
httpbis M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track M. Nottingham
Expires: February 10, 2018 true
 W. Tarreau
 HAProxy Technologies
 August 09, 2017

Using Early Data in HTTP
draft-thomson-http-replay-01

Abstract

 This document explains the risks of using early data for HTTP and
 describes techniques for reducing them. In particular, it defines a
 mechanism that enables clients to communicate with servers about
 early data, to assure correct operation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 10, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Thomson, et al. Expires February 10, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP Early Data August 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Conventions and Definitions 3

2. Early Data in HTTP . 3
3. Supporting Early Data in HTTP Servers 3
4. Using Early Data in HTTP Clients 5
5. Extensions for Early Data in HTTP 6
5.1. The Early-Data Header Field 6
5.2. The 4NN (Too Early) Status Code 7

6. Security Considerations 8
6.1. Gateways and Early Data 8
6.2. Consistent Handling of Early Data 8
6.3. Denial of Service . 8

7. IANA Considerations . 8
8. References . 9
8.1. Normative References 9
8.2. Informative References 10

Appendix A. Acknowledgments 10
 Authors' Addresses . 10

1. Introduction

 TLS 1.3 [TLS13] introduces the concept of early data (also known as
 zero round trip data or 0-RTT data). Early data allows a client to
 send data to a server in the first round trip of a connection,
 without waiting for the TLS handshake to complete if the client has
 spoken to the same server recently.

 When used with HTTP [HTTP], early data allows clients to send
 requests immediately, avoiding the one or two round trip delay needed
 for the TLS handshake. This is a significant performance
 enhancement; however, it has significant limitations.

 The primary risk of using early data is that an attacker might
 capture and replay the request(s) it contains. TLS [TLS13] describes
 techniques that can be used to reduce the likelihood that an attacker
 can successfully replay a request, but these techniques can be
 difficult to deploy, and still leave some possibility of a successful
 attack.

 Note that this is different from automated or user-initiated retries;
 replays are initiated by an attacker without the awareness of the
 client.

Thomson, et al. Expires February 10, 2018 [Page 2]

Internet-Draft HTTP Early Data August 2017

 To help mitigate the risk of replays in HTTP, this document gives an
 overview of techniques for controlling these risks in servers, and
 defines requirements for clients when sending requests in early data.

 The advice in this document also applies to use of 0-RTT in HTTP over
 QUIC [HQ].

1.1. Conventions and Definitions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting; when they are capitalized, they have
 the special meaning defined in [RFC2119].

2. Early Data in HTTP

 Conceptually, early data is concatenated with other application to
 form a single stream. This can mean that requests are entirely
 contained within early data, or only part of a request is early. In
 a multiplexed protocol, like HTTP/2 [RFC7540] or HTTP/QUIC [HQ],
 multiple requests might be partially delivered in early data.

 The model that this document assumes is that once the TLS handshake
 completes, early data is not replayed. However, it is important to
 note that this does not mean that early data will not be or has not
 been replayed on another connection.

3. Supporting Early Data in HTTP Servers

 A server decides whether or not to offer a client the ability to send
 early data on future connections when sending the TLS session ticket.

 When a server enables early data, there are a number of techniques it
 can use to mitigate the risks of replay:

 1. The server can choose whether it will process early data before
 the TLS handshake completes. By deferring processing, it can
 ensure that only a successfully completed connection is used for
 the request(s) therein. Assuming that a replayed ClientHello
 will not result in additional connections being made by the
 client, this provides the server with some assurance that the
 early data was not replayed.

 2. If the server receives multiple requests in early data, it can
 determine whether to defer HTTP processing on a per-request
 basis. This may require buffering the responses to preserve
 ordering in HTTP/1.1.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7540

Thomson, et al. Expires February 10, 2018 [Page 3]

Internet-Draft HTTP Early Data August 2017

 3. The server can cause a client to retry a request and not use
 early data by responding with the 4NN (Too Early) status code
 (Section 5.2), in cases where the risk of replay is judged too
 great.

 4. Finally, TLS [TLS13] describes several mitigation strategies that
 reduce the ability of an attacker to successfully replay early
 data. Servers are strongly encouraged to implement these
 techniques, but to also recognize that they are imperfect. These
 anti-replay techniques can reduce the number of replays that will
 be successful from being essentially unbounded to a fixed value.

 For a given request, the level of tolerance to replay risk is
 specific to the resource it operates upon (and therefore only known
 to the origin server). In general, if processing a request does not
 have state-changing side effects, the consequences of replay are not
 significant.

 The request method's safety ([RFC7231], Section 4.2.1) is one way to
 determine this. However, some resources do elect to associate side
 effects with safe methods, so this cannot be universally relied upon.

 It is RECOMMENDED that origin servers allow resources to explicitly
 configure whether early data is appropriate in requests. Absent such
 explicit information, they SHOULD mitigate against early data in
 requests that have unsafe methods, using the techniques outlined
 above.

 A request might be sent partially in early data with the remainder of
 the request being sent after the handshake completes. This does not
 necessarily affect handling of that request; what matters is when the
 server starts acting upon the contents of a request. Any time a
 server might initiate processing prior to completion of the handshake
 needs to consider how a possible replay of early data could affect
 that processing (see also Section 6.2).

 A server can partially process requests that are incomplete. Parsing
 header fields - without acting on the values - and determining
 request routing is likely to be safe from side-effects, but other
 actions might not be.

 Intermediary servers do not have sufficient information to make this
 determination, so Section 5.2 describes a way for the origin to
 signal to them that a particular request isn't appropriate for early
 data. Intermediaries that accept early data MUST implement that
 mechanism.

https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1

Thomson, et al. Expires February 10, 2018 [Page 4]

Internet-Draft HTTP Early Data August 2017

 Note that a server cannot choose to selectively reject early data at
 the TLS layer. TLS only permits a server to accept all early data,
 or none of it. Once a server has decided to accept early data, it
 MUST process all requests in early data, even if the server rejects
 the request by sending a 4NN (Too Early) response.

 A server can limit the amount of early data with the
 "max_early_data_size" field of the "early_data" TLS extension. This
 can be used to avoid committing an arbitrary amount of memory for
 deferred requests. A server SHOULD ensure that when it accepts early
 data, it can defer processing of requests until after the TLS
 handshake completes.

4. Using Early Data in HTTP Clients

 A client that wishes to use early data commences sending HTTP
 requests immediately after sending the TLS ClientHello.

 By their nature, clients have control over whether a given request is
 sent in early data - thereby giving the client control over risk of
 replay. Absent other information, clients MAY send requests with
 safe HTTP methods (see [RFC7231], Section 4.2.1) in early data when
 it is available, and SHOULD NOT send unsafe methods (or methods whose
 safety is not known) in early data.

 If the server rejects early data at the TLS layer, a client MUST
 start sending again as though the connection was new. For HTTP/2,
 this means re-sending the connection preface. Any requests sent in
 early data MUST be sent again, unless the client decides to abandon
 those requests.

 This automatic retry exposes the request to a potential replay
 attack. An attacker sends early data to one server instance that
 accepts and processes the early data, but allows that connection to
 proceed no further. The attacker then forwards the same messages
 from the client to another server instance that will reject early
 data. The client the retries the request, resulting in the request
 being processed twice. Replays are also possible if there are
 multiple server instances that will accept early data, or if the same
 server accepts early data multiple times (though this would be in
 violation of requirements in TLS).

 Clients that use early data MUST retry requests upon receipt of a 4NN
 (Too Early) status code; see Section 5.2.

 An intermediary MUST NOT use early data when forwarding a request
 unless early data was used on a previous hop, or it knows that the
 request can be retried safely without consequences (typically, using

https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1

Thomson, et al. Expires February 10, 2018 [Page 5]

Internet-Draft HTTP Early Data August 2017

 out-of-band configuration). Absent better information, that means
 that an intermediary can only use early data if the request either
 arrived in early data or arrived with the "Early-Data" header field
 set to "1".

5. Extensions for Early Data in HTTP

 Because HTTP requests can span multiple "hops", it is necessary to
 explicitly communicate whether a request has been sent in early data
 on a previous connection. Likewise, some means of explicitly
 triggering a retry when early data is not desirable is necessary.
 Finally, it is necessary to know whether the client will actually
 perform such a retry.

 To meet these needs, two signalling mechanisms are defined:

 o The "Early-Data" header field is included in requests that are
 received in early data.

 o The 4NN (Too Early) status code is defined for an server to
 indicate that a request could not be processed due to the
 consequences of a possible replay attack.

 They are designed to enable better coordination of the use of early
 data between the user agent and origin server, and also when a
 gateway (also "reverse proxy", "Content Delivery Network", or
 "surrogate") is present.

 Gateways typically don't have specific information about whether a
 given request can be processed safely when it is sent in early data.
 In many cases, only the origin server has the necessary information
 to decide whether the risk of replay is acceptable. These extensions
 allow coordination between a gateway and its origin server.

5.1. The Early-Data Header Field

 The "Early-Data" request header field indicates that the request has
 been conveyed in early data, and additionally indicates that a client
 understands the 4NN (Too Early) status code.

 It has just one valid value: "1". Its syntax is defined by the
 following ABNF [ABNF]:

 Early-Data = "1"

 For example:

Thomson, et al. Expires February 10, 2018 [Page 6]

Internet-Draft HTTP Early Data August 2017

 GET /resource HTTP/1.0
 Host: example.com
 Early-Data: 1

 An intermediary that forwards a request received in TLS early data
 MUST send it with the "Early-Data" header field set to "1" (i.e., it
 adds it if not present in the request).

 An intermediary MUST NOT remove this header field if it is present in
 a request.

 The "Early-Data" header field is not intended for use by user agents
 (that is, the original initiator of a request). Sending a request in
 early data implies that the client understands this specification and
 is willing to retry a request in response to a 4NN (Too Early) status
 code. A user agent that sends a request in early data does not need
 to include the "Early-Data" header field.

 A server cannot make a request that contains the Early-Data header
 field safe for processing by waiting for the handshake to complete.
 A request that is marked with Early-Data was sent in early data on a
 previous hop. Requests that contain the Early-Data field and cannot
 be safely processed MUST be rejected using the 4NN (Too Early) status
 code.

5.2. The 4NN (Too Early) Status Code

 A 4NN (Too Early) status code indicates that the server is unwilling
 to risk processing a request that might be replayed.

 Clients (user-agents and intermediaries) that sent the request in
 early data MUST automatically retry the request when receiving a 4NN
 (Too Early) response status code. Such retries MUST NOT be sent in
 early data, and SHOULD NOT be sent if the TLS handshake on the
 original connection does not successfully complete.

 Intermediaries that receive a 4NN (Too Early) status code MAY
 automatically retry requests after allowing the handshake to complete
 unless the original request contained the "Early-Data" header field
 when it was received. Otherwise, an intermediary MUST forward the
 4NN (Too Early) status code.

 The server cannot assume that a client is able to retry a request
 unless the request is received in early data or the "Early-Data"
 header field is set to "1". A server SHOULD NOT emit the 4NN status
 code unless one of these conditions is met.

Thomson, et al. Expires February 10, 2018 [Page 7]

Internet-Draft HTTP Early Data August 2017

 The 4NN (Too Early) status code is not cacheable by default. Its
 payload is not the representation of any identified resource.

6. Security Considerations

 Using early data exposes a client to the risk that their request is
 replayed. A retried or replayed request can produce different side
 effects on the server. In addition to those side effects, replays
 and retries might be used for traffic analysis to recover information
 about requests or the resources those requests target.

6.1. Gateways and Early Data

 A gateway that forwards requests that were received in early data
 MUST only do so if it knows that the server that receives those
 requests understands the "Early-Data" header field and will correctly
 generate a 4NN (Too Early) status code. A gateway that isn't certain
 about server support SHOULD either delay forwarding the request until
 the TLS handshake completes, or send a 4NN (Too Early) status code in
 response. A gateway that is uncertain about whether an origin server
 supports the "Early-Data" header field SHOULD disable early data.

6.2. Consistent Handling of Early Data

 Consistent treatment of a request that arrives in - or partially in -
 early data is critical to avoiding inappropriate processing of
 replayed requests. If a request is not safe to process before the
 TLS handshake completes, then all instances of the server need to
 agree and either reject the request or delay processing.

6.3. Denial of Service

 Accepting early data exposes a server to potential denial of service
 through the replay of requests that are expensive to handle. A
 server that is under load SHOULD prefer rejecting TLS early data as a
 whole rather than accepting early data and selectively processing
 requests. Generating a 503 (Service Unavailable) or 4NN (Too Early)
 status code often leads to clients retrying requests, which could
 result in increased load.

7. IANA Considerations

 This document registers the "Early-Data" header field in the "Message
 Headers" registry [HEADERS].

 Header field name: Early-Data

 Applicable protocol: http

Thomson, et al. Expires February 10, 2018 [Page 8]

Internet-Draft HTTP Early Data August 2017

 Status: standard

 Author/Change controller: IETF

 Specification document(s): This document

 Related information: (empty)

 This document registers the 4NN (Too Early) status code in the
 "Hypertext Transfer Protocol (HTTP) Status Code" registry established
 in [RFC7231].

 Value: 4NN

 Description: Too Early

 Reference: This document

8. References

8.1. Normative References

 [ABNF] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [HEADERS] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <http://www.rfc-editor.org/info/rfc3864>.

 [HTTP] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
http://www.rfc-editor.org/info/rfc3864
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231

Thomson, et al. Expires February 10, 2018 [Page 9]

Internet-Draft HTTP Early Data August 2017

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),
 July 2017.

8.2. Informative References

 [HQ] Bishop, M., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-04 (work in progress), June
 2017.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

Appendix A. Acknowledgments

 This document was not easy to produce. The following people made
 substantial contributions to the quality and completeness of the
 document: Subodh Iyengar, Benjamin Kaduk, Ilari Liusavaara, Kazuho
 Oku, and Victor Vasiliev.

Authors' Addresses

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

 Mark Nottingham
 true

 Email: mnot@mnot.net

 Willy Tarreau
 HAProxy Technologies

 Email: willy@haproxy.org

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-21
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-04
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540

Thomson, et al. Expires February 10, 2018 [Page 10]

