
Workgroup: Network Working Group

Internet-Draft: draft-thierry-bulk-04

Published: 16 April 2024

Intended Status: Experimental

Expires: 18 October 2024

Authors: P. Thierry

Thierry Technologies

Binary Uniform Language Kit 1.0

Abstract

This specification describes a uniform, decentrally extensible and

efficient format for data serialization.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 October 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Rationale

1.1.1. Definitions

1.1.2. State of the art

1.2. Format overview

1.3. Conventions and Terminology

2. BULK syntax

2.1. Parsing algorithm

2.1.1. Summary of marker bytes

2.1.2. Evaluation

2.2. Forms

2.2.1. starting marker byte

2.2.2. ending marker byte

2.2.3. Difference between sequence and form

2.3. Atoms

2.3.1. nil

2.3.2. Arrays

2.3.3. Reserved marker bytes

2.3.4. References

3. Standard namespaces

3.1. BULK core namespace

3.1.1. Version

3.1.2. Booleans

3.1.3. Strings encoding

3.1.4. Namespaces

3.1.5. Definitions

3.1.6. Arithmetic

3.1.7. Compact formats

4. Extension namespaces

5. Profiles

5.1. Profile redundancy

5.2. Standard profile

6. Security Considerations

6.1. Parsing

6.2. Forwarding

6.3. Definitions

7. IANA Considerations

8. Acknowledgements

9. References

9.1. Normative References

9.2. Informative references

Appendix A. Robust namespace definition

A.1. Selective authority

A.2. Open authority

Author's Address

1. Introduction

1.1. Rationale

This specification aims at finding an original trade-off between

uniformity, generality, extensibility, decentralization, compactness

and processing speed for a data format. It is our opinion that every

widely used existing format occupy a different position than this

one in the solution space for formats, that none is better on all

axes, and that this one is the current best on several axes, hence

this new design. It is also our opinion that some of those existing

formats constitute an optimal solution for their specific use case,

either in a absolute sense, or at least at the time of their design.

But the ever-changing field of IT now faces new challenges that call

for a new approach.

In particular, whereas the previous trend for Internet and Web

standards and programming tools has been to create human-readable

syntaxes for data and protocols, the advent of technologies like

protocol buffers [protobuf], Thrift [Thrift], the various binary

serializations for JSON like Avro [Avro] or Smile [Smile], or the

binary HTTP/2 [HTTP2] seem to indicate that the time is ripe for a

generalized use of binary, reserved until now for the low-level

protocols. The lessons about flexibility learnt in the previous

switch from binary to plain text can now be applied to efficient

binary syntaxes.

1.1.1. Definitions

By uniformity, we mean the property of a syntax that can be parsed

even by an application that doesn't understand the semantics of

every part of the processed data. Of course, almost all syntaxes

that feature uniformity contain a limited number of non uniform

elements. Also, uniformity really only has value in the face of

extension, as a fixed syntax doesn't need uniformity (it only makes

the implementation simpler).

Almost all extensible syntaxes have their extensible part uniform to

a great degree. In this specification, uniformity is hence evaluated

on two criteria: first, the number of non uniform elements (and,

incidentally, their diversity), second, the fact that the uniformity

of the extensible part is not a limitation to the users (i.e. that

the temptation to extend the format in a non-uniform way is as

absent as possible).

A good counter-example is found in most programming languages.

Adding a new branching construct cannot be done in a terse way

without modifying the underlying implementation. Such a construct

either cannot be defined by user code (because of evaluation rules)

¶

¶

¶

¶

or can in a terribly verbose and inconvenient way (with lots of

boilerplate code). Notable exceptions to this limitation of

programming languages are Lisp, Haskell and stack programming

languages.

On the other hand, a stack programming language is the canonical

example of a non-uniform language. Each operator takes a number of

operands from the stack. Not knowing the arity of an operator makes

it impossible to continue parsing, even when its evaluation was

optional to the final processing. In the design space, stack

programming languages completely sacrifice uniformity to achieve one

of the highest combination of extensibility, compactness and speed

of processing.

By generality, we mean the ability of a syntax to lend itself to

describe any kind of data with a reasonable (or better yet, high)

level of compactness and simplicity. For example, although both

arrays and linked lists could be considered very general as they are

both able to store any kind of data, they actually are at the

respective cost of complexity (arrays need the embedding of data

structure in the data or in the processing logic) and size (in-

memory linked lists can waste as much as half or two third of the

space for the overhead of the data structure).

By decentralization, we mean the ability to extend the syntax in a

way that avoid naming collisions without the use of a central

registry. Note that the DNS, as we use it, is NOT decentralized in

this sense, but distributed, as it cannot work without its root

servers and prior knowledge of their location.

1.1.2. State of the art

Uniformity, generality and extensibility are usually highly-valued

traits in formats design. Programming languages obviously feature

them foremost, although their generality usually stops at what they

are supposed to express: procedures. Most of them are ill-suited to

represent arbitrary data, but notable exceptions include Lisp (where

"code is data") and Javascript, from which a subset has been

extracted to exchange data, JSON, which has seen a tremendous

success for this purpose. JSON may lack in generality and

compactness, but its design makes its parsing really straightforward

and fast. All of them, though, lack decentralization. Some of them

make it possible to extend them in a distributed way if some

discipline is followed (for example, by naming modules after domain

names), but the discipline is not mandatory (and even with domain

names, a change of ownership makes it possible for name collisions).

The SGML/XML family of formats also feature uniformity, generality

and extensibility and actually fare much better than programming

¶

¶

¶

¶

¶

languages on the three fronts. XML namespaces also make XML naming

distributed and there have been attempts at making it compact (e.g.

EXI from W3C, Fast Infoset from ISO/ITU or EBML).

All the previously cited formats clearly lack compactness, although

just applying standard compression techniques would sacrifice only

very little processing time to gain huge size reductions on most of

their intended use cases, but compression may not address their

ineffectiveness at storing arbitrary bytes.

So-called binary formats pretty much exhibit the opposite trade-

offs. Most of them are not uniform to achieve better compactness.

Some are specifically designed for a great generality, but many lack

extensibility. When they are extensible, it's never in a

decentralized way, again for reasons that have to do with

compactness. They are usually extremely fast to parse.

Actually, many binary formats are not so much formats as they are

formats frameworks, and exclude extensibility by design. For each

use case, an IDL compiler creates a brand new format that is

essentially incompatible with all other formats created by the same

compiler (EBML specifically cites this property among its own

disadvantages). If the IDL compiler and framework are correctly

designed, such a format usually represent an optimum in compactness

and speed of processing, as the compiler can also automatically

generate an ad-hoc optimized parser.

Where extensibility has been planned in existing formats, it often

doesn't get used that much or at all because of the complications

around it. Many binary formats include reserved values meant to

extend them to future uses, like the CM field in the ZIP format. A

case like this one faces an chicken-and-egg problem: if you don't

write and get a specification officially adopted, implementations

might not want to include your extension, but if your extension is

purely theoretical and hasn't been tested in the wild, you may face

resistance to get it officially adopted. This is probably why even

though most compression formats include the ability to later encode

other compression methods, each new compression method usually comes

with its own format.

When extensions are managed with any form of registry, another issue

is that you usually need to reserve a large set of values for free

experimentation, and once an extension gains any traction while in

experimentation, its authors face the difficulty to switch all

existing implementations to the definitive values they'll get. And

how experimenters choose their temporary values makes them

vulnerable to conflicts with others.

¶

¶

¶

¶

¶

¶

1.2. Format overview

A BULK stream is a stream of 8-bit bytes, in big-endian order.

Parsing a BULK stream yields a sequence of expressions, which can be

either atoms or forms, which are sequences of expressions. The

syntax of forms is entirely uniform, without a single exception: a

starting byte marker, a sequence of expressions and an ending byte

marker. Among atoms, only nil (the null byte) and arrays have a

special syntax, for efficiency purposes. Even booleans and floating-

point numbers follow the uniform syntax that every other expression

follows.

Non uniform atoms start with a marker byte, followed by a static or

dynamic number of bytes, depending on the type.

Any other atom is a reference, which consists of a namespace marker

(in almost all cases, a single byte) followed by an identifier

within this namespace (a single byte). All in all, a very little

sacrifice is made in compactness for the benefit of a very simple

syntax: apart from nil and small integers, nothing is smaller than 2

bytes, and as most forms involve a reference followed by some

content, a form is usually 4 bytes + its content.

A namespace marker in a BULK stream is associated to a namespace

identified by some identifier guaranteed to be unique without

coordination (like a UUID or cryptographical hash), thus ensuring

decentralized extensibility. The stream can be processed even if the

application doesn't recognize the namespace. Parsing remains

possible thanks to the uniform syntax.

Combination of BULK namespaces, BULK streams and even other formats

doesn't need any content transformation to work. Here are some

examples:

The content of a BULK stream, enclosed in list starting and

ending byte markers, constitute a valid BULK expression. Thus

BULK streams can be packed or annotated within a BULK stream

without modification. Annotation use cases include adding

metadata or cryptographic signature.

A BULK format could specify in its syntax the place for an

expression holding metadata. Whether the specification provides

its own metadata forms or not, an application could use a BULK

serialization for MARC, TEI Header, XML or RDF for this metadata

expression. The vocabulary selected would be univocally expressed

by the namespace and every vocabulary would be parsed by the same

mechanisms.

Whenever a content must be stored as-is instead of serialized, or

a highly-optimized ad hoc serialization exists for some data,

¶

¶

¶

¶

¶

*

¶

*

¶

*

anything can always be stored within an array. They can contain

arbitray bytes and there is no limit to their size.

Furthermore, BULK expressions can be evaluated. Most expressions

evaluate to themselves, but some evaluate by default to the result

of a pure function call, making it possible to serialize data in an

even more compact form, by eliminating boilerplate data and repeated

patterns.

1.3. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

Literal numerical values are provided in decimal or hexadecimal as

appropriate. Hexadecimal literals are prefixed with 0x to

distinguish them from decimal literals.

The text notation of the BULK stream uses mnemonics for some bytes

sequences. Mnemonics are series of characters, excluding all capital

letters and white space, like this-is-one-mnemonic or what-the-%§!?

#-is-that?. They are always separated by white space. Outside the

use of mnemonics, a sequence of bytes (of one or more bytes) can be

represented by its hexadecimal value as an unsigned integer (e.g.

0x3F or 0x3A0B770F). Such a sequence of bytes can include dashes to

make it more readable (e.g. 0xDDA37D36-85E6-4E6D-9B51-959E1CCE366C).

Some types in this specification define a special syntax for their

representation in the text notation.

In the grammar, a shape is a pattern of bytes, following the rules

of the text notation for a BULK stream. Apart from mnemonics and

fixed sequences of bytes, a shape can contain:

an arbitrary sequence of a fixed number of bytes, represented by

its size, i.e. a number of bytes in decimal immediately followed

by a B uppercase letter (e.g. 4B)

a typed sequence of bytes, represented by the name of its type, a

capitalized word (e.g. Foo); this means a sequence of bytes whose

specific yield (cf. Section 2.1) has this type

a named sequence of bytes (of zero or more bytes), represented by

a series of any character excluding '{}' between '{' and '}'

(e.g. {quux}); a named sequence can be typed or sized, in which

case it is immediately followed by ':' and a type or size (e.g.

{quux}:Bar or {quux}:12B)

When an entire shape describes the byte sequence of an atom, it is

the normative specification for parsing it, but shapes of forms are

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

only normative with respect to their default evaluation. A reference

defined with a form shape can be used in different shapes, albeit

with different semantics and value and even when used in its default

shape, a processing application MAY give it alternative semantics.

For example, this specification defines a way do specify a string

encoding with forms of the shape (stringenc {enc}:Expr). But the

shapes (stringenc {arg1}:Int {arg2}:Int) or ({arg1}:Int stringenc

{arg2}:Int) are syntactly valid. They just have unspecified

semantics, as far as this specification is concerned.

Some identifiers are expected to be verifiable against a byte

sequence. This means that there must be an algorithm that, given the

byte sequence as input, produces the identifier as output and, given

a different byte sequence, would produce a different identifier.

Because this verification has security implications, the algorithm

used should have the same guarantees than a cryptographic hash

function in terms of collisions.

2. BULK syntax

A BULK stream is a sequence of 8-bit bytes. Bits and bytes are in

big-endian order. The result of parsing a BULK stream is a list of

abstract data, called the abstract yield. BULK parsing is injective:

a BULK stream has only one abstract yield, but different BULK

streams can have the same abstract yield.

A processing application is not expected to actually produce the

abstract yield, but an adaptation of the abstract yield to its own

implementation, called the concrete yield. Also, some expressions in

a BULK stream may have the semantics of a transformation of the

abstract yield. A processing application MAY thus not produce or

retain the concrete yield but the result of its transformation. This

specification deals mainly with the byte sequence and the abstract

yield and occasionnally provide guidelines about the concrete yield.

Of course, a processing application MAY not produce the concrete

yield at all but produce various data structures and side effects

from parsing the BULK stream.

The abstract yield is a list of expressions. Expressions can be

atoms or forms. Forms are lists of expressions. If a byte sequence

is parsed as an expression, this byte sequence is said to denote

this expression.

When a sequence of bytes is named in a shape, its name can be used

in this specification to designate either the byte sequence, or the

expression or list of expressions it denotes. When there could be

ambiguity, this specification specifies which is designated.

¶

¶

¶

¶

¶

¶

¶

2.1. Parsing algorithm

The parser operates with a context, which is a list of expressions.

Each time an expression is parsed, it is appended at the end of the

context. The initial context is the abstract yield.

At the beginning of a BULK stream and after having consumed the byte

sequence denoting a complete expression, the parser is at the

dispatch stage. At this stage, the next byte is a marker byte, which

tells the parser what kind of expression comes next (the marker byte

is the first byte of the sequence that denotes an expression). The

expression appended to the context after reading a byte sequence is

called the specific yield of the byte sequence.

The 0x01 and 0x02 marker bytes are special cases. When the parser

reads 0x01, it immediately appends an empty list to the current

context. This list becomes the new context. This new context has the

previous context as parent. Then the parser returns to its dispatch

stage. When the parser reads 0x02, it appends nothing to the

context, but instead the parent of the current context becomes the

new context and the parser returns to the dispatch stage. Thus it is

a parsing error to read 0x02 when the context is the abstract yield.

Some forms have side-effects in their semantics. Those side-effects

MUST not affect the parsing of any expression. They can affect

evaluation, in which case they MUST only affect the evaluation of

expressions in the scope of the form. The outer scope of an

expression is the part of its context that follows the expression.

Some forms MAY define an inner scope in their shape. The scope of an

expression is the union of the outer and inner scopes. This makes

BULK lexically scoped.

Whenever a parsing error is encountered, parsing of the BULK stream

MUST stop.

2.1.1. Summary of marker bytes

marker shape

00 nil (Section 2.3.1)

01 ((Section 2.2.1)

02) (Section 2.2.2)

03 # Nat {content} (Section 2.3.2.1)

04–0F reserved (Section 2.3.3)

10–7F references (Section 2.3.4)

80–BF w6[value] (Section 2.3.2.3)

C0–FF #[size] {content} (Section 2.3.2.2)

Table 1

¶

¶

¶

¶

¶

marker

mnemonic

marker

2.1.2. Evaluation

A processing application MAY implement evaluation of BULK

expressions and streams. When evaluating a BULK stream, when the

parser gets to the dispatch stage and the context is the abstract

yield, the last expression in the context is replaced by what it

evaluates to. (of course, this description is supposed to provide

the semantics of BULK evaluation, but a processing application MAY

implement evaluation with a different algorithm as long as it

provides the same semantics)

The default evaluation rule is that an expression evaluates to

itself. A name within a namespace can have a value, which is what a

reference associated to this name evaluates to. A reference whose

marker value is associated to no namespace or whose name has no

value evaluates to itself. How self-evaluating BULK expressions are

represented in the concrete yield is application-dependent, but

future specifications MAY define a standard API to access it,

similar to the Document Object Model for XML.

The evaluation of a form obeys a special rule, though: if the first

expression of the form has type Function, that function is called

with an argument list and the form evaluates to the return value if

it's an atom or the evaluation of the return value if it is a form.

If the function has type LazyFunction, the argument list is the rest

of the form. If the function has type EagerFunction, the argument

list is the rest of the form, where each expression is replaced by

what it evaluates to. Any expression that has type LazyFunction or

EagerFunction also has type Function.

A form whose first expression doesn't have type Function evaluates

to itself.

When an application evaluates a BULK expression, it MUST verify that

evaluation will terminate in a finite number of evaluation steps. An

application MAY verify finite termination statically or dynamically.

For example, an application MAY stop evaluation in error after a

predetermined number of steps.

2.2. Forms

2.2.1. starting marker byte

0x01

(

2.2.2. ending marker byte

0x02

¶

¶

¶

¶

¶

¶

¶

¶

mnemonic

marker

shape

)

2.2.3. Difference between sequence and form

There is a difference between a byte sequence denoting several

expressions among the current context and a byte sequence denoting a

form (i.e. a single expression that is a list of expressions). As an

example, let's examine several forms of the shape (foo {bar}).

In the form (foo nil nil nil), {bar} denotes 3 expressions, and

they are three atoms in the yield.

In the form (foo nil), {bar} is a single expression in the

yield, and that expression is an atom.

In the form (foo (nil nil nil)), {bar} is also a single

expression in the yield, and that expression is a form, a list in

the yield.

In a shape, when a byte sequence must yield a single expression, it

has the type Expr. So the last two examples fit the shape (foo

{seq}:Expr) but not the first. When a byte sequence must yield a

form, it has type Form. Thus the shape (foo {bar}:Form) is

equivalent to (foo ({bar})). Either one MAY be used.

2.3. Atoms

2.3.1. nil

0x00 (mnemonic: nil)

nil

Apart from being a possible short marker value, the fact that the

0x00 byte represents a valid atom means that a series of null bytes

is a valid part of a BULK stream, thus making the format less

fragile. In a network communication, nil atoms can be sent to keep

the channel open. They can also be used as padding at the end of a

form or between forms.

2.3.2. Arrays

Arrays can be used to store arbitrary bytes.

An array can be interpreted either as a bits sequence or as an

unsigned integer in binary notation. The choice depends on the

context and the application. Actually, many processing applications

may not need make any choice, as most programming language

implementations actually also confuse unsigned integers and bits

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

marker

shape

marker

shape

sequences to some extent. Expressions that are unsigned integers

(that is, natural numbers) have type Nat.

Big arrays typically store the content of a file or a binary message

of another format. They can also be used to store a vector or matrix

of fixed-size elements.

In any case, the semantics of the content must be inferred by the

processing application; where ambiguity can appear, an application

SHOULD enclose the array in a type-denoting form.

Because BULK arrays have no end markers, the payload of a BULK array

can constitute the end of the stream.

The start and end of an array are known without reading its content,

which means that its content can be skipped in constant time and

mapped in memory (or read lazily by any other means).

Because BULK can use integers with arbitrary size to store the size

of an array, BULK arrays have no limit in size.

2.3.2.1. Generic array

0x03 (mnemonic: #)

Nat {content}

Arrays have a special parsing rule. After consuming the marker byte,

the parser returns to the dispatch stage. It is a parser error if

the parsed expression is not of type Nat or if its value cannot be

recognized. This integer is not added to any context, but the parser

consumes as many bytes as this integer and they constitute the

content of this array.

In the text notation, a quoted string is the notation for an array

containing the encoding of that string in the current encoding

(Section 3.1.3.1), except if the size of the encoding is below 64

bytes, cf. small arrays (Section 2.3.2.2).

Types: Bytes, Nat

In a shape, the type String is synonymous with Bytes, but means that

the content of the array is supposed to be taken as a string in the

current encoding.

2.3.2.2. Small array

0xC0–0xFF (mnemonic: #[size])

#[size] {content}

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

marker

shape

marker

shape

Small arrays have a special parsing rule. The 6 least significant

bits of the marker byte are treated as un unsigned integer. This

integer is not added to any context, but the parser consumes as many

bytes as this integer and they constitute the content of this array.

In the text notation, the marker byte of a small array of size X is

written as #[X]. For example, #[2] 0x1234 is a notation for the

bytes 0xC2-1234.

In the text notation, a quoted string is the notation for a small

array containing the encoding of that string in the current encoding

if the size of the encoding is below 64 bytes.

Types: Bytes, Nat

2.3.2.3. Small unsigned integers

0x80–0xBF (mnemonic: w6[value])

w6[value]

Small unsigned integers have a special parsing rule. The 6 least

significant bits of the marker byte are the value denoted by this

byte (as bits or as an unsigned integer in binary notation).

In the text notation, the marker byte of a small unsigned integer of

value X is written as w6[X]. For example, w6[11] is a notation for

the byte 0x8B (as is 11, cf. Section 3.1.6).

Types: Bytes, Nat

2.3.3. Reserved marker bytes

Marker bytes 0x04−0x0F are reserved for future major versions of

BULK. It is a parser error if a BULK stream with major version 1

contains such a marker byte.

2.3.4. References

0x10−0x7F

{ns}:1B {name}:1B

0x7F {ns'} {name}:1B

The {ns} byte is a value associated with a namespace, called the

namespace marker. Values 0x10−0x17 are reserved for namespaces

defined by BULK specifications. Greater values can be associated

with namespaces identified by a unique identifier.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

marker

name

shape

The {name} byte is the name within the namespace. Vocabularies with

more than 256 names thus need to be spread accross several

namespaces.

The specification of a namespace SHOULD include a mnemonic for the

namespace and for each defined name. When descriptions use several

namespaces, the mnemonic of a reference SHOULD be the concatenation

of the namespace mnemonic, ":" and the name mnemonic if there can be

an ambiguity. For example, the fp name in namespace math becomes

math:fp.

Type: Ref

2.3.4.1. Special case

References have a special parsing rule. In case a BULK stream needs

an important number of namespaces, if the marker byte is 0x7F, the

parser continues to read bytes until it finds a byte different than

0xFF. The sum of each of those bytes taken as unsigned integers is

the namespace marker. For example, the reference denoted by the

bytes 0x7F 0xFF 0x8C 0x1A is the name 26 in the namespace associated

with 522.

3. Standard namespaces

Standard namespaces have a fixed marker value and are not identified

by a unique identifier.

3.1. BULK core namespace

0x20 (mnemonic: bulk)

3.1.1. Version

0x00 (mnemonic: version)

(version {major}:Nat {minor}:Nat)

When parsing a BULK stream, a processing application MUST determine

explicitely the major and minor version of the BULK specification

that the stream obeys. This information MAY be exchanged out-of-

band, if BULK is used to exchange a number a very small messages,

where repeated headers of 6 bytes might become too big an overhead.

A processing application MUST NOT assume a default version.

If the version is expressed within a BULK stream, this form MUST be

the first in the stream. In any other place, this form has no

semantics attached to it. This specification defines BULK 1.0. When

writing a BULK stream, an application MUST denote {major} and

{minor} by the smallest byte sequence possible.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

name

shape

name

shape

name

shape

An application writing a BULK stream to long-term storage (e.g. in a

file or a database record) SHOULD include a version form.

Two BULK versions with the same major version MUST share the same

parsing rules and the same definitions of marker bytes. Changing the

syntax or semantics of existing marker bytes and using marker bytes

in the reserved interval warrants a new major version. Changing the

syntax or semantics of existing names in standard namespaces also.

Adding standard namespaces or adding names in existing standard

namespaces warrants a new minor version.

3.1.2. Booleans

3.1.2.1. true

0x01 (mnemonic: true)

true

Type: Boolean.

3.1.2.2. false

0x02 (mnemonic: false)

false

Type: Boolean.

3.1.3. Strings encoding

3.1.3.1. Current encoding

0x03 (mnemonic: stringenc)

(stringenc {enc}:Encoding)

This tells the processing application that, in the scope of this

expression, all expressions that are understood by the application

as character strings will be encoded with the encoding designated by

{enc}.

As the abstract yield doesn't contain strings but expressions that

will be used as strings by the application, it is not a parsing

error if the application doesn't recognize {enc}. In this situation,

it is a parsing error when the application actually needs to decode

a byte sequence as a string. It is not a parsing error when a

processing application only transmits a byte sequence encoding a

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

name

shape

name

shape

name

shape

name

shape

name

string, if it can accurately convey the encoding to the receiving

application.

3.1.3.2. IANA registered character set

0x04 (mnemonic: iana-charset)

(iana-charset {id}:Nat)

This designates the string encoding registered among the IANA

Character Sets [IANA-Charsets] whose MIBenum is {id}.

Type: Encoding.

3.1.3.3. Windows code page

0x05 (mnemonic: code-page)

(code-page {id}:Nat)

This designates the string encoding among Windows code pages whose

identifier is {id}.

Type: Encoding.

3.1.4. Namespaces

3.1.4.1. New namespace

0x06 (mnemonic: ns)

(ns {marker}:Ref {id}:Expr)

This associates the namespace identified by {id} to the namespace

marker of {marker}, within the scope of this expression.

3.1.4.2. Package

0x07 (mnemonic: package)

(package {id}:Expr {namespaces})

This creates a package identified by {id}. Packages are immutable,

{id} MUST be verifiable against the byte sequence {namespaces}.

{namespaces} must be a series of expressions each identifying a BULK

namespace.

3.1.4.3. Import

0x08 (mnemonic: import)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

shape

name

shape

name

shape

(import {base}:Nat {count}:Nat {id}:Expr)

This associates the first {count} namespaces in the package

identified by {id} with a continuous range of marker bytes starting

at {base} within the scope of this expression.

Example: (import 28 3 0x0123456789ABCDEF) associates the first 3

namespaces of the package identified by 0x0123456789ABCDEF to the

marker bytes 28, 29 and 30.

3.1.5. Definitions

To define a reference is to change the the value of its name in its

namespace (as identified by its unique identifier, not the marker

value) within a certain scope.

If a BULK stream is not evaluated, the semantics of a definition are

entirely application-dependent.

When a BULK stream containing definitions for a namespace comes from

a trusted source (i.e. in configuration files of the application, or

in the communication with an agent that has been granted the

relevant authority), an application MAY give those definitions long-

lasting semantics (i.e. keep the values of the names at the end of

parsing). This is the preferred mechanism for bulk namespace

definition when the semantics of the defined expressions can be

expressed completely by BULK forms.

3.1.5.1. Simple definition

0x09 (mnemonic: define)

(define {ref}:Ref {value}:Expr)

(define nil {value}:Expr)

This defines the reference {ref} to the yield of {value} in the

outer scope of this form.

In any context where there is a default namespace where definitions

are made, e.g. verifiable-ns (Section 3.1.5.4), the second shape

defines the smallest name that is not yet defined to {value}.

3.1.5.2. Named definition

0x0A (mnemonic: mnemonic/def)

(mnemonic/def {ref}:Ref {mnemonic}:String {doc}:Expr {value}

)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

name

shape

name

shape

inner scope

(mnemonic/def nil {mnemonic}:String {doc}:Expr {value})

This suggest {mnemonic} as the mnemonic of the name designated by

{ref} in its namespace. If {value} is of type Expr, this defines the

reference {ref} to {value} in the scope of this form.

{doc} is any expression that provides a documentation for this

reference. If it has type Bytes, it MUST be a string. It could be

any kind of metadata or document type.

In any context where there is a default namespace where definitions

are made, e.g. verifiable-ns (Section 3.1.5.4), the second shape

defines the smallest name that is not yet defined to {value}.

3.1.5.3. Namespace description

0x0B (mnemonic: ns-mnemonic)

(ns-mnemonic {ns}:Expr {mnemonic}:String {doc})

This suggest {mnemonic} as the mnemonic of the namespace designated

by {ns} (which can be the integer to which this namespace is

associated, a reference in this namespace or the unique identifier

of this namespace).

3.1.5.4. Verifiable namespace definition

0x0C (mnemonic: verifiable-ns)

(verifiable-ns {marker}:Ref {id}:Expr {data}:Expr

{mnemonic}:Expr {definitions})

{id} {data} {mnemonic} {definitions}

This associates the namespace identified by {id} to the namespace

marker of {marker}, within the scope of this form. Verifiable

namespaces are immutable, {id} MUST be verifiable against the byte

sequence {data} {mnemonic} {definitions}. The semantics of this form

is to define in its scope any definition made in the designated

namespace within {definitions}.

If {mnemonic} is of type String, then this suggests it as the

mnemonic of the namespace. Else it MUST be nil.

If more data than {id} is needed to verify {id} against

{definitions} (like the salt of a hash function, or the namespace of

a UUID), this data should be provided by {data}. Else {data} MUST be

nil.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

name

shape

Name's type

Form's type

Form's value

name

shape

Name's type

Form's type

Form's value

name

shape

Name's type

A verifiable namespace wouldn't really be immutable if it used

definitions from other namespaces that aren't immutable. To that

effect, an application SHOULD stop processing this form with an

error when {definitions} contain references from namespaces that

cannot be determined to be immutable themselves. The goal is to

prevent a user or system to be unwittingly vulnerable, so an

application MAY provide an option to accept a specific verifiable

namespace, but an application MUST NOT provide an option to accept

any vulnerable verifiable namespace. That is, an option like --

accept-ns 8f82849556d74466 is acceptable but --disable-immutability-

check is not.

3.1.5.5. Array concatenation

0x10 (mnemonic: concat)

(concat {array1}:Bytes {array2}:Bytes)

EagerFunction

Bytes

the concatenation of {array1} and {array2}.

The value of this form is an array that contains the bytes in array1

followed by the bytes in array2.

3.1.5.6. Substituton

3.1.5.6.1. Substitution function

0x11 (mnemonic: subst)

(subst {code})

LazyFunction

EagerFunction

A substitution function whose return value is the

value of {code}. Within {code}'s specific yield, the names arg

and rest are defined:

3.1.5.6.2. Argument

0x12 (mnemonic: arg)

(arg {n}:Nat)

EagerFunction

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Form's type

Form's value

name

shape

Name's type

Form's type

Form's value

name

shape

Expr

the element number {n} (starting at zero) of the

substitution function's arguments list

3.1.5.6.3. Rest of arguments list

0x13 (mnemonic: rest)

(rest {n}:Nat)

EagerFunction

Expr

the substitution function's arguments list without its

first {n} elements.

3.1.5.6.4. Examples

Here is a definition of the inverse followed by the numbers 1/2, 1/3

and 1/4:

(define inverse (subst (frac 1 (arg 0)))) (inverse 2) (

inverse 3) (inverse 4)

Substitution will splice multiple expressions in place:

The evaluation of ((subst 1 (rest 0) 2) 3 4) must yield the

same as (1 3 4 2)

3.1.6. Arithmetic

A processing application must recognize the type of all expressions

defined in this specification that have the type Number, but an

application MAY consider a number as having an unknown value if it

has no adequate data type to store it.

In the text notation of a BULK stream, a decimal integer represents

the smallest byte sequence that yields this integer. For example,

(31 256) is a notation for the bytes 0x01 0x9F 0xC2-0100 0x02.

3.1.6.1. Unsigned integer

0x20 (mnemonic: unsigned-int)

(unsigned-int {bits}:Bytes)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

name

shape

name

shape

name

shape

name

shape

The bits contained in {bits} is the value of this integer in binary

notation. This form exists in case disambiguation of the semantics

is necessary.

Type: Number, Int, Nat.

3.1.6.2. Signed integer

0x21 (mnemonic: signed-int)

(signed-int {bits}:Bytes)

The bits contained in {bits} is the value of this integer in two's-

complement notation.

Type: Number, Int.

3.1.6.3. Fraction

0x22 (mnemonic: frac)

(frac {num}:Int {div}:Int)

This is the number {num}/{div}.

Type: Number.

3.1.6.4. Binary floating-point number

0x23 (mnemonic: binary-float)

(binary-float {bits}:Bytes)

This is a floating-point number expressed in IEEE 754-2008 binary

interchange format. {bits} can be of size 16, 32, 64, 128 or any

bigger multiple of 32 bits, as per IEEE 754-2008 rules.

Types: Number, Float.

3.1.6.5. Decimal floating-point number

0x24 (mnemonic: decimal-float)

(decimal-float {bits}:Bytes)

This is a floating-point number expressed in IEEE 754-2008 decimal

interchange format. {bits} can be of size 32, 64, 128 or any bigger

multiple of 32 bits, as per IEEE 754-2008 rules.

Types: Number, Float.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

name

shape

name

shape

name

value

3.1.6.6. Binary fixed point number

0x25 (mnemonic: binary-fixed)

(binary-fixed {point}:Nat {bits}:Bytes)

This is a fixed point binary number. {bits} contains an integer in

two's complement. That integer divided by 2^point is the value of

this form. For example, (binary-fixed 2 15) has value 3.75

(11.11).

Types: Number, Float.

3.1.6.7. Decimal fixed point number

0x26 (mnemonic: decimal-fixed)

(decimal-fixed {point}:Nat {bits}:Bytes)

This is a fixed point decimal number. {bits} contains an integer in

two's complement. That integer divided by 10^point is the value of

this form. For example, (decimal-fixed 2 123) has value 1.23.

Types: Number, Float.

3.1.6.8. Decimal fixed point number with 2 decimal places

0x27 (mnemonic: decimal2)

(subst (decimal-fixed 2 (arg 0)))

3.1.7. Compact formats

This specification and other specifications in the official BULK

suite take the option to use as their basic building block a form

with a distinguishing reference as first element (basically, they

are a binary representation of an abstract syntax tree). As noted

previously, this means that most representations weigh 4 bytes plus

their actual content, which will in turn have some overhead because

of one or several marker bytes.

But when there is a special need for compactness, BULK makes it

possible to design protocols and formats with different trade-offs,

while retaining its property of being parseable by processing

applications not knowing the protocol in its entirety.

On one end of the spectrum, a format might choose to use an array to

encapsulate an ad hoc binary format. An extreme use of this scheme

would be to use BULK just to make explicit the binary format used.

With a known profile (for example with a file extension and/or media

¶

¶

10

2 ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

type for such explicitly typed BLOBs), a BULK stream that consists

solely of the version form, a reference that describes the binary

format and an array will have an overhead between 11 and 20 bytes

depending on the size of the content. Without a profile, with the

namespaces associations, the overhead is between 45 and 54 bytes.

Still, even this extreme in the design space retains the ability to

insert expressions in the BULK stream, whatever their type. Thus

metadata can be added about data that is represented in a format

that doesn't allow for metadata or for limited metadata.

In-between these two extremes, several options are available to

produce a format that leverages the BULK parser a lot more while

being more compact than a basic BULK format. The following forms

provide a standard way to create such formats.

A flat list of operators and operands is called a BULK bytecode.

Prefix bytecodes are those where operators come before operands,

postfix bytecodes are those where operators come after operands. In

the following forms, operators MUST be references.

The default semantics of a bytecode form is to transform it to an

abstract syntax tree of its content and then evaluate the resulting

expression with the normal BULK evaluation rules. When evaluating a

bytecode form that doesn't provide arities, a processing application

MUST abort this transformation as soon as it encounters a reference

for which it cannot determine if it is an operator or its arity.

When evaluating a bytecode form that provides arities, any reference

that is not known to be an operator MUST be determined to be an

operand.

To transform a prefix bytecode form, a processing application

creates an alternate context. If the first expression of the

bytecode can be determined to be an operand, it is removed from the

beginning of the bytecode and appended at the end of the alternate

context. If the first expression of the bytecode is a reference that

can be determined to be an operator, it is removed from the

beginning of the bytecode and a list is created with the operator as

the first expression, then as many next expressions as its arity are

removed from the beginning of the bytecode and appended at the end

of this list. Then that resulting list is appended at the end of the

alternate context. The transformation continues until the bytecode

is empty, in which case the alternate context replaces the bytecode

form and the transformation is complete. The resulting form can then

be evaluated in turn.

Example: the default semantics of

¶

¶

¶

¶

¶

¶

¶

basic (8 bytes)

packed basic (7 bytes)

bytecode (6 bytes)

packed bytecode (5 bytes)

(prefix* ((2 sgf:black)) sgf:game sgf:black 1 2 sgf:black 3 4

sgf:black 5 6)

is that it's transformed into

(sgf:game (sgf:black 1 2) (sgf:black 3 4) (sgf:black 5 6))

To transform a postfix bytecode form, a processing application

creates a data stack. If the first expression of the bytecode can be

determined to be an operand, it is removed from the beginning of the

bytecode and pushed on top of the stack. If the first expression of

the bytecode can be determined to be an operator, it is removed from

the beginning of the bytecode and a list is created with the

operator as the first expression, then as many next expressions as

its arity are popped from the stack and appended at the end of this

list. Then that resulting list is pushed on top of the stack. The

transformation continues until the bytecode is empty, in which case

the list of the elements on the stack (with the top of the stack as

the last element) replaces the bytecode form and the transformation

is complete. The resulting form can then be evaluated in turn.

Example: the default semantics of

(postfix* ((2 sgf:black)) sgf:game 2 1 sgf:black 4 3 sgf:black

6 5 sgf:black)

is that it's transformed into

(sgf:game (sgf:black 1 2) (sgf:black 3 4) (sgf:black 5 6))

If the overhead of several marker bytes in the operands of some

operators is too much, even more compactness can be achieved by

packing together small operands. For example, instead of an operator

with two integers as its operands, one could specify an operator to

take a single word as operand and extract the integers from it

(while still retaining the ability to operate on many sizes of

integers, because it can still deduce the size of the integers by

dividing the size of the word by two).

For example, a BULK format representing player moves with a pair of

coordinates might represent a single move with the following shapes:

(sgf:black/2 #[1] 0x41 #[1] 0x5A)

(sgf:black/1 #[2] 0x41 0x5A)

sgf:black/2 #[1] 0x41 #[1] 0x5A

sgf:black/1 #[2] 0x41 0x5A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

name

shape

name

shape

name

shape

The transformation defined for the bytecode forms makes it possible

to mix literal expressions and operations represented by a list of

operators and operands. In the previous scenario, for example, one

might represent alternating moves by two players as a list of words,

lowering the weight of each move to 3 bytes when coordinates are

below 256. The difference between all these schemes and an array is

that you keep the ability to insert other forms, for example to

represent comments on the game or variants.

The cost of the bytecode format is that if it contains operators

whose arity is unknown to a processing application, the whole list

after the first occurrence of them is unreadable to that processing

application, whereas in the basic format, the processing application

can still process all the forms it understands (and it requires no

anticipation by the application creating the BULK stream).

3.1.7.1. Prefix bytecode

0x30 (mnemonic: prefix)

(prefix {bytecode})

This is a prefix bytecode form that doesn't provide arities.

3.1.7.2. Prefix bytecode with arities

0x31 (mnemonic: prefix*)

(prefix* {arities}:Expr {bytecode})

This is a prefix bytecode form that provides arities.

{arities} MUST be a list of shapes ({arity}:Nat {refs}). {refs}

MUST be a series of references. It indicates that all references in

this series are operators of arity {arity}. {arities} can be a form

or a reference defined to a list.

Within the prefix bytecode of this form, if there is a prefix form,

the arities declared in the outside form still apply.

3.1.7.3. Postfix bytecode

0x32 (mnemonic: postfix)

(postfix {bytecode})

This is a postfix bytecode form that doesn't provide arities.

3.1.7.4. Postfix bytecode with arities

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

name

shape

name

shape

0x33 (mnemonic: postfix*)

(postfix* {arities}:Expr {bytecode})

This is a postfix bytecode form that provides arities.

{arities} MUST be a list of shapes ({arity}:Nat {refs}). {refs}

MUST be a series of references. It indicates that all references in

this series are operators of arity {arity}. {arities} can be a form

or a reference defined to a list.

Within the postfix bytecode of this form, if there is a postfix

form, the arities declared in the outside form still apply.

3.1.7.5. Arity declaration

0x34 (mnemonic: arity)

(arity {arity}:Nat {refs})

{refs} MUST be a series of references. It indicates that all

references in this series are operators of arity {arity}.

Whenever arities have been provided for some references in a

namespace, all references in that namespace whose arities aren't

provided MUST be determined to be operands by a processing

application.

4. Extension namespaces

Extension namespaces are defined with a unique identifier, to be

associated to a marker value.

By is decentralized nature, as far as a processing application is

concerned, apart from standard namespaces, there is no difference

between a namespace defined as part of the official BULK suite and a

user-defined one.

5. Profiles

A profile is a byte sequence parsed by a processing application just

after the version form or before the first expression if there is no

version form. Thus a parser SHOULD look ahead at the beginning of a

stream to see if the first three bytes are (bulk:version. With

respect to the BULK stream, the profile is an out-of-band

information, usually implicit.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A processing application doesn't need to include the profile in the

concrete yield, as long as the semantics of the abstract yield are

maintained.

The same BULK stream might be processed with different profiles.

A processing application MUST NOT deduce the profile from the

content of a BULK stream.

5.1. Profile redundancy

A processing application SHOULD only rely on the use of a profile

when it is a safe assumption that the profile is known, for example

within a communication where the protocol dictates the profile.

In particular, long-term storage of a BULK stream SHOULD preserve

profile information, for example with a media type that dictates the

profile.

Otherwise, an application writing a BULK stream in a long-term

storage SHOULD include the profile after the version form. For this

reason, the expressions in a profile SHOULD have idempotent

semantics.

5.2. Standard profile

This specification defines the default profile that a processing

application MUST use when it is not using a specific profile:

(bulk:stringenc (bulk:iana-charset 106))

This means that the default string encoding in a BULK stream is

UTF-8.

6. Security Considerations

6.1. Parsing

Parsing a BULK stream is designed to be free of side-effects for the

processing application, apart from storing the parsed results.

Arrays in BULK carry their size, so as for the application to know

in advance the size of the data to read and store, thus making it

easier to build robust code. A malicious software, however, may

announce an array with a size choosen to get an application to

exhaust its available memory. When a BULK stream has been completely

received, an array bigger than the remaining data SHOULD trigger an

error. When a BULK stream's size is not known in advance, the

application SHOULD use a growable data structure.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Type name

Subtype name

Required parameters

Optional parameters

Encoding considerations

Security considerations

Interoperability considerations

0x012000

0x012000C1

0x012000C1C002

Published specification

Applications that use this media type

6.2. Forwarding

When a processing application forwards all or part of the data in a

BULK stream to another application, care must be taken if part of

the forwarded data was not entirely recognized, as it could be used

by an attacker to benefit from the authority the forwarding

application has on the recipient of the data.

6.3. Definitions

The architecture of a processing application SHOULD ensure that a

malicious agent cannot abuse authority given to it to define a

namespace in order to modify associations in other namespaces.

Depending on the use of data structures storing BULK expressions,

this could amount to giving an attacker a way to manipulate the

application's state. See Appendix A for an example of architecture

that is resistant to that kind of attack.

7. IANA Considerations

This specification defines a new media type, application/bulk. Here

are the informations for its registration to IANA:

application

bulk

none

none

none, content is self-describing

cf. Section 6

the constraint to start any BULK

file with a version form has the side-effect that classes of BULK

streams can be identified by a sequence of bytes acting as "magic

number", at offset 0:

any BULK stream

a BULK stream of major version 1

a BULK stream of version 1.0

this document

none so far

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Fragment identifier considerations

Additional information

[IANA-Charsets]

[RFC2119]

[Avro]

[HTTP2]

[protobuf]

[Smile]

[Thrift]

this specification defines no

semantics for addressing the data with a fragment identifier; a

future specification MAY define fragment identifier syntaxes to

address the content by byte offset or the parsed results by their

position in the yielded list

a future specification MAY define a naming

convention for media types based on bulk with a +bulk suffix, as

for XML with +xml

8. Acknowledgements

The original author of this specification read Erik Naggum's famous

rant about XML several years before, and while forgotten as such for

a time, it clearly was the seed that slowly bloomed into the design

of BULK. This format is dedicated to Erik.

9. References

9.1. Normative References

"IANA Charset Registry (archived at):", <http://

www.iana.org/assignments/character-sets>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997,

<https://www.rfc-editor.org/rfc/rfc2119>.

9.2. Informative references

Cutting, D., "Apache Avro™ 1.7.4 Specification", February

2013, <http://avro.apache.org/docs/1.7.4/spec.html>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol version 2 (HTTP/2)", RFC 7540, May

2015, <https://www.rfc-editor.org/rfc/rfc7540>.

"Protocol Buffers", July 2008, <https://

developers.google.com/protocol-buffers/>.

Saloranta, T., "Smile Data Format", September 2010,

<http://wiki.fasterxml.com/SmileFormat>.

Slee, M., Agarwal, A., and M. Kwiatkowski, "Thrift:

Scalable Cross-Language Services Implementation", April

2007, <http://thrift.apache.org/static/files/

thrift-20070401.pdf>.

¶

¶

¶

http://www.schnada.de/grapt/eriknaggum-xmlrant.html
http://www.schnada.de/grapt/eriknaggum-xmlrant.html
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
https://www.rfc-editor.org/rfc/rfc2119
http://avro.apache.org/docs/1.7.4/spec.html
https://www.rfc-editor.org/rfc/rfc7540
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://wiki.fasterxml.com/SmileFormat
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf

Appendix A. Robust namespace definition

This constitutes a suggestion of architecture for a BULK processing

application. It has the advantage that an agent cannot modify the

values of names to which it has not specifically been given

authority. This architecture doesn't ensure this property by

checking the validity of definitions but by adhering to the

Principle Of Least Authority, thus ensuring no false positives or

TOCTOU race conditions.

For each new context (including the abstract yield when parsing

starts), the parser creates a new copy of each known namespace.

These copies are available in this context to retrieve and define

values. It implements the lexical scoping of definitions on top of

providing the robustness properties discussed here.

By default, all namespaces created in a context are discarded at the

end of this context.

Of course, an implementation of the architecture presented here can

be optimized compared to the abstract algorithm, for example by

using copy-on-demand.

Any namespace that is not a copy for its context but the object

retained by the application afterwards, gives authority to make

long-lasting definitions. Such a namespace is called lasting here.

A.1. Selective authority

A number of lasting namespaces are included for the abstract yield.

Their unique identifiers are agreed out-of-band. The disadvantage of

this solution is that it needs prior agreement on the definable

namespaces.

A.2. Open authority

Any ns form for a unique identifier unknown to the processing

application triggers the creation of a lasting namespace.

The disadvantage of this solution is that it opens a denial of

service vulnerability. If Bob is a processing application and Carol

and Dave are agents communicating with Bob with an open authority,

Dave can prevent Carol from defining a namespace if it manages to

know the unique identifier and starting a communication with Bob

before Carol.

If an agent uses a secure way to create unique identifiers, this

solution is both flexible and safe (the burden is not on the BULK

processing application).

¶

¶

¶

¶

¶

¶

¶

¶

¶

Author's Address

Pierre Thierry

Thierry Technologies

Email: pierre@nothos.net

mailto:pierre@nothos.net

	Binary Uniform Language Kit 1.0
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Rationale
	1.1.1. Definitions
	1.1.2. State of the art

	1.2. Format overview
	1.3. Conventions and Terminology

	2. BULK syntax
	2.1. Parsing algorithm
	2.1.1. Summary of marker bytes
	2.1.2. Evaluation

	2.2. Forms
	2.2.1. starting marker byte
	2.2.2. ending marker byte
	2.2.3. Difference between sequence and form

	2.3. Atoms
	2.3.1. nil
	2.3.2. Arrays
	2.3.2.1. Generic array
	2.3.2.2. Small array
	2.3.2.3. Small unsigned integers

	2.3.3. Reserved marker bytes
	2.3.4. References
	2.3.4.1. Special case

	3. Standard namespaces
	3.1. BULK core namespace
	3.1.1. Version
	3.1.2. Booleans
	3.1.2.1. true
	3.1.2.2. false

	3.1.3. Strings encoding
	3.1.3.1. Current encoding
	3.1.3.2. IANA registered character set
	3.1.3.3. Windows code page

	3.1.4. Namespaces
	3.1.4.1. New namespace
	3.1.4.2. Package
	3.1.4.3. Import

	3.1.5. Definitions
	3.1.5.1. Simple definition
	3.1.5.2. Named definition
	3.1.5.3. Namespace description
	3.1.5.4. Verifiable namespace definition
	3.1.5.5. Array concatenation
	3.1.5.6. Substituton
	3.1.5.6.1. Substitution function
	3.1.5.6.2. Argument
	3.1.5.6.3. Rest of arguments list
	3.1.5.6.4. Examples

	3.1.6. Arithmetic
	3.1.6.1. Unsigned integer
	3.1.6.2. Signed integer
	3.1.6.3. Fraction
	3.1.6.4. Binary floating-point number
	3.1.6.5. Decimal floating-point number
	3.1.6.6. Binary fixed point number
	3.1.6.7. Decimal fixed point number
	3.1.6.8. Decimal fixed point number with 2 decimal places

	3.1.7. Compact formats
	3.1.7.1. Prefix bytecode
	3.1.7.2. Prefix bytecode with arities
	3.1.7.3. Postfix bytecode
	3.1.7.4. Postfix bytecode with arities
	3.1.7.5. Arity declaration

	4. Extension namespaces
	5. Profiles
	5.1. Profile redundancy
	5.2. Standard profile

	6. Security Considerations
	6.1. Parsing
	6.2. Forwarding
	6.3. Definitions

	7. IANA Considerations
	8. Acknowledgements
	9. References
	9.1. Normative References
	9.2. Informative references

	Appendix A. Robust namespace definition
	A.1. Selective authority
	A.2. Open authority

	Author's Address

