe Touch, Mark
 Townsley, Ole Troan, Margaret Wasserman, Magnus Westerlund, Robin
 Whittle, James Woodyatt, and members of the Boeing Research &
 Technology NST DC&NT group.

 Discussions with colleagues following the publication of [RFC5320]
 have provided useful insights that have resulted in significant
 improvements to this, the Second Edition of SEAL.

 This document received substantial review input from the IESG and
 IETF area directorates in the February 2013 timeframe. IESG members
 and IETF area directorate representatives who contributed helpful
 comments and suggestions are gratefully acknowledged. Discussions on
 the IETF IPv6 and Intarea mailing lists in the June 2013 timeframe
 also stimulated several useful ideas.

 Path MTU determination through the report of fragmentation was first
 proposed by Charles Lynn on the TCP-IP mailing list in 1987.
 Extending the IP identification field was first proposed by Steve
 Deering on the MTUDWG mailing list in 1989.

17. References

17.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -

https://datatracker.ietf.org/doc/html/rfc5320
http://isatap.com/seal
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792

Templin Expires January 3, 2014 [Page 36]

Internet-Draft SEAL July 2013

 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

17.2. Informative References

 [FOLK] Shannon, C., Moore, D., and k. claffy, "Beyond Folklore:
 Observations on Fragmented Traffic", December 2002.

 [FRAG] Kent, C. and J. Mogul, "Fragmentation Considered Harmful",
 October 1987.

 [I-D.massar-v6ops-ayiya]
 Massar, J., "AYIYA: Anything In Anything",

draft-massar-v6ops-ayiya-02 (work in progress), July 2004.

 [I-D.taylor-v6ops-fragdrop]
 Jaeggli, J., Colitti, L., Kumari, W., Vyncke, E., Kaeo,
 M., and T. Taylor, "Why Operators Filter Fragments and
 What It Implies", draft-taylor-v6ops-fragdrop-01 (work in
 progress), June 2013.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)",

draft-templin-intarea-vet-40 (work in progress), May 2013.

 [I-D.templin-ironbis]
 Templin, F., "The Interior Routing Overlay Network
 (IRON)", draft-templin-ironbis-15 (work in progress),
 May 2013.

 [RFC0994] International Organization for Standardization (ISO) and
 American National Standards Institute (ANSI), "Final text

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/draft-massar-v6ops-ayiya-02
https://datatracker.ietf.org/doc/html/draft-taylor-v6ops-fragdrop-01
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-ironbis-15

Templin Expires January 3, 2014 [Page 37]

Internet-Draft SEAL July 2013

 of DIS 8473, Protocol for Providing the Connectionless-
 mode Network Service", RFC 994, March 1986.

 [RFC1063] Mogul, J., Kent, C., Partridge, C., and K. McCloghrie, "IP
 MTU discovery options", RFC 1063, July 1988.

 [RFC1070] Hagens, R., Hall, N., and M. Rose, "Use of the Internet as
 a subnetwork for experimentation with the OSI network
 layer", RFC 1070, February 1989.

 [RFC1146] Zweig, J. and C. Partridge, "TCP alternate checksum
 options", RFC 1146, March 1990.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1701] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation (GRE)", RFC 1701, October 1994.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers",
RFC 1812, June 1995.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.

 [RFC2764] Gleeson, B., Heinanen, J., Lin, A., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, February 2000.

 [RFC2780] Bradner, S. and V. Paxson, "IANA Allocation Guidelines For
 Values In the Internet Protocol and Related Headers",

BCP 37, RFC 2780, March 2000.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source

https://datatracker.ietf.org/doc/html/rfc994
https://datatracker.ietf.org/doc/html/rfc1063
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc1146
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1701
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc2764
https://datatracker.ietf.org/doc/html/bcp37
https://datatracker.ietf.org/doc/html/rfc2780

Templin Expires January 3, 2014 [Page 38]

Internet-Draft SEAL July 2013

 Address Spoofing", BCP 38, RFC 2827, May 2000.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, September 2000.

 [RFC3232] Reynolds, J., "Assigned Numbers: RFC 1700 is Replaced by
 an On-line Database", RFC 3232, January 2002.

 [RFC3366] Fairhurst, G. and L. Wood, "Advice to link designers on
 link Automatic Repeat reQuest (ARQ)", BCP 62, RFC 3366,
 August 2002.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, July 2004.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, November 2005.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, April 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/bcp62
https://datatracker.ietf.org/doc/html/rfc3366
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4191
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246

Templin Expires January 3, 2014 [Page 39]

Internet-Draft SEAL July 2013

 [RFC5320] Templin, F., "The Subnetwork Encapsulation and Adaptation
 Layer (SEAL)", RFC 5320, February 2010.

 [RFC5445] Watson, M., "Basic Forward Error Correction (FEC)
 Schemes", RFC 5445, March 2009.

 [RFC5720] Templin, F., "Routing and Addressing in Networks with
 Global Enterprise Recursion (RANGER)", RFC 5720,
 February 2010.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927, July 2010.

 [RFC6139] Russert, S., Fleischman, E., and F. Templin, "Routing and
 Addressing in Networks with Global Enterprise Recursion
 (RANGER) Scenarios", RFC 6139, February 2011.

 [RFC6169] Krishnan, S., Thaler, D., and J. Hoagland, "Security
 Concerns with IP Tunneling", RFC 6169, April 2011.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,

RFC 6335, August 2011.

 [RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node
 Requirements", RFC 6434, December 2011.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, November 2011.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, February 2013.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935, April 2013.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, April 2013.

 [RIPE] De Boer, M. and J. Bosma, "Discovering Path MTU Black
 Holes on the Internet using RIPE Atlas", July 2012.

 [SIGCOMM] Luckie, M. and B. Stasiewicz, "Measuring Path MTU
 Discovery Behavior", November 2010.

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5445
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc6139
https://datatracker.ietf.org/doc/html/rfc6169
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc6434
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936

Templin Expires January 3, 2014 [Page 40]

Internet-Draft SEAL July 2013

 [TBIT] Medina, A., Allman, M., and S. Floyd, "Measuring
 Interactions Between Transport Protocols and Middleboxes",
 October 2004.

 [WAND] Luckie, M., Cho, K., and B. Owens, "Inferring and
 Debugging Path MTU Discovery Failures", October 2005.

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

Templin Expires January 3, 2014 [Page 41]

