
HTTPbis M. Thomson
Internet-Draft Mozilla
Intended status: Experimental March 05, 2019
Expires: September 6, 2019

Identifying HTTP Exchanges with URIs
draft-thomson-http-hx-uri-00

Abstract

 URI schemes are defined that enable identification of HTTP exchanges,
 or parts of those exchanges.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires September 6, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HTTP Exchange URIs March 2019

Table of Contents

1. Introduction . 3
1.1. Example . 3
1.2. Conventions and Definitions 4
1.3. Terminology . 4

2. Overview . 4
3. Authority . 5
4. Identifying an Exchange 6
4.1. Identifying HTTP/1.1 Exchanges 6
4.2. Identifying HTTP/2 Exchanges 6
4.3. Identifiers HTTP/3 Exchanges (#exchange3} 7
4.4. Identifying Server Pushes 7

5. Targets . 7
5.1. Identifying a Request 7
5.2. Identifying a Response 8
5.3. Redirections . 8

6. Identifying Request or Response Components 8
6.1. Identifying the Request Method 8
6.2. Identifying the Effective Request URI 8
6.3. Identifying the Response Status 8
6.4. Identifying the Message Body 8
6.5. Informational (1xx) Responses 9
6.6. Identifying a Message Header 9
6.7. Identifying a Message Trailer 10
6.8. Identifying Header Field Values 10

7. Conditions . 10
7.1. Condition Processing Model 11
7.2. Percent-Encoding of Condition Values 11
7.3. Status Condition . 11
7.4. Header Field Value Condition 12
7.5. Response Content Type Condition 13
7.6. Link Relation Condition 13

8. hx URI Grammar . 14
9. hxr URI Grammar . 14
10. Security Considerations 15
11. IANA Considerations . 15
11.1. hx URI scheme Registration 15
11.2. hxr URI scheme Registration 16
11.3. TLS Exporter Registration 16
11.4. hx and hxr URI Scheme Registries 16

12. References . 16
12.1. Normative References 16
12.2. Informative References 18
12.3. URIs . 18

 Acknowledgments . 18
 Author's Address . 18

Thomson Expires September 6, 2019 [Page 2]

Internet-Draft HTTP Exchange URIs March 2019

1. Introduction

 It is common for applications that use HTTP [HTTP] to use a "follow
 your nose" design. In this design, clients make requests to discover
 or create resources and to learn information about resources they are
 interested in. Once the identity of resources is learned, clients
 then interact with those resources. This process is often iterative,
 with clients following multiple links to reach resources of interest.

 A negative consequence of these designs is that the discovery or
 creation steps add latency to any operation that depends on the
 identity of resources.

 For applications that use well-defined formats, though the result of
 a request might be unknown, an application might have reliable
 knowledge about the form of the response. If components of that
 answer could be incorporated into another request by reference, then
 the application might save a round trip for every such occurrence.

 The "hx" URI scheme identifies components of HTTP exchanges. The
 "hxr" URI scheme provides for further indirection, allowing the
 dereferencing of URLs in identified HTTP exchanges.

1.1. Example

 In this simple example, a client wishes to create and then update a
 resource.

 POST /make-object?name=example HTTP/1.1
 Host: example.com

 The server creates a resource and provides its location in a
 response:

 HTTP/1.1 201 Created
 Location: https://example.com/roZ2ITW
 Content-Type: example/example+json

 {
 "uri": "https://example.com/roZ2ITW",
 "name": "example",
 "items": { "a": 1, "b": 2 }
 }

 After receiving the identity of the resource, the client can then
 interact with that resource, here copying the value of "b" to a new
 key called "c":

Thomson Expires September 6, 2019 [Page 3]

Internet-Draft HTTP Exchange URIs March 2019

 POST /roZ2ITW HTTP/1.1
 Host: example.com

 add_item: c=2

 With an "hx" URI, and support from the server, the client can send
 the second request at the same time as the first, relying on the
 server to dereference the "hxr" URI:

 POST hxr:///0/a/h/location?201 HTTP/1.1
 Host: example.com

 add_item: c=@hx:///0/a/b?ct=example%2fexample+json#/items/b

 If the server understands the "hxr" URI scheme, it dereferences that
 URI to determine the target of the request. The value from /items/b
 (using JSON Pointer [RFC6901]) is copied using the "hx" URI scheme.

 Note that it can be seen that though the initial POST request that
 creates the resource is not idempotent, the client is able to
 construct the next request in a way that ensures that they are
 conditional on the outcome of that request. This ensures that the
 transaction does not complete unless all requests are successful.

1.2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.3. Terminology

 This document uses terminology from HTTP [HTTP]. The phrase HTTP URI
 is used to refer to http:// and https:// URIs collectively. However,
 this document is only capable of identifying requests that are sent
 over secured transports.

2. Overview

 An "hx" URI identifies an HTTP exchange, or parts of that exchange.
 The primary advantage of this in referring to the product of a
 request before it is completed.

 A scheme of "hx" is followed by an authority that identifies the
 connection on which the exchange was initiated. A minimal path
 includes an identifier for the exchange, as a decimal number. For

https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Thomson Expires September 6, 2019 [Page 4]

Internet-Draft HTTP Exchange URIs March 2019

 instance, assuming that the authority "b5dd5901aef3f33de572" refers
 to an HTTP/2 connection, the following URI identifies entire exchange
 on stream 7 of that connection (see Section 4).

 hx://b5dd5901aef3f33de572/7

 Adding additional path elements narrows this to refer to the request
 (see Section 5):

 hx://b5dd5901aef3f33de572/7/q

 Further path elements allow components of a message to be identified,
 such as a Location header field value (see Section 6.8):

 hx://b5dd5901aef3f33de572/7/a/h/location

 To ensure that the Location header field is only used if the request
 resulted in the creation of a new resource (that is, the response had
 a 201 (Created) status code), conditions can be added to the URI as
 query parameters:

 hx://b5dd5901aef3f33de572/7/a/h/location?201

 A fragment can be used if the content has an associated content type
 that supports fragment identifiers, which is generally only possible
 for the body of a request or response:

 hx://b5dd5901aef3f33de572/7/a/b#title

 How a fragment is used depends on the content type of the identified
 resource, so a condition might be added to specify the content type
 of the target resource:

 hx://b5dd5901aef3f33de572/7/a/b?ct=text%2Fhtml#title

 The "hxr" URI scheme is identical to "hx" except that it is
 dereferenced twice. A reference that uses the "hxr" scheme can
 therefore be used where a URI would otherwise be used, taking the
 value of the URI from chosen part of the identified exchange.

3. Authority

 The authority component of an "hx" or "hxr" URI is an identifier for
 a connection.

 The process for generating a unique identifier uses TLS exporters
 (see Section 7.5 of [TLS13]). Consequently, exchanges on connections
 that do not use TLS cannot be identified using "hx" or "hxr" URIs.

Thomson Expires September 6, 2019 [Page 5]

Internet-Draft HTTP Exchange URIs March 2019

 A TLS exporter with the label "EXPORTER-hx-authority" and an empty
 context is used to produce a 10 octet value. This value is then
 encoded in hexadecimal (that is, Base 16 [RFC4648]) to produce a 20
 character authority.

 The authority can be omitted where the identity of the connection can
 be inferred from context. For instance, where the URI is sent over
 the same connection. The current connection is used if an authority
 is absent.

 hx:///7

 The userinfo and port components of an "hx" or "hxr" URI MUST NOT be
 used. Any URI with userinfo or port components is invalid.

4. Identifying an Exchange

 After identifying the connection, the first element of the path after
 the initial slash ("/") identifies a request-response exchange.

 A decimal value is used to identify an exchange. How requests are
 identified depends on the version of HTTP in use.

 A single "p" character followed by a decimal value is used to
 identify a server push, see Section 4.4.

 An "hx" or "hxr" URI always includes fields that identify an
 exchange. For instance, the following URIs are incomplete and
 therefore invalid:

 hx://
 hx:///
 hx://b5dd5901aef3f33de572/

4.1. Identifying HTTP/1.1 Exchanges

 In HTTP/1.1 [HTTP11] and earlier, the numeric identifier for an
 exchange counts the number of exchanges on the connection that
 precede the target exchange. The first exchange on a connection is
 therefore identified as "hx:///0". Subsequent requests increment
 this value by 1.

4.2. Identifying HTTP/2 Exchanges

 In HTTP/2 [HTTP2], the numeric identifier for an exchange corresponds
 to a HTTP/2 stream identifier. The first exchange on a connection is
 therefore identified as "hx:///1". As a result, all exchanges that
 are not server pushes use odd-numbered identifiers.

https://datatracker.ietf.org/doc/html/rfc4648

Thomson Expires September 6, 2019 [Page 6]

Internet-Draft HTTP Exchange URIs March 2019

4.3. Identifiers HTTP/3 Exchanges (#exchange3}

 In HTTP/3 [HTTP3], the numeric identifier for an exchange corresponds
 to a QUIC stream identifier. The first exchange on a connection is
 therefore identified as "hx:///0". Consequently, all exchanges that
 are not server pushes use identifiers that are whole multiples of 4.

4.4. Identifying Server Pushes

 A server push exchange is identified by a "p" prefix followed by a
 decimal value. For example:

 hx:///p6

 In HTTP/2, a stream identifier is sufficient to distinguish between
 requests and server pushes. Thus, identifying a server push is
 possible even if the "p" prefix is omitted. In HTTP/2, all server
 pushes use even-numbered identifiers.

 Server pushes in HTTP/3 are given a push ID, an identifier that might
 be the same as the stream ID used for requests. The push ID is used
 to identify server push in HTTP/3. Thus, in HTTP/3, the "p" prefix
 is necessary to properly identify a server push.

 HTTP versions prior to HTTP/2 do not provide server push, so an "hx"
 URI that attempts to identify a server push cannot be successfully
 resolved.

5. Targets

 Without further qualification, an "hx" URI identifies a message
 exchange, both the request and the response as a whole. Applications
 can narrow this to a request (Section 5.1) or response (Section 5.2).

 A "hxr" URI always identifies a request or response, it cannot
 identify a complete exchange.

5.1. Identifying a Request

 A request is identified by adding "/q" to a URI identifying an
 exchange. For example:

 hx://546c9bce274b06cf859d/84/q

Thomson Expires September 6, 2019 [Page 7]

Internet-Draft HTTP Exchange URIs March 2019

5.2. Identifying a Response

 A request is identified by adding "/a" to a URI identifying an
 exchange. For example:

 hx://18660225619af2c6c300/173/a

5.3. Redirections

 An "hx" or "hxr" URI applies to a single exchange over a single
 connection. If a 3xx status code results in a client following a
 redirect, that exchange is identified separately.

6. Identifying Request or Response Components

 After identifying a single message, additional path components can be
 used to identify parts of the message.

 TBD: It might make sense to put "/m", "/u", "/s", and "/i" as peers
 to "/q" and "/a" rather than attaching them underneath. The
 primary advantage would be a shorter identifier. (Doing this for
 "/i" alone might work, as that is more of a peer to "/a".)

6.1. Identifying the Request Method

 A path component of "/m" indicates that an 'hx' URI identifies the
 request method. This component is not valid for an "hxr" URI or an
 "hx" URI that identifies a response.

6.2. Identifying the Effective Request URI

 A path component of "/u" indicates that an 'hx' or "hxr" URI
 identifies the effective request URI (see Section 5.3 of [HTTP]).

6.3. Identifying the Response Status

 A path component of "/s" indicates that an 'hx' URI identifies the
 request method. This component is not valid for an "hxr" URI or an
 "hx" URI for a request.

6.4. Identifying the Message Body

 A path component of "/b" identifies the body of the message. A body
 can be identified for both "hx" and "hxr" URIs.

 Identifying the body of a message without a body (like a GET request
 or a 204 (No Content) response) successfully identifies the empty
 body.

Thomson Expires September 6, 2019 [Page 8]

Internet-Draft HTTP Exchange URIs March 2019

6.5. Informational (1xx) Responses

 The "/i" path component can be used to select informational
 responses.

 The "/i" component is followed by a path component that identifies
 which informational responses to select. If this contains a decimal
 value, this indicates the number of the informational response to
 select. The first information response is identified with "0", with
 subsequent information responses each using a number 1 greater than
 the last. A value of "@" is used to identify the last informational
 response and a value of "*" identifies all informational responses.

 TBD: Indexing is a little strange given the use case here. The
 problem lies in working out what to do with multiple entries.
 Maybe the right answer is to allow for selecting just the first,
 last, or all items. That would simplify the scheme a little.

 Indexing applies after any conditions are applied (see Section 7),
 allowing a URI to identify single informational response.

 For example, the following "hx" URIs refer to the third 103 response,
 the last informational response containing a Link header field, and
 all informational responses respectively.

 hx:///71/a/i/2?103
 hx:///71/a/i/@?h=link
 hx:///71/a/i/*

 The path components "/s" (Section 6.3) or "/h" (Section 6.6) can be
 used to select parts of an informational response. For example, all
 Link header fields from informational responses can be collected
 with:

 hx:///10/a/i/*/h/link/*

6.6. Identifying a Message Header

 A path component of "/h" identifies the header of a message as a
 whole. When preceded by "/i", this identifies the header of the
 informational response (see Section 6.5). When not preceded by "/i"
 it refers to the header from requests and final responses.

 Without additional path elements, this form is only valid for an "hx"
 URI; an "hxr" URI requires that specific header fields be identified.

Thomson Expires September 6, 2019 [Page 9]

Internet-Draft HTTP Exchange URIs March 2019

6.7. Identifying a Message Trailer

 A path component of "/t" specifically identifies the trailer of a
 message. Trailers are subject to the same restrictions as headers
 with the additional condition that they can't be present on
 informational responses.

6.8. Identifying Header Field Values

 Adding a path component containing the name of a header field to a
 path that identifies the a header ("/h" or "/i/.../h") or trailer
 ("/t") from a message selects that header field only.

 The next path component indexes header field values, just like
 informational responses are indexed (see Section 6.5). All values
 from the message are identified by "*". A decimal value indicates a
 0-based index into values. The last value is identified by "@".

 Values that use the HTTP list construction are not indexed by
 instances of the header field, but by the comma-separated values that
 are present. Empty values or those containing only whitespace are
 skipped and cannot be indexed.

 To illustrate this, there are 4 values that can be indexed in the
 following HTTP/1.1 example. The third value is "3" and the last
 ("/@") is "4".

 Example: 1
 Example: 2, ,3
 Example: ,4,

 As a special case, an "hxr" URI that refers to the value of a Link
 header field [LINK] can be used as a reference.

7. Conditions

 The query string of an "hx" URI carries a set of conditions. Unless
 any conditions evaluate to true, the resolution of the URI will fail.
 This allows for specification of URIs that are conditional on details
 of the HTTP exchange.

 For example, the following URI cannot be dereferenced unless the
 response indicates success, ensuring that the body of an unwanted
 response like 503 is not used:

 hx://b5dd5901aef3f33de572/7/a/b?2xx

Thomson Expires September 6, 2019 [Page 10]

Internet-Draft HTTP Exchange URIs March 2019

 Conditions are separated by the ampersand ("&") character. Each
 comprises a label that identifies the type of the condition, and an
 optional value. The value is separated from the label by an equals
 sign ("=") character.

 This document defines conditions for status code (Section 7.3),
 header field values (Section 7.4), and response content-type
 (Section 7.5). Conditions that are not understood always evaluate to
 false, causing resolution to fail.

7.1. Condition Processing Model

 Conditions are potentially processed multiple times.

 Multiple values can be produced for informational responses and
 header fields. In each case, when multiple values are produced,
 conditions are evaluated. This might reduce the number of options.
 If multiple values remain, all options are considered when evaluating
 the remainder of the URI path.

 For instance, a Link header field [LINK] might appear multiple times
 and in multiple informational responses. The Link Relation Type
 condition (Section 7.6) might be used to select all link relations of
 a given type across all informational responses.

 hx:///29/a/i/*/h/link/*?rel=start

7.2. Percent-Encoding of Condition Values

 The URI grammar [URI] prohibits the use of certain characters in the
 query string. This scheme uses percent-encoding to allow conditions
 to carry values that are not permitted by the URI grammar.
 Section 2.1 of [URI] defines percent-encoding. The "hx-pct-encoded"
 rule in Section 8 defines the characters that don't require encoding;
 all other values MUST be percent-encoded.

7.3. Status Condition

 Any condition that starts with a numeral from "1" to "5" is used to
 specify a condition on the response status.

 If the condition contains three digits, the condition evaluates to
 true if the response contained a matching status code.

 A condition that contains a numeral and two "x" characters evaluates
 to true if the status code is from the identified class. For
 instance, the following identifies a request that was redirected:

Thomson Expires September 6, 2019 [Page 11]

Internet-Draft HTTP Exchange URIs March 2019

 hx:///22/q?3xx

 A condition that specifies an informational status code (1xx) will be
 true if an informational response of that type was present. It does
 not result in limiting the components that can be selected. Specific
 100-series status codes can be used to limit which informational
 responses are selected if the "/i" path component is used (see

Section 6.5).

 A URI that identifies a header field will resolve the final value of
 the header field unless a specific portion of the response is
 specified (using "/i" or "/t"), taking into account values from final
 responses and trailers as defined in Section 6.6.

 This condition can be used to identify components of a request,
 conditional on the status code of the response.

 New condition definitions MUST NOT start with a numeral from "1" and
 "5".

7.4. Header Field Value Condition

 The header field condition is identified with a "h" token. A "h=" is
 followed by the name of the header field. With no further values,
 this condition is satisfied if a header field with the same name is
 present in the identified part of the message. An additional "="
 character can be added, which causes the condition to be true only
 when the value of the header field is equal to the remainder of the
 condition.

 This condition applies to any header field from the identified
 object. Thus, if the URI does not specify whether a request or
 response, the condition is met based on the presence or value of the
 header or trailer field in request or response, including
 informational responses. If the target of the URI is a request,
 response, or informational response, then only header and trailer
 fields in the corresponding part of the message apply. For instance,
 if the URI identies the header, then only header fields are used to
 match.

 Thus, to identify a request if it contains a User-Agent header field
 with any value, the following might be used:

 hx:///30/q?h=user-agent

 To select a response body only if it indicates that requests for byte
 ranges are supported, the following might be used:

Thomson Expires September 6, 2019 [Page 12]

Internet-Draft HTTP Exchange URIs March 2019

 hx:///71/a/b?h=accept-ranges=bytes

 Alternative forms of matching aside from equality might be provided
 in future.

7.5. Response Content Type Condition

 The response content type condition matches if the content type of
 the response matches the specified content type. Acceptable values
 and rules for determining what values match follow the rules for the
 Accept header field (see Section 8.4.2 of [HTTP]).

 The response content type condition is identified by "ct" and is
 followed by a percent-encoded content type. For example:

 hx:///12/a/b?ct=text%2Fhtml

 Unlike the header field condition (Section 7.4), the response content
 type condition can be used with URIs that identify components of a
 request. In that case, it indicates that the identification is
 conditional on the content type of the response (not the request).

 Separator characters ("/", ";" and ",") MUST be percent-encoded in
 the value of this condition.

7.6. Link Relation Condition

 A link relation condition filters results by those that contain a
 link relation [LINK] of the specified type.

 The link relation condition is identified by "rel" and is followed by
 a link relation type. Link relations that include non-token
 characters, such as those that use the URL form, MUST be percent-
 encoded.

 If the target is a request, response, informational response, or
 component that contains header fields, only those messages or parts
 of messages that contain a link relation of the specified type are
 selected.

 If the target is a Link header field, then only link relations of the
 identified type are selected. Deferencing fails if any other header
 field is identified.

Thomson Expires September 6, 2019 [Page 13]

Internet-Draft HTTP Exchange URIs March 2019

8. hx URI Grammar

 In ABNF [RFC5234], the "hx" URI scheme can be described as a narrow
 profile of that defined in [URI].

 hx-URI = "hx://" [hx-authority] hx-exchange
 [hx-target] [hx-conditions]
 hx-authority = 20HEXDIG
 hx-exchange = "/" ["p"] 1*DIGIT

 hx-target = hx-request / hx-response
 hx-request = "/q" ["/" hx-component]
 hx-response = "/a" ["/" hx-component]

 hx-component = hx-method / hx-uri / hx-info
 / hx-header / hx-body / hx-trailer
 hx-method = "/m"
 hx-uri = "/u"
 hx-info = "/i/" hx-index [hx-status / hx-header]
 hx-status = "/s"
 hx-header = "/h" ["/" hx-token ["/" hx-index]]
 hx-body = "/b"
 hx-trailer = "/t" ["/" hx-token ["/" hx-index]]

 hx-index = 1*DIGIT / "@" / "*"
 hx-token = 1*hx-token-char
 hx-token-char = "-" / "." / "_" / DIGIT / ALPHA

 hx-conditions = "?" hx-condition *("&" hx-condition)
 hx-condition = hx-status-cond / hx-header-cond
 / hx-ct-cond / hx-extension-cond
 hx-status-cond = ("1" / "2" / "3" / "4" / "5") (2DIGIT / "xx")
 hx-header-cond = "h=" hx-token ["=" hx-pct-encoded]
 hx-ct-cond = "ct=" hx-pct-encoded
 hx-extension-cond = hx-token ["=" hx-pct-encoded]

 hx-pct-encoded = *(hx-token-char / ("%" 2HEXDIG))

9. hxr URI Grammar

 The "hxr" URI scheme uses the same basic grammar as the "hx" URI
 scheme. However, since this can only ever reference parts of an
 exchange that could contain a URI, the grammar is more narrowly
 defined.

https://datatracker.ietf.org/doc/html/rfc5234

Thomson Expires September 6, 2019 [Page 14]

Internet-Draft HTTP Exchange URIs March 2019

 hxr-URI = "hxr://" [hx-authority] "/" hx-exchange
 hxr-target ["?" hx-conditions]

 hxr-targets = hxr-request / hxr-response
 hxr-request = "/q/" hxr-component
 hxr-response = "/a/" hxr-component

 hxr-component = hx-uri / hxr-info
 / hxr-header / hx-body / hxr-trailer
 hxr-info = "/i/" hx-index hxr-header
 hxr-header = "/h/" hx-token ["/" hx-index]
 hxr-trailer = "/t/" hx-token ["/" hx-index]

 The main difference between the "hx" and "hxr" schemes is that "hxr"
 URIs contain a narrower set of possible values, omitting all means of
 identifying parts of a request that cannot produce a URI.

10. Security Considerations

 Resolution of details of unfulfilled requests could present a
 significant state commitment on servers. Servers that receive
 requests that depend on other requests might have to block processing
 until the outcome of the referenced requests is complete.
 Alternatively, servers might need to hold information about completed
 requests in anticipation of receiving references to that request.

 Servers can fail resolution of "hx" or "hxr" URIs if the state
 required would present an undue burden on their operation. Servers
 might limit the types of information that can be retained and
 referenced to reduce this cost.

 Applications that use these URI schemes MUST define what types of
 reference a server is expected to be able to handle, or provide a
 means of negotiating what can be relied on.

11. IANA Considerations

 This document registers the "hx" and "hxr" URI schemes. In support
 of this, registrations are made in the TLS exporters registry
 (Section 11.3) and registries are established for managing the
 parameters of the URI schemes (Section 11.4).

11.1. hx URI scheme Registration

 The "hx" URI scheme is registered according to the procedures in
 [BCP35].

 Scheme name: hx

Thomson Expires September 6, 2019 [Page 15]

Internet-Draft HTTP Exchange URIs March 2019

 Status: Permanent/Provisional

 Applications/protocols that use this scheme name: Applications use
 URIs with this scheme to identify HTTP exchanges, requests,
 responses, or components of those messages.

 Contact: IETF Chair chair@ietf.org [1]

 Change controller: IESG iesg@ietf.org [2]

 Reference: This document.

11.2. hxr URI scheme Registration

 The "hxr" URI scheme is registered according to the procedures in
 [BCP35].

 Scheme name: hxr

 Status: Permanent/Provisional

 Applications/protocols that use this scheme name: Applications use
 URIs with this scheme in place of URIs where the intended URI is
 found in a component of an HTTP exchange.

 Contact: IETF Chair chair@ietf.org [3]

 Change controller: IESG iesg@ietf.org [4]

 Reference: This document.

11.3. TLS Exporter Registration

 TODO

11.4. hx and hxr URI Scheme Registries

 TODO considering setting up registries for various bits of the
 syntax.

12. References

12.1. Normative References

 [BCP35] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,

RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <https://www.rfc-editor.org/info/rfc7595>.

https://datatracker.ietf.org/doc/html/bcp35
https://datatracker.ietf.org/doc/html/rfc7595
https://www.rfc-editor.org/info/rfc7595

Thomson Expires September 6, 2019 [Page 16]

Internet-Draft HTTP Exchange URIs March 2019

 [HTTP] Fielding, R., Nottingham, M., and J. Reschke, "HTTP
 Semantics", draft-ietf-httpbis-semantics-03 (work in
 progress), October 2018.

 [HTTP11] Fielding, R., Nottingham, M., and J. Reschke, "HTTP/1.1
 Messaging", draft-ietf-httpbis-messaging-03 (work in
 progress), October 2018.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [HTTP3] Bishop, M., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", draft-ietf-quic-http-18 (work in progress),
 January 2019.

 [LINK] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [URI] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-03
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-18
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986

Thomson Expires September 6, 2019 [Page 17]

Internet-Draft HTTP Exchange URIs March 2019

12.2. Informative References

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

12.3. URIs

 [1] mailto:chair@ietf.org

 [2] mailto:iesg@ietf.org

 [3] mailto:chair@ietf.org

 [4] mailto:iesg@ietf.org

Acknowledgments

 TODO acknowledge.

Author's Address

 Martin Thomson
 Mozilla

 Email: mt@lowentropy.net

https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901

Thomson Expires September 6, 2019 [Page 18]

