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Abstract

   This document specifies a Subnetwork Encapsulation and Adaptation
   Layer (SEAL).  SEAL operates over virtual topologies configured over
   connected IP network routing regions bounded by encapsulating border
   nodes.  These virtual topologies are manifested by tunnels that may
   span multiple IP and/or sub-IP layer forwarding hops, where they may
   incur packet duplication, packet reordering, source address spoofing
   and traversal of links with diverse Maximum Transmission Units
   (MTUs).  SEAL addresses these issues through the encapsulation and
   messaging mechanisms specified in this document.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 24, 2014.
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   Copyright (c) 2013 IETF Trust and the persons identified as the
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   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   As Internet technology and communication has grown and matured, many
   techniques have developed that use virtual topologies (manifested by
   tunnels of one form or another) over an actual network that supports
   the Internet Protocol (IP) [RFC0791][RFC2460].  Those virtual
   topologies have elements that appear as one network layer hop, but
   are actually multiple IP or sub-IP layer hops.  These multiple hops
   often have quite diverse properties that are often not even visible
   to the endpoints of the virtual hop.  This introduces failure modes
   that are not dealt with well in current approaches.

   The use of IP encapsulation (also known as "tunneling") has long been
   considered as the means for creating such virtual topologies (e.g.,
   see [RFC2003][RFC2473]).  Tunnels serve a wide variety of purposes,
   including mobility, security, routing control, traffic engineering,
   multihoming, etc., and will remain an integral part of the
   architecture moving forward.  However, the encapsulation headers
   often include insufficiently provisioned per-packet identification
   values.  IP encapsulation also allows an attacker to produce
   encapsulated packets with spoofed source addresses even if the source
   address in the encapsulating header cannot be spoofed.  A denial-of-
   service vector that is not possible in non-tunneled subnetworks is
   therefore presented.

   Additionally, the insertion of an outer IP header reduces the
   effective path MTU visible to the inner network layer.  When IPv6 is
   used as the encapsulation protocol, original sources expect to be
   informed of the MTU limitation through IPv6 Path MTU discovery
   (PMTUD) [RFC1981].  When IPv4 is used, this reduced MTU can be
   accommodated through the use of IPv4 fragmentation, but unmitigated
   in-the-network fragmentation has been found to be harmful through
   operational experience and studies conducted over the course of many
   years [FRAG][FOLK][RFC4963].  Additionally, classical IPv4 PMTUD
   [RFC1191] has known operational issues that are exacerbated by in-
   the-network tunnels [RFC2923][RFC4459].

   The following subsections present further details on the motivation
   and approach for addressing these issues.

1.1.  Motivation

   Before discussing the approach, it is necessary to first understand
   the problems.  In both the Internet and private-use networks today,
   IP is ubiquitously deployed as the Layer 3 protocol.  The primary
   functions of IP are to provide for routing, addressing, and a
   fragmentation and reassembly capability used to accommodate links
   with diverse MTUs.  While it is well known that the IP address space

https://datatracker.ietf.org/doc/html/rfc0791
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   is rapidly becoming depleted, there is also a growing awareness that
   other IP protocol limitations have already or may soon become
   problematic.

   First, the Internet historically provided no means for discerning
   whether the source addresses of IP packets are authentic.  This
   shortcoming is being addressed more and more through the deployment
   of site border router ingress filters [RFC2827], however the use of
   encapsulation provides a vector for an attacker to circumvent
   filtering for the encapsulated packet even if filtering is correctly
   applied to the encapsulation header.  Secondly, the IP header does
   not include a well-behaved identification value unless the source has
   included a fragment header for IPv6 or unless the source permits
   fragmentation for IPv4.  These limitations preclude an efficient
   means for routers to detect duplicate packets and packets that have
   been re-ordered within the subnetwork.  Additionally, recent studies
   have shown that the arrival of fragments at high data rates can cause
   denial-of-service (DoS) attacks on performance-sensitive networking
   gear, prompting some administrators to configure their equipment to
   drop fragments unconditionally [I-D.taylor-v6ops-fragdrop].

   For IPv4 encapsulation, when fragmentation is permitted the header
   includes a 16-bit Identification field, meaning that at most 2^16
   unique packets with the same (source, destination, protocol)-tuple
   can be active in the network at the same time [RFC6864].  (When
   middleboxes such as Network Address Translators (NATs) re-write the
   Identification field to random values, the number of unique packets
   is even further reduced.)  Due to the escalating deployment of high-
   speed links, however, these numbers have become too small by several
   orders of magnitude for high data rate packet sources such as tunnel
   endpoints [RFC4963].

   Furthermore, there are many well-known limitations pertaining to IPv4
   fragmentation and reassembly - even to the point that it has been
   deemed "harmful" in both classic and modern-day studies (see above).
   In particular, IPv4 fragmentation raises issues ranging from minor
   annoyances (e.g., in-the-network router fragmentation [RFC1981]) to
   the potential for major integrity issues (e.g., mis-association of
   the fragments of multiple IP packets during reassembly [RFC4963]).

   As a result of these perceived limitations, a fragmentation-avoiding
   technique for discovering the MTU of the forward path from a source
   to a destination node was devised through the deliberations of the
   Path MTU Discovery Working Group (MTUDWG) during the late 1980's
   through early 1990's which resulted in the publication of [RFC1191].
   In this negative feedback-based method, the source node provides
   explicit instructions to routers in the path to discard the packet
   and return an ICMP error message if an MTU restriction is
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   encountered.  However, this approach has several serious shortcomings
   that lead to an overall "brittleness" [RFC2923].

   In particular, site border routers in the Internet have been known to
   discard ICMP error messages coming from the outside world.  This is
   due in large part to the fact that malicious spoofing of error
   messages in the Internet is trivial since there is no way to
   authenticate the source of the messages [RFC5927].  Furthermore, when
   a source node that requires ICMP error message feedback when a packet
   is dropped due to an MTU restriction does not receive the messages, a
   path MTU-related black hole occurs.  This means that the source will
   continue to send packets that are too large and never receive an
   indication from the network that they are being discarded.  This
   behavior has been confirmed through documented studies showing clear
   evidence of PMTUD failures for both IPv4 and IPv6 in the Internet
   today [TBIT][WAND][SIGCOMM][RIPE].

   The issues with both IP fragmentation and this "classical" PMTUD
   method are exacerbated further when IP tunneling is used [RFC4459].
   For example, an ingress tunnel endpoint (ITE) may be required to
   forward encapsulated packets into the subnetwork on behalf of
   hundreds, thousands, or even more original sources.  If the ITE
   allows IP fragmentation on the encapsulated packets, persistent
   fragmentation could lead to undetected data corruption due to
   Identification field wrapping and/or reassembly congestion at the
   ETE.  If the ITE instead uses classical IP PMTUD it must rely on ICMP
   error messages coming from the subnetwork that may be suspect,
   subject to loss due to filtering middleboxes, or insufficiently
   provisioned for translation into error messages to be returned to the
   original sources.

   Although recent works have led to the development of a positive
   feedback-based end-to-end MTU determination scheme [RFC4821], they do
   not excuse tunnels from accounting for the encapsulation overhead
   they add to packets.  Moreover, in current practice existing
   tunneling protocols mask the MTU issues by selecting a "lowest common
   denominator" MTU that may be much smaller than necessary for most
   paths and difficult to change at a later date.  Therefore, a new
   approach to accommodate tunnels over links with diverse MTUs is
   necessary.

1.2.  Approach

   This document concerns subnetworks manifested through a virtual
   topology configured over a connected network routing region and
   bounded by encapsulating border nodes.  Example connected network
   routing regions include Mobile Ad hoc Networks (MANETs), enterprise
   networks and the global public Internet itself.  Subnetwork border

https://datatracker.ietf.org/doc/html/rfc2923
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   nodes forward unicast and multicast packets over the virtual topology
   across multiple IP and/or sub-IP layer forwarding hops that may
   introduce packet duplication and/or traverse links with diverse
   Maximum Transmission Units (MTUs).

   This document introduces a Subnetwork Encapsulation and Adaptation
   Layer (SEAL) for tunneling inner network layer protocol packets over
   IP subnetworks that connect Ingress and Egress Tunnel Endpoints
   (ITEs/ETEs) of border nodes.  It provides a modular specification
   designed to be tailored to specific associated tunneling protocols.
   (A transport-mode of operation is also possible but out of scope for
   this document.)

   SEAL provides a mid-layer encapsulation that accommodates links with
   diverse MTUs, and allows routers in the subnetwork to perform
   efficient duplicate packet and packet reordering detection.  The
   encapsulation further ensures message origin authentication, packet
   header integrity and anti-replay in environments in which these
   functions are necessary.

   SEAL treats tunnels that traverse the subnetwork as ordinary links
   that must support network layer services.  Moreover, SEAL provides
   dynamic mechanisms (including limited segmentation and reassembly) to
   ensure a maximal path MTU over the tunnel.  This is in contrast to
   static approaches which avoid MTU issues by selecting a lowest common
   denominator MTU value that may be overly conservative for the vast
   majority of tunnel paths and difficult to change even when larger
   MTUs become available.

1.3.  Differences with RFC5320

   This specification of SEAL is descended from an experimental
   independent RFC publication of the same name [RFC5320].  However,
   this specification introduces a number of fundamental differences
   from the earlier publication.  This specification therefore obsoletes
   (i.e., and does not update) [RFC5320].

   First, this specification includes a protocol version field in the
   SEAL header whereas [RFC5320] does not, and therefore cannot be
   updated by future revisions.  Secondly, [RFC5320] forms a 32-bit
   Identification value by concatenating the 16-bit IPv4 Identification
   field with a 16-bit Identification "extension" field in the SEAL
   header.  This means that [RFC5320] can only operate over IPv4
   networks (since IPv6 headers do not include a 16-bit version number)
   and that the SEAL Identification value can be corrupted if the
   Identification in the outer IPv4 header is rewritten.  In contrast,
   this specification includes a 32-bit Identification value that is
   independent of any identification fields found in the inner or outer

https://datatracker.ietf.org/doc/html/rfc5320
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   IP headers, and is therefore compatible with any inner and outer IP
   protocol version combinations.

   Additionally, the SEAL segmentation and reassembly procedures defined
   in [RFC5320] differ significantly from those found in this
   specification.  In particular, this specification defines an 13-bit
   Offset field that allows for finer-grained segment sizes when SEAL
   segmentation is necessary.  In contrast, [RFC5320] includes only a
   3-bit Segment field and performs reassembly through concatenation of
   consecutive segments.

   This version of SEAL also includes an optional Integrity Check Vector
   (ICV) that can be used to digitally sign the SEAL header and the
   leading portion of the encapsulated inner packet.  This allows for a
   lightweight integrity check and a loose message origin authentication
   capability.  The header further includes new control bits as well as
   a link identification field for additional control capabilities.

   Finally, this version of SEAL includes a new messaging protocol known
   as the SEAL Control Message Protocol (SCMP), whereas [RFC5320]
   performs signalling through the use of SEAL-encapsulated ICMP
   messages.  The use of SCMP allows SEAL-specific departures from ICMP,
   as well as a control messaging capability that extends to other
   specifications, including Virtual Enterprise Traversal (VET)
   [I-D.templin-intarea-vet].

2.  Terminology

   The following terms are defined within the scope of this document:

   subnetwork
      a virtual topology configured over a connected network routing
      region and bounded by encapsulating border nodes.

   IP
      used to generically refer to either Internet Protocol (IP)
      version, i.e., IPv4 or IPv6.

   Ingress Tunnel Endpoint (ITE)
      a portal over which an encapsulating border node (host or router)
      sends encapsulated packets into the subnetwork.

   Egress Tunnel Endpoint (ETE)
      a portal over which an encapsulating border node (host or router)
      receives encapsulated packets from the subnetwork.

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
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   SEAL Path
      a subnetwork path from an ITE to an ETE beginning with an
      underlying link of the ITE as the first hop.  Note that, if the
      ITE's interface connection to the underlying link assigns multiple
      IP addresses, each address represents a separate SEAL path.

   inner packet
      an unencapsulated network layer protocol packet (e.g., IPv4
      [RFC0791], OSI/CLNP [RFC0994], IPv6 [RFC2460], etc.) before any
      outer encapsulations are added.  Internet protocol numbers that
      identify inner packets are found in the IANA Internet Protocol
      registry [RFC3232].  SEAL protocol packets that incur an
      additional layer of SEAL encapsulation are also considered inner
      packets.

   outer IP packet
      a packet resulting from adding an outer IP header (and possibly
      other outer headers) to a SEAL-encapsulated inner packet.

   packet-in-error
      the leading portion of an invoking data packet encapsulated in the
      body of an error control message (e.g., an ICMPv4 [RFC0792] error
      message, an ICMPv6 [RFC4443] error message, etc.).

   Packet Too Big (PTB) message
      a control plane message indicating an MTU restriction (e.g., an
      ICMPv6 "Packet Too Big" message [RFC4443], an ICMPv4
      "Fragmentation Needed" message [RFC0792], etc.).

   Don't Fragment (DF) bit
      a bit that indicates whether the packet may be fragmented by the
      network.  The DF bit is explicitly included in the IPv4 header
      [RFC0791] and may be set to '0' to allow fragmentation or '1' to
      disallow further in-network fragmentation.  The bit is absent from
      the IPv6 header [RFC2460], but implicitly set to '1' because
      fragmentation can occur only at IPv6 sources.

   The following abbreviations correspond to terms used within this
   document and/or elsewhere in common Internetworking nomenclature:

      HLEN - the length of the SEAL header plus outer headers

      ICV - Integrity Check Vector

      MAC - Message Authentication Code

      MTU - Maximum Transmission Unit

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc0994
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
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      SCMP - the SEAL Control Message Protocol

      SDU - SCMP Destination Unreachable message

      SPP - SCMP Parameter Problem message

      SPTB - SCMP Packet Too Big message

      SEAL - Subnetwork Encapsulation and Adaptation Layer

      TE - Tunnel Endpoint (i.e., either ingress or egress)

      VET - Virtual Enterprise Traversal

3.  Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].  When used
   in lower case (e.g., must, must not, etc.), these words MUST NOT be
   interpreted as described in [RFC2119], but are rather interpreted as
   they would be in common English.

4.  Applicability Statement

   SEAL was originally motivated by the specific case of subnetwork
   abstraction for Mobile Ad hoc Networks (MANETs), however the domain
   of applicability also extends to subnetwork abstractions over
   enterprise networks, mobile networks, ISP networks, SO/HO networks,
   the global public Internet itself, and any other connected network
   routing region.

   SEAL provides a network sublayer for encapsulation of an inner
   network layer packet within outer encapsulating headers.  SEAL can
   also be used as a sublayer within a transport layer protocol data
   payload, where transport layer encapsulation is typically used for
   Network Address Translator (NAT) traversal as well as operation over
   subnetworks that give preferential treatment to certain "core"
   Internet protocols, e.g., TCP, UDP, etc.  (However, note that TCP
   encapsulation may not be appropriate for all use cases; particularly
   those that require low delay and/or delay variance.)  The SEAL header
   is processed in the same manner as for IPv6 extension headers, i.e.,
   it is not part of the outer IP header but rather allows for the
   creation of an arbitrarily extensible chain of headers in the same
   way that IPv6 does.

https://datatracker.ietf.org/doc/html/rfc2119
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   To accommodate MTU diversity, the Ingress Tunnel Endpoint (ITE) may
   need to perform limited segmentation which the Egress Tunnel Endpoint
   (ETE) reassembles.  The ETE further acts as a passive observer that
   informs the ITE of any packet size limitations.  This allows the ITE
   to return appropriate PMTUD feedback even if the network path between
   the ITE and ETE filters ICMP messages.

   SEAL further provides mechanisms to ensure message origin
   authentication, packet header integrity, and anti-replay.  The SEAL
   framework is therefore similar to the IP Security (IPsec)
   Authentication Header (AH) [RFC4301][RFC4302], however it provides
   only minimal hop-by-hop authenticating services while leaving full
   data integrity, authentication and confidentiality services as an
   end-to-end consideration.

   In many aspects, SEAL also very closely resembles the Generic Routing
   Encapsulation (GRE) framework [RFC1701].  SEAL can therefore be
   applied in the same use cases that are traditionally addressed by
   GRE, but goes beyond GRE to also provide additional capabilities
   (e.,g., path MTU accommodation, message origin authentication, etc.)
   as described in this document.  The SEAL header is also exactly
   analogous to the IPv6 Fragment Header, and in fact shares the same
   format.  SEAL can therefore re-use most existing code that implements
   IPv6 fragmentation and reassembly.

   In practice, SEAL is typically used as an encapsulation sublayer in
   conjunction with existing tunnel types such as IPsec, GRE, IP-in-IPv6
   [RFC2473], IP-in-IPv4 [RFC4213][RFC2003], etc.  When used with
   existing tunnel types that insert mid-layer headers between the inner
   and outer IP headers (e.g., IPsec, GRE, etc.), the SEAL header is
   inserted between the mid-layer headers and outer IP header.

5.  SEAL Specification

   The following sections specify the operation of SEAL:

5.1.  SEAL Tunnel Model

   SEAL is an encapsulation sublayer used within point-to-point, point-
   to-multipoint, and non-broadcast, multiple access (NBMA) tunnels.
   Each SEAL path is configured over one or more underlying interfaces
   attached to subnetwork links.  The SEAL tunnel connects an ITE to one
   or more ETE "neighbors" via encapsulation across an underlying
   subnetwork, where the tunnel neighbor relationship may be
   bidirectional, partially unidirectional or fully unidirectional.

   A bidirectional tunnel neighbor relationship is one over which both

https://datatracker.ietf.org/doc/html/rfc4301
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   TEs can exchange both data and control messages.  A partially
   unidirectional tunnel neighbor relationship allows the near end ITE
   to send data packets forward to the far end ETE, while the far end
   only returns control messages when necessary.  Finally, a fully
   unidirectional mode of operation is one in which the near end ITE can
   receive neither data nor control messages from the far end ETE.

   Implications of the SEAL bidirectional and unidirectional models are
   the same as discussed in [I-D.templin-intarea-vet].

5.2.  SEAL Model of Operation

   SEAL-enabled ITEs encapsulate each inner packet in any ancillary
   tunnel protocol headers, a SEAL header, any outer header
   encapsulations and in some instances a SEAL trailer as shown in
   Figure 1:

                                +--------------------+
                                ~   outer IP header  ~
                                +--------------------+
                                ~  other outer hdrs  ~
                                +--------------------+
                                ~    SEAL Header     ~
                                +--------------------+
                                ~   tunnel headers   ~
   +--------------------+       +--------------------+
   |                    |  -->  |                    |
   ~        Inner       ~  -->  ~        Inner       ~
   ~       Packet       ~  -->  ~       Packet       ~
   |                    |  -->  |                    |
   +--------------------+       +--------------------+
                                ~    SEAL Trailer    ~
                                +--------------------+

                       Figure 1: SEAL Encapsulation

   The ITE inserts the SEAL header according to the specific tunneling
   protocol.  For simple encapsulation of an inner network layer packet
   within an outer IP header, the ITE inserts the SEAL header following
   the outer IP header and before the inner packet as: IP/SEAL/{inner
   packet}.

   For encapsulations over transports such as UDP, the ITE inserts the
   SEAL header following the outer transport layer header and before the
   inner packet, e.g., as IP/UDP/SEAL/{inner packet}.  In that case, the
   UDP header is seen as an "other outer header" as depicted in Figure 1
   and the outer IP and transport layer headers are together seen as the
   outer encapsulation headers.  (Note that outer transport layer
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   headers such as UDP must sometimes be included to ensure that SEAL
   packets will traverse the path to the ETE without loss due filtering
   middleboxes.  The ETE MUST accept both IP/SEAL and IP/UDP/SEAL as
   equivalent packets so that the ITE can discontinue outer transport
   layer encapsulation if the path supports raw IP/SEAL encapsulation.)

   For SEAL encapsulations that involve tunnel types that include
   ancillary tunnel headers (e.g., GRE, IPsec, etc.) the ITE inserts the
   SEAL header as a leading extension to the tunnel headers, i.e., the
   SEAL encapsulation appears as part of the same tunnel and not a
   separate tunnel.  For example, for GRE the ITE iserts the SEAL header
   as IP/SEAL/GRE/{inner packet}, and for IPsec the ITE inserts the SEAL
   header as IP/SEAL/IPsec-header/{inner packet}/IPsec-trailer.  In such
   cases, SEAL considers the length of the inner packet only (i.e., and
   not the other tunnel headers and trailers) when performing its packet
   size calculations.

   SEAL supports both "nested" tunneling and "re-encapsulating"
   tunneling.  Nested tunneling occurs when a first tunnel is
   encapsulated within a second tunnel, which may then further be
   encapsulated within additional tunnels.  Nested tunneling can be
   useful, and stands in contrast to "recursive" tunneling which is an
   anomalous condition incurred due to misconfiguration or a routing
   loop.  Considerations for nested tunneling and avoiding recursive
   tunneling are discussed in Section 4 of [RFC2473] as well as in

Section 9 of this document.

   Re-encapsulating tunneling occurs when a packet arrives at a first
   ETE, which then acts as an ITE to re-encapsulate and forward the
   packet to a second ETE connected to the same subnetwork.  In that
   case each ITE/ETE transition represents a segment of a bridged path
   between the ITE nearest the source and the ETE nearest the
   destination.  Considerations for re-encapsulating tunneling are
   discussed in[I-D.templin-ironbis].  Combinations of nested and re-
   encapsulating tunneling are also naturally supported by SEAL.

   The SEAL ITE considers each underlying interface as the ingress
   attachment point to a separate SEAL path to the ETE.  The ITE
   therefore may experience different path MTUs on different SEAL paths.

   Finally, the SEAL ITE ensures that the inner network layer protocol
   will see a minimum MTU of 1500 bytes over each SEAL path regardless
   of the outer network layer protocol version, i.e., even if a small
   amount of segmentation and reassembly are necessary.  This is to
   avoid path MTU "black holes" for the minimum MTU configured by the
   vast majority of links in the Internet.  Note that in some scenarios,
   however, reassembly may place a heavy burden on the ETE.  In that
   case, the ITE can avoid invoking segmentation and instead report an

https://datatracker.ietf.org/doc/html/rfc2473#section-4
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   MTU smaller than 1500 bytes to the original source.

5.3.  SEAL Encapsulation Format

   SEAL encapsulates each inner packet within any ancillary tunneling
   protocol headers and a SEAL header.  The SEAL header shares the same
   format as the IPv6 Fragment Header [RFC2460] and is identified by the
   same IP protocol number assigned for the IPv6 Fragment Header (type
   '44') [I-D.ietf-6man-ext-transmit].  The SEAL header is
   differentiated from the IPv6 Fragment Header by including a non-zero
   value in the most significant two bits of the IPv6 Fragment Header
   "Reserved" field; these two bits will heretofore serve as a SEAL
   protocol version number.  SEAL therefore updates the IPv6 Fragment
   Header specification found in [RFC2460].

   The SEAL header is formatted as shown in Figure 2:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Next Header  |VER|LINK |I|R|Z|      Fragment Offset    |C|P|M|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Identification                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 2: SEAL Encapsulation Format

   The fields of the SEAL header are formatted as follows:

   Next Header (8)  an 8-bit field that encodes the next header Internet
      Protocol number the same as for the IPv4 protocol and IPv6 next
      header fields.

   VER (2)
      a 2-bit version field.  This document specifies Version 1 of the
      SEAL protocol, i.e., the VER field encodes the value '01'.

   LINK (3)
      a 3-bit link identification value, set to a unique value by the
      ITE for each SEAL path over which it will send encapsulated
      packets to the ETE (up to 8 SEAL paths per ETE are therefore
      supported).  Note that, if the ITE's interface connection to the
      underlying link assigns multiple IP addresses, each address
      represents a separate SEAL path that must be assigned a separate
      link ID.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2460
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   I (1)
      the "Integrity Check Vector (ICV) included" bit.

   R (1)
      the "Redirects Permitted" bit when used by VET (see:
      [I-D.templin-intarea-vet]); reserved for future use in other
      contexts.

   Z (1)
      a 1-bit Reserved field.  Initialized to zero for transmission;
      ignored on reception.

   Fragment Offset (13)  a 13-bit Offset field.  The offset, in 8-octet
      units, of the data following this header.

   C (1)
      the "Control/Data" bit.  Set to 1 by the ITE in SEAL Control
      Message Protocol (SCMP) control messages, and set to 0 in ordinary
      data packets.

   P (1)
      The "Probe" bit when C=0; set to 1 by the ITE in SEAL probe data
      packets for which it wishes to receive an explicit acknowledgement
      from the ETE.  The "Pass" bit when C=1; set to 1 by the ETE in
      SCMP messages it relays to the ITE on behalf of another SEAL path.

   M (1)  the "More Segments" bit.  Set to 1 in a non-final segment and
      set to 0 in the final segment of the SEAL packet.

   Identification (32)
      a 32-bit per-packet identification field.  Set to a randomly-
      initialized 32-bit value that is monotonically-incremented for
      each SEAL packet transmitted to this ETE.

   When an IIntegrity Check Vector (ICV) is included, it is added as a
   trailing field at the end of the SEAL packet.  The ICV is formatted
   as shown in Figure 3:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |F|Key|Algorithm|       Message Authentication Code (MAC)       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    ...

               Figure 3: Integrity Check Vector (ICV) Format

   As shown in the figure, the ICV begins with a 1-octet control field
   with a 1-bit (F)lag, a 2-bit Key identifier and a 5-bit Algorithm
   identifier.  The control octet is followed by a variable-length
   Message Authentication Code (MAC).  The ITE maintains a per ETE
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   algorithm and secret key to calculate the MAC in each packet it will
   send to this ETE.  (By default, the ITE sets the F bit and Algorithm
   fields to 0 to indicate use of the HMAC-SHA-1 algorithm with a 160
   bit shared secret key to calculate an 80 bit MAC per [RFC2104] over
   the leading 128 bytes of the packet.  Other values for F and
   Algorithm are out of scope.)

5.4.  ITE Specification

5.4.1.  Tunnel MTU

   The tunnel must present a stable MTU value to the inner network layer
   as the size for admission of inner packets into the tunnel.  Since
   tunnels may support a large set of SEAL paths that accept widely
   varying maximum packet sizes, however, a number of factors should be
   taken into consideration when selecting a tunnel MTU.

   Due to the ubiquitous deployment of standard Ethernet and similar
   networking gear, the nominal Internet cell size has become 1500
   bytes; this is the de facto size that end systems have come to expect
   will either be delivered by the network without loss due to an MTU
   restriction on the path or a suitable ICMP Packet Too Big (PTB)
   message returned.  When large packets sent by end systems incur
   additional encapsulation at an ITE, however, they may be dropped
   silently within the tunnel since the network may not always deliver
   the necessary PTBs [RFC2923].  The ITE SHOULD therefore set a tunnel
   MTU of at least 1500 bytes and provide accommodations to ensure that
   packets up to that size are successfully conveyed to the ETE.

   The inner network layer protocol consults the tunnel MTU when
   admitting a packet into the tunnel.  For non-SEAL inner IPv4 packets
   with the IPv4 Don't Fragment (DF) bit cleared (i.e, DF==0), if the
   packet is larger than the tunnel MTU the inner IPv4 layer uses IPv4
   fragmentation to break the packet into fragments no larger than the
   MTU.  The ITE then admits each fragment into the tunel as an
   independent packet.

   For all other inner packets, the inner network layer admits the
   packet if it is no larger than the tunnel MTU; otherwise, it drops
   the packet and sends a PTB error message to the source with the MTU
   value set to the MTU.  The message contains as much of the invoking
   packet as possible without the entire message exceeding the network
   layer minimum MTU size.

   The ITE can alternatively set an indefinite tunnel MTU such that all
   inner packets are admitted into the tunnel regardless of their size
   (theoretical maximums are 64KB for IPv4 and 4GB for IPv6 [RFC2675]).
   For ITEs that host applications that use the tunnel directly, this

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2675
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   option must be carefully coordinated with protocol stack upper layers
   since some upper layer protocols (e.g., TCP) derive their packet
   sizing parameters from the MTU of the outgoing interface and as such
   may select too large an initial size.  This is not a problem for
   upper layers that use conservative initial maximum segment size
   estimates and/or when the tunnel can reduce the upper layer's maximum
   segment size, e.g., by reducing the size advertised in the MSS option
   of outgoing TCP messages (sometimes known as "MSS clamping").

   In light of the above considerations, the ITE SHOULD configure an
   indefinite MTU on *router* tunnels so that SEAL performs all
   subnetwork adaptation from within the tunnel as specified in the
   following sections.  The ITE MAY instead set a smaller MTU on *host*
   tunnels; in that case, the RECOMMENDED MTU is the maximum of 1500
   bytes and the smallest MTU among all of the underlying links minus
   the size of the encapsulation headers.

5.4.2.  Tunnel Neighbor Soft State

   The ITE maintains a number of soft state variables for each ETE and
   for each SEAL path.

   The ITE maintains a per ETE window of Identification values for the
   packets it has recently sent to this ETE as welll as a per ETE window
   of Identification values for the packets it has recently received
   from this ETE.  The ITE then includes an Identification in each
   packet it sends to this ETE.

   When message origin authentication and integrity checking is
   required, the ITE sets a variable "USE_ICV" to TRUE, and includes a
   trailing ICV in each packet it sends to this ETE; otherwise, it sets
   USE_ICV to FALSE.

   For each SEAL path, the ITE must also account for encapsulation
   header lengths.  The ITE therefore maintains the per SEAL path
   constant values "SHLEN" set to the length of the SEAL header and
   trailer, "THLEN" set to the length of the outer encapsulating
   transport layer headers (or 0 if outer transport layer encapsulation
   is not used), "IHLEN" set to the length of the outer IP layer header,
   and "HLEN" set to (SHLEN+THLEN+IHLEN).  (The ITE must include the
   length of the uncompressed headers even if header compression is
   enabled when calculating these lengths.)  When SEAL is used in
   conjunction with another tunnel type such as GRE or IPsec, the length
   of the headers associated with those tunnels is also included in the
   HLEN calculation for the first segment only and the length of the
   associated trailers is included in the HLEN calculation for the final
   segment only.
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   The ITE maintains a per SEAL path variable "MAXMTU" initialized to
   the maximum of (1500+HLEN) bytes and the MTU of the underlying link.
   The ITE further sets a variable 'MINMTU' to the minimum MTU for the
   SEAL path over which encapsulated packets will travel.  For IPv6
   paths, the ITE sets MINMTU=1280 per [RFC2460].  For IPv4 paths, the
   ITE sets MINMTU=576 based on practical interpretation of [RFC1122]
   even though the theoretical MINMTU for IPv4 is only 68 bytes
   [RFC0791].

   The ITE can also set MINMTU to a larger value if there is reason to
   believe that the minimum path MTU is larger, or to a smaller value if
   there is reason to believe the MTU is smaller, e.g., if there may be
   additional encapsulations on the path.  If this value proves too
   large, the ITE will receive PTB message feedback either from the ETE
   or from a router on the path and will be able to reduce its MINMTU to
   a smaller value.  (Note that since IPv4 links with MTUs smaller than
   1280 are presumably peformance-constrained, the ITE can instead
   initialize MINMTU to 1280 the same as for IPv6.  If this value proves
   too large, standard IPv4 fragmentation and reassembly will provide
   short term accommodation for the sizing constraints while the ITE
   readjusts its MINMTU estimate.)

   The ITE may instead maintain the packet sizing variables and
   constants as per ETE (rather than per SEAL path) values.  In that
   case, the values reflect the smallest MTU size across all of the SEAL
   paths associated with this ETE.

5.4.3.  SEAL Layer Pre-Processing

   The SEAL layer is logically positioned between the inner and outer
   network protocol layers, where the inner layer is seen as the (true)
   network layer and the outer layer is seen as the (virtual) data link
   layer.  Each packet to be processed by the SEAL layer is either
   admitted into the tunnel by the inner network layer protocol as
   described in Section 5.4.1 or is undergoing re-encapsulation from
   within the tunnel.  The SEAL layer sees the former class of packets
   as inner packets that include inner network and transport layer
   headers, and sees the latter class of packets as transitional SEAL
   packets that include the outer and SEAL layer headers that were
   inserted by the previous hop SEAL ITE.  For these transitional
   packets, the SEAL layer re-encapsulates the packet with new outer and
   SEAL layer headers when it forwards the packet to the next hop SEAL
   ITE.

   We now discuss the SEAL layer pre-processing actions for these two
   classes of packets.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0791
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5.4.3.1.  Inner Packet Pre-Processing

   For each for non-SEAL IPv4 inner packet with DF==0 in the IP header
   and IPv6 inner packet with a fragment header and with (MF=0;
   Offset=0), if the packet is larger than (MINMTU-HLEN) the ITE uses IP
   fragmentation to fragment the packet into N pieces, where N is
   minimized.  (For IPv6 as the inner protocol, the first fragment MUST
   be at least as large as the IPv6 minimum of 1280 bytes so that the
   entire IPv6 header chain is likely to fit within the first segment.)
   The ITE then submits each fragment for SEAL encapsulation as
   specified in Section 5.4.4.

   For all other inner packets, if the packet is no larger than (MAXMTU-
   HLEN) for the corresponding SEAL path the ITE submits it for SEAL
   encapsulation as specified in Section 5.4.4.  Otherwise, the ITE
   drops the packet and sends an ordinary PTB message appropriate to the
   inner protocol version (subject to rate limiting) with the MTU field
   set to (MAXMTU-HLEN).  (For IPv4 SEAL packets with DF==0, the ITE
   SHOULD set DF=1 and re-calculate the IPv4 header checksum before
   generating the PTB message in order to avoid bogon filters.)  After
   sending the PTB message, the ITE discards the inner packet.

5.4.3.2.  Transitional SEAL Packet Pre-Processing

   For each transitional packet that is to be processed by the SEAL
   layer from within the tunnel, if the packet is larger than MAXMTU
   bytes for the next hop SEAL path the ITE sends an SCMP Packet Too Big
   (SPTB) message to the previous hop subject to rate limiting with the
   MTU field set to MAXMTU and with (C=1; P=1) in the SEAL header (see:

Section 5.6.1.1).  After sending the SPTB message, the ITE discards
   the packet.  Otherwise, the ITE sets aside the encapsulating SEAL and
   outer headers and submits the inner packet for SEAL re-encapsulation
   as specified in Section 5.4.4.  (Note that in the calculation for
   MAXMTU, HLEN for the next hop SEAL path may be different than HLEN
   for the previous hop.  In that case, MAXMTU must reflect the smaller
   of the two HLEN values.)

5.4.4.  SEAL Encapsulation and Segmentation

   For each inner packet/fragment submitted for SEAL encapsulation, the
   ITE next encapsulates the packet in a SEAL header formatted as
   specified in Section 5.3.  The ITE next sets (C=0; P=0), sets LINK to
   the value assigned to the underlying SEAL path, and sets the Next
   Header field to the protocol number corresponding to the address
   family of the encapsulated inner packet.  For example, the ITE sets
   the Next Header field to the value '4' for encapsulated IPv4 packets
   [RFC2003], '41' for encapsulated IPv6 packets [RFC2473][RFC4213],
   '47' for GRE [RFC1701], '80' for encapsulated OSI/CLNP packets

https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc1701
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   [RFC1070], etc.

   Next, if the inner packet is no larger than (MINMTU-HLEN) or larger
   than 1500, the ITE sets (M=0; Fragment Offset=0).  Otherwise, the ITE
   breaks the inner packet into N non-overlapping segments, where N is
   minimized.  For IPv6 as the inner protocol, the resulting
   encapsulated SEAL packet containing the first segment MUST be at
   least as large as the IPv6 minimum of 1280 bytes so that the entire
   IPv6 header chain is likely to fit within the first segment.  (Since
   the Fragment Offset field indicates the number of 8 byte units,
   however, if HLEN is not an integer multiple of 8 bytes the
   encapsulated SEAL packet MAY contain up to 7 bytes less than 1280 so
   that the IPv6 minimum MTU is not exceeded.)

   The ITE then appends a clone of the SEAL header from the first
   segment onto the head of each additional segment.  The ITE then sets
   (M=1; Fragment Offset=0) in the first segment, sets (M=0/1; Fragment
   Offset=O(1)) in the second segment, sets (M=0/1; Fragment
   Offset=O(2)) in the third segment (if needed), etc., then finally
   sets (M=0; Fragment Offset=O(n)) in the final segment (where O(i) is
   the number of 256 byte blocks that preceded this segment).

   The ITE then writes a monotonically-incrementing integer value for
   this ETE in the Identification field beginning with a randomly-
   initialized value in the first packet transmitted.  (For SEAL packets
   that have been split into multiple pieces, the ITE writes the same
   Identification value in each piece.)  The monotonically-incrementing
   requirement is to satisfy ETEs that use this value for anti-replay
   purposes.  The value is incremented modulo 2^32, i.e., it wraps back
   to 0 when the previous value was (2^32 - 1).

   When USE_ICV is FALSE, the ITE next sets I=0.  Otherwise, the ITE
   sets I=1, includes a trailing ICV and calculates the MAC using HMAC-
   SHA-1 with a 160 bit secret key and 80 bit MAC field.  Beginning with
   the SEAL header, the ITE calculates the MAC over the leading 128
   bytes of the packet (or up to the end of the packet if there are
   fewer than 128 bytes) and places the result in the MAC field.  (For
   SEAL packets that have been split into multiple pieces, each piece
   calculates its own MAC.)  The ITE then writes the value 0 in the F
   flag and 0x00 in the Algorithm field of the ICV control octet (other
   values for these fields, and other MAC calculation disciplines, are
   outside the scope of this document and may be specified in future
   documents.)

   If the packet is undergoing SEAL re-encapsulation, the ITE then
   copies the R value from the SEAL header of the packet to be re-
   encapsulated.  Otherwise, it sets R=0 unless otherwise specified in
   other documents that employ SEAL.  The ITE then adds the outer

https://datatracker.ietf.org/doc/html/rfc1070
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   encapsulating headers as specified in Section 5.4.5.

5.4.5.  Outer Encapsulation

   Following SEAL encapsulation, the ITE next encapsulates each segment
   in the requisite outer transport (when necessary) and IP layer
   headers.  When a transport layer header such as UDP or TCP is
   included, the ITE writes the port number for SEAL in the transport
   destination service port field.

   When UDP encapsulation is used, the ITE sets the UDP checksum field
   to zero for IPv4 packets and also sets the UDP checksum field to zero
   for IPv6 packets even though IPv6 generally requires UDP checksums.
   Further considerations for setting the UDP checksum field for IPv6
   packets are discussed in [RFC6935][RFC6936].

   The ITE then sets the outer IP layer headers the same as specified
   for ordinary IP encapsulation (e.g., [RFC1070][RFC2003], [RFC2473],
   [RFC4213], etc.) except that for ordinary SEAL packets the ITE copies
   the "TTL/Hop Limit", "Type of Service/Traffic Class" and "Congestion
   Experienced" values in the inner network layer header into the
   corresponding fields in the outer IP header.  For transitional SEAL
   packets undergoing re-encapsulation, the ITE instead copies the "TTL/
   Hop Limit", "Type of Service/Traffic Class" and "Congestion
   Experienced" values in the original outer IP header of the
   transitional packet into the corresponding fields in the new outer IP
   header of the packet to be forwarded (i.e., the values are
   transferred between outer headers and *not* copied from the inner
   network layer header).

   The ITE also sets the IP protocol number to the appropriate value for
   the first protocol layer within the encapsulation (e.g., UDP, TCP,
   SEAL, etc.).  When IPv6 is used as the outer IP protocol, the ITE
   then sets the flow label value in the outer IPv6 header the same as
   described in [RFC6438].  When IPv4 is used as the outer IP protocol,
   the ITE sets DF=0 in the IPv4 header to allow the packet to be
   fragmented if it encounters a restricting link (for IPv6 SEAL paths,
   the DF bit is absent but implicitly set to 1).

   The ITE finally sends each outer packet via the underlying link
   corresponding to LINK.

5.4.6.  Path Probing and ETE Reachability Verification

   All SEAL data packets sent by the ITE are considered implicit probes
   that detect MTU limitations on the SEAL path, while explicit probe
   packets can be constructed to probe the path MTU and/or verify ETE
   reachability.  These probes will elicit an SCMP message from the ETE

https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc6438


Templin                  Expires April 24, 2014                [Page 21]



Internet-Draft                    SEAL                      October 2013

   if it needs to send an acknowledgement and/or report an error
   condition.  The probe packets may also be dropped by either the ETE
   or a router on the path, which may or may not result in an ICMP
   message being returned to the ITE.

   To generate an explicit probe packet, the ITE creates a duplicate of
   an actual data packet and uses the duplicate as a probe.
   (Alternatively, the ITE can create a packet buffer beginning with the
   same outer headers, SEAL header and inner network layer headers that
   would appear in an ordinary data packet, then pad the packet with
   random data.)  The ITE then sets (C=0; P=1) in the SEAL header of the
   probe packet, and also sets DF=1 in the outer IP header when IPv4 is
   used.

   The ITE sends periodic explicit probes to determine whether SEAL
   segmentation is still necessary (see Section 5.4.4).  In particular,
   if a probe packet of 1500 bytes (i.e., a packet that becomes (1500+
   HLEN) bytes after encapsulation) succeeds without incurring
   fragmentation the ITE is assured that the path MTU is large enough so
   that the segmentation/reassembly process can be suspended.  This
   probing discipline can therefore be considered as Packetization Layer
   Path MTU Discovery (PLPMTUD) [RFC4821] applied to tunnels, which
   operates independently of any application of PLPMTUD between end
   systems.  Note that the explicit probe size of 1500 bytes is chosen
   since probe packets smaller than this size may be fragmented by a
   nested ITE further down the path.  For example, a successful probe
   for a packet size of 1400 bytes does not guarantee that fragmentation
   is not occurring at another ITE.

   The ITE can also send probes to detect whether an outer transport
   layer header is no longer necessary to reach this ETE.  For example,
   if the ITE sends its initial packets as IP/UDP/SEAL/*, it can send
   probes constructed as IP/SEAL/* to determine whether the ETE is
   reachable without the added layer of encapsulation.  If so, the ITE
   should also re-probe the path MTU since switching to a new
   encapsulation type may result in a path change.

   While probing, the ITE processes ICMP messages as specified in
Section 5.4.7 and processes SCMP messages as specified in Section
5.6.2.

5.4.7.  Processing ICMP Messages

   When the ITE sends SEAL packets, it may receive ICMP error messages
   [RFC0792][RFC4443] from a router on the path to the ETE.  Each ICMP
   message includes an outer IP header, followed by an ICMP header,
   followed by a portion of the SEAL data packet that generated the
   error (also known as the "packet-in-error").  Note that the ITE may

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc0792
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   receive an ICMP message from another ITE that is at the head end of a
   nested level of encapsulation.  The ITE has no security associations
   with this nested ITE, hence it should consider the message the same
   as if it originated from an ordinary router on the path to the ETE.

   The ITE should process ICMPv4 Protocol Unreachable messages and
   ICMPv6 Parameter Problem messages with Code "Unrecognized Next Header
   type encountered" as a hint that the ETE does not implement SEAL.
   The ITE can optionally ignore other ICMP messages that do not include
   sufficient information in the packet-in-error, or process them as a
   hint that the SEAL path to the ETE may be failing.  The ITE then
   discards these types of messages.

   For other ICMP messages, the ITE first examines the SEAL data packet
   within the packet-in-error field.  If the IP source and/or
   destination addresses are invalid, or if the value in the SEAL header
   Identification field (if present) is not within the window of packets
   the ITE has recently sent to this ETE, or if the MAC value in the ICV
   field (if present) is incorrect, the ITE discards the message.

   Next, if the received ICMP message is a PTB the ITE sets the
   temporary variable "PMTU" for this SEAL path to the MTU value in the
   PTB message.  If the outer IP length value in the packet-in-error is
   no larger than (1500+HLEN) bytes the ITE sets MAXMTU=(1500+HLEN) and
   discards the message.  If the outer IP length value in the packet-in-
   error is larger than (1500+HLEN) bytes and PMTU is no smaller than
   MINMTU the ITE sets MAXMTU to the maximum of (1500+HLEN) and PMTU;
   otherwise the ITE consults a plateau table (e.g., as described in
   [RFC1191]) to determine a new value for MAXMTU.  For example, if the
   ITE receives a PTB message with small PMTU and packet-in-error length
   8KB, it can set MAXMTU=4KB.  If the ITE subsequently receives a PTB
   message with small PMTU and length 4KB, it can set MAXMTU=2KB, etc.,
   to a minimum value of MAXMTU=(1500+HLEN).  Next, if the packet-in-
   error was an explicit probe (i.e., one with P=1 in the SEAL header),
   the ITE discards the message.  Finally, if the ITE is using a MINMTU
   value larger than 1280 for IPv6 or 576 for IPv4, it may need to
   reduce MINMTU if the PMTU value is small.

   If the ICMP message was not discarded, the ITE transcribes it into a
   message appropriate for the SEAL data packet within the packet-in-
   error.  If the previous hop toward the inner source address within
   the SEAL data packet is reached via the same SEAL tunnel, the ITE
   transcribes the message into an SCMP message the same as described
   for ETE generation of SCMP messages in Section 5.6.1, i.e., it copies
   the SEAL data packet within the packet-in-error into the packet-in-
   error field of the new message.  (In this process, the ETE also sets
   (C=1; P=1) in the SEAL header of the SCMP message.)  Otherwise, the
   ITE seeks beyond the SEAL header within the packet-in-error and

https://datatracker.ietf.org/doc/html/rfc1191
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   transcribes the inner packet into a message appropriate for the inner
   protocol version (e.g., ICMPv4 for IPv4, ICMPv6 for IPv6, etc.).

   The ITE finally forwards the transcribed message to the previous hop
   toward the inner source address.

5.4.8.  IPv4 Middlebox Reassembly Testing

   The ITE can perform a qualification exchange to ensure that the
   subnetwork correctly delivers fragments to the ETE.  This procedure
   can be used, e.g., to determine whether there are middleboxes on the
   path that violate the [RFC1812], Section 5.2.6 requirement that: "A
   router MUST NOT reassemble any datagram before forwarding it".
   Examples of middleboxes that may perform reassembly include stateful
   NATs and firewalls.  Such devices could still allow for stateless MTU
   determination if they gather the fragments of a fragmented SEAL data
   packet for packet analysis purposes but then forward the fragments on
   to the final destination rather than forwarding the reassembled
   packet.  (This process is often referred to as "Virtual Fragmentation
   Reassembly" (VFR)).

   The ITE should use knowledge of its topological arrangement as an aid
   in determining when middlebox reassembly testing is necessary.  For
   example, if the ITE is aware that the ETE is located somewhere in the
   public Internet, middlebox reassembly testing should not be
   necessary.  If the ITE is aware that the ETE is located behind a NAT
   or a firewall, however, then reassembly testing can be used to detect
   middleboxes that do not conform to specifications.

   The ITE can perform a middlebox reassembly test by sending explicit
   probe packets.  The ITE should only send probe packets that are
   smaller than (576-HLEN) before encapsulation since the least an
   ordinary node can be expected to reassemble is 576 bytes.  To
   generate a probe, the ITE either creates a clone of an ordinary data
   packet or creates a packet buffer beginning with the same outer
   headers, SEAL header and inner network layer header that would appear
   in an ordinary data packet.  The ITE then pads the probe packet with
   random data to a length that is at least 128 bytes but smaller than
   (576-HLEN) bytes.

   The ITE then sets (C=0; P=1) in the SEAL header of the probe packet
   and sets the Next Header field to the inner network layer protocol
   type.  Next, the ITE sets LINK to the appropriate value for this SEAL
   path, sets the Identification field, then finally calculates the ICV
   and sets I=1 (when USE_ICV is TRUE).

   The ITE then encapsulates the probe packet in the appropriate outer
   headers, splits it into two outer IP fragments, then sends both

https://datatracker.ietf.org/doc/html/rfc1812#section-5.2.6
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   fragments over the same SEAL path.

   The ITE should send a series of probe packets (e.g., 3-5 probes with
   1sec intervals between tests) instead of a single isolated probe in
   case of packet loss.  If the ETE returns an SCMP PTB message with the
   original first fragment in the packet-in-error, then the SEAL path
   correctly supports fragmentation; otherwise, the ITE enables stateful
   MTU determination for this SEAL path as specified in Section 5.4.9.

5.4.9.  Stateful MTU Determination

   SEAL supports a stateless MTU determination capability, however the
   ITE may in some instances wish to impose a stateful MTU limit on a
   particular SEAL path.  For example, when the ETE is situated behind a
   middlebox that performs reassembly in violation of the specs (see:

Section 5.4.8) it is imperative that fragmentation be avoided.  In
   other instances (e.g., when the SEAL path includes performance-
   constrained links), the ITE may deem it necessary to cache a
   conservative static MTU in order to avoid sending large packets that
   would only be dropped due to an MTU restriction somewhere on the
   path.

   To determine a static MTU value, the ITE can send a series of probe
   packets of various sizes to the ETE with (C=0; P=1) in the SEAL
   header and DF=1 in the outer IP header.  The ITE then caches the size
   'S' of the largest packet for which it receives a probe reply from
   the ETE by setting MAXMTU=MAX((S, (1500+HLEN)) for this SEAL path.

   For example, the ITE could send probe packets of 8KB, followed by
   4KB, followed by 2KB, etc.  While probing, the ITE processes any ICMP
   PTB message it receives as a potential indication of probe failure
   then discards the message.

5.4.10.  Detecting Path MTU Changes

   When stateful MTU determination is used, the ITE SHOULD periodically
   reset MAXMTU and/or re-probe the path to determine whether MAXMTU has
   increased.  If the path still has a too-small MTU, the ITE will
   receive a PTB message that reports a smaller size.

5.5.  ETE Specification

5.5.1.  Reassembly Buffer Requirements

   For IPv6, the ETE MUST configure a minimum reassembly buffer size of
   (1500 + HLEN) bytes for the reassembly of outer IPv6 packets, i.e.,
   even though the true minimum reassembly size for IPv6 is only 1500
   bytes [RFC2460].  For IPv4, the ETE also MUST configure a minimum

https://datatracker.ietf.org/doc/html/rfc2460
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   reassembly buffer size of (1500 + HLEN) bytes for the reassembly of
   outer IPv4 packets, i.e., even though the true minimum reassembly
   size for IPv4 is only 576 bytes [RFC1122].

   In addition to this outer reassembly buffer requirement, the ETE
   further MUST configure a minimum SEAL reassembly buffer size of (1500
   + HLEN) bytes for the reassembly of segmented SEAL packets (see:

Section 5.5.4).

   Note that the value "HLEN" may be variable and initially unknown to
   the ETE, and would typically range from a few bytes to a few tens of
   bytes or even more.  It is therefore RECOMMENDED that the ETE
   configure slightly larger minimum IP/SEAL reassembly buffer sizes of
   2048 bytes (2KB).

5.5.2.  Tunnel Neighbor Soft State

   When message origin authentication and integrity checking is
   required, the ETE maintains a per-ITE MAC calculation algorithm and a
   symmetric secret key to verify the MAC.  The ETE also maintains a
   window of Identification values for the packets it has recently
   received from this ITE as well as a window of Identification values
   for the packets it has recently sent to this ITE.

   When the tunnel neighbor relationship is bidirectional, the ETE
   further maintains a per SEAL path mapping of outer IP and transport
   layer addresses to the LINK value that appears in packets received
   from the ITE.

5.5.3.  IP-Layer Reassembly

   The ETE reassembles fragmented IP packets that are explicitly
   addressed to itself.  For IP fragments that are received via a SEAL
   tunnel, the ETE SHOULD maintain conservative reassembly cache high-
   and low-water marks.  When the size of the reassembly cache exceeds
   this high-water mark, the ETE SHOULD actively discard stale
   incomplete reassemblies (e.g., using an Active Queue Management (AQM)
   strategy) until the size falls below the low-water mark.  The ETE
   SHOULD also actively discard any pending reassemblies that clearly
   have no opportunity for completion, e.g., when a considerable number
   of new fragments have arrived before a fragment that completes a
   pending reassembly arrives.

   The ETE processes non-SEAL IP packets as specified in the normative
   references, i.e., it performs any necessary IP reassembly then
   discards the packet if it is larger than the reassembly buffer size
   or delivers the (fully-reassembled) packet to the appropriate upper
   layer protocol module.

https://datatracker.ietf.org/doc/html/rfc1122
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   For SEAL packets, the ETE performs any necessary IP reassembly then
   submits the packet for SEAL decapsulation as specified in Section

5.5.4.  (Note that if the packet is larger than the reassembly buffer
   size, the ETE still examines the leading portion of the (partially)
   reassembled packet during decapsulation.)

5.5.4.  Decapsulation, SEAL-Layer Reassembly, and Re-Encapsulation

   For each SEAL packet accepted for decapsulation, the ETE first
   examines the Identification field.  If the Identification is not
   within the window of acceptable values for this ITE, the ETE silently
   discards the packet.

   Next, if I==1 the ETE SHOULD verify the MAC value and silently
   discard the packet if the value is incorrect.  (Note that this means
   that the ETE would need to receive all IP fragments if the packet was
   fragmented at the outer IP layer, since the MAC is included as a
   trailing field.)

   Next, if the packet arrived as multiple IP fragments, the ETE sends
   an SPTB message back to the ITE with MTU set to the size of the
   largest fragment received (see: Section 5.6.1.1).

   Next, if the packet arrived as multiple IP fragments and the inner
   packet is larger than 1500 bytes, the ETE silently discards the
   packet; otherwise, it continues to process the packet.

   Next, if there is an incorrect value in a SEAL header field (e.g., an
   incorrect "VER" field value), the ETE discards the packet.  If the
   SEAL header has C==0, the ETE also returns an SCMP "Parameter
   Problem" (SPP) message (see Section 5.6.1.2).

   Next, if the SEAL header has C==1, the ETE processes the packet as an
   SCMP packet as specified in Section 5.6.2.  Otherwise, the ETE
   continues to process the packet as a SEAL data packet.

   Next, if the SEAL header has (M==1 || Fragment Offset!=0) the ETE
   checks to see if the other segments of this already-segmented SEAL
   packet have arrived, i.e., by looking for additional segments that
   have the same outer IP source address, destination address, source
   port number and SEAL Identification value.  If all other segments
   have already arrived, the ETE discards the SEAL header and other
   outer headers from the non-initial segments and appends the segments
   onto the end of the first segment according to their offset value.
   Otherwise, the ETE caches the new segment for at most 60 seconds
   while awaiting the arrival of its partners.  During this process, the
   ETE discards any segments that are overlapping with respect to
   segments that have already been received, and also discards any
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   segments that have M==1 in the SEAL header but do not contain an
   integer multiple of 8 bytes.  The ETE further SHOULD manage the SEAL
   reassembly cache the same as described for the IP-Layer Reassembly
   cache in Section 5.5.3, i.e., it SHOULD perform an early discard for
   any pending reassemblies that have low probability of completion.

   Next, if the SEAL header in the (reassembled) packet has P==1, the
   ETE drops the packet unconditionally and sends an SPTB message back
   to the ITE (see: Section 5.6.1.1) if it has not already sent an SPTB
   message based on IP fragmentation.  (Note that the ETE therefore
   sends only a single SPTB message for a probe packet that also
   experienced IP fragmentation, i.e., it does not send multiple SPTB
   messages.)

   Finally, the ETE discards the outer headers and processes the inner
   packet according to the header type indicated in the SEAL Next Header
   field.  If the next hop toward the inner destination address is via a
   different interface than the SEAL packet arrived on, the ETE discards
   the SEAL header and delivers the inner packet either to the local
   host or to the next hop if the packet is not destined to the local
   host.

   If the next hop is on the same tunnel the SEAL packet arrived on,
   however, the ETE submits the packet for SEAL re-encapsulation
   beginning with the specification in Section 5.4.3 above and without
   decrementing the value in the inner (TTL / Hop Limit) field.

5.6.  The SEAL Control Message Protocol (SCMP)

   SEAL provides a companion SEAL Control Message Protocol (SCMP) that
   uses the same message types and formats as for the Internet Control
   Message Protocol for IPv6 (ICMPv6) [RFC4443].  The SCMP messaging
   protocol operates over bidirectional and partially unidirectional
   tunnels.  (For fully unidirectional tunnels, SEAL must operate
   without the benefit of SCMP meaning that steady-state fragmentation
   and reassembly may be necessary in extreme cases.  In that case, the
   ITE must select a conservative MINMTU to ensure that IPv4
   fragmentation is avoided in order to avoid reassembly errors at high
   data rates [RFC4963].)

   As for ICMPv6, each SCMP message includes a 32-bit header and a
   variable-length body.  The ITE encapsulates the SCMP message in a
   SEAL header and outer headers as shown in Figure 4:

https://datatracker.ietf.org/doc/html/rfc4443
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                                       +--------------------+
                                       ~   outer IP header  ~
                                       +--------------------+
                                       ~  other outer hdrs  ~
                                       +--------------------+
                                       ~    SEAL Header     ~
          +--------------------+       +--------------------+
          | SCMP message header|  -->  | SCMP message header|
          +--------------------+       +--------------------+
          |                    |  -->  |                    |
          ~  SCMP message body ~  -->  ~  SCMP message body ~
          |                    |  -->  |                    |
          +--------------------+       +--------------------+

               SCMP Message                  SCMP Packet
           before encapsulation          after encapsulation

                   Figure 4: SCMP Message Encapsulation

   The following sections specify the generation, processing and
   relaying of SCMP messages.

5.6.1.  Generating SCMP Messages

   ETEs generate SCMP messages in response to receiving certain SEAL
   data packets using the format shown in Figure 5:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     Code      |           Checksum            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Type-Specific Data                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      As much of the invoking SEAL data packet as possible     |
      ~       (beginning with the SEAL header) without the SCMP       ~
      |             packet exceeding MINMTU bytes (*)                 |

      (*) also known as the "packet-in-error"

                       Figure 5: SCMP Message Format

   The error message includes the 32-bit SCMP message header, followed
   by a 32-bit Type-Specific Data field, followed by the leading portion
   of the invoking SEAL data packet beginning with the SEAL header as
   the "packet-in-error".  The packet-in-error includes as much of the
   invoking packet as possible extending to a length that would not
   cause the entire SCMP packet following outer encapsulation to exceed
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   MINMTU bytes.

   When the ETE processes a SEAL data packet for which the
   Identification and ICV values are correct but an error must be
   returned, it prepares an SCMP message as shown in Figure 5.  The ETE
   sets the Type and Code fields to the same values that would appear in
   the corresponding ICMPv6 message [RFC4443], but calculates the
   Checksum beginning with the SCMP message header using the algorithm
   specified for ICMPv4 in [RFC0792].

   The ETE next encapsulates the SCMP message in the requisite SEAL and
   outer headers as shown in Figure 4.  During encapsulation, the ETE
   sets the outer destination address/port numbers of the SCMP packet to
   the values associated with the ITE and sets the outer source address/
   port numbers to its own outer address/port numbers.

   The ETE then sets (C=1; M=0; Fragment Offset=0) in the SEAL header,
   then sets I, Next Header and LINK to the same values that appeared in
   the SEAL header of the data packet.  The ETE next sets the
   Identification field to the next Identification value scheduled for
   this ITE, then increments the next Identification value.  When I==1,
   the ETE then prepares the ICV field the same as specified for SEAL
   data packet encapsulation in Section 5.4.4.  If this message is in
   direct response to a SEAL data packet sent by the ITE, the ETE next
   sets P=0 and sends the resulting SCMP packet to the ITE the same as
   specified for SEAL data packets in Section 5.4.5.

   If the message is in response to an SCMP message received from a next
   hop ETE or to an ICMP message received from a router on the path to a
   next hop ETE, the ETE instead sets P=1 and passes the message to the
   ITE in a "reverse re-encapsulation" process.  In particular, when the
   previous hop toward the source of the inner packet within the packet-
   in-error in a received SCMP/ICMP message is reached via the same
   tunnel as the message arrived on, the ETE replaces the outer headers
   of the message (up to and including the SEAL header) with headers
   that will be recognized and accepted by the previous hop and sends
   the resulting packet to the previous hop.

   The following sections describe additional considerations for various
   SCMP error messages:

5.6.1.1.  Generating SCMP Packet Too Big (SPTB) Messages

   An ETE generates an SPTB message when it receives a SEAL probe packet
   (i.e., one with C=0; P=1 in the SEAL header) or when it receives a
   SEAL packet that arrived as multiple outer IP fragments.  The ETE
   prepares the SPTB message the same as for the corresponding ICMPv6
   PTB message, and writes the length of the largest outer IP fragment

https://datatracker.ietf.org/doc/html/rfc4443
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   received in the MTU field of the message (or the full length of the
   outer IP packet if the packet was unfragmented).  In that case, the
   ETE sets (C=1; P=0) in the SEAL header.

   An ETE also generates an SPTB message when it attempts to forward a
   SEAL data packet to a next hop ETE via the same tunnel the data
   packet arrived on, but for which MAXMTU for that SEAL path is
   insufficient to accommodate the packet (See Section 5.4.3.2).  In
   that case, the ETE sets (C=1; P=1) in the SEAL header.

   An ETE finally generates an SPTB message when it receives an ICMP PTB
   message from a router on the path to a next hop ETE (See Section

5.4.7).  In that case, the ETE also sets (C=1; P=1) in the SEAL
   header.

5.6.1.2.  Generating Other SCMP Messages

   An ETE generates an SCMP "Destination Unreachable" (SDU) message
   under the same conditions that an IPv6 system would generate an
   ICMPv6 Destination Unreachable message.

   An ETE generates an SCMP "Parameter Problem" (SPP) message when it
   receives a SEAL packet with an incorrect value in the SEAL header.

   TEs generate other SCMP message types using methods and procedures
   specified in other documents.  For example, SCMP message types used
   for tunnel neighbor coordinations are specified in VET
   [I-D.templin-intarea-vet].

5.6.2.  Processing SCMP Messages

   An ITE may receive SCMP messages with C==1 in the SEAL header after
   sending packets to an ETE.  The ITE first verifies that the outer
   addresses of the SCMP packet are correct, and that the Identification
   field contains an acceptable value.  The ITE next verifies that the
   SEAL header fields are set correctly as specified in Section 5.6.1.
   When I==1, the ITE then verifies the ICV.  The ITE next verifies the
   Checksum value in the SCMP message header.  If any of these values
   are incorrect, the ITE silently discards the message; otherwise, it
   processes the message as follows:

5.6.2.1.  Processing SCMP PTB Messages

   After an ITE sends a SEAL packet to an ETE, it may receive an SPTB
   message with a packet-in-error containing the leading portion of the
   packet (see: Section 5.6.1.1).  If the SEAL header has P==1 the ITE
   consults its forwarding information base to pass the message to the
   previous hop toward the source address of the encapsulated inner
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   packet.  When the previous hop is reached via the same SEAL tunnel,
   the ITE passes the SPTB message to the previous hop as specified in

Section 5.6.1.  Otherwise, the ITE transcribes the inner packet
   within the packet-in-error into a message appropriate for the inner
   protocol version (e.g., ICMPv4 for IPv4, ICMPv6 for IPv6, etc.).

   If the SEAL header has P==0, the ITE instead processes the message as
   an MTU limitation on the SEAL path to this ETE.  In that case, the
   ITE first sets the temporary variable "PMTU" for this SEAL path to
   the MTU value in the SPTB message and processes the message as
   follows:

   o  If PMTU is no smaller than (1500+HLEN), the ITE suspends the SEAL
      segmentation/reassembly process for this SEAL path so that whole
      (unfragmented) SEAL packets can be used.  If the packet is a probe
      being used to establish a stateful MTU for this SEAL path (see:

section 5.4.9), the ITE also sets MAXMTU=PMTU.

   o  If PMTU is smaller than (1500+HLEN) but no smaller than MINMTU the
      ITE sets MAXMTU to (1500+HLEN) and resumes the SEAL segmentation/
      reassembly process for this SEAL path.

   o  If PMTU is smaller than MINMTU and the packet-in-error is a probe
      used for the purpose of middlebox reassembly detection (see:

section 5.4.8), the ITE notes the results of the probe.
      Otherwise, the ITE consults a plateau table to determine a new
      value for MAXMTU.  For example, if the ITE receives a PTB message
      with small PMTU and packet-in-error length 8KB, it can set
      MAXMTU=4KB.  If the ITE subsequently receives a PTB message with
      small PMTU and length 4KB, it can set MAXMTU=2KB, etc., to a
      minimum value of MAXMTU=(1500+HLEN).  Finally, if the ITE is using
      a MINMTU value larger than 1280 for IPv6 or 576 for IPv4, it may
      need to reduce MINMTU if the PMTU value is small.

   Next, if the packet-in-error was no larger than (1500+HLEN) or the
   packet-in-error was an explicit probe (i.e., one with (C==0; P==1 in
   the SEAL header of the packet-in-error), the ITE discards the SPTB
   message.

5.6.2.2.  Processing Other SCMP Error Messages

   An ITE may receive an SDU message with an appropriate code under the
   same circumstances that an IPv6 node would receive an ICMPv6
   Destination Unreachable message.  The ITE transcribes the message and
   forwards it toward the source address of the inner packet within the
   packet-in-error the same as specified for SPTB messages with P==1 in

Section 5.6.2.1.
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   An ITE may receive an SPP message when the ETE receives a SEAL packet
   with an incorrect value in the SEAL header.  The ITE should examine
   the SEAL header within the packet-in-error to determine whether
   different settings should be used in subsequent packets, but does not
   relay the message further.

   TEs process other SCMP message types using methods and procedures
   specified in other documents.  For example, SCMP message types used
   for tunnel neighbor coordinations are specified in VET
   [I-D.templin-intarea-vet].

6.  Link Requirements

   Subnetwork designers are expected to follow the recommendations in
Section 2 of [RFC3819] when configuring link MTUs.

7.  End System Requirements

   End systems are encouraged to implement end-to-end MTU assurance
   (e.g., using Packetization Layer Path MTU Discovery (PLPMTUD) per
   [RFC4821]) even if the subnetwork is using SEAL.

   When end systems use PLPMTUD, SEAL will ensure that the tunnel
   behaves as a link in the path that assures an MTU of at least 1500
   bytes while not precluding discovery of larger MTUs.  The PLPMTUD
   mechanism will therefore be able to function as designed in order to
   discover and utilize larger MTUs.

8.  Router Requirements

   Routers within the subnetwork are expected to observe the standard IP
   router requirements, including the implementation of IP fragmentation
   and reassembly as well as the generation of ICMP messages
   [RFC0792][RFC1122][RFC1812][RFC2460][RFC4443][RFC6434].

   Note that, even when routers support existing requirements for the
   generation of ICMP messages, these messages are often filtered and
   discarded by middleboxes on the path to the original source of the
   message that triggered the ICMP.  It is therefore not possible to
   assume delivery of ICMP messages even when routers are correctly
   implemented.

https://datatracker.ietf.org/doc/html/rfc3819#section-2
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9.  Nested Encapsulation Considerations

   SEAL supports nested tunneling - an example would be a recursive
   nesting of mobile networks, where the first network receives service
   from an ISP, the second network receives service from the first
   network, the third network receives service from the second network,
   etc.  It is imperative that such nesting not extend indefinitely;
   SEAL tunnels therefore honor the Encapsulation Limit option defined
   in [RFC2473].

   In such nested arrangements, the SEAL ITE has a tunnel neighbor
   relationship only with ETEs at its own nesting level, i.e., it does
   not have a tunnel neighbor relationship with TEs at other nesting
   levels.Therefore, when an ITE 'A' within an outer nesting level needs
   to return an error message to an ITE 'B' within an inner nesting
   level, it generates an ordinary ICMP error message the same as if it
   were an ordinary router within the subnetwork.  'B' can then perform
   message validation as specified in Section 5.4.7, but full message
   origin authentication is not possible.

   (Note that the SCMP protocol could instead be extended to allow an
   outer nesting level ITE 'A' to return an SCMP message to an inner
   nesting level ITE 'B' rather than return an ICMP message.  This would
   conceptually allow the control messages to pass through firewalls and
   NATs, however it would give no more message origin authentication
   assurance than for ordinary ICMP messages.  It was therefore
   determined that the complexity of extending the SCMP protocol was of
   little value within the context of the anticipated use cases for
   nested encapsulations.)

10.  Reliability Considerations

   Although a SEAL tunnel may span an arbitrarily-large subnetwork
   expanse, the IP layer sees the tunnel as a simple link that supports
   the IP service model.  Links with high bit error rates (BERs) (e.g.,
   IEEE 802.11) use Automatic Repeat-ReQuest (ARQ) mechanisms [RFC3366]
   to increase packet delivery ratios, while links with much lower BERs
   typically omit such mechanisms.  Since SEAL tunnels may traverse
   arbitrarily-long paths over links of various types that are already
   either performing or omitting ARQ as appropriate, it would therefore
   be inefficient to require the tunnel endpoints to also perform ARQ.

11.  Integrity Considerations

   The SEAL header includes an integrity check field that covers the
   SEAL header and at least the inner packet headers.  This provides for

https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc3366


Templin                  Expires April 24, 2014                [Page 34]



Internet-Draft                    SEAL                      October 2013

   header integrity verification on a segment-by-segment basis for a
   segmented re-encapsulating tunnel path.

   Fragmentation and reassembly schemes must also consider packet-
   splicing errors, e.g., when two fragments from the same packet are
   concatenated incorrectly, when a fragment from packet X is
   reassembled with fragments from packet Y, etc.  The primary sources
   of such errors include implementation bugs and wrapping IPv4 ID
   fields.

   In particular, the IPv4 16-bit ID field can wrap with only 64K
   packets with the same (src, dst, protocol)-tuple alive in the system
   at a given time [RFC4963].  When the IPv4 ID field is re-written by a
   middlebox such as a NAT or Firewall, ID field wrapping can occur with
   even fewer packets alive in the system.  It is therefore essential
   that IPv4 fragmentation and reassembly be detected early and tuned
   out through proper application of SEAL segmentation and reassembly.

12.  IANA Considerations

   The IANA is requested to allocate a User Port number for "SEAL" in
   the 'port-numbers' registry.  The Service Name is "SEAL", and the
   Transport Protocols are TCP and UDP.  The Assignee is the IESG
   (iesg@ietf.org) and the Contact is the IETF Chair (chair@ietf.org).
   The Description is "Subnetwork Encapsulation and Adaptation Layer
   (SEAL)", and the Reference is the RFC-to-be currently known as
   'draft-templin-intarea-seal'.

13.  Security Considerations

   SEAL provides a segment-by-segment message origin authentication,
   integrity and anti-replay service.  The SEAL header is sent in-the-
   clear the same as for the outer IP and other outer headers.  In this
   respect, the threat model is no different than for IPv6 extension
   headers.  Unlike IPv6 extension headers, however, the SEAL header can
   be protected by an integrity check that also covers the inner packet
   headers.

   An amplification/reflection/buffer overflow attack is possible when
   an attacker sends IP fragments with spoofed source addresses to an
   ETE in an attempt to clog the ETE's reassembly buffer and/or cause
   the ETE to generate a stream of SCMP messages returned to a victim
   ITE.  The SCMP message ICV, Identification, as well as the inner
   headers of the packet-in-error, provide mitigation for the ETE to
   detect and discard SEAL segments with spoofed source addresses.

https://datatracker.ietf.org/doc/html/rfc4963
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   Security issues that apply to tunneling in general are discussed in
   [RFC6169].

14.  Related Work

Section 3.1.7 of [RFC2764] provides a high-level sketch for
   supporting large tunnel MTUs via a tunnel-level segmentation and
   reassembly capability to avoid IP level fragmentation.

Section 3 of [RFC4459] describes inner and outer fragmentation at the
   tunnel endpoints as alternatives for accommodating the tunnel MTU.

Section 4 of [RFC2460] specifies a method for inserting and
   processing extension headers between the base IPv6 header and
   transport layer protocol data.  The SEAL header is inserted and
   processed in exactly the same manner.

   IPsec/AH is [RFC4301][RFC4301] is used for full message integrity
   verification between tunnel endpoints, whereas SEAL only ensures
   integrity for the inner packet headers.  The AYIYA proposal
   [I-D.massar-v6ops-ayiya] uses similar means for providing message
   authentication and integrity.

   SEAL, along with the Virtual Enterprise Traversal (VET)
   [I-D.templin-intarea-vet] tunnel virtual interface abstraction, are
   the functional building blocks for the Interior Routing Overlay
   Network (IRON) [I-D.templin-ironbis] and Routing and Addressing in
   Networks with Global Enterprise Recursion (RANGER) [RFC5720][RFC6139]
   architectures.

   The concepts of path MTU determination through the report of
   fragmentation and extending the IPv4 Identification field were first
   proposed in deliberations of the TCP-IP mailing list and the Path MTU
   Discovery Working Group (MTUDWG) during the late 1980's and early
   1990's.  An historical analysis of the evolution of these concepts,
   as well as the development of the eventual PMTUD mechanism, appears
   in [RFC5320].

15.  Implementation Status

   An early implementation of the first revision of SEAL [RFC5320] is
   available at: http://isatap.com/seal.
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