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Abstract

   This memo introduces a content-coding for HTTP that provides
   progressive integrity for message contents.  This integrity
   protection can be evaluated on a partial representation, allowing a
   recipient to process a message as it is delivered while retaining
   strong integrity protection.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 3, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Thomson                    Expires May 3, 2017                  [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Internet-Draft                    MICE                      October 2016

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
1.1.  Notational Conventions  . . . . . . . . . . . . . . . . .   3

2.  The "mi-sha256" HTTP Content Encoding . . . . . . . . . . . .   3
2.1.  Content Encoding Structure  . . . . . . . . . . . . . . .   4
2.2.  Validating Integrity Proofs . . . . . . . . . . . . . . .   5

3.  The MI HTTP Header Field  . . . . . . . . . . . . . . . . . .   6
3.1.  MI Header Field Parameters  . . . . . . . . . . . . . . .   6

4.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .   6
4.1.  Simple Example  . . . . . . . . . . . . . . . . . . . . .   6
4.2.  Example with Multiple Records . . . . . . . . . . . . . .   7

5.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
5.1.  Message Truncation  . . . . . . . . . . . . . . . . . . .   7
5.2.  Algorithm Agility . . . . . . . . . . . . . . . . . . . .   8

6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
6.1.  The "mi-sha256" HTTP Content Encoding . . . . . . . . . .   8
6.2.  MI Header Field . . . . . . . . . . . . . . . . . . . . .   8
6.3.  The HTTP MI Parameter Registry  . . . . . . . . . . . . .   8
6.3.1.  mi-sha256 parameter . . . . . . . . . . . . . . . . .   9

7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
7.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
7.2.  Informative References  . . . . . . . . . . . . . . . . .  10

Appendix A.  Acknowledgements . . . . . . . . . . . . . . . . . .  10
Appendix B.  FAQ  . . . . . . . . . . . . . . . . . . . . . . . .  11

   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  11

1.  Introduction

   Integrity protection for HTTP content is highly valuable.  HTTPS
   [RFC2818] is the most common form of integrity protection deployed,
   but that requires a direct TLS [RFC5246] connection to a host.
   However, additional integrity protection might be desirable for some
   use cases.  This might be for additional protection against failures
   or attack (see [SRI]) or because content needs to remain unmodified
   throughout multiple HTTPS-protected exchanges.

   This document describes a "mi-sha256" content-encoding (see
Section 2) that is a progressive, hash-based integrity check based on

   Merkle Hash Trees [MERKLE].

   The means of conveying the root integrity proof used by this content
   encoding will depend on deployment requirements.  This document
   defines an MI header field (see Section 3) that can carry an
   integrity proof.

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
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1.1.  Notational Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  The "mi-sha256" HTTP Content Encoding

   A Merkle Hash Tree [MERKLE] is a structured integrity mechanism that
   collates multiple integrity checks into a tree.  The leaf nodes of
   the tree contain data (or hashes of data) and non-leaf nodes contain
   hashes of the nodes below them.

   A balanced Merkle Hash Tree is used to efficiently prove membership
   in large sets (such as in [RFC6962]).  However, in this case, a
   right-skewed tree is used to provide a progressive integrity proof.
   This integrity proof is used to establish that a given record is part
   of a message.

   The hash function used for "mi-sha256" content encoding is SHA-256
   [FIPS180-4].  The integrity proof for all records other than the last
   is the hash of the concatenation of the record, the integrity proof
   of all subsequent records, and a single octet with a value of 0x1:

      proof(r[i]) = SHA-256(r[i] || proof(r[i+1]) || 0x1)

   The integrity proof for the final record is the hash of the record
   with a single octet with a value 0x0 appended:

      proof(r[last]) = SHA-256(r[last] || 0x0)

   Figure 1 shows the structure of the integrity proofs for a message
   that is split into 4 blocks: A, B, C, D).  As shown, the integrity
   proof for the entire message (that is, "proof(A)") is derived from
   the content of the first block (A), plus the value of the proof for
   the second and subsequent blocks.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6962
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       proof(A)
         /\
        /  \
       /    \
      A    proof(B)
            /\
           /  \
          /    \
         B    proof(C)
                /\
               /  \
              /    \
             C    proof(D)
                    |
                    |
                    D

           Figure 1: Proof structure for a message with 4 blocks

   The final encoded message is formed from the first record, followed
   by an arbitrary number of tuples of the integrity proof of the next
   record and then the record itself.  Thus, in Figure 1, the body is:

      rs || A || proof(B) || B || proof(C) || C || proof(D) || D

   Note:  The "||" operator is used to represent concatenation.

   A message that has a content length less than or equal to the content
   size does not include any inline proofs.  The proof for a message
   with a single record is simply the hash of the body plus a trailing
   zero octet.

2.1.  Content Encoding Structure

   In order to produce the final content encoding the content of the
   message is split into equal-sized records.  The final record can
   contain less than the defined record size.

   The record size is included in the first 8 octets of the message as
   an unsigned 64-bit integer.  This refers to the length of each data
   block.

   The final encoded stream comprises of the record size ("rs"), plus a
   sequence of records, each "rs" octets in length.  Each record, other
   than the last, is followed by a 32 octet proof for the record that
   follows.  This allows a receiver to validate and act upon each record
   after receiving the proof that precedes it.  The final record is not
   followed by a proof.
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   Note:  This content encoding increases the size of a message by 8
      plus 32 octets times the length of the message divided by the
      record size, rounded up, less one.  That is, 8 + 32 * (ceil(length
      / rs) - 1).

   Constructing a message with the "mi-sha256" content encoding requires
   processing of the records in reverse order, inserting the proof
   derived from each record before that record.

   This structure permits the use of range requests [RFC7233].  However,
   to validate a given record, a contiguous sequence of records back to
   the start of the message is needed.

2.2.  Validating Integrity Proofs

   A receiver of a message with the "mi-sha256" content-encoding applied
   first attempts to acquire the integrity proof for the first record.
   If the MI header field is present, a value might be included there.

   The first 8 octets are read as an unsigned 64-bit integer, "rs".  The
   remainder of the message is read into records of size "rs" (based on
   the value in the MI header field) plus 32 octets.  The last record is
   between 1 and "rs" octets in length, if not then validation fails.
   For each record:

   1.  Hash the record using SHA-256 with a single octet appended:

       a.  All records other than the last have an octet with a value of
       0x1 appended.

       b.  The last record has an octet with a value of 0x0 appended.

   2.  Compare the hash with the expected value:

       a.  For the first record, the expected value might found in the
       MI header field and is otherwise provided through some external
       means.

       b.  For records after the first, the expected value is the last
       32 octets of the previous record.

   3.  If the hash is different, then this record and all subsequent
       records do not have integrity protection and this process ends.

   4.  If a record is valid, up to "rs" octets is passed on for
       processing.  In other words, the trailing 32 octets is removed
       from every record other than the last before being used.

https://datatracker.ietf.org/doc/html/rfc7233
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   If an integrity check fails, the message SHOULD be discarded and the
   exchange treated as an error unless explicitly configured otherwise.
   For clients, treat this as equivalent to a server error; servers
   SHOULD generate a 400 or other 4xx status code.  However, if the
   integrity proof for the first record is not known, this check SHOULD
   NOT fail unless explicitly configured to do so.

3.  The MI HTTP Header Field

   The MI HTTP header field carries message integrity proofs
   corresponding to content encoding(s) that have been applied to a
   payload body.

   The MI header field uses the extended ABNF syntax defined in
Section 1.2 of [RFC7230] and the "parameter" rule from [RFC7231]:

     MI = #mi_params
     mi_params = [ parameter *( ";" parameter ) ]

   If the payload is encoded more than once (as reflected by having
   multiple content-codings that use the message integrity header
   field), each application of the content encoding is reflected in the
   MI header field in the order in which they were applied.

   The MI header MAY be omitted if the sender intends for the receiver
   to acquire the integrity proof for the first record by other means.

3.1.  MI Header Field Parameters

   The following parameters are used in validating content encoded with
   the "mi-sha256" content encoding:

   mi-sha256:  The "mi-sha256" parameter carries an integrity proof for
      the first record of the message.  This provides integrity for the
      entire message body.  This value is encoded using base64url
      encoding [RFC7515].

4.  Examples

4.1.  Simple Example

   The following example contains a short message.  This contains just a
   single record, so there are no inline integrity proofs, just a single
   value in a MI header field.  The record size is prepended to the
   message body (shown here in angle brackets).

https://datatracker.ietf.org/doc/html/rfc7230#section-1.2
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7515
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   HTTP/1.1 200 OK
   MI: mi-sha256=dcRDgR2GM35DluAV13PzgnG6-pvQwPywfFvAu1UeFrs
   Content-Encoding: mi-sha256
   Content-Length: 49

   <0x0000000000000029>When I grow up, I want to be a watermelon

4.2.  Example with Multiple Records

   This example shows the same message as above, but with a smaller
   record size (16 octets).  This results in two integrity proofs being
   included in the representation.

   PUT /test HTTP/1.1
   Host: example.com
   MI: mi-sha256=IVa9shfs0nyKEhHqtB3WVNANJ2Njm5KjQLjRtnbkYJ4
   Content-Encoding: mi-sha256
   Content-Length: 113

   <0x0000000000000010>When I grow up,
   OElbplJlPK-Rv6JNK6p5_515IaoPoZo-2elWL7OQ60A
   I want to be a w
   iPMpmgExHPrbEX3_RvwP4d16fWlK4l--p75PUu_KyN0
   atermelon

   Since the inline integrity proofs contain non-printing characters,
   these are shown here using the base64url encoding [RFC7515] with new
   lines between the original text and integrity proofs.  Note that
   there is a single trailing space (0x20) on the first line.

5.  Security Considerations

   The integrity of an entire message body depends on the means by which
   the integrity proof for the first record is protected.  If this value
   comes from the same place as the message, then this provides only
   limited protection against transport-level errors (something that TLS
   provides adequate protection against).

   Separate protection for header fields might be provided by other
   means if the first record retrieved is the first record in the
   message, but range requests do not allow for this option.

5.1.  Message Truncation

   This integrity scheme permits the detection of truncated messages.
   However, it enables and even encourages processing of messages prior
   to receiving an complete message.  Actions taken on a partial message
   can produce incorrect results.  For example, a message could say "I

https://datatracker.ietf.org/doc/html/rfc7515
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   need some 2mm copper cable, please send 100mm for evaluation
   purposes" then be truncated to "I need some 2mm copper cable, please
   send 100m".  A network-based attacker might be able to force this
   sort of truncation by delaying packets that contain the remainder of
   the message.

   Whether it is safe to act on partial messages will depend on the
   nature of the message and the processing that is performed.

5.2.  Algorithm Agility

   A new content encoding type is needed in order to define the use of a
   hash function other than SHA-256.

6.  IANA Considerations

6.1.  The "mi-sha256" HTTP Content Encoding

   This memo registers the "mi-sha256" HTTP content-coding in the HTTP
   Content Codings Registry, as detailed in Section 2.

   o  Name: mi-sha256

   o  Description: A Merkle Hash Tree based content encoding that
      provides progressive integrity.

   o  Reference: this specification

6.2.  MI Header Field

   This memo registers the "MI" HTTP header field in the Permanent
   Message Header Registry, as detailed in Section 3.

   o  Field name: MI

   o  Protocol: HTTP

   o  Status: Standard

   o  Reference: this specification

   o  Notes:

6.3.  The HTTP MI Parameter Registry

   This memo establishes a registry for parameters used by the "MI"
   header field under the "Hypertext Transfer Protocol (HTTP)
   Parameters" grouping.  The "Hypertext Transfer Protocol (HTTP) MI
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   Parameters" registry operates under an "Specification Required"
   policy [RFC5226].

   Entries in this registry are expected to include the following
   information:

   o  Parameter Name: The name of the parameter.

   o  Purpose: A brief description of the purpose of the parameter.

   o  Reference: A reference to a specification that defines the
      semantics of the parameter.

   The initial contents of this registry are:

6.3.1.  mi-sha256 parameter

   o  Parameter Name: mi-sha256

   o  Purpose: The value of the integrity proof for the first record.

   o  Reference: this document
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Appendix B.  FAQ

   1.  Why not include the first proof in the encoding?

       The requirements for the integrity proof for the first record
       require a great deal more flexibility than this allows for.
       Transferring the proof separately is sometimes necessary.
       Separating the value out allows for that to happen more easily.

   2.  Why do messages have to be processed in reverse to construct
       them?

       The final integrity value, no matter how it is derived, has to
       depend on every bit of the message.  That means that there are
       three choices: both sender and receiver have to process the whole
       message, the sender has to work backwards, or the receiver has to
       work backwards.  The current form is the best option of the
       three.  The expectation is that this will be useful for content
       that is generated once and sent multiple times, since the onerous
       backwards processing requirement can be amortized.

   3.  Why not just generate a table of hashes?

       An alternative design includes a header that comprises hashes of
       every block of the message.  The final proof is a hash of that
       table.  This has the advantage that the table can be built in any
       order.  The disadvantage is that a receiver needs to store the
       table while processing content, whereas a chained hash can be
       processed with a single stored hash worth of state no matter how
       many blocks are present.  The chained hash is also smaller by 32
       octets.
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