
Network Working Group S. Thomas
Internet-Draft Ripple
Intended status: Standards Track July 08, 2016
Expires: January 9, 2017

Crypto-Conditions
draft-thomas-crypto-conditions-00

Abstract

 Crypto-conditions provide a mechanism to describe a signed message
 such that multiple actors in a distributed system can all verify the
 same signed message and agree on whether it matches the description.
 This provides a useful primitive for event-based systems that are
 distributed on the Internet since we can describe events in a
 standard deterministic manner (represented by signed messages) and
 therefore define generic authenticated event handlers.

Feedback

 This specification is a part of the Interledger Protocol [1] work.
 Feedback related to this specification should be sent to public-
 interledger@w3.org [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Thomas Expires January 9, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Crypto-Conditions July 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 3
1.2. Features . 4
1.2.1. Multi-Algorithm 4
1.2.2. Multi-Signature 4
1.2.3. Multi-Level . 4

2. Format . 5
2.1. Binary Encoding . 5
2.2. String Types . 5
2.3. Bitmask . 5
2.4. Condition . 6
2.4.1. String Format . 6
2.4.2. Binary Format . 6
2.4.3. Fields . 6

2.5. Fulfillment . 7
2.5.1. String Format . 7
2.5.2. Binary Format . 7
2.5.3. Fields . 7

3. Feature Suites . 7
3.1. SHA-256 . 8
3.2. PREIMAGE . 8
3.3. PREFIX . 8
3.4. THRESHOLD . 8
3.5. RSA-PSS . 9
3.6. ED25519 . 9

4. Condition Types . 9
4.1. PREIMAGE-SHA-256 . 9
4.1.1. Condition . 9
4.1.2. Fulfillment . 10

4.2. PREFIX-SHA-256 . 10
4.2.1. Condition . 10
4.2.2. Fulfillment . 10

4.3. THRESHOLD-SHA-256 . 11
4.3.1. Condition . 11
4.3.2. Fulfillment . 11

4.4. RSA-SHA-256 . 12

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Thomas Expires January 9, 2017 [Page 2]

Internet-Draft Crypto-Conditions July 2016

4.4.1. Condition . 12
4.4.2. Fulfillment . 13
4.4.3. Implementation 13

4.5. ED25519 . 14
4.5.1. Condition . 14
4.5.2. Fulfillment . 14

5. References . 14
5.1. Normative References 14
5.2. Informative References 15

Appendix A. Security Considerations 16
Appendix B. Test Values . 16
Appendix C. ASN.1 Module . 16
Appendix D. Acknowledgements 19
Appendix E. IANA Considerations 19
E.1. Crypto-Condition Type Registry 19

 Author's Address . 20

1. Introduction

 This specification describes a message format for defining
 distributable event descriptions (crypto-conditions) and the
 cryptographically verifiable event messages (fulfillments) that can
 be used to prove that the event occurred.

 The specification defines both binary and string-based encoding for
 the messages.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Within this specification, the term "condition" refers to the hash of
 a description of a signed message.

 The term "fulfillment" refers to a description of a signed message
 and a signed message that matches the description.

 The description can be hashed and compared to a condition. If the
 message matches the description and the hash of the description
 matches the condition, we say that the fulfillment fulfills the
 condition.

 A "hashlock" is a tuple consisting of a bytestring and its hash where
 the hash is published first and the publication of the corresponding
 bytestring acts as a one-bit, one-time signature.

https://datatracker.ietf.org/doc/html/rfc2119

Thomas Expires January 9, 2017 [Page 3]

Internet-Draft Crypto-Conditions July 2016

1.2. Features

 Crypto-conditions are a simple multi-algorithm, multi-level, multi-
 signature standard format for expressing conditions and fulfillments.

1.2.1. Multi-Algorithm

 Crypto-conditions can support several different signature and hash
 algorithms and support for new ones can be added in the future.

 Implementations can state their supported algorithms simply by
 providing a bitmask. It is easy to verify that a given
 implementation will be able to verify the fulfillment to a given
 condition, by verifying that all bits that are set in the condition's
 bitmask are also set in the implementation's supported features
 bitmask.

 Any new high bit can redefine the meaning of any existing lower bits
 when it is set. This can be used to remove obsolete algorithms.

 The bitmask is encoded as a varint to minimize space usage.

 By evaluating the bitmask of a condition actors in the system can
 establish, even before a fulfillment is published, if they will be
 able to verify the fulfilment.

1.2.2. Multi-Signature

 Crypto-conditions can abstract away many of the details of multi-
 sign. When a party provides a condition, other parties can treat it
 opaquely and do not need to know about its internal structure. That
 allows parties to define arbitrary multi-signature setups without
 breaking compatibility.

 Protocol designers can use crypto-conditions as a drop-in replacement
 for public key signature algorithms and add multi-signature support
 to their protocols without adding any additional complexity.

1.2.3. Multi-Level

 Basic multi-sign is single-level and does not support more complex
 trust relationships such as "I trust Alice and Bob, but only when
 Candice also agrees". In single level 2-of-3 Alice and Bob could
 sign on their own, without Candice's approval.

 Crypto-conditions add that flexibility elegantly, by applying
 thresholds not just to signatures, but to conditions which can be

Thomas Expires January 9, 2017 [Page 4]

Internet-Draft Crypto-Conditions July 2016

 signatures or further conditions. That allows the creation of an
 arbitrary threshold boolean circuit of signatures.

2. Format

2.1. Binary Encoding

 An description of crypto-conditions is provided in this document
 using Abstract Syntax Notation One (ASN.1) as defined in
 [itu.X680.2015]. Implementations of this spec MUST support encoding
 and decoding using Octet Encoding Rules (OER) as defined in
 [itu.X696.2015].

2.2. String Types

 BASE10 Variable-length integer encoded as a base-10 (decimal)
 number. Implementations MUST reject encodings that are too large
 for them to parse. Implementations MUST be tested for overflows.

 BASE16 Variable-length integer encoded as a base-16 (hexadecimal)
 number. Implementations MUST reject encodings that are too large
 for them to parse. Implementations MUST be tested for overflows.
 No leading zeros.

 BASE64URL Base64-URL encoding. See [RFC4648] , Section 5.

2.3. Bitmask

 Any system accepting crypto-conditions must be able to state its
 supported algorithms. It must be possible to verify that all
 algorithms used in a certain condition are indeed supported even if
 the fulfillment is not available yet.

 In order to meet these design goals, we define a bitmask to express
 the supported primitives.

 Each bit represents a different suite of features. Each type of
 condition depends on one or more feature suites. If an
 implementation supports all feature suites that a certain type
 depends on, the implementation MUST support that condition type. The
 list of known types and feature suites is the IANA maintained Crypto-
 Condition Type Registry (Appendix E.1) .

 Conditions contain a bitmask of types which they require the
 implementation to support. Implementations provide a bitmask of
 types they support.

https://datatracker.ietf.org/doc/html/rfc4648

Thomas Expires January 9, 2017 [Page 5]

Internet-Draft Crypto-Conditions July 2016

2.4. Condition

 Below are the string and binary encoding formats for a condition. In
 both, the featureBitmask is the boolean OR of the feature suite
 bitmasks of the top-level condition type and all subcondition types,
 recursively.

2.4.1. String Format

 Conditions are ASCII encoded as:

 "cc:" BASE16(type) ":" BASE16(featureBitmask) ":"
 BASE64URL(fingerprint) ":" BASE10(maxFulfillmentLength)

2.4.2. Binary Format

 Conditions are binary encoded as:

 Condition ::= SEQUENCE {
 type ConditionType,
 featureBitmask OCTET STRING,
 fingerprint OCTET STRING,
 maxFulfillmentLength INTEGER (0..MAX)
 }

 ConditionType ::= INTEGER {
 preimageSha256(0),
 rsaSha256(1),
 prefixSha256(2),
 thresholdSha256(3),
 ed25519(4)
 } (0..65535)

2.4.3. Fields

 type is the numeric type identifier representing the condition type.

 featureBitmask is an octet string encoding the set of feature suites
 an implementation must support in order to be able to successfully
 parse the fulfillment to this condition.

 fingerprint is an octet string uniquely representing the condition
 with respect to other conditions of the same type.
 Implementations which index conditions MUST use the entire string
 or binary encoded condition as the key, not just the fingerprint -
 as different conditions of different types may have the same
 fingerprint. The length and contents of the fingerprint are
 defined by the condition type. For most condition types, the

Thomas Expires January 9, 2017 [Page 6]

Internet-Draft Crypto-Conditions July 2016

 fingerprint is a cryptographically secure hash of the data which
 defines the condition, such as a public key.

 maxFulfillmentLength is the maximum length of the fulfillment
 payload that can fulfill this condition. When a crypto-condition
 is submitted to an implementation, this implementation MUST verify
 that it will be able to process a fulfillment with a payload of
 size maxFulfillmentLength.

2.5. Fulfillment

 Below are the string and binary encoding formats for a fulfillment.

2.5.1. String Format

 Fulfillments are ASCII encoded as:

 "cf:" BASE16(type) ":" BASE64URL(payload)

2.5.2. Binary Format

 Fulfillments are binary encoded as:

 Fulfillment ::= SEQUENCE {
 type ConditionType,
 payload OCTET STRING
 }

2.5.3. Fields

 type is the numeric type identifier representing the condition type.
 For some condition types the fulfillment will contain further
 subfulfillments, however the type field always represents the
 outermost, or top-level, type.

 payload The payload is an octet string whose internal format is
 defined by each of the types.

3. Feature Suites

 The following feature suites are defined in this version of the
 specification. New feature suites may be defined in the future and
 will be registered in the IANA maintained Crypto-Condition Type
 Registry (Appendix E.1)

 Support for a condition type MUST depend on one or more feature
 suites. Future versions of this spec MAY introduce new feature bits
 and condition types. However, all new condition types MUST depend on

Thomas Expires January 9, 2017 [Page 7]

Internet-Draft Crypto-Conditions July 2016

 at least one of the new feature suites. This ensures that all
 previously created implementations correctly recognize that they do
 not support the new type.

 Feature suites are chosen such that they represent reasonable
 clusters of functionality. For instance, it is reasonable to require
 that an implementation which supports SHA-256 in one context MUST
 support it in all contexts, since it already needed to implement the
 algorithm.

 An implementation which supports a certain set of feature suites MUST
 accept all condition types which depend only on that set or any
 subset of feature suites.

3.1. SHA-256

 SHA-256 is a hashing algorithm and is assigned the feature bit 2^0 =
 0x01.

3.2. PREIMAGE

 PREIMAGE refers to hashlock conditions and is assigned the feature
 bit 2^1 = 0x02.

 A preimage condition is the hash of its own fulfillment. In order to
 fulfill a preimage condition, a valid preimage must be provided.

 Preimage conditions can be used as a so-called hashlock. Since
 cryptographically secure hashing functions are preimage-resistant,
 only the original creator of a preimage condition can feasibly
 produce the preimage if it contains a large amount of random entropy.

3.3. PREFIX

 PREFIX is a structural condition and is assigned the feature bit 2^2
 = 0x04.

 A prefix condition condition contains exactly one subcondition. When
 validated it simply prepends the message to be validated with a
 constant string before passing it on to the subcondition's validation
 function.

3.4. THRESHOLD

 THRESHOLD is a structural condition and is assigned the feature bit
 2^3 = 0x08.

Thomas Expires January 9, 2017 [Page 8]

Internet-Draft Crypto-Conditions July 2016

 Threshold conditions provide a way to create m-of-n threshold
 combinations of other conditions such that m of the n subconditions
 have to be fulfilled in order for the threshold condition to be
 fulfilled.

 Weights are also supported which allow one subcondition to count as
 multiple fulfilled subconditions towards the threshold.

3.5. RSA-PSS

 RSA-PSS is a signature algorithm and is assigned the feature bit 2^4
 = 0x10.

3.6. ED25519

 ED25519 is a signature algorithm and is assigned the feature bit 2^5
 = 0x20.

 ED25519 is a compact elliptic curve based signature algorithm.

4. Condition Types

 The following condition types are defined in this version of the
 specification. New types may be defined in the future and will be
 registered in the IANA maintained Crypto-Condition Type Registry
 (Appendix E.1)

4.1. PREIMAGE-SHA-256

 PREIMAGE-SHA-256 is assigned the type ID 0. It relies on the SHA-256
 and PREIMAGE feature suites which corresponds to a feature bitmask of
 0x03.

 This type of condition is also called a hashlock. By creating a hash
 of a difficult-to-guess 256-bit random or pseudo-random integer it is
 possible to create a condition which the creator can trivially
 fulfill by publishing the random value. However, for anyone else,
 the condition is cryptgraphically hard to fulfill, because they would
 have to find a preimage for the given condition hash.

 Bitcoin supports this type of condition via the OP_HASH256 operator.

4.1.1. Condition

 The fingerprint of a PREIMAGE-SHA-256 condition is the SHA-256 hash
 of the preimage.

Thomas Expires January 9, 2017 [Page 9]

Internet-Draft Crypto-Conditions July 2016

4.1.2. Fulfillment

 The fulfillment payload of a PREIMAGE-SHA-256 condition is the
 preimage.

4.2. PREFIX-SHA-256

 PREFIX-SHA-256 is assigned the type ID 1. It relies on the SHA-256
 and PREFIX feature suites which corresponds to a feature bitmask of
 0x05.

 Prefix conditions provide a way to effective narrow the scope of
 other conditions. A condition can be used as the fingerprint of a
 public key to sign an arbitrary message. By creating a prefix
 subcondition we can narrow the scope from signing an arbitrary
 message to signing a message with a specific prefix.

 When a prefix fulfillment is validated against a message, it will
 prepend the prefix to the provided message and will use the result as
 the message to validate against the subfulfillment.

4.2.1. Condition

 The fingerprint of a PREFIX-SHA-256 condition is the SHA-256 digest
 of the fingerprint contents given below:

 PrefixSha256FingerprintContents ::= SEQUENCE {
 prefix OCTET STRING,
 condition Condition
 }

 prefix is an arbitrary octet string which will be prepended to the
 message during validation.

 condition is the subcondition which the subfulfillment must match.

4.2.2. Fulfillment

 PrefixSha256FulfillmentPayload ::= SEQUENCE {
 prefix OCTET STRING,
 subfulfillment Fulfillment
 }

 prefix is an arbitrary octet string which will be prepended to the
 message during validation.

 subfulfillment is the fulfilled subcondition.

Thomas Expires January 9, 2017 [Page 10]

Internet-Draft Crypto-Conditions July 2016

4.3. THRESHOLD-SHA-256

 THRESHOLD-SHA-256 is assigned the type ID 2. It relies on the
 SHA-256 and THRESHOLD feature suites which corresponds to a feature
 bitmask of 0x09.

4.3.1. Condition

 The fingerprint of a THRESHOLD-SHA-256 condition is the SHA-256
 digest of the fingerprint contents given below:

 ThresholdSha256FingerprintContents ::= SEQUENCE {
 threshold INTEGER (0..4294967295),
 subconditions SEQUENCE OF ThresholdSubcondition
 }

 ThresholdSubcondition ::= SEQUENCE {
 weight INTEGER (0..4294967295),
 condition Condition
 }

 The list of conditions is sorted first based on length, shortest
 first. Elements of the same length are sorted in lexicographic (big-
 endian) order, smallest first.

 threshold threshold MUST be an integer in the range 1 ... 2^32 - 1.
 In order to fulfill a threshold condition, the weights of the
 provided fulfillments MUST be greater than or equal to the
 threshold.

 subconditions is the set of subconditions, each provided as a tuple
 of weight and condition.

 weight is the numeric weight of this subcondition, i.e. how many
 times it counts against the threshold.

 condition is the subcondition.

4.3.2. Fulfillment

Thomas Expires January 9, 2017 [Page 11]

Internet-Draft Crypto-Conditions July 2016

 ThresholdSha256FulfillmentPayload ::= SEQUENCE {
 threshold INTEGER (0..4294967295),
 subfulfillments SEQUENCE OF ThresholdSubfulfillment
 }

 ThresholdSubfulfillment ::= SEQUENCE {
 weight INTEGER (0..4294967295) DEFAULT 1,
 condition Condition OPTIONAL,
 fulfillment Fulfillment OPTIONAL
 }

 threshold is a number and MUST be an integer in the range 1 ... 2^32
 - 1. In order to fulfill a threshold condition, the weights of
 the provided fulfillments MUST be greater than or equal to the
 threshold.

 subfulfillments is the set of subconditions and subfulfillments,
 each provided as a tuple of weight and condition or fulfillment.

 weight is the numeric weight of this subcondition, i.e. how many
 times it counts against the threshold. It MUST be an integer in
 the range 1 ... 2^32 - 1.

 condition is the subcondition if this subcondition is not fulfilled.

 fulfillment is the subfulfillment if this subcondition is fulfilled.

4.4. RSA-SHA-256

 RSA-SHA-256 is assigned the type ID 3. It relies on the SHA-256 and
 RSA-PSS feature suites which corresponds to a feature bitmask of
 0x11.

 The signature algorithm used is RSASSA-PSS as defined in PKCS#1 v2.2.
 [RFC3447]

4.4.1. Condition

 The fingerprint of a RSA-SHA-256 condition is the SHA-256 digest of
 the fingerprint contents given below:

 The salt length for PSS is 32 bytes.

 RsaSha256FingerprintContents ::= SEQUENCE {
 modulus OCTET STRING (SIZE(128..512))
 }

https://datatracker.ietf.org/doc/html/rfc3447

Thomas Expires January 9, 2017 [Page 12]

Internet-Draft Crypto-Conditions July 2016

 modulus is an octet string representing the RSA public modulus in
 big-endian byte order. The first byte of the modulus MUST NOT be
 zero.

 The corresponding public exponent e is assumed to be 65537 as
 recommended in [RFC4871] . Very large exponents can be a DoS
 vector [LARGE-RSA-EXPONENTS] and 65537 is the largest Fermat
 prime, which has some nice properties
 [USING-RSA-EXPONENT-OF-65537] .

 Implementations MUST reject moduli smaller than 128 bytes (1017
 bits) or greater than 512 bytes (4096 bits.) Large moduli slow
 down signature verification which can be a denial-of-service
 vector. DNSSEC also limits the modulus to 4096 bits [RFC3110] .
 OpenSSL supports up to 16384 bits [OPENSSL-X509-CERT-EXAMPLES] .

4.4.2. Fulfillment

 RsaSha256FulfillmentPayload ::= SEQUENCE {
 modulus OCTET STRING (SIZE(128..512)),
 signature OCTET STRING (SIZE(128..512))
 }

 modulus is an octet string representing the RSA public modulus in
 big-endian byte order. See Section 4.4.1

 signature is an octet string representing the RSA signature. It
 MUST be encoded in big-endian byte order with the exact same
 number of octets as the modulus, even if this means adding leading
 zeros. This ensures that the fulfillment size is constant and
 known ahead of time. Note that the field is still binary encoded
 with a length prefix for consistency.

 Implementations MUST verify that the signature and modulus consist
 of the same number of octets and that the signature is numerically
 less than the modulus.

 The message to be signed is provided separately. If no message is
 provided, the message is assumed to be an octet string of length
 zero.

4.4.3. Implementation

 The recommended modulus size as of 2016 is 2048 bits
 [KEYLENGTH-RECOMMENDATION] . In the future we anticipate an upgrade
 to 3072 bits which provides approximately 128 bits of security
 [NIST-KEYMANAGEMENT] (p. 64), about the same level as SHA-256.

https://datatracker.ietf.org/doc/html/rfc4871
https://datatracker.ietf.org/doc/html/rfc3110

Thomas Expires January 9, 2017 [Page 13]

Internet-Draft Crypto-Conditions July 2016

4.5. ED25519

 ED25519 is assigned the type ID 4. It relies only on the ED25519
 feature suite which corresponds to a bitmask of 0x20.

 The exact algorithm and encodings used for public key and signature
 are defined in [I-D.irtf-cfrg-eddsa] as Ed25519. SHA-512 is used as
 the hashing function.

 Note: This document is not defining the SHA-512 versions of other
 condition types. In addition, the Ed25519 condition type is already
 uniquely identified by a corresponding Ed25519 feature suite.
 Therefore we intentionally do not introduce a SHA-512 feature suite
 in this document.

4.5.1. Condition

 The fingerprint of a ED25519 condition is the 32 byte Ed25519 public
 key. Since the public key is already very small, we do not hash it.

4.5.2. Fulfillment

 Ed25519FulfillmentPayload ::= SEQUENCE {
 publicKey OCTET STRING (SIZE(32)),
 signature OCTET STRING (SIZE(64))
 }

 publicKey is an octet string containing the Ed25519 public key.

 signature is an octet string containing the Ed25519 signature.

5. References

5.1. Normative References

 [I-D.irtf-cfrg-eddsa]
 Josefsson, S. and I. Liusvaara, "Edwards-curve Digital
 Signature Algorithm (EdDSA)", draft-irtf-cfrg-eddsa-04
 (work in progress), March 2016.

 [itu.X680.2015]
 International Telecommunications Union, "Information
 technology - Abstract Syntax Notation One (ASN.1):
 Specification of basic notation", n.d.,
 <http://www.itu.int/rec/T-REC-X.680-201508-I/>.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-eddsa-04
http://www.itu.int/rec/T-REC-X.680-201508-I/

Thomas Expires January 9, 2017 [Page 14]

Internet-Draft Crypto-Conditions July 2016

 [itu.X696.2015]
 International Telecommunications Union, "Information
 technology - ASN.1 encoding rules: Specification of Octet
 Encoding Rules (OER)", n.d.,
 <http://handle.itu.int/11.1002/1000/12487>.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
 2003, <http://www.rfc-editor.org/info/rfc3447>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

5.2. Informative References

 [KEYLENGTH-RECOMMENDATION]
 "BlueKrypt - Cryptographic Key Length Recommendation",
 September 2015, <https://www.keylength.com/en/compare/>.

 [LARGE-RSA-EXPONENTS]
 "Imperial Violet - Very large RSA public exponents (17 Mar
 2012)", March 2012,
 <https://www.imperialviolet.org/2012/03/17/rsados.html>.

 [NIST-KEYMANAGEMENT]
 , , , , and , "NIST - Recommendation for Key Management -
 Part 1 - General (Revision 3)", July 2012,
 <http://csrc.nist.gov/publications/nistpubs/800-57/

sp800-57_part1_rev3_general.pdf>.

 [OPENSSL-X509-CERT-EXAMPLES]
 "OpenSSL - X509 certificate examples for testing and
 verification", July 2012,
 <http://fm4dd.com/openssl/certexamples.htm>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3110] Eastlake 3rd, D., "RSA/SHA-1 SIGs and RSA KEYs in the
 Domain Name System (DNS)", RFC 3110, DOI 10.17487/RFC3110,
 May 2001, <http://www.rfc-editor.org/info/rfc3110>.

http://handle.itu.int/11.1002/1000/12487
https://datatracker.ietf.org/doc/html/rfc3447
http://www.rfc-editor.org/info/rfc3447
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://www.keylength.com/en/compare/
https://www.imperialviolet.org/2012/03/17/rsados.html
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://fm4dd.com/openssl/certexamples.htm
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3110
http://www.rfc-editor.org/info/rfc3110

Thomas Expires January 9, 2017 [Page 15]

Internet-Draft Crypto-Conditions July 2016

 [RFC4871] Allman, E., Callas, J., Delany, M., Libbey, M., Fenton,
 J., and M. Thomas, "DomainKeys Identified Mail (DKIM)
 Signatures", RFC 4871, DOI 10.17487/RFC4871, May 2007,
 <http://www.rfc-editor.org/info/rfc4871>.

 [USING-RSA-EXPONENT-OF-65537]
 "Cryptography - StackExchange - Impacts of not using RSA
 exponent of 65537", November 2014,
 <http://crypto.stackexchange.com/questions/3110/

impacts-of-not-using-rsa-exponent-of-65537>.

Appendix A. Security Considerations

 TODO

Appendix B. Test Values

 TODO

Appendix C. ASN.1 Module

 --<ASN1.PDU CryptoConditions.Condition, CryptoConditions.Fulfillment>--

 CryptoConditions
 DEFINITIONS
 AUTOMATIC TAGS ::=
 BEGIN

 /**
 * CONTAINERS
 */

 Condition ::= SEQUENCE {
 type ConditionType,
 featureBitmask OCTET STRING,
 fingerprint OCTET STRING,
 maxFulfillmentLength INTEGER (0..MAX)
 }

 Fulfillment ::= SEQUENCE {
 type ConditionType,
 payload OCTET STRING
 }

 ConditionType ::= INTEGER {
 preimageSha256(0),
 rsaSha256(1),
 prefixSha256(2),

https://datatracker.ietf.org/doc/html/rfc4871
http://www.rfc-editor.org/info/rfc4871
http://crypto.stackexchange.com/questions/3110/impacts-of-not-using-rsa-exponent-of-65537
http://crypto.stackexchange.com/questions/3110/impacts-of-not-using-rsa-exponent-of-65537

Thomas Expires January 9, 2017 [Page 16]

Internet-Draft Crypto-Conditions July 2016

 thresholdSha256(3),
 ed25519(4)
 } (0..65535)

 /**
 * FULFILLMENT PAYLOADS
 */

 -- For preimage conditions, the payload equals the preimage

 PrefixSha256FulfillmentPayload ::= SEQUENCE {
 prefix OCTET STRING,
 subfulfillment Fulfillment
 }

 ThresholdSha256FulfillmentPayload ::= SEQUENCE {
 threshold INTEGER (0..4294967295),
 subfulfillments SEQUENCE OF ThresholdSubfulfillment
 }

 ThresholdSubfulfillment ::= SEQUENCE {
 weight INTEGER (0..4294967295) DEFAULT 1,
 condition Condition OPTIONAL,
 fulfillment Fulfillment OPTIONAL
 }

 RsaSha256FulfillmentPayload ::= SEQUENCE {
 modulus OCTET STRING (SIZE(128..512)),
 signature OCTET STRING (SIZE(128..512))
 }

 Ed25519FulfillmentPayload ::= SEQUENCE {
 publicKey OCTET STRING (SIZE(32)),
 signature OCTET STRING (SIZE(64))
 }

 /**
 * FINGERPRINTS
 */

 -- SHA-256 hash of the fingerprint contents
 Sha256Fingerprint ::= OCTET STRING (SIZE(32)) -- digest

 -- 32-byte Ed25519 public key
 Ed25519Fingerprint ::= OCTET STRING (SIZE(32)) -- publicKey

 /**
 * FINGERPRINT CONTENTS

Thomas Expires January 9, 2017 [Page 17]

Internet-Draft Crypto-Conditions July 2016

 *
 * The content that will be hashed to arrive at the fingerprint.
 */

 -- The preimage type hashes the raw contents of the preimage

 PrefixSha256FingerprintContents ::= SEQUENCE {
 prefix OCTET STRING,
 condition Condition
 }

 ThresholdSha256FingerprintContents ::= SEQUENCE {
 threshold INTEGER (0..4294967295),
 subconditions SEQUENCE OF ThresholdSubcondition
 }

 ThresholdSubcondition ::= SEQUENCE {
 weight INTEGER (0..4294967295),
 condition Condition
 }

 RsaSha256FingerprintContents ::= INTEGER (0..MAX) -- modulus

 /**
 * EXAMPLES
 */

 exampleCondition Condition ::=
 {
 type preimageSha256,
 featureBitmask '03'H,
 fingerprint '
 E3B0C442 98FC1C14 9AFBF4C8 996FB924 27AE41E4 649B934C A495991B 7852B855
 'H,
 maxFulfillmentLength 2
 }

 exampleFulfillment Fulfillment ::=
 {
 type preimageSha256,
 payload '00'H
 }

 exampleRsaSha256FulfillmentPayload RsaSha256FulfillmentPayload ::=
 {
 modulus '
 B30E7A93 8783BABF 836850FF 49E14F87 E3F92D5C 46E33FEC A3E4F0B2 2358580B
 11765995 F4B8EEA7 FB4712C2 E1E316F7 F775A953 D232216A 169D9A64 DDC00712

Thomas Expires January 9, 2017 [Page 18]

Internet-Draft Crypto-Conditions July 2016

 0A400B37 F2AFC077 B62FE304 DE74DE6A 119EC407 6B529C4F 6096B0BA AD4F533D
 F0173B9B 822FD85D 65FA4BEF A92D8F52 4F69CBCA 0136BD80 D095C169 AEC0E095
 'H,
 signature '
 48E8945E FE007556 D5BF4D5F 249E4808 F7307E29 511D3262 DAEF61D8 8098F9AA
 4A8BC062 3A8C9757 38F65D6B F459D543 F289D73C BC7AF4EA 3A33FBF3 EC444044
 7911D722 94091E56 1833628E 49A772ED 608DE6C4 4595A91E 3E17D6CF 5EC3B252
 8D63D2AD D6463989 B12EEC57 7DF64709 60DF6832 A9D84C36 0D1C217A D64C8625
 BDB594FB 0ADA086C DECBBDE5 80D424BF 9746D2F0 C312826D BBB00AD6 8B52C4CB
 7D47156B A35E3A98 1C973863 792CC80D 04A18021 0A524158 65B64B3A 61774B1D
 3975D78A 98B0821E E55CA0F8 6305D425 29E10EB0 15CEFD40 2FB59B2A BB8DEEE5
 2A6F2447 D2284603 D219CD4E 8CF9CFFD D5498889 C3780B59 DD6A57EF 7D732620
 'H
 }

 exampleEd25519FulfillmentPayload Ed25519FulfillmentPayload ::=
 {
 publicKey '
 EC172B93 AD5E563B F4932C70 E1245034 C35467EF 2EFD4D64 EBF81968 3467E2BF
 'H,
 signature '
 B62291FA D9432F8F 298B9C4A 4895DBE2 93F6FFDA 1A68DADF 0CCDEF5F 47A0C721
 2A5FEA3C DA97A3F4 C03EA9F2 E8AC1CEC 86A51D45 2127ABDB A09D1B6F 331C070A
 'H
 }

 END

Appendix D. Acknowledgements

 The editor would like to thank the following individuals for feedback
 on and implementations of the specification (in alphabetical order):
 TODO

Appendix E. IANA Considerations

E.1. Crypto-Condition Type Registry

 The following initial entries should be added to the Crypto-Condition
 Type registry to be created and maintained at (the suggested URI)

http://www.iana.org/assignments/crypto-condition-types :

 The following feature suite bits are registered:

http://www.iana.org/assignments/crypto-condition-types

Thomas Expires January 9, 2017 [Page 19]

Internet-Draft Crypto-Conditions July 2016

 +----------+------+------+-----------------+
 | Type Bit | Exp. | Hex | Condition Types |
 +----------+------+------+-----------------+
 | 1 | 2^0 | 0x01 | SHA-256 |
 | | | | |
 | 10 | 2^1 | 0x02 | PREIMAGE |
 | | | | |
 | 100 | 2^2 | 0x04 | PREFIX |
 | | | | |
 | 1000 | 2^3 | 0x08 | THRESHOLD |
 | | | | |
 | 10000 | 2^4 | 0x10 | RSA |
 | | | | |
 | 100000 | 2^5 | 0x20 | ED25519 |
 +----------+------+------+-----------------+

 Table 1: Crypto-Condition Feature Suites

 The following types are registered:

 +---------+------------------+-------------------+
 | Type ID | Required Bitmask | Type Name |
 +---------+------------------+-------------------+
 | 0 | 0x03 | PREIMAGE-SHA-256 |
 | | | |
 | 1 | 0x05 | PREFIX-SHA-256 |
 | | | |
 | 2 | 0x09 | THRESHOLD-SHA-256 |
 | | | |
 | 3 | 0x11 | RSA-SHA-256 |
 | | | |
 | 4 | 0x20 | ED25519 |
 +---------+------------------+-------------------+

 Table 2: Crypto-Condition Types

Author's Address

 Stefan Thomas
 Ripple
 300 Montgomery Street
 San Francisco, CA 94104
 US

 Phone: -----------------
 Email: stefan@ripple.com
 URI: http://www.ripple.com

http://www.ripple.com

Thomas Expires January 9, 2017 [Page 20]

