
Network Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track October 30, 2016
Expires: May 3, 2017

Merkle Integrity Content Encoding
draft-thomson-http-mice-02

Abstract

 This memo introduces a content-coding for HTTP that provides
 progressive integrity for message contents. This integrity
 protection can be evaluated on a partial representation, allowing a
 recipient to process a message as it is delivered while retaining
 strong integrity protection.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires May 3, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MICE October 2016

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. The "mi-sha256" HTTP Content Encoding 3
2.1. Content Encoding Structure 4
2.2. Validating Integrity Proofs 5

3. The MI HTTP Header Field 6
3.1. MI Header Field Parameters 6

4. Examples . 6
4.1. Simple Example . 6
4.2. Example with Multiple Records 7

5. Security Considerations 7
5.1. Message Truncation 7
5.2. Algorithm Agility . 8

6. IANA Considerations . 8
6.1. The "mi-sha256" HTTP Content Encoding 8
6.2. MI Header Field . 8
6.3. The HTTP MI Parameter Registry 8
6.3.1. mi-sha256 parameter 9

7. References . 9
7.1. Normative References 9
7.2. Informative References 10

Appendix A. Acknowledgements 10
Appendix B. FAQ . 11

 Author's Address . 11

1. Introduction

 Integrity protection for HTTP content is highly valuable. HTTPS
 [RFC2818] is the most common form of integrity protection deployed,
 but that requires a direct TLS [RFC5246] connection to a host.
 However, additional integrity protection might be desirable for some
 use cases. This might be for additional protection against failures
 or attack (see [SRI]) or because content needs to remain unmodified
 throughout multiple HTTPS-protected exchanges.

 This document describes a "mi-sha256" content-encoding (see
Section 2) that is a progressive, hash-based integrity check based on

 Merkle Hash Trees [MERKLE].

 The means of conveying the root integrity proof used by this content
 encoding will depend on deployment requirements. This document
 defines an MI header field (see Section 3) that can carry an
 integrity proof.

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246

Thomson Expires May 3, 2017 [Page 2]

Internet-Draft MICE October 2016

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The "mi-sha256" HTTP Content Encoding

 A Merkle Hash Tree [MERKLE] is a structured integrity mechanism that
 collates multiple integrity checks into a tree. The leaf nodes of
 the tree contain data (or hashes of data) and non-leaf nodes contain
 hashes of the nodes below them.

 A balanced Merkle Hash Tree is used to efficiently prove membership
 in large sets (such as in [RFC6962]). However, in this case, a
 right-skewed tree is used to provide a progressive integrity proof.
 This integrity proof is used to establish that a given record is part
 of a message.

 The hash function used for "mi-sha256" content encoding is SHA-256
 [FIPS180-4]. The integrity proof for all records other than the last
 is the hash of the concatenation of the record, the integrity proof
 of all subsequent records, and a single octet with a value of 0x1:

 proof(r[i]) = SHA-256(r[i] || proof(r[i+1]) || 0x1)

 The integrity proof for the final record is the hash of the record
 with a single octet with a value 0x0 appended:

 proof(r[last]) = SHA-256(r[last] || 0x0)

 Figure 1 shows the structure of the integrity proofs for a message
 that is split into 4 blocks: A, B, C, D). As shown, the integrity
 proof for the entire message (that is, "proof(A)") is derived from
 the content of the first block (A), plus the value of the proof for
 the second and subsequent blocks.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6962

Thomson Expires May 3, 2017 [Page 3]

Internet-Draft MICE October 2016

 proof(A)
 /\
 / \
 / \
 A proof(B)
 /\
 / \
 / \
 B proof(C)
 /\
 / \
 / \
 C proof(D)
 |
 |
 D

 Figure 1: Proof structure for a message with 4 blocks

 The final encoded message is formed from the first record, followed
 by an arbitrary number of tuples of the integrity proof of the next
 record and then the record itself. Thus, in Figure 1, the body is:

 rs || A || proof(B) || B || proof(C) || C || proof(D) || D

 Note: The "||" operator is used to represent concatenation.

 A message that has a content length less than or equal to the content
 size does not include any inline proofs. The proof for a message
 with a single record is simply the hash of the body plus a trailing
 zero octet.

2.1. Content Encoding Structure

 In order to produce the final content encoding the content of the
 message is split into equal-sized records. The final record can
 contain less than the defined record size.

 The record size is included in the first 8 octets of the message as
 an unsigned 64-bit integer. This refers to the length of each data
 block.

 The final encoded stream comprises of the record size ("rs"), plus a
 sequence of records, each "rs" octets in length. Each record, other
 than the last, is followed by a 32 octet proof for the record that
 follows. This allows a receiver to validate and act upon each record
 after receiving the proof that precedes it. The final record is not
 followed by a proof.

Thomson Expires May 3, 2017 [Page 4]

Internet-Draft MICE October 2016

 Note: This content encoding increases the size of a message by 8
 plus 32 octets times the length of the message divided by the
 record size, rounded up, less one. That is, 8 + 32 * (ceil(length
 / rs) - 1).

 Constructing a message with the "mi-sha256" content encoding requires
 processing of the records in reverse order, inserting the proof
 derived from each record before that record.

 This structure permits the use of range requests [RFC7233]. However,
 to validate a given record, a contiguous sequence of records back to
 the start of the message is needed.

2.2. Validating Integrity Proofs

 A receiver of a message with the "mi-sha256" content-encoding applied
 first attempts to acquire the integrity proof for the first record.
 If the MI header field is present, a value might be included there.

 The first 8 octets are read as an unsigned 64-bit integer, "rs". The
 remainder of the message is read into records of size "rs" (based on
 the value in the MI header field) plus 32 octets. The last record is
 between 1 and "rs" octets in length, if not then validation fails.
 For each record:

 1. Hash the record using SHA-256 with a single octet appended:

 a. All records other than the last have an octet with a value of
 0x1 appended.

 b. The last record has an octet with a value of 0x0 appended.

 2. Compare the hash with the expected value:

 a. For the first record, the expected value might found in the
 MI header field and is otherwise provided through some external
 means.

 b. For records after the first, the expected value is the last
 32 octets of the previous record.

 3. If the hash is different, then this record and all subsequent
 records do not have integrity protection and this process ends.

 4. If a record is valid, up to "rs" octets is passed on for
 processing. In other words, the trailing 32 octets is removed
 from every record other than the last before being used.

https://datatracker.ietf.org/doc/html/rfc7233

Thomson Expires May 3, 2017 [Page 5]

Internet-Draft MICE October 2016

 If an integrity check fails, the message SHOULD be discarded and the
 exchange treated as an error unless explicitly configured otherwise.
 For clients, treat this as equivalent to a server error; servers
 SHOULD generate a 400 or other 4xx status code. However, if the
 integrity proof for the first record is not known, this check SHOULD
 NOT fail unless explicitly configured to do so.

3. The MI HTTP Header Field

 The MI HTTP header field carries message integrity proofs
 corresponding to content encoding(s) that have been applied to a
 payload body.

 The MI header field uses the extended ABNF syntax defined in
Section 1.2 of [RFC7230] and the "parameter" rule from [RFC7231]:

 MI = #mi_params
 mi_params = [parameter *(";" parameter)]

 If the payload is encoded more than once (as reflected by having
 multiple content-codings that use the message integrity header
 field), each application of the content encoding is reflected in the
 MI header field in the order in which they were applied.

 The MI header MAY be omitted if the sender intends for the receiver
 to acquire the integrity proof for the first record by other means.

3.1. MI Header Field Parameters

 The following parameters are used in validating content encoded with
 the "mi-sha256" content encoding:

 mi-sha256: The "mi-sha256" parameter carries an integrity proof for
 the first record of the message. This provides integrity for the
 entire message body. This value is encoded using base64url
 encoding [RFC7515].

4. Examples

4.1. Simple Example

 The following example contains a short message. This contains just a
 single record, so there are no inline integrity proofs, just a single
 value in a MI header field. The record size is prepended to the
 message body (shown here in angle brackets).

https://datatracker.ietf.org/doc/html/rfc7230#section-1.2
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7515

Thomson Expires May 3, 2017 [Page 6]

Internet-Draft MICE October 2016

 HTTP/1.1 200 OK
 MI: mi-sha256=dcRDgR2GM35DluAV13PzgnG6-pvQwPywfFvAu1UeFrs
 Content-Encoding: mi-sha256
 Content-Length: 49

 <0x0000000000000029>When I grow up, I want to be a watermelon

4.2. Example with Multiple Records

 This example shows the same message as above, but with a smaller
 record size (16 octets). This results in two integrity proofs being
 included in the representation.

 PUT /test HTTP/1.1
 Host: example.com
 MI: mi-sha256=IVa9shfs0nyKEhHqtB3WVNANJ2Njm5KjQLjRtnbkYJ4
 Content-Encoding: mi-sha256
 Content-Length: 113

 <0x0000000000000010>When I grow up,
 OElbplJlPK-Rv6JNK6p5_515IaoPoZo-2elWL7OQ60A
 I want to be a w
 iPMpmgExHPrbEX3_RvwP4d16fWlK4l--p75PUu_KyN0
 atermelon

 Since the inline integrity proofs contain non-printing characters,
 these are shown here using the base64url encoding [RFC7515] with new
 lines between the original text and integrity proofs. Note that
 there is a single trailing space (0x20) on the first line.

5. Security Considerations

 The integrity of an entire message body depends on the means by which
 the integrity proof for the first record is protected. If this value
 comes from the same place as the message, then this provides only
 limited protection against transport-level errors (something that TLS
 provides adequate protection against).

 Separate protection for header fields might be provided by other
 means if the first record retrieved is the first record in the
 message, but range requests do not allow for this option.

5.1. Message Truncation

 This integrity scheme permits the detection of truncated messages.
 However, it enables and even encourages processing of messages prior
 to receiving an complete message. Actions taken on a partial message
 can produce incorrect results. For example, a message could say "I

https://datatracker.ietf.org/doc/html/rfc7515

Thomson Expires May 3, 2017 [Page 7]

Internet-Draft MICE October 2016

 need some 2mm copper cable, please send 100mm for evaluation
 purposes" then be truncated to "I need some 2mm copper cable, please
 send 100m". A network-based attacker might be able to force this
 sort of truncation by delaying packets that contain the remainder of
 the message.

 Whether it is safe to act on partial messages will depend on the
 nature of the message and the processing that is performed.

5.2. Algorithm Agility

 A new content encoding type is needed in order to define the use of a
 hash function other than SHA-256.

6. IANA Considerations

6.1. The "mi-sha256" HTTP Content Encoding

 This memo registers the "mi-sha256" HTTP content-coding in the HTTP
 Content Codings Registry, as detailed in Section 2.

 o Name: mi-sha256

 o Description: A Merkle Hash Tree based content encoding that
 provides progressive integrity.

 o Reference: this specification

6.2. MI Header Field

 This memo registers the "MI" HTTP header field in the Permanent
 Message Header Registry, as detailed in Section 3.

 o Field name: MI

 o Protocol: HTTP

 o Status: Standard

 o Reference: this specification

 o Notes:

6.3. The HTTP MI Parameter Registry

 This memo establishes a registry for parameters used by the "MI"
 header field under the "Hypertext Transfer Protocol (HTTP)
 Parameters" grouping. The "Hypertext Transfer Protocol (HTTP) MI

Thomson Expires May 3, 2017 [Page 8]

Internet-Draft MICE October 2016

 Parameters" registry operates under an "Specification Required"
 policy [RFC5226].

 Entries in this registry are expected to include the following
 information:

 o Parameter Name: The name of the parameter.

 o Purpose: A brief description of the purpose of the parameter.

 o Reference: A reference to a specification that defines the
 semantics of the parameter.

 The initial contents of this registry are:

6.3.1. mi-sha256 parameter

 o Parameter Name: mi-sha256

 o Purpose: The value of the integrity proof for the first record.

 o Reference: this document

7. References

7.1. Normative References

 [FIPS180-4]
 Department of Commerce, National., "NIST FIPS 180-4,
 Secure Hash Standard", March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

 [MERKLE] Merkle, R., "A Digital Signature Based on a Conventional
 Encryption Function", International Crytology Conference -
 CRYPTO , 1987.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

https://datatracker.ietf.org/doc/html/rfc5226
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226

Thomson Expires May 3, 2017 [Page 9]

Internet-Draft MICE October 2016

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

7.2. Informative References

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <http://www.rfc-editor.org/info/rfc6962>.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <http://www.rfc-editor.org/info/rfc7233>.

 [SRI] Akhawe, D., Braun, F., Marier, F., and J. Weinberger,
 "Subresource Integrity", W3C CR , November 2015,
 <https://w3c.github.io/webappsec-subresource-integrity/>.

Appendix A. Acknowledgements

 David Benjamin and Erik Nygren both separately suggested that
 something like this might be valuable. James Manger and Eric
 Rescorla provided useful feedback.

https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc2818
http://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6962
http://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7233
http://www.rfc-editor.org/info/rfc7233
https://w3c.github.io/webappsec-subresource-integrity/

Thomson Expires May 3, 2017 [Page 10]

Internet-Draft MICE October 2016

Appendix B. FAQ

 1. Why not include the first proof in the encoding?

 The requirements for the integrity proof for the first record
 require a great deal more flexibility than this allows for.
 Transferring the proof separately is sometimes necessary.
 Separating the value out allows for that to happen more easily.

 2. Why do messages have to be processed in reverse to construct
 them?

 The final integrity value, no matter how it is derived, has to
 depend on every bit of the message. That means that there are
 three choices: both sender and receiver have to process the whole
 message, the sender has to work backwards, or the receiver has to
 work backwards. The current form is the best option of the
 three. The expectation is that this will be useful for content
 that is generated once and sent multiple times, since the onerous
 backwards processing requirement can be amortized.

 3. Why not just generate a table of hashes?

 An alternative design includes a header that comprises hashes of
 every block of the message. The final proof is a hash of that
 table. This has the advantage that the table can be built in any
 order. The disadvantage is that a receiver needs to store the
 table while processing content, whereas a chained hash can be
 processed with a single stored hash worth of state no matter how
 many blocks are present. The chained hash is also smaller by 32
 octets.

Author's Address

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Thomson Expires May 3, 2017 [Page 11]

