
Workgroup: Network Working Group

Internet-Draft: draft-thaler-bpf-elf-00

Published: 13 March 2023

Intended Status: Standards Track

Expires: 14 September 2023

Authors: D. Thaler, Ed.

Microsoft

eBPF ELF Profile Specification, v0.1

Abstract

The Executable and Linking Format (ELF) is specified in Chapter 4 of

the System V Application Binary Interface. This document specifies

version 0.1 of the eBPF profile for ELF files.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Documentation conventions

2. ELF Header

3. TEXT Sections

4. DATA Sections

4.1. Classic Map Definitions

4.2. BTF Map Definitions

5. Other Sections

5.1. Program License

5.2. Runtime Version restriction

5.3. Type and String Data

5.4. Function and Line Information

5.4.1. Function information

5.4.2. Info block

5.4.3. Function Record

5.4.4. Line Information

5.4.5. Line Record

5.5. BTF ID Values

6. Acknowledgements

7. Normative References

Author's Address

1. Documentation conventions

This specification is a extension to the ELF file format as

specified in Chapter 4 of the System V Application Binary Interface

[ELF]. As such, the same data representation convention is used as

specified in the Data Representation section of the ELF

specification, where structures are represented in a C-style format

with types such as Elf64_Word for an unsigned 64-bit integer.

NOTE: Some content in this draft will eventually move to a separate

BTF draft.

2. ELF Header

The ELF header must have values set as follows:

e_ident[EI_CLASS] must be set to ELFCLASS64 (2).

e_type must be set to ET_REL (1).

e_machine must be set to EM_BPF (247).

3. TEXT Sections

eBPF programs [BPF-ISA] are stored in TEXT sections. A TEXT section

can contain multiple eBPF programs, each with a different program

name which is stored as a function in a TEXT section. The ".text"

¶

¶

¶

* ¶

* ¶

* ¶

type

key_size

section can be empty if eBPF programs are stored in other TEXT

sections.

This specification does not mandate any particular convention for

TEXT section names, as there are multiple different conventions in

use today, including:

Prefix Convention: The section name is prefixed with a string

that identifies the program type, so that the program type of any

programs in the section can be determined by finding the longest

substring match across all program type prefixes.

Exact Match Convention: The section name is a string that

identifies the program type of any programs in the section.

Arbitrary Convention: The section name can be anything and the

program type of any programs in the section must be determined

without consulting the section name.

4. DATA Sections

4.1. Classic Map Definitions

Classic eBPF map definitions are stored in DATA sections named

"maps" or matching "maps/<map-name>". Each such section can contain

0 or more map definitions. The number of map definitions in a

section can be determined by counting the number of symbols in the

".symtab" section that point into that maps section.

The size of a map definition can be calculated as:

(size of maps section) / (count of map definitions in that section)

The format of a map definition is as follows, where fields are in

the byte order indicated in e_ident[EI_DATA] in the ELF header:

An integer identifying the map type. Its value and meaning are

platform-specific.

Size in bytes of keys in the map, if any.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

 typedef struct {

 Elf64_Word type;

 Elf64_Word key_size;

 Elf64_Word value_size;

 Elf64_Word max_entries;

 Elf64_Word inner_map_idx;

 unsigned char platform_specific_data[];

 } Elf64_BpfMapDefinition;

¶

¶

¶

value_size

max_entries

inner_map_idx

platform_specific_data

Size in bytes of values in the map, if any.

Maximum number of entries in the map, if the map type

has a maximum.

If the map type is one whose values contain ids of

other maps, then the inner map index must be set to the 0-based

index of another map definition in the section. The referenced

map definition is used to enforce that any maps must match it for

their ids to be allowed as values of this map. If the map type is

not one whose values contain ids of other maps, this must be set

to 0.

This field and its size is up to the runtime

platform to define. For example, on Linux 4.14 and later, this

can hold a NUMA node value.

4.2. BTF Map Definitions

BTF eBPF map definitions are stored in a DATA section named ".maps".

The number of map definitions in a section can be determined by

counting the number of symbols in the ".symtab" section that point

into the ".maps" section.

TODO: add format description here

5. Other Sections

section name reference

license Program License (Section 5.1)

version Runtime Version restriction (Section 5.2)

.BTF Type and String Data (Section 5.3)

.BTF.ext Function and Line Information (Section 5.4)

.BTF_ids BTF ID Values (Section 5.5)

Table 1

5.1. Program License

A runtime can optionally restrict what program types and/or helper

functions can be used based on what license the eBPF program is

under. This information can be placed into the ELF file in a section

named "license" whose contents is a null-terminated SPDX license

expression as specified in Annex D of ISO/IEC 5962:2021,

"Information technology -- SPDX(R) Specification V22.1 [SPDX].

5.2. Runtime Version restriction

A runtime can optionally restrict whether an eBPF program can load

based on what runtime version it was designed to interact with. This

¶

¶

¶

¶

¶

¶

¶ ¶

¶ ¶

¶ ¶

¶ ¶

¶ ¶

¶

information can be placed into the ELF file in a section named

"version" containing a 4-byte version identifier whose use is

runtime-specific.

5.3. Type and String Data

The optional ".BTF" section contains type and string data. The

format of this section is the same as specified in BTF Type and

String Encoding [BTF].

5.4. Function and Line Information

The optional ".BTF.ext" section contains source line information for

the first eBPF instruction for each source line.

The section starts with the following header:

¶

¶

¶

¶

 typedef struct {

 Elf64_Half magic;

 unsigned char version;

 unsigned char flags;

 Elf64_Word hdr_len;

 Elf64_Word func_info_off;

 Elf64_Word func_info_len;

 Elf64_Word line_info_off;

 Elf64_Word line_info_len;

 unsigned char platform_specific_data[];

 } Elf64_BtfExtHeader;

¶

magic

version

flags

hdr_len

func_info_off

func_info_len

line_info_off

line_info_len

platform_specific_data

func_info_rec_size

btf_ext_info_sec

Must be set to 0xeB9F, which can be used by a parser to

determine whether multi-byte fields are in little-endian or big-

endian byte order.

Must be set to 1 (0x01).

Must be set to 0.

The size in bytes of this structure including the

platform_specific_data.

Offset in bytes past the end of the header, of the

start of the Function information (Section 5.4.1).

Size in bytes of the Function information

(Section 5.4.1). Must be set to 8 (0x00000008).

Offset in bytes past the end of the header, of the

start of the Line Information (Section 5.4.4).

Size in bytes of the Line Information

(Section 5.4.4). Must be set to 16 (0x00000010).

This field and its size is up to the runtime

platform to define.

5.4.1. Function information

Size in bytes of each function record contained

in an Info block (Section 5.4.2). Must be set to 8 (0x00000008).

A set of Info block (Section 5.4.2) data blobs, as

many as will fit in the size given as the func_info_len, where

each record within an info block is formatted as shown under

Function Record (Section 5.4.3) below.

5.4.2. Info block

¶

¶

¶

¶

¶

¶

¶

¶

¶

 typedef struct {

 Elf64_Word func_info_rec_size;

 Elf64_BtfExtInfoSec btf_ext_info_sec[];

 } Elf64_BpfFunctionInfo;

¶

¶

¶

 typedef struct {

 Elf64_Word sec_name_off;

 Elf64_Word num_info;

 unsigned char data[];

 } Elf64_BtfExtInfoSec;

¶

sec_name_off

num_info

data

insn_off

type_id

line_info_rec_size

btf_ext_info_sec

Offset in bytes of the section name within the Type

and String Data (Section 5.3).

Number of records that follow. Must be greater than 0.

A series of function or line records. The total length of data

is num_info * record_size bytes, where record_size is the size of

a function record or line record.

5.4.3. Function Record

Number 8 byte units from the start of the section whose

name is given by "Section name offset" to the start of the

function. Must be 0 for the first record, and for subsequent

records it must be greater than the instruction offset of the

previous record.

TODO: Add a definition of this field, which is "a

BTF_KIND_FUNC type".

5.4.4. Line Information

Size in bytes of each line record in an Info

block (Section 5.4.2). Must be set to 16 (0x00000010).

A set of Info block (Section 5.4.2) data blobs, as

many as will fit in the size given as the line_info_len, where

each record within an info block is formatted as shown under Line

Record (Section 5.4.5) below.

5.4.5. Line Record

¶

¶

¶

 typedef struct {

 Elf64_Word insn_off;

 Elf64_Word type_id;

 } Elf64_BpfFunctionInfo;

¶

¶

¶

 typedef struct {

 Elf64_Word line_info_rec_size;

 Elf64_BtfExtInfoSec btf_ext_info_sec[];

 } Elf64_BpfLineInfo;

¶

¶

¶

 typedef struct {

 Elf64_Word insn_off;

 Elf64_Word file_name_off;

 Elf64_Word line_off;

 Elf64_Word line_col;

 } ELF32_BpfLineInfo;

¶

insn_off

file_name_off

line_off

line_col

0-based instruction index into the eBPF program contained

in the section whose name is referenced in the Info block

(Section 5.4.2).

Offset in bytes of the file name within the Type and

String Data (Section 5.3).

Offset in bytes of the source line within the Type and

String Data (Section 5.3).

The line and column number value, computed as (line number

<< 10) | (column number).

5.5. BTF ID Values

TODO: make this secction adhere to the ELF specification data format

The .BTF_ids section encodes BTF ID values that are used within the

Linux kernel.

This section is created during the Linux kernel compilation with the

help of macros defined in include/linux/btf_ids.h header file.

Kernel code can use them to create lists and sets (sorted lists) of

BTF ID values.

The BTF_ID_LIST and BTF_ID macros define unsorted list of BTF ID

values, with following syntax:

resulting in the following layout in the .BTF_ids section:

The u32 list[] variable is defined to access the list.

The BTF_ID_UNUSED macro defines 4 zero bytes. It's used when we want

to define an unused entry in BTF_ID_LIST, like:

¶

¶

¶

¶

¶

¶

¶

¶

 BTF_ID_LIST(list)

 BTF_ID(type1, name1)

 BTF_ID(type2, name2)

¶

¶

 __BTF_ID__type1__name1__1:

 .zero 4

 __BTF_ID__type2__name2__2:

 .zero 4

¶

¶

¶

 BTF_ID_LIST(bpf_skb_output_btf_ids)

 BTF_ID(struct, sk_buff)

 BTF_ID_UNUSED

 BTF_ID(struct, task_struct)

¶

[BPF-ISA]

[BTF]

[ELF]

The BTF_SET_START/END macros pair defines a sorted list of BTF ID

values and their count, with following syntax:

resulting in the following layout in the .BTF_ids section:

The struct btf_id_set set; variable is defined to access the list.

The typeX name can be one of following:

and is used as a filter when resolving the BTF ID value.

All the BTF ID lists and sets are compiled in the .BTF_ids section

and resolved during the linking phase of Linux kernel build by

resolve_btfids tool.

6. Acknowledgements

Portions of this draft were derived from information in btf.rst in

the Linux kernel repository, to which a number of individuals have

contributed over time, including Andrii Nakryiko, Dave Tucker, David

S. Miller, Gary Lin, Ilya Leoshkevich, Indu Bhagat, Jesper Dangaard

Brouer, Jiri Olsa, Jonathan Corbet, Mauro Carvalho Chehab, Rong Tao,

and Yonghong Song.

7. Normative References

Thaler, D., Ed., "eBPF Instruction Set Specification,

v1.0", Work in Progress, Internet-Draft, draft-thaler-

bpf-isa-00, 13 March 2023, <https://datatracker.ietf.org/

doc/html/draft-thaler-bpf-isa-00>.

"BPF Type Format (BTF)", <https://elixir.bootlin.com/

linux/latest/source/Documentation/bpf/btf.rst>.

"System V Application Binary Interface", <http://

www.sco.com/developers/gabi/latest/contents.html>.

¶

 BTF_SET_START(set)

 BTF_ID(type1, name1)

 BTF_ID(type2, name2)

 BTF_SET_END(set)

¶

¶

 __BTF_ID__set__set:

 .zero 4

 __BTF_ID__type1__name1__3:

 .zero 4

 __BTF_ID__type2__name2__4:

 .zero 4

¶

¶

¶

 struct, union, typedef, func¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-thaler-bpf-isa-00
https://datatracker.ietf.org/doc/html/draft-thaler-bpf-isa-00
https://elixir.bootlin.com/linux/latest/source/Documentation/bpf/btf.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/bpf/btf.rst
http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/gabi/latest/contents.html

[SPDX]
"Information technology -- SPDX® Specification V.2.1",

<https://www.iso.org/standard/81870.html>.

Author's Address

Dave Thaler (editor)

Microsoft

Redmond, WA 98052

United States of America

Email: dthaler@microsoft.com

https://www.iso.org/standard/81870.html
mailto:dthaler@microsoft.com

	eBPF ELF Profile Specification, v0.1
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Documentation conventions
	2. ELF Header
	3. TEXT Sections
	4. DATA Sections
	4.1. Classic Map Definitions
	4.2. BTF Map Definitions

	5. Other Sections
	5.1. Program License
	5.2. Runtime Version restriction
	5.3. Type and String Data
	5.4. Function and Line Information
	5.4.1. Function information
	5.4.2. Info block
	5.4.3. Function Record
	5.4.4. Line Information
	5.4.5. Line Record

	5.5. BTF ID Values

	6. Acknowledgements
	7. Normative References
	Author's Address

