
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320 (if approved) October 21, 2013
Updates: rfc2460 (if approved)
Intended status: Standards Track
Expires: April 24, 2014

The Subnetwork Encapsulation and Adaptation Layer (SEAL)
draft-templin-intarea-seal-65.txt

Abstract

 This document specifies a Subnetwork Encapsulation and Adaptation
 Layer (SEAL). SEAL operates over virtual topologies configured over
 connected IP network routing regions bounded by encapsulating border
 nodes. These virtual topologies are manifested by tunnels that may
 span multiple IP and/or sub-IP layer forwarding hops, where they may
 incur packet duplication, packet reordering, source address spoofing
 and traversal of links with diverse Maximum Transmission Units
 (MTUs). SEAL addresses these issues through the encapsulation and
 messaging mechanisms specified in this document.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Templin Expires April 24, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SEAL October 2013

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Templin Expires April 24, 2014 [Page 2]

Internet-Draft SEAL October 2013

Table of Contents

1. Introduction . 4
1.1. Motivation . 4
1.2. Approach . 6
1.3. Differences with RFC5320 7

2. Terminology . 8
3. Requirements . 10
4. Applicability Statement 10
5. SEAL Specification . 11
5.1. SEAL Tunnel Model . 11
5.2. SEAL Model of Operation 12
5.3. SEAL Encapsulation Format 14
5.4. ITE Specification . 16
5.4.1. Tunnel MTU . 16
5.4.2. Tunnel Neighbor Soft State 17
5.4.3. SEAL Layer Pre-Processing 18
5.4.4. SEAL Encapsulation and Segmentation 19
5.4.5. Outer Encapsulation 21
5.4.6. Path Probing and ETE Reachability Verification 21
5.4.7. Processing ICMP Messages 22
5.4.8. IPv4 Middlebox Reassembly Testing 24
5.4.9. Stateful MTU Determination 25
5.4.10. Detecting Path MTU Changes 25

5.5. ETE Specification . 25
5.5.1. Reassembly Buffer Requirements 25
5.5.2. Tunnel Neighbor Soft State 26
5.5.3. IP-Layer Reassembly 26

 5.5.4. Decapsulation, SEAL-Layer Reassembly, and
 Re-Encapsulation 27

5.6. The SEAL Control Message Protocol (SCMP) 28
5.6.1. Generating SCMP Messages 29
5.6.2. Processing SCMP Messages 31

6. Link Requirements . 33
7. End System Requirements 33
8. Router Requirements . 33
9. Nested Encapsulation Considerations 34
10. Reliability Considerations 34
11. Integrity Considerations 34
12. IANA Considerations . 35
13. Security Considerations 35
14. Related Work . 36
15. Implementation Status . 36
16. Acknowledgments . 37
17. References . 37
17.1. Normative References 37
17.2. Informative References 38

 Author's Address . 42

https://datatracker.ietf.org/doc/html/rfc5320

Templin Expires April 24, 2014 [Page 3]

Internet-Draft SEAL October 2013

1. Introduction

 As Internet technology and communication has grown and matured, many
 techniques have developed that use virtual topologies (manifested by
 tunnels of one form or another) over an actual network that supports
 the Internet Protocol (IP) [RFC0791][RFC2460]. Those virtual
 topologies have elements that appear as one network layer hop, but
 are actually multiple IP or sub-IP layer hops. These multiple hops
 often have quite diverse properties that are often not even visible
 to the endpoints of the virtual hop. This introduces failure modes
 that are not dealt with well in current approaches.

 The use of IP encapsulation (also known as "tunneling") has long been
 considered as the means for creating such virtual topologies (e.g.,
 see [RFC2003][RFC2473]). Tunnels serve a wide variety of purposes,
 including mobility, security, routing control, traffic engineering,
 multihoming, etc., and will remain an integral part of the
 architecture moving forward. However, the encapsulation headers
 often include insufficiently provisioned per-packet identification
 values. IP encapsulation also allows an attacker to produce
 encapsulated packets with spoofed source addresses even if the source
 address in the encapsulating header cannot be spoofed. A denial-of-
 service vector that is not possible in non-tunneled subnetworks is
 therefore presented.

 Additionally, the insertion of an outer IP header reduces the
 effective path MTU visible to the inner network layer. When IPv6 is
 used as the encapsulation protocol, original sources expect to be
 informed of the MTU limitation through IPv6 Path MTU discovery
 (PMTUD) [RFC1981]. When IPv4 is used, this reduced MTU can be
 accommodated through the use of IPv4 fragmentation, but unmitigated
 in-the-network fragmentation has been found to be harmful through
 operational experience and studies conducted over the course of many
 years [FRAG][FOLK][RFC4963]. Additionally, classical IPv4 PMTUD
 [RFC1191] has known operational issues that are exacerbated by in-
 the-network tunnels [RFC2923][RFC4459].

 The following subsections present further details on the motivation
 and approach for addressing these issues.

1.1. Motivation

 Before discussing the approach, it is necessary to first understand
 the problems. In both the Internet and private-use networks today,
 IP is ubiquitously deployed as the Layer 3 protocol. The primary
 functions of IP are to provide for routing, addressing, and a
 fragmentation and reassembly capability used to accommodate links
 with diverse MTUs. While it is well known that the IP address space

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923

Templin Expires April 24, 2014 [Page 4]

Internet-Draft SEAL October 2013

 is rapidly becoming depleted, there is also a growing awareness that
 other IP protocol limitations have already or may soon become
 problematic.

 First, the Internet historically provided no means for discerning
 whether the source addresses of IP packets are authentic. This
 shortcoming is being addressed more and more through the deployment
 of site border router ingress filters [RFC2827], however the use of
 encapsulation provides a vector for an attacker to circumvent
 filtering for the encapsulated packet even if filtering is correctly
 applied to the encapsulation header. Secondly, the IP header does
 not include a well-behaved identification value unless the source has
 included a fragment header for IPv6 or unless the source permits
 fragmentation for IPv4. These limitations preclude an efficient
 means for routers to detect duplicate packets and packets that have
 been re-ordered within the subnetwork. Additionally, recent studies
 have shown that the arrival of fragments at high data rates can cause
 denial-of-service (DoS) attacks on performance-sensitive networking
 gear, prompting some administrators to configure their equipment to
 drop fragments unconditionally [I-D.taylor-v6ops-fragdrop].

 For IPv4 encapsulation, when fragmentation is permitted the header
 includes a 16-bit Identification field, meaning that at most 2^16
 unique packets with the same (source, destination, protocol)-tuple
 can be active in the network at the same time [RFC6864]. (When
 middleboxes such as Network Address Translators (NATs) re-write the
 Identification field to random values, the number of unique packets
 is even further reduced.) Due to the escalating deployment of high-
 speed links, however, these numbers have become too small by several
 orders of magnitude for high data rate packet sources such as tunnel
 endpoints [RFC4963].

 Furthermore, there are many well-known limitations pertaining to IPv4
 fragmentation and reassembly - even to the point that it has been
 deemed "harmful" in both classic and modern-day studies (see above).
 In particular, IPv4 fragmentation raises issues ranging from minor
 annoyances (e.g., in-the-network router fragmentation [RFC1981]) to
 the potential for major integrity issues (e.g., mis-association of
 the fragments of multiple IP packets during reassembly [RFC4963]).

 As a result of these perceived limitations, a fragmentation-avoiding
 technique for discovering the MTU of the forward path from a source
 to a destination node was devised through the deliberations of the
 Path MTU Discovery Working Group (MTUDWG) during the late 1980's
 through early 1990's which resulted in the publication of [RFC1191].
 In this negative feedback-based method, the source node provides
 explicit instructions to routers in the path to discard the packet
 and return an ICMP error message if an MTU restriction is

https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191

Templin Expires April 24, 2014 [Page 5]

Internet-Draft SEAL October 2013

 encountered. However, this approach has several serious shortcomings
 that lead to an overall "brittleness" [RFC2923].

 In particular, site border routers in the Internet have been known to
 discard ICMP error messages coming from the outside world. This is
 due in large part to the fact that malicious spoofing of error
 messages in the Internet is trivial since there is no way to
 authenticate the source of the messages [RFC5927]. Furthermore, when
 a source node that requires ICMP error message feedback when a packet
 is dropped due to an MTU restriction does not receive the messages, a
 path MTU-related black hole occurs. This means that the source will
 continue to send packets that are too large and never receive an
 indication from the network that they are being discarded. This
 behavior has been confirmed through documented studies showing clear
 evidence of PMTUD failures for both IPv4 and IPv6 in the Internet
 today [TBIT][WAND][SIGCOMM][RIPE].

 The issues with both IP fragmentation and this "classical" PMTUD
 method are exacerbated further when IP tunneling is used [RFC4459].
 For example, an ingress tunnel endpoint (ITE) may be required to
 forward encapsulated packets into the subnetwork on behalf of
 hundreds, thousands, or even more original sources. If the ITE
 allows IP fragmentation on the encapsulated packets, persistent
 fragmentation could lead to undetected data corruption due to
 Identification field wrapping and/or reassembly congestion at the
 ETE. If the ITE instead uses classical IP PMTUD it must rely on ICMP
 error messages coming from the subnetwork that may be suspect,
 subject to loss due to filtering middleboxes, or insufficiently
 provisioned for translation into error messages to be returned to the
 original sources.

 Although recent works have led to the development of a positive
 feedback-based end-to-end MTU determination scheme [RFC4821], they do
 not excuse tunnels from accounting for the encapsulation overhead
 they add to packets. Moreover, in current practice existing
 tunneling protocols mask the MTU issues by selecting a "lowest common
 denominator" MTU that may be much smaller than necessary for most
 paths and difficult to change at a later date. Therefore, a new
 approach to accommodate tunnels over links with diverse MTUs is
 necessary.

1.2. Approach

 This document concerns subnetworks manifested through a virtual
 topology configured over a connected network routing region and
 bounded by encapsulating border nodes. Example connected network
 routing regions include Mobile Ad hoc Networks (MANETs), enterprise
 networks and the global public Internet itself. Subnetwork border

https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821

Templin Expires April 24, 2014 [Page 6]

Internet-Draft SEAL October 2013

 nodes forward unicast and multicast packets over the virtual topology
 across multiple IP and/or sub-IP layer forwarding hops that may
 introduce packet duplication and/or traverse links with diverse
 Maximum Transmission Units (MTUs).

 This document introduces a Subnetwork Encapsulation and Adaptation
 Layer (SEAL) for tunneling inner network layer protocol packets over
 IP subnetworks that connect Ingress and Egress Tunnel Endpoints
 (ITEs/ETEs) of border nodes. It provides a modular specification
 designed to be tailored to specific associated tunneling protocols.
 (A transport-mode of operation is also possible but out of scope for
 this document.)

 SEAL provides a mid-layer encapsulation that accommodates links with
 diverse MTUs, and allows routers in the subnetwork to perform
 efficient duplicate packet and packet reordering detection. The
 encapsulation further ensures message origin authentication, packet
 header integrity and anti-replay in environments in which these
 functions are necessary.

 SEAL treats tunnels that traverse the subnetwork as ordinary links
 that must support network layer services. Moreover, SEAL provides
 dynamic mechanisms (including limited segmentation and reassembly) to
 ensure a maximal path MTU over the tunnel. This is in contrast to
 static approaches which avoid MTU issues by selecting a lowest common
 denominator MTU value that may be overly conservative for the vast
 majority of tunnel paths and difficult to change even when larger
 MTUs become available.

1.3. Differences with RFC5320

 This specification of SEAL is descended from an experimental
 independent RFC publication of the same name [RFC5320]. However,
 this specification introduces a number of fundamental differences
 from the earlier publication. This specification therefore obsoletes
 (i.e., and does not update) [RFC5320].

 First, this specification includes a protocol version field in the
 SEAL header whereas [RFC5320] does not, and therefore cannot be
 updated by future revisions. Secondly, [RFC5320] forms a 32-bit
 Identification value by concatenating the 16-bit IPv4 Identification
 field with a 16-bit Identification "extension" field in the SEAL
 header. This means that [RFC5320] can only operate over IPv4
 networks (since IPv6 headers do not include a 16-bit version number)
 and that the SEAL Identification value can be corrupted if the
 Identification in the outer IPv4 header is rewritten. In contrast,
 this specification includes a 32-bit Identification value that is
 independent of any identification fields found in the inner or outer

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320

Templin Expires April 24, 2014 [Page 7]

Internet-Draft SEAL October 2013

 IP headers, and is therefore compatible with any inner and outer IP
 protocol version combinations.

 Additionally, the SEAL segmentation and reassembly procedures defined
 in [RFC5320] differ significantly from those found in this
 specification. In particular, this specification defines an 13-bit
 Offset field that allows for finer-grained segment sizes when SEAL
 segmentation is necessary. In contrast, [RFC5320] includes only a
 3-bit Segment field and performs reassembly through concatenation of
 consecutive segments.

 This version of SEAL also includes an optional Integrity Check Vector
 (ICV) that can be used to digitally sign the SEAL header and the
 leading portion of the encapsulated inner packet. This allows for a
 lightweight integrity check and a loose message origin authentication
 capability. The header further includes new control bits as well as
 a link identification field for additional control capabilities.

 Finally, this version of SEAL includes a new messaging protocol known
 as the SEAL Control Message Protocol (SCMP), whereas [RFC5320]
 performs signalling through the use of SEAL-encapsulated ICMP
 messages. The use of SCMP allows SEAL-specific departures from ICMP,
 as well as a control messaging capability that extends to other
 specifications, including Virtual Enterprise Traversal (VET)
 [I-D.templin-intarea-vet].

2. Terminology

 The following terms are defined within the scope of this document:

 subnetwork
 a virtual topology configured over a connected network routing
 region and bounded by encapsulating border nodes.

 IP
 used to generically refer to either Internet Protocol (IP)
 version, i.e., IPv4 or IPv6.

 Ingress Tunnel Endpoint (ITE)
 a portal over which an encapsulating border node (host or router)
 sends encapsulated packets into the subnetwork.

 Egress Tunnel Endpoint (ETE)
 a portal over which an encapsulating border node (host or router)
 receives encapsulated packets from the subnetwork.

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320

Templin Expires April 24, 2014 [Page 8]

Internet-Draft SEAL October 2013

 SEAL Path
 a subnetwork path from an ITE to an ETE beginning with an
 underlying link of the ITE as the first hop. Note that, if the
 ITE's interface connection to the underlying link assigns multiple
 IP addresses, each address represents a separate SEAL path.

 inner packet
 an unencapsulated network layer protocol packet (e.g., IPv4
 [RFC0791], OSI/CLNP [RFC0994], IPv6 [RFC2460], etc.) before any
 outer encapsulations are added. Internet protocol numbers that
 identify inner packets are found in the IANA Internet Protocol
 registry [RFC3232]. SEAL protocol packets that incur an
 additional layer of SEAL encapsulation are also considered inner
 packets.

 outer IP packet
 a packet resulting from adding an outer IP header (and possibly
 other outer headers) to a SEAL-encapsulated inner packet.

 packet-in-error
 the leading portion of an invoking data packet encapsulated in the
 body of an error control message (e.g., an ICMPv4 [RFC0792] error
 message, an ICMPv6 [RFC4443] error message, etc.).

 Packet Too Big (PTB) message
 a control plane message indicating an MTU restriction (e.g., an
 ICMPv6 "Packet Too Big" message [RFC4443], an ICMPv4
 "Fragmentation Needed" message [RFC0792], etc.).

 Don't Fragment (DF) bit
 a bit that indicates whether the packet may be fragmented by the
 network. The DF bit is explicitly included in the IPv4 header
 [RFC0791] and may be set to '0' to allow fragmentation or '1' to
 disallow further in-network fragmentation. The bit is absent from
 the IPv6 header [RFC2460], but implicitly set to '1' because
 fragmentation can occur only at IPv6 sources.

 The following abbreviations correspond to terms used within this
 document and/or elsewhere in common Internetworking nomenclature:

 HLEN - the length of the SEAL header plus outer headers

 ICV - Integrity Check Vector

 MAC - Message Authentication Code

 MTU - Maximum Transmission Unit

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc0994
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires April 24, 2014 [Page 9]

Internet-Draft SEAL October 2013

 SCMP - the SEAL Control Message Protocol

 SDU - SCMP Destination Unreachable message

 SPP - SCMP Parameter Problem message

 SPTB - SCMP Packet Too Big message

 SEAL - Subnetwork Encapsulation and Adaptation Layer

 TE - Tunnel Endpoint (i.e., either ingress or egress)

 VET - Virtual Enterprise Traversal

3. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. When used
 in lower case (e.g., must, must not, etc.), these words MUST NOT be
 interpreted as described in [RFC2119], but are rather interpreted as
 they would be in common English.

4. Applicability Statement

 SEAL was originally motivated by the specific case of subnetwork
 abstraction for Mobile Ad hoc Networks (MANETs), however the domain
 of applicability also extends to subnetwork abstractions over
 enterprise networks, mobile networks, ISP networks, SO/HO networks,
 the global public Internet itself, and any other connected network
 routing region.

 SEAL provides a network sublayer for encapsulation of an inner
 network layer packet within outer encapsulating headers. SEAL can
 also be used as a sublayer within a transport layer protocol data
 payload, where transport layer encapsulation is typically used for
 Network Address Translator (NAT) traversal as well as operation over
 subnetworks that give preferential treatment to certain "core"
 Internet protocols, e.g., TCP, UDP, etc. (However, note that TCP
 encapsulation may not be appropriate for all use cases; particularly
 those that require low delay and/or delay variance.) The SEAL header
 is processed in the same manner as for IPv6 extension headers, i.e.,
 it is not part of the outer IP header but rather allows for the
 creation of an arbitrarily extensible chain of headers in the same
 way that IPv6 does.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires April 24, 2014 [Page 10]

Internet-Draft SEAL October 2013

 To accommodate MTU diversity, the Ingress Tunnel Endpoint (ITE) may
 need to perform limited segmentation which the Egress Tunnel Endpoint
 (ETE) reassembles. The ETE further acts as a passive observer that
 informs the ITE of any packet size limitations. This allows the ITE
 to return appropriate PMTUD feedback even if the network path between
 the ITE and ETE filters ICMP messages.

 SEAL further provides mechanisms to ensure message origin
 authentication, packet header integrity, and anti-replay. The SEAL
 framework is therefore similar to the IP Security (IPsec)
 Authentication Header (AH) [RFC4301][RFC4302], however it provides
 only minimal hop-by-hop authenticating services while leaving full
 data integrity, authentication and confidentiality services as an
 end-to-end consideration.

 In many aspects, SEAL also very closely resembles the Generic Routing
 Encapsulation (GRE) framework [RFC1701]. SEAL can therefore be
 applied in the same use cases that are traditionally addressed by
 GRE, but goes beyond GRE to also provide additional capabilities
 (e.,g., path MTU accommodation, message origin authentication, etc.)
 as described in this document. The SEAL header is also exactly
 analogous to the IPv6 Fragment Header, and in fact shares the same
 format. SEAL can therefore re-use most existing code that implements
 IPv6 fragmentation and reassembly.

 In practice, SEAL is typically used as an encapsulation sublayer in
 conjunction with existing tunnel types such as IPsec, GRE, IP-in-IPv6
 [RFC2473], IP-in-IPv4 [RFC4213][RFC2003], etc. When used with
 existing tunnel types that insert mid-layer headers between the inner
 and outer IP headers (e.g., IPsec, GRE, etc.), the SEAL header is
 inserted between the mid-layer headers and outer IP header.

5. SEAL Specification

 The following sections specify the operation of SEAL:

5.1. SEAL Tunnel Model

 SEAL is an encapsulation sublayer used within point-to-point, point-
 to-multipoint, and non-broadcast, multiple access (NBMA) tunnels.
 Each SEAL path is configured over one or more underlying interfaces
 attached to subnetwork links. The SEAL tunnel connects an ITE to one
 or more ETE "neighbors" via encapsulation across an underlying
 subnetwork, where the tunnel neighbor relationship may be
 bidirectional, partially unidirectional or fully unidirectional.

 A bidirectional tunnel neighbor relationship is one over which both

https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc1701
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213

Templin Expires April 24, 2014 [Page 11]

Internet-Draft SEAL October 2013

 TEs can exchange both data and control messages. A partially
 unidirectional tunnel neighbor relationship allows the near end ITE
 to send data packets forward to the far end ETE, while the far end
 only returns control messages when necessary. Finally, a fully
 unidirectional mode of operation is one in which the near end ITE can
 receive neither data nor control messages from the far end ETE.

 Implications of the SEAL bidirectional and unidirectional models are
 the same as discussed in [I-D.templin-intarea-vet].

5.2. SEAL Model of Operation

 SEAL-enabled ITEs encapsulate each inner packet in any ancillary
 tunnel protocol headers, a SEAL header, any outer header
 encapsulations and in some instances a SEAL trailer as shown in
 Figure 1:

 +--------------------+
 ~ outer IP header ~
 +--------------------+
 ~ other outer hdrs ~
 +--------------------+
 ~ SEAL Header ~
 +--------------------+
 ~ tunnel headers ~
 +--------------------+ +--------------------+
 | | --> | |
 ~ Inner ~ --> ~ Inner ~
 ~ Packet ~ --> ~ Packet ~
 | | --> | |
 +--------------------+ +--------------------+
 ~ SEAL Trailer ~
 +--------------------+

 Figure 1: SEAL Encapsulation

 The ITE inserts the SEAL header according to the specific tunneling
 protocol. For simple encapsulation of an inner network layer packet
 within an outer IP header, the ITE inserts the SEAL header following
 the outer IP header and before the inner packet as: IP/SEAL/{inner
 packet}.

 For encapsulations over transports such as UDP, the ITE inserts the
 SEAL header following the outer transport layer header and before the
 inner packet, e.g., as IP/UDP/SEAL/{inner packet}. In that case, the
 UDP header is seen as an "other outer header" as depicted in Figure 1
 and the outer IP and transport layer headers are together seen as the
 outer encapsulation headers. (Note that outer transport layer

Templin Expires April 24, 2014 [Page 12]

Internet-Draft SEAL October 2013

 headers such as UDP must sometimes be included to ensure that SEAL
 packets will traverse the path to the ETE without loss due filtering
 middleboxes. The ETE MUST accept both IP/SEAL and IP/UDP/SEAL as
 equivalent packets so that the ITE can discontinue outer transport
 layer encapsulation if the path supports raw IP/SEAL encapsulation.)

 For SEAL encapsulations that involve tunnel types that include
 ancillary tunnel headers (e.g., GRE, IPsec, etc.) the ITE inserts the
 SEAL header as a leading extension to the tunnel headers, i.e., the
 SEAL encapsulation appears as part of the same tunnel and not a
 separate tunnel. For example, for GRE the ITE iserts the SEAL header
 as IP/SEAL/GRE/{inner packet}, and for IPsec the ITE inserts the SEAL
 header as IP/SEAL/IPsec-header/{inner packet}/IPsec-trailer. In such
 cases, SEAL considers the length of the inner packet only (i.e., and
 not the other tunnel headers and trailers) when performing its packet
 size calculations.

 SEAL supports both "nested" tunneling and "re-encapsulating"
 tunneling. Nested tunneling occurs when a first tunnel is
 encapsulated within a second tunnel, which may then further be
 encapsulated within additional tunnels. Nested tunneling can be
 useful, and stands in contrast to "recursive" tunneling which is an
 anomalous condition incurred due to misconfiguration or a routing
 loop. Considerations for nested tunneling and avoiding recursive
 tunneling are discussed in Section 4 of [RFC2473] as well as in

Section 9 of this document.

 Re-encapsulating tunneling occurs when a packet arrives at a first
 ETE, which then acts as an ITE to re-encapsulate and forward the
 packet to a second ETE connected to the same subnetwork. In that
 case each ITE/ETE transition represents a segment of a bridged path
 between the ITE nearest the source and the ETE nearest the
 destination. Considerations for re-encapsulating tunneling are
 discussed in[I-D.templin-ironbis]. Combinations of nested and re-
 encapsulating tunneling are also naturally supported by SEAL.

 The SEAL ITE considers each underlying interface as the ingress
 attachment point to a separate SEAL path to the ETE. The ITE
 therefore may experience different path MTUs on different SEAL paths.

 Finally, the SEAL ITE ensures that the inner network layer protocol
 will see a minimum MTU of 1500 bytes over each SEAL path regardless
 of the outer network layer protocol version, i.e., even if a small
 amount of segmentation and reassembly are necessary. This is to
 avoid path MTU "black holes" for the minimum MTU configured by the
 vast majority of links in the Internet. Note that in some scenarios,
 however, reassembly may place a heavy burden on the ETE. In that
 case, the ITE can avoid invoking segmentation and instead report an

https://datatracker.ietf.org/doc/html/rfc2473#section-4

Templin Expires April 24, 2014 [Page 13]

Internet-Draft SEAL October 2013

 MTU smaller than 1500 bytes to the original source.

5.3. SEAL Encapsulation Format

 SEAL encapsulates each inner packet within any ancillary tunneling
 protocol headers and a SEAL header. The SEAL header shares the same
 format as the IPv6 Fragment Header [RFC2460] and is identified by the
 same IP protocol number assigned for the IPv6 Fragment Header (type
 '44') [I-D.ietf-6man-ext-transmit]. The SEAL header is
 differentiated from the IPv6 Fragment Header by including a non-zero
 value in the most significant two bits of the IPv6 Fragment Header
 "Reserved" field; these two bits will heretofore serve as a SEAL
 protocol version number. SEAL therefore updates the IPv6 Fragment
 Header specification found in [RFC2460].

 The SEAL header is formatted as shown in Figure 2:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Header |VER|LINK |I|R|Z| Fragment Offset |C|P|M|
 +-+
 | Identification |
 +-+

 Figure 2: SEAL Encapsulation Format

 The fields of the SEAL header are formatted as follows:

 Next Header (8) an 8-bit field that encodes the next header Internet
 Protocol number the same as for the IPv4 protocol and IPv6 next
 header fields.

 VER (2)
 a 2-bit version field. This document specifies Version 1 of the
 SEAL protocol, i.e., the VER field encodes the value '01'.

 LINK (3)
 a 3-bit link identification value, set to a unique value by the
 ITE for each SEAL path over which it will send encapsulated
 packets to the ETE (up to 8 SEAL paths per ETE are therefore
 supported). Note that, if the ITE's interface connection to the
 underlying link assigns multiple IP addresses, each address
 represents a separate SEAL path that must be assigned a separate
 link ID.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires April 24, 2014 [Page 14]

Internet-Draft SEAL October 2013

 I (1)
 the "Integrity Check Vector (ICV) included" bit.

 R (1)
 the "Redirects Permitted" bit when used by VET (see:
 [I-D.templin-intarea-vet]); reserved for future use in other
 contexts.

 Z (1)
 a 1-bit Reserved field. Initialized to zero for transmission;
 ignored on reception.

 Fragment Offset (13) a 13-bit Offset field. The offset, in 8-octet
 units, of the data following this header.

 C (1)
 the "Control/Data" bit. Set to 1 by the ITE in SEAL Control
 Message Protocol (SCMP) control messages, and set to 0 in ordinary
 data packets.

 P (1)
 The "Probe" bit when C=0; set to 1 by the ITE in SEAL probe data
 packets for which it wishes to receive an explicit acknowledgement
 from the ETE. The "Pass" bit when C=1; set to 1 by the ETE in
 SCMP messages it relays to the ITE on behalf of another SEAL path.

 M (1) the "More Segments" bit. Set to 1 in a non-final segment and
 set to 0 in the final segment of the SEAL packet.

 Identification (32)
 a 32-bit per-packet identification field. Set to a randomly-
 initialized 32-bit value that is monotonically-incremented for
 each SEAL packet transmitted to this ETE.

 When an IIntegrity Check Vector (ICV) is included, it is added as a
 trailing field at the end of the SEAL packet. The ICV is formatted
 as shown in Figure 3:

 +-+
 |F|Key|Algorithm| Message Authentication Code (MAC) |
 +-+ ...

 Figure 3: Integrity Check Vector (ICV) Format

 As shown in the figure, the ICV begins with a 1-octet control field
 with a 1-bit (F)lag, a 2-bit Key identifier and a 5-bit Algorithm
 identifier. The control octet is followed by a variable-length
 Message Authentication Code (MAC). The ITE maintains a per ETE

Templin Expires April 24, 2014 [Page 15]

Internet-Draft SEAL October 2013

 algorithm and secret key to calculate the MAC in each packet it will
 send to this ETE. (By default, the ITE sets the F bit and Algorithm
 fields to 0 to indicate use of the HMAC-SHA-1 algorithm with a 160
 bit shared secret key to calculate an 80 bit MAC per [RFC2104] over
 the leading 128 bytes of the packet. Other values for F and
 Algorithm are out of scope.)

5.4. ITE Specification

5.4.1. Tunnel MTU

 The tunnel must present a stable MTU value to the inner network layer
 as the size for admission of inner packets into the tunnel. Since
 tunnels may support a large set of SEAL paths that accept widely
 varying maximum packet sizes, however, a number of factors should be
 taken into consideration when selecting a tunnel MTU.

 Due to the ubiquitous deployment of standard Ethernet and similar
 networking gear, the nominal Internet cell size has become 1500
 bytes; this is the de facto size that end systems have come to expect
 will either be delivered by the network without loss due to an MTU
 restriction on the path or a suitable ICMP Packet Too Big (PTB)
 message returned. When large packets sent by end systems incur
 additional encapsulation at an ITE, however, they may be dropped
 silently within the tunnel since the network may not always deliver
 the necessary PTBs [RFC2923]. The ITE SHOULD therefore set a tunnel
 MTU of at least 1500 bytes and provide accommodations to ensure that
 packets up to that size are successfully conveyed to the ETE.

 The inner network layer protocol consults the tunnel MTU when
 admitting a packet into the tunnel. For non-SEAL inner IPv4 packets
 with the IPv4 Don't Fragment (DF) bit cleared (i.e, DF==0), if the
 packet is larger than the tunnel MTU the inner IPv4 layer uses IPv4
 fragmentation to break the packet into fragments no larger than the
 MTU. The ITE then admits each fragment into the tunel as an
 independent packet.

 For all other inner packets, the inner network layer admits the
 packet if it is no larger than the tunnel MTU; otherwise, it drops
 the packet and sends a PTB error message to the source with the MTU
 value set to the MTU. The message contains as much of the invoking
 packet as possible without the entire message exceeding the network
 layer minimum MTU size.

 The ITE can alternatively set an indefinite tunnel MTU such that all
 inner packets are admitted into the tunnel regardless of their size
 (theoretical maximums are 64KB for IPv4 and 4GB for IPv6 [RFC2675]).
 For ITEs that host applications that use the tunnel directly, this

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2675

Templin Expires April 24, 2014 [Page 16]

Internet-Draft SEAL October 2013

 option must be carefully coordinated with protocol stack upper layers
 since some upper layer protocols (e.g., TCP) derive their packet
 sizing parameters from the MTU of the outgoing interface and as such
 may select too large an initial size. This is not a problem for
 upper layers that use conservative initial maximum segment size
 estimates and/or when the tunnel can reduce the upper layer's maximum
 segment size, e.g., by reducing the size advertised in the MSS option
 of outgoing TCP messages (sometimes known as "MSS clamping").

 In light of the above considerations, the ITE SHOULD configure an
 indefinite MTU on *router* tunnels so that SEAL performs all
 subnetwork adaptation from within the tunnel as specified in the
 following sections. The ITE MAY instead set a smaller MTU on *host*
 tunnels; in that case, the RECOMMENDED MTU is the maximum of 1500
 bytes and the smallest MTU among all of the underlying links minus
 the size of the encapsulation headers.

5.4.2. Tunnel Neighbor Soft State

 The ITE maintains a number of soft state variables for each ETE and
 for each SEAL path.

 The ITE maintains a per ETE window of Identification values for the
 packets it has recently sent to this ETE as welll as a per ETE window
 of Identification values for the packets it has recently received
 from this ETE. The ITE then includes an Identification in each
 packet it sends to this ETE.

 When message origin authentication and integrity checking is
 required, the ITE sets a variable "USE_ICV" to TRUE, and includes a
 trailing ICV in each packet it sends to this ETE; otherwise, it sets
 USE_ICV to FALSE.

 For each SEAL path, the ITE must also account for encapsulation
 header lengths. The ITE therefore maintains the per SEAL path
 constant values "SHLEN" set to the length of the SEAL header and
 trailer, "THLEN" set to the length of the outer encapsulating
 transport layer headers (or 0 if outer transport layer encapsulation
 is not used), "IHLEN" set to the length of the outer IP layer header,
 and "HLEN" set to (SHLEN+THLEN+IHLEN). (The ITE must include the
 length of the uncompressed headers even if header compression is
 enabled when calculating these lengths.) When SEAL is used in
 conjunction with another tunnel type such as GRE or IPsec, the length
 of the headers associated with those tunnels is also included in the
 HLEN calculation for the first segment only and the length of the
 associated trailers is included in the HLEN calculation for the final
 segment only.

Templin Expires April 24, 2014 [Page 17]

Internet-Draft SEAL October 2013

 The ITE maintains a per SEAL path variable "MAXMTU" initialized to
 the maximum of (1500+HLEN) bytes and the MTU of the underlying link.
 The ITE further sets a variable 'MINMTU' to the minimum MTU for the
 SEAL path over which encapsulated packets will travel. For IPv6
 paths, the ITE sets MINMTU=1280 per [RFC2460]. For IPv4 paths, the
 ITE sets MINMTU=576 based on practical interpretation of [RFC1122]
 even though the theoretical MINMTU for IPv4 is only 68 bytes
 [RFC0791].

 The ITE can also set MINMTU to a larger value if there is reason to
 believe that the minimum path MTU is larger, or to a smaller value if
 there is reason to believe the MTU is smaller, e.g., if there may be
 additional encapsulations on the path. If this value proves too
 large, the ITE will receive PTB message feedback either from the ETE
 or from a router on the path and will be able to reduce its MINMTU to
 a smaller value. (Note that since IPv4 links with MTUs smaller than
 1280 are presumably peformance-constrained, the ITE can instead
 initialize MINMTU to 1280 the same as for IPv6. If this value proves
 too large, standard IPv4 fragmentation and reassembly will provide
 short term accommodation for the sizing constraints while the ITE
 readjusts its MINMTU estimate.)

 The ITE may instead maintain the packet sizing variables and
 constants as per ETE (rather than per SEAL path) values. In that
 case, the values reflect the smallest MTU size across all of the SEAL
 paths associated with this ETE.

5.4.3. SEAL Layer Pre-Processing

 The SEAL layer is logically positioned between the inner and outer
 network protocol layers, where the inner layer is seen as the (true)
 network layer and the outer layer is seen as the (virtual) data link
 layer. Each packet to be processed by the SEAL layer is either
 admitted into the tunnel by the inner network layer protocol as
 described in Section 5.4.1 or is undergoing re-encapsulation from
 within the tunnel. The SEAL layer sees the former class of packets
 as inner packets that include inner network and transport layer
 headers, and sees the latter class of packets as transitional SEAL
 packets that include the outer and SEAL layer headers that were
 inserted by the previous hop SEAL ITE. For these transitional
 packets, the SEAL layer re-encapsulates the packet with new outer and
 SEAL layer headers when it forwards the packet to the next hop SEAL
 ITE.

 We now discuss the SEAL layer pre-processing actions for these two
 classes of packets.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0791

Templin Expires April 24, 2014 [Page 18]

Internet-Draft SEAL October 2013

5.4.3.1. Inner Packet Pre-Processing

 For each for non-SEAL IPv4 inner packet with DF==0 in the IP header
 and IPv6 inner packet with a fragment header and with (MF=0;
 Offset=0), if the packet is larger than (MINMTU-HLEN) the ITE uses IP
 fragmentation to fragment the packet into N pieces, where N is
 minimized. (For IPv6 as the inner protocol, the first fragment MUST
 be at least as large as the IPv6 minimum of 1280 bytes so that the
 entire IPv6 header chain is likely to fit within the first segment.)
 The ITE then submits each fragment for SEAL encapsulation as
 specified in Section 5.4.4.

 For all other inner packets, if the packet is no larger than (MAXMTU-
 HLEN) for the corresponding SEAL path the ITE submits it for SEAL
 encapsulation as specified in Section 5.4.4. Otherwise, the ITE
 drops the packet and sends an ordinary PTB message appropriate to the
 inner protocol version (subject to rate limiting) with the MTU field
 set to (MAXMTU-HLEN). (For IPv4 SEAL packets with DF==0, the ITE
 SHOULD set DF=1 and re-calculate the IPv4 header checksum before
 generating the PTB message in order to avoid bogon filters.) After
 sending the PTB message, the ITE discards the inner packet.

5.4.3.2. Transitional SEAL Packet Pre-Processing

 For each transitional packet that is to be processed by the SEAL
 layer from within the tunnel, if the packet is larger than MAXMTU
 bytes for the next hop SEAL path the ITE sends an SCMP Packet Too Big
 (SPTB) message to the previous hop subject to rate limiting with the
 MTU field set to MAXMTU and with (C=1; P=1) in the SEAL header (see:

Section 5.6.1.1). After sending the SPTB message, the ITE discards
 the packet. Otherwise, the ITE sets aside the encapsulating SEAL and
 outer headers and submits the inner packet for SEAL re-encapsulation
 as specified in Section 5.4.4. (Note that in the calculation for
 MAXMTU, HLEN for the next hop SEAL path may be different than HLEN
 for the previous hop. In that case, MAXMTU must reflect the smaller
 of the two HLEN values.)

5.4.4. SEAL Encapsulation and Segmentation

 For each inner packet/fragment submitted for SEAL encapsulation, the
 ITE next encapsulates the packet in a SEAL header formatted as
 specified in Section 5.3. The ITE next sets (C=0; P=0), sets LINK to
 the value assigned to the underlying SEAL path, and sets the Next
 Header field to the protocol number corresponding to the address
 family of the encapsulated inner packet. For example, the ITE sets
 the Next Header field to the value '4' for encapsulated IPv4 packets
 [RFC2003], '41' for encapsulated IPv6 packets [RFC2473][RFC4213],
 '47' for GRE [RFC1701], '80' for encapsulated OSI/CLNP packets

https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc1701

Templin Expires April 24, 2014 [Page 19]

Internet-Draft SEAL October 2013

 [RFC1070], etc.

 Next, if the inner packet is no larger than (MINMTU-HLEN) or larger
 than 1500, the ITE sets (M=0; Fragment Offset=0). Otherwise, the ITE
 breaks the inner packet into N non-overlapping segments, where N is
 minimized. For IPv6 as the inner protocol, the resulting
 encapsulated SEAL packet containing the first segment MUST be at
 least as large as the IPv6 minimum of 1280 bytes so that the entire
 IPv6 header chain is likely to fit within the first segment. (Since
 the Fragment Offset field indicates the number of 8 byte units,
 however, if HLEN is not an integer multiple of 8 bytes the
 encapsulated SEAL packet MAY contain up to 7 bytes less than 1280 so
 that the IPv6 minimum MTU is not exceeded.)

 The ITE then appends a clone of the SEAL header from the first
 segment onto the head of each additional segment. The ITE then sets
 (M=1; Fragment Offset=0) in the first segment, sets (M=0/1; Fragment
 Offset=O(1)) in the second segment, sets (M=0/1; Fragment
 Offset=O(2)) in the third segment (if needed), etc., then finally
 sets (M=0; Fragment Offset=O(n)) in the final segment (where O(i) is
 the number of 256 byte blocks that preceded this segment).

 The ITE then writes a monotonically-incrementing integer value for
 this ETE in the Identification field beginning with a randomly-
 initialized value in the first packet transmitted. (For SEAL packets
 that have been split into multiple pieces, the ITE writes the same
 Identification value in each piece.) The monotonically-incrementing
 requirement is to satisfy ETEs that use this value for anti-replay
 purposes. The value is incremented modulo 2^32, i.e., it wraps back
 to 0 when the previous value was (2^32 - 1).

 When USE_ICV is FALSE, the ITE next sets I=0. Otherwise, the ITE
 sets I=1, includes a trailing ICV and calculates the MAC using HMAC-
 SHA-1 with a 160 bit secret key and 80 bit MAC field. Beginning with
 the SEAL header, the ITE calculates the MAC over the leading 128
 bytes of the packet (or up to the end of the packet if there are
 fewer than 128 bytes) and places the result in the MAC field. (For
 SEAL packets that have been split into multiple pieces, each piece
 calculates its own MAC.) The ITE then writes the value 0 in the F
 flag and 0x00 in the Algorithm field of the ICV control octet (other
 values for these fields, and other MAC calculation disciplines, are
 outside the scope of this document and may be specified in future
 documents.)

 If the packet is undergoing SEAL re-encapsulation, the ITE then
 copies the R value from the SEAL header of the packet to be re-
 encapsulated. Otherwise, it sets R=0 unless otherwise specified in
 other documents that employ SEAL. The ITE then adds the outer

https://datatracker.ietf.org/doc/html/rfc1070

Templin Expires April 24, 2014 [Page 20]

Internet-Draft SEAL October 2013

 encapsulating headers as specified in Section 5.4.5.

5.4.5. Outer Encapsulation

 Following SEAL encapsulation, the ITE next encapsulates each segment
 in the requisite outer transport (when necessary) and IP layer
 headers. When a transport layer header such as UDP or TCP is
 included, the ITE writes the port number for SEAL in the transport
 destination service port field.

 When UDP encapsulation is used, the ITE sets the UDP checksum field
 to zero for IPv4 packets and also sets the UDP checksum field to zero
 for IPv6 packets even though IPv6 generally requires UDP checksums.
 Further considerations for setting the UDP checksum field for IPv6
 packets are discussed in [RFC6935][RFC6936].

 The ITE then sets the outer IP layer headers the same as specified
 for ordinary IP encapsulation (e.g., [RFC1070][RFC2003], [RFC2473],
 [RFC4213], etc.) except that for ordinary SEAL packets the ITE copies
 the "TTL/Hop Limit", "Type of Service/Traffic Class" and "Congestion
 Experienced" values in the inner network layer header into the
 corresponding fields in the outer IP header. For transitional SEAL
 packets undergoing re-encapsulation, the ITE instead copies the "TTL/
 Hop Limit", "Type of Service/Traffic Class" and "Congestion
 Experienced" values in the original outer IP header of the
 transitional packet into the corresponding fields in the new outer IP
 header of the packet to be forwarded (i.e., the values are
 transferred between outer headers and *not* copied from the inner
 network layer header).

 The ITE also sets the IP protocol number to the appropriate value for
 the first protocol layer within the encapsulation (e.g., UDP, TCP,
 SEAL, etc.). When IPv6 is used as the outer IP protocol, the ITE
 then sets the flow label value in the outer IPv6 header the same as
 described in [RFC6438]. When IPv4 is used as the outer IP protocol,
 the ITE sets DF=0 in the IPv4 header to allow the packet to be
 fragmented if it encounters a restricting link (for IPv6 SEAL paths,
 the DF bit is absent but implicitly set to 1).

 The ITE finally sends each outer packet via the underlying link
 corresponding to LINK.

5.4.6. Path Probing and ETE Reachability Verification

 All SEAL data packets sent by the ITE are considered implicit probes
 that detect MTU limitations on the SEAL path, while explicit probe
 packets can be constructed to probe the path MTU and/or verify ETE
 reachability. These probes will elicit an SCMP message from the ETE

https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc6438

Templin Expires April 24, 2014 [Page 21]

Internet-Draft SEAL October 2013

 if it needs to send an acknowledgement and/or report an error
 condition. The probe packets may also be dropped by either the ETE
 or a router on the path, which may or may not result in an ICMP
 message being returned to the ITE.

 To generate an explicit probe packet, the ITE creates a duplicate of
 an actual data packet and uses the duplicate as a probe.
 (Alternatively, the ITE can create a packet buffer beginning with the
 same outer headers, SEAL header and inner network layer headers that
 would appear in an ordinary data packet, then pad the packet with
 random data.) The ITE then sets (C=0; P=1) in the SEAL header of the
 probe packet, and also sets DF=1 in the outer IP header when IPv4 is
 used.

 The ITE sends periodic explicit probes to determine whether SEAL
 segmentation is still necessary (see Section 5.4.4). In particular,
 if a probe packet of 1500 bytes (i.e., a packet that becomes (1500+
 HLEN) bytes after encapsulation) succeeds without incurring
 fragmentation the ITE is assured that the path MTU is large enough so
 that the segmentation/reassembly process can be suspended. This
 probing discipline can therefore be considered as Packetization Layer
 Path MTU Discovery (PLPMTUD) [RFC4821] applied to tunnels, which
 operates independently of any application of PLPMTUD between end
 systems. Note that the explicit probe size of 1500 bytes is chosen
 since probe packets smaller than this size may be fragmented by a
 nested ITE further down the path. For example, a successful probe
 for a packet size of 1400 bytes does not guarantee that fragmentation
 is not occurring at another ITE.

 The ITE can also send probes to detect whether an outer transport
 layer header is no longer necessary to reach this ETE. For example,
 if the ITE sends its initial packets as IP/UDP/SEAL/*, it can send
 probes constructed as IP/SEAL/* to determine whether the ETE is
 reachable without the added layer of encapsulation. If so, the ITE
 should also re-probe the path MTU since switching to a new
 encapsulation type may result in a path change.

 While probing, the ITE processes ICMP messages as specified in
Section 5.4.7 and processes SCMP messages as specified in Section
5.6.2.

5.4.7. Processing ICMP Messages

 When the ITE sends SEAL packets, it may receive ICMP error messages
 [RFC0792][RFC4443] from a router on the path to the ETE. Each ICMP
 message includes an outer IP header, followed by an ICMP header,
 followed by a portion of the SEAL data packet that generated the
 error (also known as the "packet-in-error"). Note that the ITE may

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires April 24, 2014 [Page 22]

Internet-Draft SEAL October 2013

 receive an ICMP message from another ITE that is at the head end of a
 nested level of encapsulation. The ITE has no security associations
 with this nested ITE, hence it should consider the message the same
 as if it originated from an ordinary router on the path to the ETE.

 The ITE should process ICMPv4 Protocol Unreachable messages and
 ICMPv6 Parameter Problem messages with Code "Unrecognized Next Header
 type encountered" as a hint that the ETE does not implement SEAL.
 The ITE can optionally ignore other ICMP messages that do not include
 sufficient information in the packet-in-error, or process them as a
 hint that the SEAL path to the ETE may be failing. The ITE then
 discards these types of messages.

 For other ICMP messages, the ITE first examines the SEAL data packet
 within the packet-in-error field. If the IP source and/or
 destination addresses are invalid, or if the value in the SEAL header
 Identification field (if present) is not within the window of packets
 the ITE has recently sent to this ETE, or if the MAC value in the ICV
 field (if present) is incorrect, the ITE discards the message.

 Next, if the received ICMP message is a PTB the ITE sets the
 temporary variable "PMTU" for this SEAL path to the MTU value in the
 PTB message. If the outer IP length value in the packet-in-error is
 no larger than (1500+HLEN) bytes the ITE sets MAXMTU=(1500+HLEN) and
 discards the message. If the outer IP length value in the packet-in-
 error is larger than (1500+HLEN) bytes and PMTU is no smaller than
 MINMTU the ITE sets MAXMTU to the maximum of (1500+HLEN) and PMTU;
 otherwise the ITE consults a plateau table (e.g., as described in
 [RFC1191]) to determine a new value for MAXMTU. For example, if the
 ITE receives a PTB message with small PMTU and packet-in-error length
 8KB, it can set MAXMTU=4KB. If the ITE subsequently receives a PTB
 message with small PMTU and length 4KB, it can set MAXMTU=2KB, etc.,
 to a minimum value of MAXMTU=(1500+HLEN). Next, if the packet-in-
 error was an explicit probe (i.e., one with P=1 in the SEAL header),
 the ITE discards the message. Finally, if the ITE is using a MINMTU
 value larger than 1280 for IPv6 or 576 for IPv4, it may need to
 reduce MINMTU if the PMTU value is small.

 If the ICMP message was not discarded, the ITE transcribes it into a
 message appropriate for the SEAL data packet within the packet-in-
 error. If the previous hop toward the inner source address within
 the SEAL data packet is reached via the same SEAL tunnel, the ITE
 transcribes the message into an SCMP message the same as described
 for ETE generation of SCMP messages in Section 5.6.1, i.e., it copies
 the SEAL data packet within the packet-in-error into the packet-in-
 error field of the new message. (In this process, the ETE also sets
 (C=1; P=1) in the SEAL header of the SCMP message.) Otherwise, the
 ITE seeks beyond the SEAL header within the packet-in-error and

https://datatracker.ietf.org/doc/html/rfc1191

Templin Expires April 24, 2014 [Page 23]

Internet-Draft SEAL October 2013

 transcribes the inner packet into a message appropriate for the inner
 protocol version (e.g., ICMPv4 for IPv4, ICMPv6 for IPv6, etc.).

 The ITE finally forwards the transcribed message to the previous hop
 toward the inner source address.

5.4.8. IPv4 Middlebox Reassembly Testing

 The ITE can perform a qualification exchange to ensure that the
 subnetwork correctly delivers fragments to the ETE. This procedure
 can be used, e.g., to determine whether there are middleboxes on the
 path that violate the [RFC1812], Section 5.2.6 requirement that: "A
 router MUST NOT reassemble any datagram before forwarding it".
 Examples of middleboxes that may perform reassembly include stateful
 NATs and firewalls. Such devices could still allow for stateless MTU
 determination if they gather the fragments of a fragmented SEAL data
 packet for packet analysis purposes but then forward the fragments on
 to the final destination rather than forwarding the reassembled
 packet. (This process is often referred to as "Virtual Fragmentation
 Reassembly" (VFR)).

 The ITE should use knowledge of its topological arrangement as an aid
 in determining when middlebox reassembly testing is necessary. For
 example, if the ITE is aware that the ETE is located somewhere in the
 public Internet, middlebox reassembly testing should not be
 necessary. If the ITE is aware that the ETE is located behind a NAT
 or a firewall, however, then reassembly testing can be used to detect
 middleboxes that do not conform to specifications.

 The ITE can perform a middlebox reassembly test by sending explicit
 probe packets. The ITE should only send probe packets that are
 smaller than (576-HLEN) before encapsulation since the least an
 ordinary node can be expected to reassemble is 576 bytes. To
 generate a probe, the ITE either creates a clone of an ordinary data
 packet or creates a packet buffer beginning with the same outer
 headers, SEAL header and inner network layer header that would appear
 in an ordinary data packet. The ITE then pads the probe packet with
 random data to a length that is at least 128 bytes but smaller than
 (576-HLEN) bytes.

 The ITE then sets (C=0; P=1) in the SEAL header of the probe packet
 and sets the Next Header field to the inner network layer protocol
 type. Next, the ITE sets LINK to the appropriate value for this SEAL
 path, sets the Identification field, then finally calculates the ICV
 and sets I=1 (when USE_ICV is TRUE).

 The ITE then encapsulates the probe packet in the appropriate outer
 headers, splits it into two outer IP fragments, then sends both

https://datatracker.ietf.org/doc/html/rfc1812#section-5.2.6

Templin Expires April 24, 2014 [Page 24]

Internet-Draft SEAL October 2013

 fragments over the same SEAL path.

 The ITE should send a series of probe packets (e.g., 3-5 probes with
 1sec intervals between tests) instead of a single isolated probe in
 case of packet loss. If the ETE returns an SCMP PTB message with the
 original first fragment in the packet-in-error, then the SEAL path
 correctly supports fragmentation; otherwise, the ITE enables stateful
 MTU determination for this SEAL path as specified in Section 5.4.9.

5.4.9. Stateful MTU Determination

 SEAL supports a stateless MTU determination capability, however the
 ITE may in some instances wish to impose a stateful MTU limit on a
 particular SEAL path. For example, when the ETE is situated behind a
 middlebox that performs reassembly in violation of the specs (see:

Section 5.4.8) it is imperative that fragmentation be avoided. In
 other instances (e.g., when the SEAL path includes performance-
 constrained links), the ITE may deem it necessary to cache a
 conservative static MTU in order to avoid sending large packets that
 would only be dropped due to an MTU restriction somewhere on the
 path.

 To determine a static MTU value, the ITE can send a series of probe
 packets of various sizes to the ETE with (C=0; P=1) in the SEAL
 header and DF=1 in the outer IP header. The ITE then caches the size
 'S' of the largest packet for which it receives a probe reply from
 the ETE by setting MAXMTU=MAX((S, (1500+HLEN)) for this SEAL path.

 For example, the ITE could send probe packets of 8KB, followed by
 4KB, followed by 2KB, etc. While probing, the ITE processes any ICMP
 PTB message it receives as a potential indication of probe failure
 then discards the message.

5.4.10. Detecting Path MTU Changes

 When stateful MTU determination is used, the ITE SHOULD periodically
 reset MAXMTU and/or re-probe the path to determine whether MAXMTU has
 increased. If the path still has a too-small MTU, the ITE will
 receive a PTB message that reports a smaller size.

5.5. ETE Specification

5.5.1. Reassembly Buffer Requirements

 For IPv6, the ETE MUST configure a minimum reassembly buffer size of
 (1500 + HLEN) bytes for the reassembly of outer IPv6 packets, i.e.,
 even though the true minimum reassembly size for IPv6 is only 1500
 bytes [RFC2460]. For IPv4, the ETE also MUST configure a minimum

https://datatracker.ietf.org/doc/html/rfc2460

Templin Expires April 24, 2014 [Page 25]

Internet-Draft SEAL October 2013

 reassembly buffer size of (1500 + HLEN) bytes for the reassembly of
 outer IPv4 packets, i.e., even though the true minimum reassembly
 size for IPv4 is only 576 bytes [RFC1122].

 In addition to this outer reassembly buffer requirement, the ETE
 further MUST configure a minimum SEAL reassembly buffer size of (1500
 + HLEN) bytes for the reassembly of segmented SEAL packets (see:

Section 5.5.4).

 Note that the value "HLEN" may be variable and initially unknown to
 the ETE, and would typically range from a few bytes to a few tens of
 bytes or even more. It is therefore RECOMMENDED that the ETE
 configure slightly larger minimum IP/SEAL reassembly buffer sizes of
 2048 bytes (2KB).

5.5.2. Tunnel Neighbor Soft State

 When message origin authentication and integrity checking is
 required, the ETE maintains a per-ITE MAC calculation algorithm and a
 symmetric secret key to verify the MAC. The ETE also maintains a
 window of Identification values for the packets it has recently
 received from this ITE as well as a window of Identification values
 for the packets it has recently sent to this ITE.

 When the tunnel neighbor relationship is bidirectional, the ETE
 further maintains a per SEAL path mapping of outer IP and transport
 layer addresses to the LINK value that appears in packets received
 from the ITE.

5.5.3. IP-Layer Reassembly

 The ETE reassembles fragmented IP packets that are explicitly
 addressed to itself. For IP fragments that are received via a SEAL
 tunnel, the ETE SHOULD maintain conservative reassembly cache high-
 and low-water marks. When the size of the reassembly cache exceeds
 this high-water mark, the ETE SHOULD actively discard stale
 incomplete reassemblies (e.g., using an Active Queue Management (AQM)
 strategy) until the size falls below the low-water mark. The ETE
 SHOULD also actively discard any pending reassemblies that clearly
 have no opportunity for completion, e.g., when a considerable number
 of new fragments have arrived before a fragment that completes a
 pending reassembly arrives.

 The ETE processes non-SEAL IP packets as specified in the normative
 references, i.e., it performs any necessary IP reassembly then
 discards the packet if it is larger than the reassembly buffer size
 or delivers the (fully-reassembled) packet to the appropriate upper
 layer protocol module.

https://datatracker.ietf.org/doc/html/rfc1122

Templin Expires April 24, 2014 [Page 26]

Internet-Draft SEAL October 2013

 For SEAL packets, the ETE performs any necessary IP reassembly then
 submits the packet for SEAL decapsulation as specified in Section

5.5.4. (Note that if the packet is larger than the reassembly buffer
 size, the ETE still examines the leading portion of the (partially)
 reassembled packet during decapsulation.)

5.5.4. Decapsulation, SEAL-Layer Reassembly, and Re-Encapsulation

 For each SEAL packet accepted for decapsulation, the ETE first
 examines the Identification field. If the Identification is not
 within the window of acceptable values for this ITE, the ETE silently
 discards the packet.

 Next, if I==1 the ETE SHOULD verify the MAC value and silently
 discard the packet if the value is incorrect. (Note that this means
 that the ETE would need to receive all IP fragments if the packet was
 fragmented at the outer IP layer, since the MAC is included as a
 trailing field.)

 Next, if the packet arrived as multiple IP fragments, the ETE sends
 an SPTB message back to the ITE with MTU set to the size of the
 largest fragment received (see: Section 5.6.1.1).

 Next, if the packet arrived as multiple IP fragments and the inner
 packet is larger than 1500 bytes, the ETE silently discards the
 packet; otherwise, it continues to process the packet.

 Next, if there is an incorrect value in a SEAL header field (e.g., an
 incorrect "VER" field value), the ETE discards the packet. If the
 SEAL header has C==0, the ETE also returns an SCMP "Parameter
 Problem" (SPP) message (see Section 5.6.1.2).

 Next, if the SEAL header has C==1, the ETE processes the packet as an
 SCMP packet as specified in Section 5.6.2. Otherwise, the ETE
 continues to process the packet as a SEAL data packet.

 Next, if the SEAL header has (M==1 || Fragment Offset!=0) the ETE
 checks to see if the other segments of this already-segmented SEAL
 packet have arrived, i.e., by looking for additional segments that
 have the same outer IP source address, destination address, source
 port number and SEAL Identification value. If all other segments
 have already arrived, the ETE discards the SEAL header and other
 outer headers from the non-initial segments and appends the segments
 onto the end of the first segment according to their offset value.
 Otherwise, the ETE caches the new segment for at most 60 seconds
 while awaiting the arrival of its partners. During this process, the
 ETE discards any segments that are overlapping with respect to
 segments that have already been received, and also discards any

Templin Expires April 24, 2014 [Page 27]

Internet-Draft SEAL October 2013

 segments that have M==1 in the SEAL header but do not contain an
 integer multiple of 8 bytes. The ETE further SHOULD manage the SEAL
 reassembly cache the same as described for the IP-Layer Reassembly
 cache in Section 5.5.3, i.e., it SHOULD perform an early discard for
 any pending reassemblies that have low probability of completion.

 Next, if the SEAL header in the (reassembled) packet has P==1, the
 ETE drops the packet unconditionally and sends an SPTB message back
 to the ITE (see: Section 5.6.1.1) if it has not already sent an SPTB
 message based on IP fragmentation. (Note that the ETE therefore
 sends only a single SPTB message for a probe packet that also
 experienced IP fragmentation, i.e., it does not send multiple SPTB
 messages.)

 Finally, the ETE discards the outer headers and processes the inner
 packet according to the header type indicated in the SEAL Next Header
 field. If the next hop toward the inner destination address is via a
 different interface than the SEAL packet arrived on, the ETE discards
 the SEAL header and delivers the inner packet either to the local
 host or to the next hop if the packet is not destined to the local
 host.

 If the next hop is on the same tunnel the SEAL packet arrived on,
 however, the ETE submits the packet for SEAL re-encapsulation
 beginning with the specification in Section 5.4.3 above and without
 decrementing the value in the inner (TTL / Hop Limit) field.

5.6. The SEAL Control Message Protocol (SCMP)

 SEAL provides a companion SEAL Control Message Protocol (SCMP) that
 uses the same message types and formats as for the Internet Control
 Message Protocol for IPv6 (ICMPv6) [RFC4443]. The SCMP messaging
 protocol operates over bidirectional and partially unidirectional
 tunnels. (For fully unidirectional tunnels, SEAL must operate
 without the benefit of SCMP meaning that steady-state fragmentation
 and reassembly may be necessary in extreme cases. In that case, the
 ITE must select a conservative MINMTU to ensure that IPv4
 fragmentation is avoided in order to avoid reassembly errors at high
 data rates [RFC4963].)

 As for ICMPv6, each SCMP message includes a 32-bit header and a
 variable-length body. The ITE encapsulates the SCMP message in a
 SEAL header and outer headers as shown in Figure 4:

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4963

Templin Expires April 24, 2014 [Page 28]

Internet-Draft SEAL October 2013

 +--------------------+
 ~ outer IP header ~
 +--------------------+
 ~ other outer hdrs ~
 +--------------------+
 ~ SEAL Header ~
 +--------------------+ +--------------------+
 | SCMP message header| --> | SCMP message header|
 +--------------------+ +--------------------+
 | | --> | |
 ~ SCMP message body ~ --> ~ SCMP message body ~
 | | --> | |
 +--------------------+ +--------------------+

 SCMP Message SCMP Packet
 before encapsulation after encapsulation

 Figure 4: SCMP Message Encapsulation

 The following sections specify the generation, processing and
 relaying of SCMP messages.

5.6.1. Generating SCMP Messages

 ETEs generate SCMP messages in response to receiving certain SEAL
 data packets using the format shown in Figure 5:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | Type-Specific Data |
 +-+
 | As much of the invoking SEAL data packet as possible |
 ~ (beginning with the SEAL header) without the SCMP ~
 | packet exceeding MINMTU bytes (*) |

 (*) also known as the "packet-in-error"

 Figure 5: SCMP Message Format

 The error message includes the 32-bit SCMP message header, followed
 by a 32-bit Type-Specific Data field, followed by the leading portion
 of the invoking SEAL data packet beginning with the SEAL header as
 the "packet-in-error". The packet-in-error includes as much of the
 invoking packet as possible extending to a length that would not
 cause the entire SCMP packet following outer encapsulation to exceed

Templin Expires April 24, 2014 [Page 29]

Internet-Draft SEAL October 2013

 MINMTU bytes.

 When the ETE processes a SEAL data packet for which the
 Identification and ICV values are correct but an error must be
 returned, it prepares an SCMP message as shown in Figure 5. The ETE
 sets the Type and Code fields to the same values that would appear in
 the corresponding ICMPv6 message [RFC4443], but calculates the
 Checksum beginning with the SCMP message header using the algorithm
 specified for ICMPv4 in [RFC0792].

 The ETE next encapsulates the SCMP message in the requisite SEAL and
 outer headers as shown in Figure 4. During encapsulation, the ETE
 sets the outer destination address/port numbers of the SCMP packet to
 the values associated with the ITE and sets the outer source address/
 port numbers to its own outer address/port numbers.

 The ETE then sets (C=1; M=0; Fragment Offset=0) in the SEAL header,
 then sets I, Next Header and LINK to the same values that appeared in
 the SEAL header of the data packet. The ETE next sets the
 Identification field to the next Identification value scheduled for
 this ITE, then increments the next Identification value. When I==1,
 the ETE then prepares the ICV field the same as specified for SEAL
 data packet encapsulation in Section 5.4.4. If this message is in
 direct response to a SEAL data packet sent by the ITE, the ETE next
 sets P=0 and sends the resulting SCMP packet to the ITE the same as
 specified for SEAL data packets in Section 5.4.5.

 If the message is in response to an SCMP message received from a next
 hop ETE or to an ICMP message received from a router on the path to a
 next hop ETE, the ETE instead sets P=1 and passes the message to the
 ITE in a "reverse re-encapsulation" process. In particular, when the
 previous hop toward the source of the inner packet within the packet-
 in-error in a received SCMP/ICMP message is reached via the same
 tunnel as the message arrived on, the ETE replaces the outer headers
 of the message (up to and including the SEAL header) with headers
 that will be recognized and accepted by the previous hop and sends
 the resulting packet to the previous hop.

 The following sections describe additional considerations for various
 SCMP error messages:

5.6.1.1. Generating SCMP Packet Too Big (SPTB) Messages

 An ETE generates an SPTB message when it receives a SEAL probe packet
 (i.e., one with C=0; P=1 in the SEAL header) or when it receives a
 SEAL packet that arrived as multiple outer IP fragments. The ETE
 prepares the SPTB message the same as for the corresponding ICMPv6
 PTB message, and writes the length of the largest outer IP fragment

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0792

Templin Expires April 24, 2014 [Page 30]

Internet-Draft SEAL October 2013

 received in the MTU field of the message (or the full length of the
 outer IP packet if the packet was unfragmented). In that case, the
 ETE sets (C=1; P=0) in the SEAL header.

 An ETE also generates an SPTB message when it attempts to forward a
 SEAL data packet to a next hop ETE via the same tunnel the data
 packet arrived on, but for which MAXMTU for that SEAL path is
 insufficient to accommodate the packet (See Section 5.4.3.2). In
 that case, the ETE sets (C=1; P=1) in the SEAL header.

 An ETE finally generates an SPTB message when it receives an ICMP PTB
 message from a router on the path to a next hop ETE (See Section

5.4.7). In that case, the ETE also sets (C=1; P=1) in the SEAL
 header.

5.6.1.2. Generating Other SCMP Messages

 An ETE generates an SCMP "Destination Unreachable" (SDU) message
 under the same conditions that an IPv6 system would generate an
 ICMPv6 Destination Unreachable message.

 An ETE generates an SCMP "Parameter Problem" (SPP) message when it
 receives a SEAL packet with an incorrect value in the SEAL header.

 TEs generate other SCMP message types using methods and procedures
 specified in other documents. For example, SCMP message types used
 for tunnel neighbor coordinations are specified in VET
 [I-D.templin-intarea-vet].

5.6.2. Processing SCMP Messages

 An ITE may receive SCMP messages with C==1 in the SEAL header after
 sending packets to an ETE. The ITE first verifies that the outer
 addresses of the SCMP packet are correct, and that the Identification
 field contains an acceptable value. The ITE next verifies that the
 SEAL header fields are set correctly as specified in Section 5.6.1.
 When I==1, the ITE then verifies the ICV. The ITE next verifies the
 Checksum value in the SCMP message header. If any of these values
 are incorrect, the ITE silently discards the message; otherwise, it
 processes the message as follows:

5.6.2.1. Processing SCMP PTB Messages

 After an ITE sends a SEAL packet to an ETE, it may receive an SPTB
 message with a packet-in-error containing the leading portion of the
 packet (see: Section 5.6.1.1). If the SEAL header has P==1 the ITE
 consults its forwarding information base to pass the message to the
 previous hop toward the source address of the encapsulated inner

Templin Expires April 24, 2014 [Page 31]

Internet-Draft SEAL October 2013

 packet. When the previous hop is reached via the same SEAL tunnel,
 the ITE passes the SPTB message to the previous hop as specified in

Section 5.6.1. Otherwise, the ITE transcribes the inner packet
 within the packet-in-error into a message appropriate for the inner
 protocol version (e.g., ICMPv4 for IPv4, ICMPv6 for IPv6, etc.).

 If the SEAL header has P==0, the ITE instead processes the message as
 an MTU limitation on the SEAL path to this ETE. In that case, the
 ITE first sets the temporary variable "PMTU" for this SEAL path to
 the MTU value in the SPTB message and processes the message as
 follows:

 o If PMTU is no smaller than (1500+HLEN), the ITE suspends the SEAL
 segmentation/reassembly process for this SEAL path so that whole
 (unfragmented) SEAL packets can be used. If the packet is a probe
 being used to establish a stateful MTU for this SEAL path (see:

section 5.4.9), the ITE also sets MAXMTU=PMTU.

 o If PMTU is smaller than (1500+HLEN) but no smaller than MINMTU the
 ITE sets MAXMTU to (1500+HLEN) and resumes the SEAL segmentation/
 reassembly process for this SEAL path.

 o If PMTU is smaller than MINMTU and the packet-in-error is a probe
 used for the purpose of middlebox reassembly detection (see:

section 5.4.8), the ITE notes the results of the probe.
 Otherwise, the ITE consults a plateau table to determine a new
 value for MAXMTU. For example, if the ITE receives a PTB message
 with small PMTU and packet-in-error length 8KB, it can set
 MAXMTU=4KB. If the ITE subsequently receives a PTB message with
 small PMTU and length 4KB, it can set MAXMTU=2KB, etc., to a
 minimum value of MAXMTU=(1500+HLEN). Finally, if the ITE is using
 a MINMTU value larger than 1280 for IPv6 or 576 for IPv4, it may
 need to reduce MINMTU if the PMTU value is small.

 Next, if the packet-in-error was no larger than (1500+HLEN) or the
 packet-in-error was an explicit probe (i.e., one with (C==0; P==1 in
 the SEAL header of the packet-in-error), the ITE discards the SPTB
 message.

5.6.2.2. Processing Other SCMP Error Messages

 An ITE may receive an SDU message with an appropriate code under the
 same circumstances that an IPv6 node would receive an ICMPv6
 Destination Unreachable message. The ITE transcribes the message and
 forwards it toward the source address of the inner packet within the
 packet-in-error the same as specified for SPTB messages with P==1 in

Section 5.6.2.1.

Templin Expires April 24, 2014 [Page 32]

Internet-Draft SEAL October 2013

 An ITE may receive an SPP message when the ETE receives a SEAL packet
 with an incorrect value in the SEAL header. The ITE should examine
 the SEAL header within the packet-in-error to determine whether
 different settings should be used in subsequent packets, but does not
 relay the message further.

 TEs process other SCMP message types using methods and procedures
 specified in other documents. For example, SCMP message types used
 for tunnel neighbor coordinations are specified in VET
 [I-D.templin-intarea-vet].

6. Link Requirements

 Subnetwork designers are expected to follow the recommendations in
Section 2 of [RFC3819] when configuring link MTUs.

7. End System Requirements

 End systems are encouraged to implement end-to-end MTU assurance
 (e.g., using Packetization Layer Path MTU Discovery (PLPMTUD) per
 [RFC4821]) even if the subnetwork is using SEAL.

 When end systems use PLPMTUD, SEAL will ensure that the tunnel
 behaves as a link in the path that assures an MTU of at least 1500
 bytes while not precluding discovery of larger MTUs. The PLPMTUD
 mechanism will therefore be able to function as designed in order to
 discover and utilize larger MTUs.

8. Router Requirements

 Routers within the subnetwork are expected to observe the standard IP
 router requirements, including the implementation of IP fragmentation
 and reassembly as well as the generation of ICMP messages
 [RFC0792][RFC1122][RFC1812][RFC2460][RFC4443][RFC6434].

 Note that, even when routers support existing requirements for the
 generation of ICMP messages, these messages are often filtered and
 discarded by middleboxes on the path to the original source of the
 message that triggered the ICMP. It is therefore not possible to
 assume delivery of ICMP messages even when routers are correctly
 implemented.

https://datatracker.ietf.org/doc/html/rfc3819#section-2
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc4443

Templin Expires April 24, 2014 [Page 33]

Internet-Draft SEAL October 2013

9. Nested Encapsulation Considerations

 SEAL supports nested tunneling - an example would be a recursive
 nesting of mobile networks, where the first network receives service
 from an ISP, the second network receives service from the first
 network, the third network receives service from the second network,
 etc. It is imperative that such nesting not extend indefinitely;
 SEAL tunnels therefore honor the Encapsulation Limit option defined
 in [RFC2473].

 In such nested arrangements, the SEAL ITE has a tunnel neighbor
 relationship only with ETEs at its own nesting level, i.e., it does
 not have a tunnel neighbor relationship with TEs at other nesting
 levels.Therefore, when an ITE 'A' within an outer nesting level needs
 to return an error message to an ITE 'B' within an inner nesting
 level, it generates an ordinary ICMP error message the same as if it
 were an ordinary router within the subnetwork. 'B' can then perform
 message validation as specified in Section 5.4.7, but full message
 origin authentication is not possible.

 (Note that the SCMP protocol could instead be extended to allow an
 outer nesting level ITE 'A' to return an SCMP message to an inner
 nesting level ITE 'B' rather than return an ICMP message. This would
 conceptually allow the control messages to pass through firewalls and
 NATs, however it would give no more message origin authentication
 assurance than for ordinary ICMP messages. It was therefore
 determined that the complexity of extending the SCMP protocol was of
 little value within the context of the anticipated use cases for
 nested encapsulations.)

10. Reliability Considerations

 Although a SEAL tunnel may span an arbitrarily-large subnetwork
 expanse, the IP layer sees the tunnel as a simple link that supports
 the IP service model. Links with high bit error rates (BERs) (e.g.,
 IEEE 802.11) use Automatic Repeat-ReQuest (ARQ) mechanisms [RFC3366]
 to increase packet delivery ratios, while links with much lower BERs
 typically omit such mechanisms. Since SEAL tunnels may traverse
 arbitrarily-long paths over links of various types that are already
 either performing or omitting ARQ as appropriate, it would therefore
 be inefficient to require the tunnel endpoints to also perform ARQ.

11. Integrity Considerations

 The SEAL header includes an integrity check field that covers the
 SEAL header and at least the inner packet headers. This provides for

https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc3366

Templin Expires April 24, 2014 [Page 34]

Internet-Draft SEAL October 2013

 header integrity verification on a segment-by-segment basis for a
 segmented re-encapsulating tunnel path.

 Fragmentation and reassembly schemes must also consider packet-
 splicing errors, e.g., when two fragments from the same packet are
 concatenated incorrectly, when a fragment from packet X is
 reassembled with fragments from packet Y, etc. The primary sources
 of such errors include implementation bugs and wrapping IPv4 ID
 fields.

 In particular, the IPv4 16-bit ID field can wrap with only 64K
 packets with the same (src, dst, protocol)-tuple alive in the system
 at a given time [RFC4963]. When the IPv4 ID field is re-written by a
 middlebox such as a NAT or Firewall, ID field wrapping can occur with
 even fewer packets alive in the system. It is therefore essential
 that IPv4 fragmentation and reassembly be detected early and tuned
 out through proper application of SEAL segmentation and reassembly.

12. IANA Considerations

 The IANA is requested to allocate a User Port number for "SEAL" in
 the 'port-numbers' registry. The Service Name is "SEAL", and the
 Transport Protocols are TCP and UDP. The Assignee is the IESG
 (iesg@ietf.org) and the Contact is the IETF Chair (chair@ietf.org).
 The Description is "Subnetwork Encapsulation and Adaptation Layer
 (SEAL)", and the Reference is the RFC-to-be currently known as
 'draft-templin-intarea-seal'.

13. Security Considerations

 SEAL provides a segment-by-segment message origin authentication,
 integrity and anti-replay service. The SEAL header is sent in-the-
 clear the same as for the outer IP and other outer headers. In this
 respect, the threat model is no different than for IPv6 extension
 headers. Unlike IPv6 extension headers, however, the SEAL header can
 be protected by an integrity check that also covers the inner packet
 headers.

 An amplification/reflection/buffer overflow attack is possible when
 an attacker sends IP fragments with spoofed source addresses to an
 ETE in an attempt to clog the ETE's reassembly buffer and/or cause
 the ETE to generate a stream of SCMP messages returned to a victim
 ITE. The SCMP message ICV, Identification, as well as the inner
 headers of the packet-in-error, provide mitigation for the ETE to
 detect and discard SEAL segments with spoofed source addresses.

https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/draft-templin-intarea-seal

Templin Expires April 24, 2014 [Page 35]

Internet-Draft SEAL October 2013

 Security issues that apply to tunneling in general are discussed in
 [RFC6169].

14. Related Work

Section 3.1.7 of [RFC2764] provides a high-level sketch for
 supporting large tunnel MTUs via a tunnel-level segmentation and
 reassembly capability to avoid IP level fragmentation.

Section 3 of [RFC4459] describes inner and outer fragmentation at the
 tunnel endpoints as alternatives for accommodating the tunnel MTU.

Section 4 of [RFC2460] specifies a method for inserting and
 processing extension headers between the base IPv6 header and
 transport layer protocol data. The SEAL header is inserted and
 processed in exactly the same manner.

 IPsec/AH is [RFC4301][RFC4301] is used for full message integrity
 verification between tunnel endpoints, whereas SEAL only ensures
 integrity for the inner packet headers. The AYIYA proposal
 [I-D.massar-v6ops-ayiya] uses similar means for providing message
 authentication and integrity.

 SEAL, along with the Virtual Enterprise Traversal (VET)
 [I-D.templin-intarea-vet] tunnel virtual interface abstraction, are
 the functional building blocks for the Interior Routing Overlay
 Network (IRON) [I-D.templin-ironbis] and Routing and Addressing in
 Networks with Global Enterprise Recursion (RANGER) [RFC5720][RFC6139]
 architectures.

 The concepts of path MTU determination through the report of
 fragmentation and extending the IPv4 Identification field were first
 proposed in deliberations of the TCP-IP mailing list and the Path MTU
 Discovery Working Group (MTUDWG) during the late 1980's and early
 1990's. An historical analysis of the evolution of these concepts,
 as well as the development of the eventual PMTUD mechanism, appears
 in [RFC5320].

15. Implementation Status

 An early implementation of the first revision of SEAL [RFC5320] is
 available at: http://isatap.com/seal.

https://datatracker.ietf.org/doc/html/rfc6169
https://datatracker.ietf.org/doc/html/rfc2764#section-3.1.7
https://datatracker.ietf.org/doc/html/rfc4459#section-3
https://datatracker.ietf.org/doc/html/rfc2460#section-4
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5320
http://isatap.com/seal

Templin Expires April 24, 2014 [Page 36]

Internet-Draft SEAL October 2013

16. Acknowledgments

 The following individuals are acknowledged for helpful comments and
 suggestions: Jari Arkko, Fred Baker, Iljitsch van Beijnum, Oliver
 Bonaventure, Teco Boot, Bob Braden, Brian Carpenter, Steve Casner,
 Ian Chakeres, Noel Chiappa, Remi Denis-Courmont, Remi Despres, Ralph
 Droms, Aurnaud Ebalard, Gorry Fairhurst, Washam Fan, Dino Farinacci,
 Joel Halpern, Brian Haberman, Sam Hartman, John Heffner, Thomas
 Henderson, Bob Hinden, Christian Huitema, Eliot Lear, Darrel Lewis,
 Joe Macker, Matt Mathis, Erik Nordmark, Dan Romascanu, Dave Thaler,
 Joe Touch, Mark Townsley, Ole Troan, Margaret Wasserman, Magnus
 Westerlund, Robin Whittle, James Woodyatt, and members of the Boeing
 Research & Technology NST DC&NT group.

 Discussions with colleagues following the publication of [RFC5320]
 have provided useful insights that have resulted in significant
 improvements to this, the Second Edition of SEAL.

 This document received substantial review input from the IESG and
 IETF area directorates in the February 2013 timeframe. IESG members
 and IETF area directorate representatives who contributed helpful
 comments and suggestions are gratefully acknowledged. Discussions on
 the IETF IPv6 and Intarea mailing lists in the summer 2013 timeframe
 also stimulated several useful ideas.

 Path MTU determination through the report of fragmentation was first
 proposed by Charles Lynn on the TCP-IP mailing list in 1987.
 Extending the IP identification field was first proposed by Steve
 Deering on the MTUDWG mailing list in 1989. Steve Deering also
 proposed the IPv6 minimum MTU of 1280 bytes on the IPng mailing list
 in 1997.

17. References

17.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Templin Expires April 24, 2014 [Page 37]

Internet-Draft SEAL October 2013

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

17.2. Informative References

 [FOLK] Shannon, C., Moore, D., and k. claffy, "Beyond Folklore:
 Observations on Fragmented Traffic", December 2002.

 [FRAG] Kent, C. and J. Mogul, "Fragmentation Considered Harmful",
 October 1987.

 [I-D.ietf-6man-ext-transmit]
 Carpenter, B. and S. Jiang, "Transmission and Processing
 of IPv6 Extension Headers",

draft-ietf-6man-ext-transmit-05 (work in progress),
 October 2013.

 [I-D.massar-v6ops-ayiya]
 Massar, J., "AYIYA: Anything In Anything",

draft-massar-v6ops-ayiya-02 (work in progress), July 2004.

 [I-D.taylor-v6ops-fragdrop]
 Jaeggli, J., Colitti, L., Kumari, W., Vyncke, E., Kaeo,
 M., and T. Taylor, "Why Operators Filter Fragments and
 What It Implies", draft-taylor-v6ops-fragdrop-01 (work in
 progress), June 2013.

 [I-D.templin-intarea-vet]
 Templin, F., "Virtual Enterprise Traversal (VET)",

draft-templin-intarea-vet-40 (work in progress), May 2013.

 [I-D.templin-ironbis]
 Templin, F., "The Interior Routing Overlay Network
 (IRON)", draft-templin-ironbis-15 (work in progress),
 May 2013.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/draft-ietf-6man-ext-transmit-05
https://datatracker.ietf.org/doc/html/draft-massar-v6ops-ayiya-02
https://datatracker.ietf.org/doc/html/draft-taylor-v6ops-fragdrop-01
https://datatracker.ietf.org/doc/html/draft-templin-intarea-vet-40
https://datatracker.ietf.org/doc/html/draft-templin-ironbis-15
https://datatracker.ietf.org/doc/html/rfc768

Templin Expires April 24, 2014 [Page 38]

Internet-Draft SEAL October 2013

 August 1980.

 [RFC0994] International Organization for Standardization (ISO) and
 American National Standards Institute (ANSI), "Final text
 of DIS 8473, Protocol for Providing the Connectionless-
 mode Network Service", RFC 994, March 1986.

 [RFC1063] Mogul, J., Kent, C., Partridge, C., and K. McCloghrie, "IP
 MTU discovery options", RFC 1063, July 1988.

 [RFC1070] Hagens, R., Hall, N., and M. Rose, "Use of the Internet as
 a subnetwork for experimentation with the OSI network
 layer", RFC 1070, February 1989.

 [RFC1146] Zweig, J. and C. Partridge, "TCP alternate checksum
 options", RFC 1146, March 1990.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1701] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation (GRE)", RFC 1701, October 1994.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers",
RFC 1812, June 1995.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.

 [RFC2764] Gleeson, B., Heinanen, J., Lin, A., Armitage, G., and A.
 Malis, "A Framework for IP Based Virtual Private
 Networks", RFC 2764, February 2000.

 [RFC2780] Bradner, S. and V. Paxson, "IANA Allocation Guidelines For
 Values In the Internet Protocol and Related Headers",

https://datatracker.ietf.org/doc/html/rfc994
https://datatracker.ietf.org/doc/html/rfc1063
https://datatracker.ietf.org/doc/html/rfc1070
https://datatracker.ietf.org/doc/html/rfc1146
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1701
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc2764

Templin Expires April 24, 2014 [Page 39]

Internet-Draft SEAL October 2013

BCP 37, RFC 2780, March 2000.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, May 2000.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, September 2000.

 [RFC3232] Reynolds, J., "Assigned Numbers: RFC 1700 is Replaced by
 an On-line Database", RFC 3232, January 2002.

 [RFC3366] Fairhurst, G. and L. Wood, "Advice to link designers on
 link Automatic Repeat reQuest (ARQ)", BCP 62, RFC 3366,
 August 2002.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, July 2004.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, November 2005.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, April 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

https://datatracker.ietf.org/doc/html/bcp37
https://datatracker.ietf.org/doc/html/rfc2780
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/bcp62
https://datatracker.ietf.org/doc/html/rfc3366
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4191
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Templin Expires April 24, 2014 [Page 40]

Internet-Draft SEAL October 2013

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5320] Templin, F., "The Subnetwork Encapsulation and Adaptation
 Layer (SEAL)", RFC 5320, February 2010.

 [RFC5445] Watson, M., "Basic Forward Error Correction (FEC)
 Schemes", RFC 5445, March 2009.

 [RFC5720] Templin, F., "Routing and Addressing in Networks with
 Global Enterprise Recursion (RANGER)", RFC 5720,
 February 2010.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927, July 2010.

 [RFC6139] Russert, S., Fleischman, E., and F. Templin, "Routing and
 Addressing in Networks with Global Enterprise Recursion
 (RANGER) Scenarios", RFC 6139, February 2011.

 [RFC6169] Krishnan, S., Thaler, D., and J. Hoagland, "Security
 Concerns with IP Tunneling", RFC 6169, April 2011.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,

RFC 6335, August 2011.

 [RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node
 Requirements", RFC 6434, December 2011.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, November 2011.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, February 2013.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935, April 2013.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, April 2013.

 [RIPE] De Boer, M. and J. Bosma, "Discovering Path MTU Black
 Holes on the Internet using RIPE Atlas", July 2012.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5320
https://datatracker.ietf.org/doc/html/rfc5445
https://datatracker.ietf.org/doc/html/rfc5720
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc6139
https://datatracker.ietf.org/doc/html/rfc6169
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc6434
https://datatracker.ietf.org/doc/html/rfc6438
https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936

Templin Expires April 24, 2014 [Page 41]

Internet-Draft SEAL October 2013

 [SIGCOMM] Luckie, M. and B. Stasiewicz, "Measuring Path MTU
 Discovery Behavior", November 2010.

 [TBIT] Medina, A., Allman, M., and S. Floyd, "Measuring
 Interactions Between Transport Protocols and Middleboxes",
 October 2004.

 [WAND] Luckie, M., Cho, K., and B. Owens, "Inferring and
 Debugging Path MTU Discovery Failures", October 2005.

Author's Address

 Fred L. Templin (editor)
 Boeing Research & Technology
 P.O. Box 3707
 Seattle, WA 98124
 USA

 Email: fltemplin@acm.org

Templin Expires April 24, 2014 [Page 42]

