
Network Working Group S. Thomas
Internet-Draft R. Reginelli
Intended status: Standards Track A. Hope-Bailie
Expires: July 23, 2018 Ripple
 January 19, 2018

Crypto-Conditions
draft-thomas-crypto-conditions-04

Abstract

 The crypto-conditions specification defines a set of encoding formats
 and data structures for *conditions* and *fulfillments*. A condition
 uniquely identifies a logical "boolean circuit" constructed from one
 or more logic gates, evaluated by either validating a cryptographic
 signature or verifying the preimage of a hash digest. A fulfillment
 is a data structure encoding one or more cryptographic signatures and
 hash digest preimages that define the structure of the circuit and
 provide inputs to the logic gates allowing for the result of the
 circuit to be evaluated.

 A fulfillment is validated by evaluating that the circuit output is
 TRUE but also that the provided fulfillment matches the circuit
 fingerprint, the condition.

 Since evaluation of some of the logic gates in the circuit (those
 that are signatures) also take a message as input the evaluation of
 the entire fulfillment takes an optional input message which is
 passed to each logic gate as required. As such the algorithm to
 validate a fulfillment against a condition and a message matches that
 of other signature schemes and a crypto-condition can serve as a
 sophisticated and flexible replacement for a simple signature where
 the condition is used as the public key and the fulfillment as the
 signature.

Feedback

 This specification is a part of the Interledger Protocol [1] work.
 Feedback related to this specification should be sent to
 ledger@ietf.org [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Thomas, et al. Expires July 23, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft Crypto-Conditions January 2018

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 23, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Types . 5
3.1. Simple and Compound Types 5
3.2. Defining and Supporting New types 6

4. Features . 6
4.1. Multi-Algorithm . 6
4.2. Multi-Signature . 6
4.3. Multi-Level . 7
4.4. Crypto-conditions as a signature scheme 7
4.5. Crypto-conditions as a trigger in distributed systems . . 8
4.6. Smart signatures . 9

5. Validation of a fulfillment 9
5.1. Subfulfillments . 10

6. Deriving the Condition 10
6.1. Conditions as Public Keys 11

7. Format . 11
7.1. Encoding Rules . 11
7.2. Condition . 11

https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Thomas, et al. Expires July 23, 2018 [Page 2]

Internet-Draft Crypto-Conditions January 2018

7.2.1. Fingerprint . 12
7.2.2. Cost . 13
7.2.3. Subtypes . 13

7.3. Fulfillment . 14
8. Crypto-Condition Types 15
8.1. PREIMAGE-SHA-256 . 15
8.1.1. Cost . 16
8.1.2. ASN.1 . 16
8.1.3. Condition Format 16
8.1.4. Fulfillment Format 16
8.1.5. Validating . 16
8.1.6. Example . 16

8.2. PREFIX-SHA-256 . 17
8.2.1. Cost . 17
8.2.2. ASN.1 . 18
8.2.3. Condition Format 18
8.2.4. Fulfillment Format 18
8.2.5. Validating . 19
8.2.6. Example . 19

8.3. THRESHOLD-SHA-256 . 20
8.3.1. Cost . 20
8.3.2. ASN.1 . 20
8.3.3. Condition Format 20
8.3.4. Fulfillment Format 21
8.3.5. Validating . 21
8.3.6. Example . 21

8.4. RSA-SHA-256 . 23
8.4.1. RSA Keys . 23
8.4.2. Cost . 24
8.4.3. ASN.1 . 24
8.4.4. Condition Format 24
8.4.5. Fulfillment Format 24
8.4.6. Validating . 25
8.4.7. Example . 25

8.5. ED25519-SHA256 . 26
8.5.1. Cost . 27
8.5.2. ASN.1 . 27
8.5.3. Condition Format 27
8.5.4. Fulfillment . 27
8.5.5. Validating . 27
8.5.6. Example . 28

9. URI Encoding Rules . 28
9.1. Condition URI Format 28
9.2. New URI Parameter Definitions 29
9.2.1. Parameter: Fingerprint Type (fpt) 29
9.2.2. Parameter: Cost (cost) 29
9.2.3. Parameter: Subtypes (subtypes) 29

9.3. Condition URI Parameter Ordering 30

Thomas, et al. Expires July 23, 2018 [Page 3]

Internet-Draft Crypto-Conditions January 2018

10. Example Condition . 30
11. References . 31
11.1. Normative References 31
11.2. Informative References 32
11.3. URIs . 33

Appendix A. Security Considerations 34
Appendix B. Test Values . 34
Appendix C. Implementations 34
Appendix D. ASN.1 Module . 35
Appendix E. IANA Considerations 37
E.1. Crypto-Condition Type Registry 37

 Authors' Addresses . 37

1. Introduction

 Crypto-conditions is a scheme for composing signature-like structures
 from one or more existing signature schemes or hash digest
 primitives. It defines a mechanism for these existing primitives to
 be combined and grouped to create complex signature arrangements but
 still maintain the useful properties of a simple signature, most
 notably, that a deterministic algorithm exists to verify the
 signature against a message given a public key.

 Using crypto-conditions, existing primitives such as RSA and ED25519
 signature schemes and SHA256 digest algorithms can be used as logic
 gates to construct complex boolean circuits which can then be used as
 compound signatures. The validation function for these compound
 signatures takes as input the fingerprint of the circuit, called the
 condition, the circuit definition and minimum required logic gates
 with their inputs, called the fulfillment, and a message.

 The function returns a boolean indicating if the compound signature
 is valid or not. This property of crypto-conditions means they can
 be used in most scenarios as a replacement for existing signature
 schemes which also take as input, a public key (the condition), a
 signature (the fulfillment), and a message and return a boolean
 result.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Thomas, et al. Expires July 23, 2018 [Page 4]

Internet-Draft Crypto-Conditions January 2018

3. Types

 Crypto-conditions are a standard format for expressing conditions and
 fulfillments. The format supports multiple algorithms, including
 different hash functions and cryptographic signing schemes. Crypto-
 conditions can be nested in multiple levels, with each level possibly
 having multiple signatures.

 The different types of crypto-conditions each have different internal
 strutures and employ different cryptographic algorithms as
 primitives.

3.1. Simple and Compound Types

 Two categories of crypto-condition type exist. Simple crypto-
 conditions provide a standard encoding of common cryptographic
 primitives with hardcoded parameters, e.g RSA and ED25519 signature
 or SHA256 hash digests. As such, simple types that use the same
 underlying scheme (e.g. SHA) with different parameters (e.g. 256 or
 512 bits) are considered different crypto-condition types.

 As an example, the types defined in this version of the specification
 all use the SHA-256 digest algorithm to generate the condition
 fingerprint. If a future version were to introduce SHA-512 as an
 alternative this would require that new types be defined for each
 existing type that must have its condition generated using SHA-512.

 Compound crypto-conditions contain one or more sub-crypto-conditions.
 The compound crypto-condition will evaluate to TRUE or FALSE based on
 the output of the evaluation of the sub-crypto-conditions. In this
 way compound crypto-conditions are used to construct branches of a
 boolean circuit.

 To validate a compound crypto-condition all sub-crypto-conditions are
 provided in the fulfillment so that the fingerprint of the compound
 condition can be generated. However, some of these sub-crypto-
 conditions may be sub-fulfillments and some may be sub-conditions,
 depending on the type and properties of the compound crypto-
 condition.

 As an example, in the case of an m-of-n signature scheme, only m sub-
 fulfillments are needed to validate the compound signature, but the
 remaining n-m sub-conditions must still be provided to validate that
 the complete fulfillment matches the originally provided condition.
 This is an important feature for multi-party signing, when not all
 parties are ready to provide fulfillment yet all parties still desire
 fulfillment of the overall condition if enough counter-parties do
 provide fulfillment.

Thomas, et al. Expires July 23, 2018 [Page 5]

Internet-Draft Crypto-Conditions January 2018

3.2. Defining and Supporting New types

 The crypto-conditions format has been designed so that it can be
 expanded. For example, you can add new cryptographic signature
 schemes or hash functions. This is important because advances in
 cryptography frequently render old algorithms insecure or invent
 newer, more effective algorithms.

 Implementations are not required to support all condition types
 therefore it is necessary to indicate which types an implementation
 must support in order to validate a fulfillment. For this reason,
 compound conditions are encoded with an additional field, subtypes,
 indicating the set of types and subtypes of all sub-crypto-
 conditions.

4. Features

 Crypto-conditions offer many of the features required of a regular
 signature scheme but also others which make them useful in a variety
 of new use cases.

4.1. Multi-Algorithm

 Each condition type uses one or more cryptographic primitives such as
 digest or signature algorithms. Compound types may contain sub-
 crypto-conditions of any type and indicate the set of underlying
 types in the subtypes field of the condition

 To verify that a given implementation can verify a fulfillment for a
 given condition, implementations MUST ensure they are able to
 validate fulfillments of all types indicated in the subtypes field of
 a compound condition. If an implementation encounters an unknown
 type it MUST reject the condition as it will almost certainly be
 unable to validate the fulfillment.

4.2. Multi-Signature

 Crypto-conditions can abstract away many of the details of multi-
 sign. When a party provides a condition, other parties can treat it
 opaquely and do not need to know about its internal structure. That
 allows parties to define arbitrary multi-signature setups without
 breaking compatibility. That said, it is important that
 implementations must inspect the types and subtypes of any crypto-
 conditions they encounter to ensure they do not pass on a condition
 they will not be able to verify at a later stage.

 In many instances protocol designers can use crypto-conditions as a
 drop-in replacement for public key signature algorithms and add

Thomas, et al. Expires July 23, 2018 [Page 6]

Internet-Draft Crypto-Conditions January 2018

 multi-signature support to their protocols without adding any
 additional complexity.

4.3. Multi-Level

 Crypto-conditions elegantly support weighted multi-signatures and
 multi-level signatures. A threshold condition has a number of
 subconditions, and a target threshold. Each subcondition can be a
 signature or another threshold condition. This provides flexibility
 in forming complex conditions.

 For example, consider a threshold condition that consists of two
 subconditions, one each from Wayne and Alf. Alf's condition can be a
 signature condition while Wayne's condition is a threshold condition,
 requiring both Claude and Dan to sign for him.

 Multi-level signatures allow more complex relationships than simple
 M-of-N signing. For example, a weighted condition can support an
 arrangement of subconditions such as, "Either Ron, Mac, and Ped must
 approve; or Smithers must approve."

4.4. Crypto-conditions as a signature scheme

 Crypto-conditions is a signature scheme for compound signatures which
 has similar properties to most other signature schemes, such as:

 1. Validation of the signature (the fulfillment) is done using a
 public key (the condition) and a message as input

 2. The same public key can be used to validate multiple different
 signatures, each against a different message

 3. It is not possible to derive the signature from the public key

 However, the scheme also has a number of features that make it unique
 such as:

 1. It is possible to derive the same public key from any valid
 signature without the message

 2. It is possible for the same public key and message to be used to
 validate multiple signatures. For example, the fulfillment of an
 m-of-n condition will be different for each combination of n
 signatures.

 3. Composite signatures use one or more other signatures as
 components allowing for recursive signature validation logic to
 be defined.

Thomas, et al. Expires July 23, 2018 [Page 7]

Internet-Draft Crypto-Conditions January 2018

 4. A valid signature can be produced using different combinations of
 private keys if the structure of the compound signature requires
 only specific combinations of internal signatures to be valid (m
 of n signature scheme).

4.5. Crypto-conditions as a trigger in distributed systems

 One of the challenges facing a distributed system is achieving atomic
 execution of a transaction across the system. A common pattern for
 solving this problem is two-phase commit in which the most time and
 resource-consuming aspects of the transaction are prepared by all
 participants following which a simple trigger is sufficient to either
 commit or abort the transaction. Described in more abstract terms,
 the system consists of a number of participants that have prepared a
 transaction pending the fulfillment of a predefined condition.

 Crypto-conditions defines a mechanism for expressing these triggers
 as pairs of unique trigger identifiers (conditions) and
 cryptographically verifiable triggers (fulfillments) that can be
 deterministically verified by all participants.

 It is also important that all participants in such a distributed
 system are able to evaluate, prior to the trigger being fired, that
 they will be capable of verifying the trigger. Determinism is
 useless if validation of the trigger requires algorithms or resources
 that are not available to all participants.

 Therefore conditions may be used as *distributable event
 descriptions* in the form of a _fingerprint_, but also _event meta-
 data_ that allows the event verification system to determine if they
 have the necessary capabilities (such as required crypto-algorithms)
 and resources (such as heap size or memory) to verify the event
 notification later.

 Fulfillments are therefore *cryptographically verifiable event
 notifications* that can be used to verify the event occurred but also
 that it matches the given description.

 When using crypto-conditions as a trigger it will often make sense
 for the message that is used for validation to be empty to match the
 signature of the trigger processing system's API. This makes crypto-
 conditions compatible with systems that use simple hash-locks as
 triggers.

 If a PKI signature scheme is being used for the triggers this would
 require a new key pair for each trigger which is impractical.
 Therefore the PREFIX compound type wraps a sub-crypto-condition with
 a message prefix that is applied to the message before signature

Thomas, et al. Expires July 23, 2018 [Page 8]

Internet-Draft Crypto-Conditions January 2018

 validation. In this way a unique condition can be derived for each
 trigger even if the same key pair is re-used with an empty message.

4.6. Smart signatures

 In the Interledger protocol, fulfillments provide non-repudiable
 proof that a transaction has been completed on a ledger. They are
 simple messages that can be easily shared with other ledgers. This
 allows ledgers to escrow funds or hold a transfer conditionally, then
 execute the transfer automatically when the ledger sees the
 fulfillment of the stated condition. In this way the Interledger
 protocol synchronizes multiple transfers on distinct ledgers in an
 almost atomic end-to-end transaction.

 Crypto-conditions may also be useful in other contexts where a system
 needs to make a decision based on predefined criteria, and the proof
 from a trusted oracle(s) that the criteria have been met, such as
 smart contracts.

 The advantage of using crypto-conditions for such use cases as
 opposed to a turing complete contract scripting language is the fact
 that the outcome of a crypto-condition validation is deterministic
 across platforms as long as the underlying cryptographic primitives
 are correctly implemented.

5. Validation of a fulfillment

 Validation of a fulfillment (F) against a condition (C) and a message
 (M), in the majority of cases, follows these steps:

 1. The implementation must derive a condition from the fulfillment
 and ensure that the derived condition (D) matches the given
 condition (C).

 2. If the fulfillment is a simple crypto-condition AND is based upon
 a signature scheme (such as RSA-PSS or ED25519) then any
 signatures in the fulfillment (F) must be verified, using the
 appropriate signature verification algorithm, against the
 corresponding public key, also provided in the fulfillment and
 the message (M) (which may be empty).

 3. If the fulfillment is a compound crypto-condition then the sub-
 fulfillments MUST each be validated. In the case of the PREFIX-
 SHA-256 type the sub-fulfillment MUST be valid for F to be valid
 and in the case of the THRESHOLD-SHA-256 type the number of valid
 sub-fulfillments must be equal or greater than the threshold
 defined in F.

Thomas, et al. Expires July 23, 2018 [Page 9]

Internet-Draft Crypto-Conditions January 2018

 If the derived condition (D) matches the input condition (C) AND the
 boolean circuit defined by the fulfillment evaluates to TRUE then the
 fulfillment (F) fulfills the condition (C).

 A more detailed validation algorithm for each crypto-condition type
 is provided with the details of the type later in this document. In
 each case the notation F.x or C.y implies; the decoded value of the
 field named x of the fulfillment and the decoded value of the field
 named y of the Condition respectively.

5.1. Subfulfillments

 In validating a fulfillment for a compound crypto-condition it is
 necessary to validate one or more sub-fulfillments per step 3 above.
 In this instance the condition for one or more of these sub-
 fulfillments is often not available for comparison with the derived
 condition. Implementations MUST skip the first fulfillment
 validation step as defined above and only perform steps 2 and 3 of
 the validation.

 The message (M) used to validate sub-fulfillments is the same message
 (M) used to validate F however in the case of the PREFIX-SHA-256 type
 this is prefixed with F.prefix before validation of the sub-
 fulfillment is performed.

6. Deriving the Condition

 Since conditions provide a unique fingerprint for fulfillments it is
 important that a determinisitic algorithm is used to derive a
 condition. For each crypto-condition type details are provided on
 how to:

 1. Assemble the fingerprint content and calculate the hash digest of
 this data.

 2. Calculate the maximum cost of validating a fulfillment

 For compound types the fingerprint content will contain the complete,
 encoded, condition for all sub-crypto-conditions. Implementations
 MUST abide by the ordering rules provided when assembling the
 fingerprint content.

 When calculating the fingerprint of a compound crypto-condition
 implementations MUST first derive the condition for all sub-
 fulfillments and include these conditions when assembling the
 fingerprint content.

Thomas, et al. Expires July 23, 2018 [Page 10]

Internet-Draft Crypto-Conditions January 2018

6.1. Conditions as Public Keys

 Since the condition is just a fingerprint and meta-data about the
 crypto-condition it can be transmitted freely in the same way a
 public key is shared publicly. It's not possible to derive the
 fulfillment from the condition.

7. Format

 A description of crypto-conditions is provided in this document using
 Abstract Syntax Notation One (ASN.1) as defined in [itu.X680.2015].

7.1. Encoding Rules

 Implementations of this specificiation MUST support encoding and
 decoding using Distinguished Encoding Rules (DER) as defined in
 [itu.X690.2015]. This is the canonical encoding format.

 Alternative encodings may be used to represent top-level conditions
 and fulfillments but to ensure a determinisitic outcome in producing
 the condition fingerprint content, including any sub-conditions, MUST
 be DER encoded prior to hashing.

 The exception is the PREIMAGE-SHA-256 condition where the fingerprint
 content is the raw preimage which is not encoded prior to hashing.
 This is to allow a PREIMAGE-SHA-256 crypto-condition to be used in
 systems where "hash-locks" are already in use.

7.2. Condition

 The binary encoding of conditions differs based on their type. All
 types define at least a fingerprint and cost sub-field. Some types,
 such as the compound condition types, define additional sub-fields
 that are required to convey essential properties of the crypto-
 condition (such as the sub-types used by sub-conditions in the case
 of the compound types).

 Each crypto-condition type has a type ID. The list of known types is
 the IANA-maintained Crypto-Condition Type Registry (Appendix E.1).

 Conditions are encoded as follows:

Thomas, et al. Expires July 23, 2018 [Page 11]

Internet-Draft Crypto-Conditions January 2018

 Condition ::= CHOICE {
 preimageSha256 [0] SimpleSha256Condition,
 prefixSha256 [1] CompoundSha256Condition,
 thresholdSha256 [2] CompoundSha256Condition,
 rsaSha256 [3] SimpleSha256Condition,
 ed25519Sha256 [4] SimpleSha256Condition
 }

 SimpleSha256Condition ::= SEQUENCE {
 fingerprint OCTET STRING (SIZE(32)),
 cost INTEGER (0..4294967295)
 }

 CompoundSha256Condition ::= SEQUENCE {
 fingerprint OCTET STRING (SIZE(32)),
 cost INTEGER (0..4294967295),
 subtypes ConditionTypes
 }

 ConditionTypes ::= BIT STRING {
 preImageSha256 (0),
 prefixSha256 (1),
 thresholdSha256 (2),
 rsaSha256 (3),
 ed25519Sha256 (4)
 }

7.2.1. Fingerprint

 The fingerprint is an octet string uniquely representing the
 condition with respect to other conditions *of the same type*.

 Implementations which index conditions MUST use the complete encoded
 condition as the key, not just the fingerprint - as different
 conditions of different types may have the same fingerprint.

 For most condition types, the fingerprint is a cryptographically
 secure hash of the data which defines the condition, such as a public
 key.

 For types that use PKI signature schemes, the signature is
 intentionally not included in the content that is used to compose the
 fingerprint. This means the fingerprint can be calculated without
 needing to know the message or having access to the private key.

 Future types may use different functions to produce the fingerprint,
 which may have different lengths, therefore the field is encoded as a
 variable length string.

Thomas, et al. Expires July 23, 2018 [Page 12]

Internet-Draft Crypto-Conditions January 2018

7.2.2. Cost

 For each type, a cost function is defined which produces a
 determinsitic cost value based on the properties of the condition.

 The cost functions are designed to produce a number that will
 increase rapidly if the structure and properties of a crypto-
 condition are such that they increase the resource requirements of a
 system that must validate the fulfillment.

 The constants used in the cost functions are selected in order to
 provide some consistency across types for the cost value and the
 expected "real cost" of validation. This is not an exact science
 given that some validations will require signature verification (such
 as RSA and ED25519) and others will simply require hashing and
 storage of large values therefore the cost functions are roughly
 configured (through selection of constants) to be the number of bytes
 that would need to be processed by the SHA-256 hash digest algorithm
 to produce the equivalent amount of work.

 The goal is to produce an indicative number that implementations can
 use to protect themselves from attacks involving crypto-conditions
 that would require massive resources to validate (denial of service
 type attacks).

 Since dynamic heuristic measures can't be used to achieve this a
 deterministic value is required that can be produced consistently by
 any implementation, therefore for each crypto-condition type, an
 algorithm is provided for consistently calculating the cost.

 Implementations MUST determine a safe cost ceiling based on the
 expected cost value of crypto-conditions they will need to process.
 When a crypto-condition is submitted to an implementation, the
 implementation MUST verify that it will be able to process a
 fulfillment with the given cost (i.e. the cost is lower than the
 allowed ceiling) and reject it if not.

 Cost function constants have been rounded to numbers that have an
 efficient base-2 representation to facilitate efficient arithmetic
 operations.

7.2.3. Subtypes

 Subtypes is a bitmap that indicates the set of types an
 implementation must support in order to be able to successfully
 validate the fulfillment of this condition. This is the set of types
 and subtypes of all sub-crypto-conditions, recursively excluding the
 type of the root crypto-condition.

Thomas, et al. Expires July 23, 2018 [Page 13]

Internet-Draft Crypto-Conditions January 2018

 It must be possible to verify that all types used in a crypto-
 condition are supported (including the types and subtypes of any sub-
 crypto-conditions) even if the fulfillment is not available to be
 analysed yet. Therefore, all compound conditions set the bits in
 this bitmap that correspond to the set of types and subtypes of all
 sub-crypto-conditions.

 The field is encoded as a variable length BIT STRING, as defined in
 ASN.1, to accommodate new types that may be defined.

 Each bit in the bitmap represents a type from the list of known types
 in the IANA-maintained Crypto-Condition Type Registry (Appendix E.1)
 and the bit corresponding to each type is the bit at position X where
 X is the type ID of the type.

 The presence of one or more sub-crypto-conditions of a specific type
 is indicated by setting the numbered bit corresponding to the type ID
 of that type.

 In DER encoding, the bits in a bitstring are numbered from the MOST
 significant bit (bit 0) to least significant (bit 7) of the first
 byte and then continue with the MOST significant bit (bit 8) of the
 next byte, and so on. For example, a compound condition that
 contains an ED25519-SHA-256 crypto-condition as a sub-crypto-
 condition will set the bit at position 4 and the BITSTRING will be
 DER encoded with an appropriate tag byte followed by the three bytes
 0x02 0x03 and 0x80, where 0x02 indicates the length (2 bytes, the
 first being the padding indicator), 0x03 indicates that there are 3
 padding bits in the last byte and 0x80 indicates the 5 bits in the
 string are set to 00001.

7.3. Fulfillment

 The ASN.1 definition for fulfillments is defined as follows:

Thomas, et al. Expires July 23, 2018 [Page 14]

Internet-Draft Crypto-Conditions January 2018

 Fulfillment ::= CHOICE {
 preimageSha256 [0] PreimageFulfillment ,
 prefixSha256 [1] PrefixFulfillment,
 thresholdSha256 [2] ThresholdFulfillment,
 rsaSha256 [3] RsaSha256Fulfillment,
 ed25519Sha256 [4] Ed25519Sha512Fulfillment
 }

 PreimageFulfillment ::= SEQUENCE {
 preimage OCTET STRING
 }

 PrefixFulfillment ::= SEQUENCE {
 prefix OCTET STRING,
 maxMessageLength INTEGER (0..4294967295),
 subfulfillment Fulfillment
 }

 ThresholdFulfillment ::= SEQUENCE {
 subfulfillments SET OF Fulfillment,
 subconditions SET OF Condition
 }

 RsaSha256Fulfillment ::= SEQUENCE {
 modulus OCTET STRING,
 signature OCTET STRING
 }

 Ed25519Sha512Fulfillment ::= SEQUENCE {
 publicKey OCTET STRING (SIZE(32)),
 signature OCTET STRING (SIZE(64))
 }

8. Crypto-Condition Types

 The following condition types are defined in this version of the
 specification. While support for additional crypto-condition types
 may be added in the future and will be registered in the IANA
 maintained Crypto-Condition Type Registry (Appendix E.1), no other
 types are supported by this specification.

8.1. PREIMAGE-SHA-256

 PREIMAGE-SHA-256 is assigned the type ID 0. It relies on the
 availability of the SHA-256 digest algorithm.

 This type of condition is also called a "hashlock". By creating a
 hash of a difficult-to-guess 256-bit random or pseudo-random integer

Thomas, et al. Expires July 23, 2018 [Page 15]

Internet-Draft Crypto-Conditions January 2018

 it is possible to create a condition which the creator can trivially
 fulfill by publishing the random value. However, for anyone else,
 the condition is cryptographically hard to fulfill, because they
 would have to find a preimage for the given condition hash.

 Implementations MUST ignore any input message when validating a
 PREIMAGE-SHA-256 fulfillment as the validation of this crypto-
 condition type only requires that the SHA-256 digest of the preimage,
 taken from the fulfillment, matches the fingerprint, taken from the
 condition.

8.1.1. Cost

 The cost is the size, in bytes, of the *unencoded* preimage.

 cost = preimage length

8.1.2. ASN.1

-- Condition Fingerprint
-- The PREIMAGE-SHA-256 condition fingerprint content is not DER encoded
-- The fingerprint content is the preimage

-- Fulfillment
PreimageFulfillment ::= SEQUENCE {
 preimage OCTET STRING
}

8.1.3. Condition Format

 The fingerprint of a PREIMAGE-SHA-256 condition is the SHA-256 hash
 of the *unencoded* preimage.

8.1.4. Fulfillment Format

 The fulfillment simply contains the preimage (encoded into a SEQUENCE
 of one element for consistency).

8.1.5. Validating

 A PREIMAGE-SHA-256 fulfillment is valid iff C.fingerprint is equal to
 the SHA-256 hash digest of F.

8.1.6. Example

Thomas, et al. Expires July 23, 2018 [Page 16]

Internet-Draft Crypto-Conditions January 2018

examplePreimageCondition Condition ::=
 preimageSha256 : {
 fingerprint '7F83B165 7FF1FC53 B92DC181 48A1D65D FC2D4B1F A3D67728 4ADDD200
126D9069'H,
 cost 12
 }

examplePreimageFulfillment Fulfillment ::=
 preimageSha256 : {
 preimage '48656C6C 6F20576F 726C6421'H
 }

8.2. PREFIX-SHA-256

 PREFIX-SHA-256 is assigned the type ID 1. It relies on the
 availability of the SHA-256 digest algorithm and any other algorithms
 required by its sub-crypto-condition as it is a compound crypto-
 condition type.

 Prefix crypto-conditions provide a way to narrow the scope of other
 crypto-conditions that are used inside the prefix crypto-condition as
 a sub-crypto-condition.

 Because a condition is the fingerprint of a public key, by creating a
 prefix crypto-condition that wraps another crypto-condition we can
 narrow the scope from signing an arbitrary message to signing a
 message with a specific prefix.

 We can also use the prefix condition in contexts where there is an
 empty message used for validation of the fulfillment so that we can
 reuse the same key pair for multiple crypto-conditions, each with a
 different prefix, and therefore generate a unique condition and
 fulfillment each time.

 Implementations MUST prepend the prefix to the provided message and
 will use the resulting value as the message to validate the sub-
 fulfillment.

8.2.1. Cost

 The cost is the size, in bytes, of the *unencoded* prefix, plus the
 maximum message that will be accepted to be prefixed and validated by
 the subcondition, plus the cost of the sub-condition, plus the
 constant 1024.

cost = prefix.length (in bytes) + max_message_length + subcondition_cost + 1024

Thomas, et al. Expires July 23, 2018 [Page 17]

Internet-Draft Crypto-Conditions January 2018

8.2.2. ASN.1

 -- Condition Fingerprint
 PrefixFingerprintContents ::= SEQUENCE {
 prefix OCTET STRING,
 maxMessageLength INTEGER (0..4294967295),
 subcondition Condition
 }

 -- Fulfillment
 PrefixFulfillment ::= SEQUENCE {
 prefix OCTET STRING,
 maxMessageLength INTEGER (0..4294967295),
 subfulfillment Fulfillment
 }

8.2.3. Condition Format

 The fingerprint of a PREFIX-SHA-256 condition is the SHA-256 digest
 of the DER encoded fingerprint contents which are a SEQUENCE of:

 prefix An arbitrary octet string which will be prepended to the
 message during validation of the sub-fulfillment.

 maxMessageLength The maximum size, in bytes, of the message that
 will be accepted during validation of the fulfillment of this
 condition.

 subcondition The condition derived from the sub-fulfillment of this
 crypto-condition.

8.2.4. Fulfillment Format

 The fulfillment of a PREFIX-SHA-256 crypto-condition is a
 PrefixFulfillment which is a SEQUENCE of:

 prefix An arbitrary octet string which will be prepended to the
 message during validation of the sub-fulfillment.

 maxMessageLength The maximum size, in bytes, of the message that
 will be accepted during validation of the fulfillment of this
 condition.

 subfulfillment A fulfillment that will be verified against the
 prefixed message.

Thomas, et al. Expires July 23, 2018 [Page 18]

Internet-Draft Crypto-Conditions January 2018

8.2.5. Validating

 A PREFIX-SHA-256 fulfillment is valid iff:

 1. The size of M, in bytes, is less than or equal to
 F.maxMessageLength AND

 2. F.subfulfillment is valid, where the message used for validation
 of f is M prefixed by F.prefix AND

 3. D is equal to C

8.2.6. Example

examplePrefixCondition Condition ::=
 prefixSha256 : {
 fingerprint 'BB1AC526 0C0141B7 E54B26EC 2330637C 5597BF81 1951AC09 E744AD20
FF77E287'H,
 cost 1024,
 subtypes { preimageSha256 }
 }

examplePrefixFulfillment Fulfillment ::=
 prefixSha256 : {
 prefix ''H,
 maxMessageLength 0,
 subfulfillment preimageSha256 : { preimage ''H }
 }

examplePrefixFingerprintContents PrefixFingerprintContents ::= {
 prefix ''H,
 maxMessageLength 0,
 subcondition preimageSha256 : {
 fingerprint
'E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855'H,
 cost 0
 }
}

 Note that the example given, while useful to demonstrate the
 structure, has less practical security value that the use of an RSA-
 SHA-256 or ED25519-SHA-256 subfulfillment. Since the subfulfillment
 is a PREIMAGE-SHA-256, the validation of which ignores the incoming
 message, as long as the prefix, maxMessagelength and preimage
 provided in the subfulfillment are correct, the parent PREFIX-SHA-256
 fulfillment will validate.

 In this case, wrapping the PREIMAGE-SHA-256 crypto-condition in the
 PREFIX-SHA-256 crypto-condition, has the effect of enforcing a

 message length of 0 bytes.

Thomas, et al. Expires July 23, 2018 [Page 19]

Internet-Draft Crypto-Conditions January 2018

 Note also, any change to the PREFIX-SHA-256 crypto-condition's prefix
 and maxMessageLength values result in a different fingerprint value,
 effectively namespacing the underlying preimage and re-hashing it.
 The result is a new crypto-condition with a new and unique
 fingerprint with no change to the underlying sub-crypto-condition.

8.3. THRESHOLD-SHA-256

 THRESHOLD-SHA-256 is assigned the type ID 2. It relies on the
 availability of the SHA-256 digest algorithm and any other algorithms
 required by any of its sub-crypto-conditions as it is a compound
 crypto-condition type.

8.3.1. Cost

 The cost is the sum of the F.threshold largest cost values of all
 sub-conditions, added to 1024 times the total number of sub-
 conditions.

cost = (sum of largest F.threshold subcondition.cost values) + 1024 *
F.subconditions.count

 For example, if a threshold crypto-condition contains 5 sub-
 conditions with costs of 64, 64, 82, 84 and 84 and has a threshold of
 3, the cost is equal to the sum of the largest three sub-condition
 costs (82 + 84 + 84 = 250) plus 1024 times the number of sub-
 conditions (1024 * 5 = 5120): 5370

8.3.2. ASN.1

 -- Condition Fingerprint
 ThresholdFingerprintContents ::= SEQUENCE {
 threshold INTEGER (1..65535),
 subconditions SET OF Condition
 }

 -- Fulfillment
 ThresholdFulfillment ::= SEQUENCE {
 subfulfillments SET OF Fulfillment,
 subconditions SET OF Condition
 }

8.3.3. Condition Format

 The fingerprint of a THRESHOLD-SHA-256 condition is the SHA-256
 digest of the DER encoded fingerprint contents which are a SEQUENCE
 of:

Thomas, et al. Expires July 23, 2018 [Page 20]

Internet-Draft Crypto-Conditions January 2018

 threshold A number that MUST be an integer in the range 1 ... 65535.
 In order to fulfill a threshold condition, the count of the sub-
 fulfillments MUST be equal to the threshold.

 subconditions The set of sub-conditions, F.threshold of which MUST
 be satisfied by valid sub-fulfillments provided in the
 fulfillment. The SET of DER encoded sub-conditions is sorted
 according to the DER encoding rules for a SET, in lexicographic
 (big-endian) order, smallest first as defined in section 11.6 of
 [itu.X690.2015].

8.3.4. Fulfillment Format

 The fulfillment of a THRESHOLD-SHA-256 crypto-condition is a
 ThresholdFulfillment which is a SEQUENCE of:

 subfulfillments A SET OF fulfillments. The number of elements in
 this set is equal to the threshold therefore implementations must
 use the length of this SET as the threshold value when deriving
 the fingerprint of this crypto-condition.

 subconditions A SET OF conditions. This is the list of unfulfilled
 sub-conditions. This list must be combined with the list of
 conditions derived from the subfulfillments and the combined list,
 sorted, and used as the subconditions value when deriving the
 fingerprint of this crypto-condition.

 This may be an empty list.

8.3.5. Validating

 A THRESHOLD-SHA-256 fulfillment is valid iff :

 1. All F.subfulfillments are valid.

 2. D is equal to C.

8.3.6. Example

exampleThresholdCondition Condition ::=
 thresholdSha256 : {
 fingerprint 'B4B84136 DF48A71D 73F4985C 04C6767A 778ECB65 BA7023B4 506823BE
EE7631B9'H,
 cost 1024,
 subtypes { preimageSha256 }
 }

exampleThresholdFulfillment Fulfillment ::=
 thresholdSha256 : {

Thomas, et al. Expires July 23, 2018 [Page 21]

Internet-Draft Crypto-Conditions January 2018

 subfulfillments { preimageSha256 : { preimage ''H } },
 subconditions { }
 }

exampleThresholdFingerprintContents ThresholdFingerprintContents ::= {
 threshold 1,
 subconditions {
 preimageSha256 : {
 fingerprint 'E3B0C442 98FC1C14 9AFBF4C8 996FB924 27AE41E4 649B934C
A495991B 7852B855'H,
 cost 0
 }
 }
}

exampleThresholdCondition2 Condition ::=
 thresholdSha256 : {
 fingerprint '5A218ECE 7AC4BC77 157F04CB 4BC8DFCD 5C9D225A 55BD0AA7 60BCA2A4
F1773DC6'H,
 cost 2060,
 subtypes { preimageSha256 }
 }

exampleThresholdFulfillment2 Fulfillment ::=
 thresholdSha256 : {
 subfulfillments { preimageSha256 : { preimage ''H } },
 subconditions {
 preimageSha256 : {
 fingerprint '7F83B165 7FF1FC53 B92DC181 48A1D65D FC2D4B1F A3D67728
4ADDD200 126D9069'H,
 cost 12
 }
 }
 }

exampleThresholdFingerprintContents2 ThresholdFingerprintContents ::= {
 threshold 1,
 subconditions {
 preimageSha256 : {
 fingerprint 'E3B0C442 98FC1C14 9AFBF4C8 996FB924 27AE41E4 649B934C
A495991B 7852B855'H,
 cost 0
 },
 preimageSha256 : {
 fingerprint '7F83B165 7FF1FC53 B92DC181 48A1D65D FC2D4B1F A3D67728
4ADDD200 126D9069'H,
 cost 12
 }

 }
}

Thomas, et al. Expires July 23, 2018 [Page 22]

Internet-Draft Crypto-Conditions January 2018

8.4. RSA-SHA-256

 RSA-SHA-256 is assigned the type ID 3. It relies on the SHA-256
 digest algorithm and the RSA-PSS signature scheme.

 The signature algorithm used is RSASSA-PSS as defined in PKCS#1 v2.2.
 [RFC8017]

 Implementations MUST NOT use the default RSASSA-PSS-params.
 Implementations MUST use the SHA-256 hash algorithm and therefore,
 the same algorithm in the mask generation algorithm, as recommended
 in [RFC8017]. The algorithm parameters to use, as defined in
 [RFC4055] are:

pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) 1 }

id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840)
organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 1 }

sha256Identifier AlgorithmIdentifier ::= {
 algorithm id-sha256,
 parameters nullParameters
}

id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8 }

mgf1SHA256Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha256Identifier
}

rSASSA-PSS-SHA256-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha256Identifier,
 maskGenAlgorithm mgf1SHA256Identifier,
 saltLength 20,
 trailerField 1
}

8.4.1. RSA Keys

 To optimize the RsaFulfillment, and enforce a public exponent value
 of 65537, only the RSA Public Key modulus is stored in the
 RsaFingerprintContents and RsaFulfillment.

 The modulus is stored as an OCTET STRING representing an unsigned
 integer (i.e. no sign byte) in big-endian byte-order, the most
 significant byte being the first in the string.

https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc4055

Thomas, et al. Expires July 23, 2018 [Page 23]

Internet-Draft Crypto-Conditions January 2018

 Implementations MUST use moduli greater than 128 bytes (1017 bits)
 and smaller than or equal to 512 bytes (4096 bits.) Large moduli
 slow down signature verification which can be a denial-of-service
 vector. DNSSEC also limits the modulus to 4096 bits [RFC3110].
 OpenSSL supports up to 16384 bits [OPENSSL-X509-CERT-EXAMPLES].

 Implementations MUST use the value 65537 for the public exponent e as
 recommended in [RFC4871]. Very large exponents can be a DoS vector
 [LARGE-RSA-EXPONENTS] and 65537 is the largest Fermat prime, which
 has some nice properties [USING-RSA-EXPONENT-OF-65537].

 The recommended modulus size as of 2016 is 2048 bits
 [KEYLENGTH-RECOMMENDATION]. In the future we anticipate an upgrade
 to 3072 bits which provides approximately 128 bits of security
 [NIST-KEYMANAGEMENT] (p. 64), about the same level as SHA-256.

8.4.2. Cost

 The cost is the square of the RSA key modulus size (in bytes).

 cost = (modulus size in bytes) ^ 2

8.4.3. ASN.1

 -- Condition Fingerprint
 RsaFingerprintContents ::= SEQUENCE {
 modulus OCTET STRING
 }

 -- Fulfillment
 RsaSha256Fulfillment ::= SEQUENCE {
 modulus OCTET STRING,
 signature OCTET STRING
 }

8.4.4. Condition Format

 The fingerprint of an RSA-SHA-256 condition is the SHA-256 digest of
 the DER encoded fingerprint contents which is a SEQUENCE of a single
 element, the modulus of the RSA Key Pair.

8.4.5. Fulfillment Format

 The fulfillment of an RSA-SHA-256 crypto-condition is an
 RsaSha256Fulfillment which is a SEQUENCE of:

 modulus The modulus of the RSA key pair used to sign and verify the
 signature provided.

https://datatracker.ietf.org/doc/html/rfc3110
https://datatracker.ietf.org/doc/html/rfc4871

Thomas, et al. Expires July 23, 2018 [Page 24]

Internet-Draft Crypto-Conditions January 2018

 signature An octet string representing the RSA signature on the
 message M.

 Implementations MUST verify that the signature is numerically less
 than the modulus.

 Note that the message that has been signed is provided separately.
 If no message is provided, the message is assumed to be an octet
 string of length zero.

8.4.6. Validating

 An RSA-SHA-256 fulfillment is valid iff :

 1. F.signature is valid for the message M, using the RSA public key
 with modulus = F.modulus and exponent = 65537 for verification.

 2. D is equal to C.

8.4.7. Example

Thomas, et al. Expires July 23, 2018 [Page 25]

Internet-Draft Crypto-Conditions January 2018

exampleRsaCondition Condition ::=
 rsaSha256 : {
 fingerprint 'B31FA820 6E4EA7E5 15337B3B 33082B87 76518010 85ED84FB 4DAEB247
BF698D7F'H,
 cost 65536
 }

exampleRsaSha256Fulfillment Fulfillment ::=
 rsaSha256 : {
 modulus 'E1EF8B24 D6F76B09 C81ED775 2AA262F0 44F04A87 4D43809D 31CEA612
F99B0C97 A8B43741
 53E3EEF3 D6661684 3E0E41C2 93264B71 B6173DB1 CF0D6CD5 58C58657
706FCF09 7F704C48
 3E59CBFD FD5B3EE7 BC80D740 C5E0F047 F3E85FC0 D7581577 6A6F3F23
C5DC5E79 7139A688
 2E38336A 4A5FB361 37620FF3 663DBAE3 28472801 862F72F2 F87B202B
9C89ADD7 CD5B0A07
 6F7C53E3 5039F67E D17EC815 E5B4305C C6319706 8D5E6E57 9BA6DE5F
4E3E57DF 5E4E072F
 F2CE4C66 EB452339 73875275 9639F025 7BF57DBD 5C443FB5 158CCE0A
3D36ADC7 BA01F33A
 0BB6DBB2 BF989D60 7112F234 4D993E77 E563C1D3 61DEDF57 DA96EF2C
FC685F00 2B638246
 A5B309B9'H,
 signature '48E8945E FE007556 D5BF4D5F 249E4808 F7307E29 511D3262 DAEF61D8
8098F9AA 4A8BC062
 3A8C9757 38F65D6B F459D543 F289D73C BC7AF4EA 3A33FBF3 EC444044
7911D722 94091E56
 1833628E 49A772ED 608DE6C4 4595A91E 3E17D6CF 5EC3B252 8D63D2AD
D6463989 B12EEC57
 7DF64709 60DF6832 A9D84C36 0D1C217A D64C8625 BDB594FB 0ADA086C
DECBBDE5 80D424BF
 9746D2F0 C312826D BBB00AD6 8B52C4CB 7D47156B A35E3A98 1C973863
792CC80D 04A18021
 0A524158 65B64B3A 61774B1D 3975D78A 98B0821E E55CA0F8 6305D425
29E10EB0 15CEFD40
 2FB59B2A BB8DEEE5 2A6F2447 D2284603 D219CD4E 8CF9CFFD D5498889
C3780B59 DD6A57EF
 7D732620'H
 }

exampleRsaFingerprintContents RsaFingerprintContents ::= {
 modulus 'E1EF8B24 D6F76B09 C81ED775 2AA262F0 44F04A87 4D43809D 31CEA612
F99B0C97 A8B43741
 53E3EEF3 D6661684 3E0E41C2 93264B71 B6173DB1 CF0D6CD5 58C58657
706FCF09 7F704C48
 3E59CBFD FD5B3EE7 BC80D740 C5E0F047 F3E85FC0 D7581577 6A6F3F23
C5DC5E79 7139A688

 2E38336A 4A5FB361 37620FF3 663DBAE3 28472801 862F72F2 F87B202B
9C89ADD7 CD5B0A07
 6F7C53E3 5039F67E D17EC815 E5B4305C C6319706 8D5E6E57 9BA6DE5F
4E3E57DF 5E4E072F
 F2CE4C66 EB452339 73875275 9639F025 7BF57DBD 5C443FB5 158CCE0A
3D36ADC7 BA01F33A
 0BB6DBB2 BF989D60 7112F234 4D993E77 E563C1D3 61DEDF57 DA96EF2C
FC685F00 2B638246
 A5B309B9'H
}

8.5. ED25519-SHA256

 ED25519-SHA-256 is assigned the type ID 4. It relies on the SHA-256
 and SHA-512 digest algorithms and the ED25519 signature scheme.

 The exact algorithm and encodings used for the public key and
 signature are defined in [I-D.irtf-cfrg-eddsa] as Ed25519. SHA-512
 is used as the hashing function for this signature scheme.

Thomas, et al. Expires July 23, 2018 [Page 26]

Internet-Draft Crypto-Conditions January 2018

8.5.1. Cost

 The public key and signature are a fixed size therefore the cost for
 an ED25519 crypto-condition is fixed at 131072.

 cost = 131072

8.5.2. ASN.1

 -- Condition Fingerprint
 Ed25519FingerprintContents ::= SEQUENCE {
 publicKey OCTET STRING (SIZE(32))
 }

 -- Fulfillment
 Ed25519Sha512Fulfillment ::= SEQUENCE {
 publicKey OCTET STRING (SIZE(32)),
 signature OCTET STRING (SIZE(64))
 }

8.5.3. Condition Format

 The fingerprint of an ED25519-SHA-256 condition is the SHA-256 digest
 of the DER encoded Ed25519 public key included as the only value
 within a SEQUENCE. While the public key is already very small and
 constant size, we wrap it in a SEQUENCE type and hash it for
 consistency with the other types.

8.5.4. Fulfillment

 The fulfillment of an ED25519-SHA-256 crypto-condition is an
 Ed25519Sha512Fulfillment which is a SEQUENCE of:

 publicKey An octet string containing the Ed25519 public key.

 signature An octet string containing the Ed25519 signature.

8.5.5. Validating

 An ED25519-SHA-256 fulfillment is valid iff :

 1. F.signature is valid for the message M, given the ED25519 public
 key F.publicKey.

 2. D is equal to C.

Thomas, et al. Expires July 23, 2018 [Page 27]

Internet-Draft Crypto-Conditions January 2018

8.5.6. Example

exampleEd25519Condition Condition ::=
 ed25519Sha256 : {
 fingerprint '799239AB A8FC4FF7 EABFBC4C 44E69E8B DFED9933 24E12ED6 4792ABE2
89CF1D5F'H,
 cost 131072
 }

exampleEd25519Fulfillment Fulfillment ::=
 ed25519Sha256 : {
 publicKey 'D75A9801 82B10AB7 D54BFED3 C964073A 0EE172F3 DAA62325 AF021A68
F707511A'H,
 signature 'E5564300 C360AC72 9086E2CC 806E828A 84877F1E B8E5D974 D873E065
22490155
 5FB88215 90A33BAC C61E3970 1CF9B46B D25BF5F0 595BBE24 65514143
8E7A100B'H
 }

exampleEd25519FingerprintContents Ed25519FingerprintContents ::= {
 publicKey 'D75A9801 82B10AB7 D54BFED3 C964073A 0EE172F3 DAA62325 AF021A68
F707511A'H
}

9. URI Encoding Rules

 Conditions can be encoded as URIs per the rules defined in the Named
 Information specification, [RFC6920]. There are no URI encoding
 rules for fulfillments.

 Applications that require a string encoding for fulfillments MUST use
 an appropriate string encoding of the DER encoded binary
 representation of the fulfillment. No string encoding is defined in
 this specification. For consistency with the URI encoding of
 conditions, BASE64URL is recommended as described in [RFC4648],
 Section 5.

 The URI encoding is only used to encode top-level conditions and
 never for sub-conditions. The binary encoding is considered the
 canonical encoding.

9.1. Condition URI Format

 Conditions are represented as URIs using the rules defined in
 [RFC6920] where the object being hashed is the DER encoded
 fingerprint content of the condition as described for the specific
 condition type.

 While [RFC6920] allows for truncated hashes, implementations using

https://datatracker.ietf.org/doc/html/rfc6920
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc6920
https://datatracker.ietf.org/doc/html/rfc6920

 the Named Information URI schemes for crypto-conditions MUST only use
 untruncated SHA-256 hashes (Hash Name: sha-256, ID: 1 from the "Named
 Information Hash Algorithm Registry" defined in [RFC6920]).

Thomas, et al. Expires July 23, 2018 [Page 28]

https://datatracker.ietf.org/doc/html/rfc6920

Internet-Draft Crypto-Conditions January 2018

9.2. New URI Parameter Definitions

 [RFC6920] established the IANA registry of "Named Information URI
 Parameter Definitions". This specification defines three new
 definitions that are added to that registry and passed in URI encoded
 conditions as query string parameters.

9.2.1. Parameter: Fingerprint Type (fpt)

 The "type" parameter indicates the type of condition that is
 represented by the URI. The value MUST be one of the names from the
 Crypto-Condition Type Registry (Appendix E.1).

9.2.2. Parameter: Cost (cost)

 The cost parameter is the cost of the condition that is represented
 by the URI.

9.2.3. Parameter: Subtypes (subtypes)

 The subtypes parameter indicates the types of conditions that are
 subtypes of the condition represented by the URI. The value MUST be
 a comma-separated list of names from the Crypto-Condition Type
 Registry (Appendix E.1).

 The subtypes list MUST exclude the type of the root crypto-condition.
 Specifically, the value of the "fpt" parameter should not appear in
 the list of subtypes.

 For example, if a threshold condition contains another threshold
 condition as well as a prefix condition, then its URI query
 parameters would appear like this:

 ni:///...?cost=30&fpt=threshold-sha-256&subtypes=prefix-sha-256

 Notice that the "subtypes" parameter does not contain "threshold-sha-
 256" because that type is already indicated in the "fpt" parameter.

 The commas in the list should be treated as reserved characters per
 [RFC3986] and MUST not be percent encoded when used as list
 delimiters in the subtypes parameter.

9.2.3.1. Subtype Parameter Value Ordering

 The subtypes list MUST be ordered by the type id value of each type,
 in ascending lexicographical order. That is, "preimage-sha-256" MUST
 appear before "prefix-sha-256", which MUST appear before "threshold-
 sha-256", and so on.

https://datatracker.ietf.org/doc/html/rfc3986

Thomas, et al. Expires July 23, 2018 [Page 29]

Internet-Draft Crypto-Conditions January 2018

9.3. Condition URI Parameter Ordering

 The parameters of a condition URI MUST appear in ascending
 lexicographical order based upon the name of each parameter. For
 example, the "cost" parameter must appear before the "fpt" parameter,
 which must appear before the "subtypes" parameter.

10. Example Condition

 An example condition (PREIMAGE-SHA-256):

0x00000000 A0 25 80 20 7F 83 B1 65 7F F1 FC 53 B9 2D C1 81 .%.....e...S.-..
0x00000010 48 A1 D6 5D FC 2D 4B 1F A3 D6 77 28 4A DD D2 00 H..].-K...w(J...
0x00000020 12 6D 90 69 81 01 0C .m.i...

ni:///sha-256;f4OxZX_x_FO5LcGBSKHWXfwtSx-j1ncoSt3SABJtkGk?fpt=preimage-
sha-256&cost=12

 The example has the following attributes:

Thomas, et al. Expires July 23, 2018 [Page 30]

Internet-Draft Crypto-Conditions January 2018

 +-----------+--------------------------------------+----------------+
 | Field | Value | Description |
 +-----------+--------------------------------------+----------------+
scheme	"ni:///"	The named
		information
		scheme.
hash	"sha-256"	The
function		fingerprint is
name		hashed with
		the SHA-256
		digest
		function
fingerpri	"f4OxZX_x_FO5LcGBSKHWXfwtSx-	The
nt	j1ncoSt3SABJtkGk"	fingerprint
		for this
		condition.
type	"preimage-sha-256"	This is a
		PREIMAGE-
		SHA-256
		(Section 8.1)
		condition.
cost	"12"	The
		fulfillment
		payload is 12
		bytes long,
		therefore the
		cost is 12.
 +-----------+--------------------------------------+----------------+

11. References

11.1. Normative References

 [I-D.irtf-cfrg-eddsa]
 Josefsson, S. and I. Liusvaara, "Edwards-curve Digital
 Signature Algorithm (EdDSA)", draft-irtf-cfrg-eddsa-08
 (work in progress), August 2016.

 [itu.X680.2015]
 International Telecommunications Union, "Information
 technology - Abstract Syntax Notation One (ASN.1):
 Specification of basic notation", August 2015,
 <http://handle.itu.int/11.1002/1000/12479>.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-eddsa-08
http://handle.itu.int/11.1002/1000/12479

Thomas, et al. Expires July 23, 2018 [Page 31]

Internet-Draft Crypto-Conditions January 2018

 [itu.X690.2015]
 International Telecommunications Union, "Information
 technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", August 2015,
 <http://handle.itu.int/11.1002/1000/12483>.

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 DOI 10.17487/RFC3280, April 2002,
 <https://www.rfc-editor.org/info/rfc3280>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for use in
 the Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile", RFC 4055,
 DOI 10.17487/RFC4055, June 2005,
 <https://www.rfc-editor.org/info/rfc4055>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,
 <https://www.rfc-editor.org/info/rfc6920>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

11.2. Informative References

 [KEYLENGTH-RECOMMENDATION]
 "BlueKrypt - Cryptographic Key Length Recommendation",
 September 2015, <https://www.keylength.com/en/compare/>.

http://handle.itu.int/11.1002/1000/12483
https://datatracker.ietf.org/doc/html/rfc3280
https://www.rfc-editor.org/info/rfc3280
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4055
https://www.rfc-editor.org/info/rfc4055
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc6920
https://www.rfc-editor.org/info/rfc6920
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://www.keylength.com/en/compare/

Thomas, et al. Expires July 23, 2018 [Page 32]

Internet-Draft Crypto-Conditions January 2018

 [LARGE-RSA-EXPONENTS]
 "Imperial Violet - Very large RSA public exponents (17 Mar
 2012)", March 2012,
 <https://www.imperialviolet.org/2012/03/17/rsados.html>.

 [NIST-KEYMANAGEMENT]
 Barker, E., Barker, W., Burr, W., Polk, W., and M. Smid,
 "NIST - Recommendation for Key Management - Part 1 -
 General (Revision 3)", July 2012,
 <http://csrc.nist.gov/publications/nistpubs/800-57/

sp800-57_part1_rev3_general.pdf>.

 [OPENSSL-X509-CERT-EXAMPLES]
 "OpenSSL - X509 certificate examples for testing and
 verification", July 2012,
 <http://fm4dd.com/openssl/certexamples.htm>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3110] Eastlake 3rd, D., "RSA/SHA-1 SIGs and RSA KEYs in the
 Domain Name System (DNS)", RFC 3110, DOI 10.17487/RFC3110,
 May 2001, <https://www.rfc-editor.org/info/rfc3110>.

 [RFC4871] Allman, E., Callas, J., Delany, M., Libbey, M., Fenton,
 J., and M. Thomas, "DomainKeys Identified Mail (DKIM)
 Signatures", RFC 4871, DOI 10.17487/RFC4871, May 2007,
 <https://www.rfc-editor.org/info/rfc4871>.

 [USING-RSA-EXPONENT-OF-65537]
 "Cryptography - StackExchange - Impacts of not using RSA
 exponent of 65537", November 2014,
 <https://crypto.stackexchange.com/questions/3110/

impacts-of-not-using-rsa-exponent-of-65537>.

11.3. URIs

 [1] https://interledger.org/

 [2] mailto:ledger@ietf.org

 [3] https://github.com/rfcs/crypto-conditions#test-vectors

 [4] https://github.com/interledgerjs/five-bells-condition

https://www.imperialviolet.org/2012/03/17/rsados.html
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://fm4dd.com/openssl/certexamples.htm
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3110
https://www.rfc-editor.org/info/rfc3110
https://datatracker.ietf.org/doc/html/rfc4871
https://www.rfc-editor.org/info/rfc4871
https://crypto.stackexchange.com/questions/3110/impacts-of-not-using-rsa-exponent-of-65537
https://crypto.stackexchange.com/questions/3110/impacts-of-not-using-rsa-exponent-of-65537
https://interledger.org/
https://github.com/rfcs/crypto-conditions#test-vectors
https://github.com/interledgerjs/five-bells-condition

Thomas, et al. Expires July 23, 2018 [Page 33]

Internet-Draft Crypto-Conditions January 2018

 [5] https://github.com/hyperledger/quilt/tree/master/crypto-
conditions

 [6] https://github.com/bigchaindb/cryptoconditions

 [7] https://github.com/go-interledger/cryptoconditions

 [8] https://github.com/jtremback/crypto-conditions

 [9] https://github.com/libscott/cryptoconditions-hs

 [10] http://www.iana.org/assignments/crypto-condition-types

Appendix A. Security Considerations

 This specification has a normative dependency on a number of other
 specifications with extensive security considerations therefore the
 consideratons defined for SHA-256 hashing and RSA signatures in
 [RFC8017] and [RFC4055] and for ED25519 signatures in
 [I-D.irtf-cfrg-eddsa] must be considered.

 The cost and subtypes values of conditions are provided to allow
 implementations to evaluate their ability to validate a fulfillment
 for the given condition later.

Appendix B. Test Values

 Test vectors have been prepared at: https://github.com/rfcs/crypto-
conditions#test-vectors [3]

Appendix C. Implementations

 Implementations of this specification are known to be available in
 the following languages:

 o JavaScript: https://github.com/interledgerjs/five-bells-condition
 [4]

 o Java: https://github.com/hyperledger/quilt/tree/master/crypto-
conditions [5]

 o Python: https://github.com/bigchaindb/cryptoconditions [6]

 o Go: https://github.com/go-interledger/cryptoconditions [7]

 o Go: https://github.com/jtremback/crypto-conditions [8]

 o Haskell: https://github.com/libscott/cryptoconditions-hs [9]

https://github.com/hyperledger/quilt/tree/master/crypto-conditions
https://github.com/hyperledger/quilt/tree/master/crypto-conditions
https://github.com/bigchaindb/cryptoconditions
https://github.com/go-interledger/cryptoconditions
https://github.com/jtremback/crypto-conditions
https://github.com/libscott/cryptoconditions-hs
http://www.iana.org/assignments/crypto-condition-types
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc4055
https://github.com/rfcs/crypto-conditions#test-vectors
https://github.com/rfcs/crypto-conditions#test-vectors
https://github.com/interledgerjs/five-bells-condition
https://github.com/hyperledger/quilt/tree/master/crypto-conditions
https://github.com/hyperledger/quilt/tree/master/crypto-conditions
https://github.com/bigchaindb/cryptoconditions
https://github.com/go-interledger/cryptoconditions
https://github.com/jtremback/crypto-conditions
https://github.com/libscott/cryptoconditions-hs

Thomas, et al. Expires July 23, 2018 [Page 34]

Internet-Draft Crypto-Conditions January 2018

Appendix D. ASN.1 Module

 --<ASN1.PDU CryptoConditions.Condition, CryptoConditions.Fulfillment>--

 Crypto-Conditions DEFINITIONS AUTOMATIC TAGS ::= BEGIN

-- Conditions

Condition ::= CHOICE {
 preimageSha256 [0] SimpleSha256Condition,
 prefixSha256 [1] CompoundSha256Condition,
 thresholdSha256 [2] CompoundSha256Condition,
 rsaSha256 [3] SimpleSha256Condition,
 ed25519Sha256 [4] SimpleSha256Condition
}

SimpleSha256Condition ::= SEQUENCE {
 fingerprint OCTET STRING (SIZE(32)),
 cost INTEGER (0..4294967295)
}

CompoundSha256Condition ::= SEQUENCE {
 fingerprint OCTET STRING (SIZE(32)),
 cost INTEGER (0..4294967295),
 subtypes ConditionTypes
}

ConditionTypes ::= BIT STRING {
 preImageSha256 (0),
 prefixSha256 (1),
 thresholdSha256 (2),
 rsaSha256 (3),
 ed25519Sha256 (4)
}

-- Fulfillments

Fulfillment ::= CHOICE {
 preimageSha256 [0] PreimageFulfillment ,
 prefixSha256 [1] PrefixFulfillment,
 thresholdSha256 [2] ThresholdFulfillment,
 rsaSha256 [3] RsaSha256Fulfillment,
 ed25519Sha256 [4] Ed25519Sha512Fulfillment
}

PreimageFulfillment ::= SEQUENCE {
 preimage OCTET STRING
}

Thomas, et al. Expires July 23, 2018 [Page 35]

Internet-Draft Crypto-Conditions January 2018

PrefixFulfillment ::= SEQUENCE {
 prefix OCTET STRING,
 maxMessageLength INTEGER (0..4294967295),
 subfulfillment Fulfillment
}

ThresholdFulfillment ::= SEQUENCE {
 subfulfillments SET OF Fulfillment,
 subconditions SET OF Condition
}

RsaSha256Fulfillment ::= SEQUENCE {
 modulus OCTET STRING,
 signature OCTET STRING
}

Ed25519Sha512Fulfillment ::= SEQUENCE {
 publicKey OCTET STRING (SIZE(32)),
 signature OCTET STRING (SIZE(64))
}

-- Fingerprint Content

-- The PREIMAGE-SHA-256 condition fingerprint content is not DER encoded
-- The fingerprint content is the preimage

PrefixFingerprintContents ::= SEQUENCE {
 prefix OCTET STRING,
 maxMessageLength INTEGER (0..4294967295),
 subcondition Condition
}

ThresholdFingerprintContents ::= SEQUENCE {
 threshold INTEGER (1..65535),
 subconditions SET OF Condition
}

RsaFingerprintContents ::= SEQUENCE {
 modulus OCTET STRING
}

Ed25519FingerprintContents ::= SEQUENCE {
 publicKey OCTET STRING (SIZE(32))
}

 END

Thomas, et al. Expires July 23, 2018 [Page 36]

Internet-Draft Crypto-Conditions January 2018

Appendix E. IANA Considerations

E.1. Crypto-Condition Type Registry

 The following initial entries should be added to the Crypto-Condition
 Type registry to be created and maintained at (the suggested URI)

http://www.iana.org/assignments/crypto-condition-types [10]:

 The following types are registered:

 +---------+-------------------+
 | Type ID | Type Name |
 +---------+-------------------+
 | 0 | PREIMAGE-SHA-256 |
 | | |
 | 1 | PREFIX-SHA-256 |
 | | |
 | 2 | THRESHOLD-SHA-256 |
 | | |
 | 3 | RSA-SHA-256 |
 | | |
 | 4 | ED25519 |
 +---------+-------------------+

 Table 1: Crypto-Condition Types

Authors' Addresses

 Stefan Thomas
 Ripple
 300 Montgomery Street
 San Francisco, CA 94104
 US

 Phone: -----------------
 Email: stefan@ripple.com
 URI: https://www.ripple.com

 Rome Reginelli
 Ripple
 300 Montgomery Street
 San Francisco, CA 94104
 US

 Phone: -----------------
 Email: rome@ripple.com
 URI: https://www.ripple.com

http://www.iana.org/assignments/crypto-condition-types
https://www.ripple.com
https://www.ripple.com

Thomas, et al. Expires July 23, 2018 [Page 37]

Internet-Draft Crypto-Conditions January 2018

 Adrian Hope-Bailie
 Ripple
 300 Montgomery Street
 San Francisco, CA 94104
 US

 Phone: -----------------
 Email: adrian@ripple.com
 URI: https://www.ripple.com

Thomas, et al. Expires July 23, 2018 [Page 38]

https://www.ripple.com

