
HTTP M. Thomson
Internet-Draft Mozilla
Updates: 7450 (if approved) M. Bishop
Intended status: Standards Track Microsoft
Expires: April 21, 2016 October 19, 2015

Reactive Certificate-Based Client Authentication in HTTP/2
draft-thomson-http2-client-certs-00

Abstract

 Some HTTP servers provide a subset of resources that require
 additional authentication to interact with. HTTP/1.1 servers rely on
 TLS renegotiation that is triggered by a request to a protected
 resource. HTTP/2 made this pattern impossible by forbidding the use
 of TLS renegotiation.

 This document describes a how client authentication might be
 requested by a server as a result of receiving a request to a
 protected resource. This document updates RFC 7540 to allow TLS
 renegotiation in limited circumstances.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Thomson & Bishop Expires April 21, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7450
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP/2 Client Certs October 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Reactive Certificate Authentication in HTTP/1.1 3
1.2. TLS 1.3 Client Authentication 4
1.3. Reactive Client Authentication in HTTP/2 4
1.4. Terminology . 5

2. HTTP/2 Request Correlation in TLS 1.3 5
3. HTTP/2 Request Correlation in TLS 1.2 6
3.1. The TLS application_context_id Hello Extension 6
3.2. Permitting TLS Renegotiation in HTTP/2 7

 4. Indicating Stream Dependency on Certificate Authentication . 8
 5. Indicating Support for Reactive Certificate Authentication . 8

6. Security Considerations 9
7. IANA Considerations . 9
7.1. TLS application_context_id Extension 9
7.2. HTTP/2 SETTINGS_REACTIVE_AUTH Setting 9
7.3. HTTP/2 WAITING_FOR_AUTH Frame 10

8. Acknowledgements . 10
9. Normative References . 10

 Authors' Addresses . 11

1. Introduction

 Many existing HTTP [RFC7230] servers have different authentication
 requirements for the different resources they serve. Of the
 bountiful authentication options available for authenticating HTTP
 requests, client certificates present a unique challenge for
 resource-specific authentication requirements because of the
 interaction with the underlying TLS RFC5246 [I-D.ietf-tls-tls13]
 layer.

 For servers that wish to use client certificates to authenticate
 users, they might request client authentication during the TLS
 handshake. However, if not all users or resources need certificate-
 based authentication, a request for a certificate has the unfortunate
 consequence of triggering the client to seek a certificate. Such a
 request can result in a poor experience, particular when sent to a
 client that does not expect the request.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5246

Thomson & Bishop Expires April 21, 2016 [Page 2]

Internet-Draft HTTP/2 Client Certs October 2015

 The TLS CertificateRequest can be used by servers to give clients
 hints about which certificate to offer. Servers that rely on
 certificate-based authentication might request different certificates
 for different resources. Such a server cannot use contextual
 information about the resource to construct an appropriate TLS
 CertificateRequest message during the initial handshake.

 Consequently, client certificates are requested at connection
 establishment time only in cases where all clients are expected or
 required to have a single certificate that is used for all resources.
 Many other uses for client certificates are reactive, that is,
 certificates are requested in response to the client making a
 request.

 CAVEAT: As of 2015-10-02, TLS 1.3 does not include the client
 authentication features this draft relies on. While these
 features have been agreed in the TLS working group, the exact
 design is still under revision. The basic functionality shouldn't
 change in a way that will affect this document, though some
 details such as field names are highly likely to change.

1.1. Reactive Certificate Authentication in HTTP/1.1

 In HTTP/1.1, a server that relies on client authentication for a
 subset of users or resources does not request a certificate when the
 connection is established. Instead, it only requests a client
 certificate when a request is made to a resource that requires a
 certificate.

 Figure 1 shows the server initiating a TLS-layer renegotiation in
 response to receiving an HTTP/1.1 request to a protected resource.

 Client Server
 -- (HTTP) GET /protected -------------------> *1
 <---------------------- (TLS) HelloRequest -- *2
 -- (TLS) ClientHello ----------------------->
 <------------------ (TLS) ServerHello, ... --
 <---------------- (TLS) CertificateRequest -- *3
 -- (TLS) ..., Certificate ------------------> *4
 -- (TLS) Finished -------------------------->
 <-------------------------- (TLS) Finished --
 <--------------------------- (HTTP) 200 OK -- *5

 Figure 1: HTTP/1.1 Reactive Certificate Authentication with TLS 1.2

 In this example, the server receives a request for a protected
 resource (at *1 on Figure 1). Upon performing an authorization
 check, the server determines that the request requires authentication

Thomson & Bishop Expires April 21, 2016 [Page 3]

Internet-Draft HTTP/2 Client Certs October 2015

 using a client certificate and that no such certificate has been
 provided.

 The server initiates TLS renegotiation by sending a TLS HelloRequest
 (at *2). The client then initiates a TLS handshake. Note that some
 TLS messages are elided from the exchange for the sake of brevity.

 The critical messages for this example are the server requesting a
 certificate with a TLS CertificateRequest (*3); this request might
 use information about the request or resource. The client then
 provides a certificate and proof of possession of the private key in
 Certificate and CertificateVerify messages (*4).

 When the handshake completes, the server performs any authorization
 checks a second time. With the client certificate available, it then
 authorizes the request and provides a response (*5).

1.2. TLS 1.3 Client Authentication

 TLS 1.3 [I-D.ietf-tls-tls13] introduces a new client authentication
 mechanism that allows for clients to authenticate after the handshake
 has been completed. For the purposes of authenticating an HTTP
 request, this is functionally equivalent to renegotiation. Figure 2
 shows the simpler exchange this enables.

 Client Server
 -- (HTTP) GET /protected ------------------->
 <---------------- (TLS) CertificateRequest --
 -- (TLS) Certificate ----------------------->
 <--------------------------- (HTTP) 200 OK --

 Figure 2: HTTP/1.1 Reactive Certificate Authentication with TLS 1.3

 TLS 1.3 does not support renegotiation, instead supporting direct
 client authentication. In contrast to the TLS 1.2 example, in TLS
 1.3, a server can simply request a certificate.

1.3. Reactive Client Authentication in HTTP/2

 An important part of the HTTP/1.1 exchange is that the client is able
 to easily identify the request that caused the TLS renegotiation.
 The client is able to assume that the next unanswered request on the
 connection is responsible. The HTTP stack in the client is then able
 to direct the certificate request to the application or component
 that initiated that request. This ensures that the application has
 the right contextual information for processing the request.

Thomson & Bishop Expires April 21, 2016 [Page 4]

Internet-Draft HTTP/2 Client Certs October 2015

 In HTTP/2, a client can have multiple outstanding requests. Without
 some sort of correlation information, a client is unable to identify
 which request caused the server to request a certificate.

 Thus, the minimum necessary mechanism to support reactive certificate
 authentication in HTTP/2 is an identifier that can be use to
 correlate an HTTP request with either a TLS renegotiation or
 CertificateRequest.

Section 2 describes how the existing TLS 1.3 fields and a new HTTP/2
 frame described in Section 4 can be used to correlate a request with
 a TLS CertificateRequest. Section 3 describes how the same can be
 done in TLS 1.2 using TLS renegotiation and a new TLS
 "application_context_id" extension. Finally, Section 5 describes how
 an HTTP/2 client can announce support for this feature so that a
 server might use these capabilities.

1.4. Terminology

RFC 2119 [RFC2119] defines the terms "MUST", "MUST NOT", "SHOULD" and
 "MAY".

2. HTTP/2 Request Correlation in TLS 1.3

 An HTTP/2 request from a client that has signaled support for
 reactive certificate authentication (see Section 5) might cause a
 server to request client authentication. In TLS 1.3 a server does
 this by sending a new TLS 1.3 CertificateRequest.

 The server MUST first send a WAITING_FOR_AUTH frame (see Section 4)
 on the stream which triggered the request for client credentials.
 The certificate_request_id (name TBD) field of the TLS
 CertificateRequest is populated by the server with the same value in
 the WAITING_FOR_AUTH frame. Subsequent WAITING_FOR_AUTH frames with
 the same request identifier MAY be sent on other streams while the
 server is awaiting client authentication with the same parameters.
 This allows a client to correlate the TLS CertificateRequest with one
 or more outstanding requests.

 A server MAY send multiple concurrent TLS CertificateRequest
 messages. If a server requires that a client provide multiple
 certificates before authorizing a single request, it MUST send
 WAITING_FOR_AUTH frames with different request identifiers before
 sending subsequent TLS CertificateRequest messages.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Thomson & Bishop Expires April 21, 2016 [Page 5]

Internet-Draft HTTP/2 Client Certs October 2015

3. HTTP/2 Request Correlation in TLS 1.2

 An HTTP/2 server that uses TLS 1.2 initiates client authentication by
 sending a an HTTP/2 WAITING_FOR_AUTH frame followed by a TLS
 HelloRequest. This triggers a TLS renegotiation.

 An HTTP/2 client that receives a TLS HelloRequest message MUST
 initiate a TLS handshake, including an empty "application_context_id"
 extension. If the client has not indicated support for renegotiation
 (see Section 5), the client MUST send a fatal TLS "no_renegotiation"
 alert.

 The server populates the "application_context_id" extension with the
 same value it previously sent in a WAITING_FOR_AUTH frame.

 Absence of an "application_context_id" extension or an empty value
 from the server MUST be treated as a fatal error; endpoints MAY send
 a fatal TLS "no_renegotiation" alert.

 As with the TLS 1.3 solution, a server MAY request multiple client
 certificates, either for different requests or for the same request.
 If multiple requests are waiting for authentication and require
 different certificates, the server SHOULD immediately send the
 WAITING_FOR_AUTH frames with unique values. Only one TLS
 renegotiation can be in progress at a time, though a new HelloRequest
 can be emitted once the renegotiation has completed.

 A server MAY treat all certificates presented in the same connection
 as cumulative, remembering multiple certificates as they are
 presented. Note that the authentication information collected from
 the client will need to be checked after each TLS renegotiation
 completes, since most TLS stacks only report the presence of the
 client certificate presented during the last TLS handshake.

3.1. The TLS application_context_id Hello Extension

 The "application_context_id" TLS Hello Extension is used to carry an
 identifier from an application context in the TLS handshake. This is
 used to identify the application context that caused the TLS
 handshake to be initiated. The semantics of the field depend on
 application protocol, and could further depend on application
 protocol state.

 Either client or server can populate this field. A client can
 provide an empty value to indicate that it does not know the
 application context, but would like the server to provide a value. A
 server can provide an empty value in response to a non-empty value
 only.

Thomson & Bishop Expires April 21, 2016 [Page 6]

Internet-Draft HTTP/2 Client Certs October 2015

 In HTTP/2 clients always provide an empty "application_context_id"
 value, and servers always provide a value that will appear in a
 subsequent WAITING_FOR_AUTH frame.

 enum {
 ...
 application_context_id(EXTENSION-TBD),
 (65535)
 } ExtensionType;

 struct {
 opaque id<0..255>;
 } ApplicationContextId;

 Figure 3: The application_context_id Extension Format

3.2. Permitting TLS Renegotiation in HTTP/2

 The prohibition from Section 9.2.1 of [RFC7540] against TLS
 renegotiation is removed, provided that the requirements of this
 section are adhered to.

 TLS renegotiation MUST NOT be used to circumvent the other
 restrictions on TLS use from Section 9.2 of [RFC7540]. Furthermore,
 TLS renegotiation MUST negotiate the same ALPN [RFC7301] identifier
 (that is, "h2"). An endpoint MAY treat failure to comply with these
 requirements as a connection error (Section 5.4.1 of [RFC7540]) of
 type INADEQUATE_SECURITY.

 Note: A client need not offer cipher suites that might otherwise be
 offered for compatibility reasons when renegotiating. In
 particular, cipher suites on the black list from Appendix A of
 [RFC7540] can be removed from the handshake.

 In addition to the requirements from [RFC7540], endpoints that
 renegotiate MUST implement the TLS extended master secret extension
 [RFC7627] and the TLS renegotiation indication extension [RFC5746].
 These extensions MUST be negotiated and used to prevent serious
 attacks on TLS renegotiation. If an endpoint receives a TLS
 ClientHello or ServerHello that does not include these extensions, it
 MUST respond with a fatal TLS "no_renegotiation" alert.

 The TLS renegotiation handshake MUST include the
 "application_context_id" extension when used with HTTP/2.

 A server MUST present the same certificate during TLS renegotiation
 it used during the initial handshake. Clients MUST verify that the
 server certificate does not change. Clients MUST verify that the

https://datatracker.ietf.org/doc/html/rfc7540#section-9.2.1
https://datatracker.ietf.org/doc/html/rfc7540#section-9.2
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540#appendix-A
https://datatracker.ietf.org/doc/html/rfc7540#appendix-A
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc5746

Thomson & Bishop Expires April 21, 2016 [Page 7]

Internet-Draft HTTP/2 Client Certs October 2015

 server certificate has not changed; a different certificate MUST be
 treated as a fatal error and MAY cause a fatal "handshake_failure"
 alert to be sent.

 Once the HTTP/2 connection preface has been received from a peer, an
 endpoint SHOULD treat the receipt of a TLS ClientHello or ServerHello
 without an "application_context_id" extension as a fatal error and
 SHOULD send a fatal TLS "no_renegotiation" alert.

4. Indicating Stream Dependency on Certificate Authentication

 The WAITING_FOR_AUTH frame (0xFRAME-TBD) is sent by servers to
 indicate that processing of a request is blocked pending
 authentication outside of the HTTP channel. The frame includes a
 request identifier which can be used to correlate the stream with
 challenges for authentication received at other layers, such as TLS.

 The WAITING_FOR_AUTH frame contains between 1 and 255 octets, which
 is the authentication request identifier. A client that receives a
 WAITING_FOR_AUTH of any other length MUST treat this as a stream
 error of type PROTOCOL_ERROR. Frames with identical request
 identifiers refer to the same TLS CertificateRequest.

 The WAITING_FOR_AUTH frame MUST NOT be sent by clients. A
 WAITING_FOR_AUTH frame received by a server SHOULD be rejected with a
 stream error of type PROTOCOL_ERROR.

 The server MUST NOT send a WAITING_FOR_AUTH frame on stream zero, a
 server-initiated stream or a stream that does not have an outstanding
 request. In other words, a server can only send in the "open" or
 "half-closed (remote)" stream states.

 A client that receives a WAITING_FOR_AUTH frame on a stream which is
 not in a valid state ("open" or "half-closed (local)" for clients)
 SHOULD treat this as a connection error of type PROTOCOL_ERROR.

5. Indicating Support for Reactive Certificate Authentication

 Clients that support reactive certificate authentication indicate
 this using the HTTP/2 "SETTINGS_REACTIVE_AUTH" (0xSETTING-TBD)
 setting.

 The initial value for the "SETTINGS_REACTIVE_AUTH" setting is 0,
 indicating that the client does not support reactive client
 authentication. A client sets the "SETTINGS_REACTIVE_AUTH" setting
 to a value of 1 to indicate support for reactive certificate
 authentication as defined in this document. Any value other than 0

Thomson & Bishop Expires April 21, 2016 [Page 8]

Internet-Draft HTTP/2 Client Certs October 2015

 or 1 MUST be treated as a connection error (Section 5.4.1 of
 [RFC7540]) of type PROTOCOL_ERROR.

6. Security Considerations

 The TLS extended master secret extension [RFC7627] and the TLS
 renegotiation indication extension [RFC5746] MUST be used to mitigate
 several known attacks on TLS renegotiation.

 Adding correlation between requests and TLS-layer authentication
 addresses the primary functional concerns with mid-session client
 authentication. However, implementations need to be aware of the
 potential for confusion about the state of a connection.

 The presence or absence of a validated client certificate can change
 during the processing of a request, potentially multiple times. A
 server that uses reactive certificate authentication needs to be
 prepared to reevaluate the authorization state of a request as the
 set of certificates changes.

7. IANA Considerations

 The TLS "application_context_id" extension is registered in
Section 7.1. The HTTP/2 "SETTINGS_REACTIVE_AUTH" setting is

 registered in Section 7.2. The HTTP/2 "WAITING_FOR_AUTH" frame type
 is registered in Section 7.3.

7.1. TLS application_context_id Extension

 The "application_context_id" TLS extension is registered in the
 "ExtensionType Values" registry established by [RFC5246].

 Value: EXTENSION-TBD

 Extension name: application_context_id

 Reference: This document.

7.2. HTTP/2 SETTINGS_REACTIVE_AUTH Setting

 The SETTINGS_REACTIVE_AUTH setting is registered in the "HTTP/2
 Settings" registry established in [RFC7540].

 Name: SETTINGS_REACTIVE_AUTH

 Code: 0xSETTING-TBD

 Initial Value: 0

https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7540

Thomson & Bishop Expires April 21, 2016 [Page 9]

Internet-Draft HTTP/2 Client Certs October 2015

 Specification: This document.

7.3. HTTP/2 WAITING_FOR_AUTH Frame

 The WAITING_FOR_AUTH frame type is registered in the "HTTP/2 Frame
 Types" registry established in [RFC7540].

 Frame Type: WAITING_FOR_AUTH

 Code: 0xFRAME-TBD

 Specification: This document.

8. Acknowledgements

 Eric Rescorla pointed out several failings in an earlier revision.

9. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-08 (work in progress),
 August 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <http://www.rfc-editor.org/info/rfc5746>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5746
http://www.rfc-editor.org/info/rfc5746
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301

Thomson & Bishop Expires April 21, 2016 [Page 10]

Internet-Draft HTTP/2 Client Certs October 2015

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI
 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension", RFC

7627, DOI 10.17487/RFC7627, September 2015,
 <http://www.rfc-editor.org/info/rfc7627>.

Authors' Addresses

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

 Mike Bishop
 Microsoft

 Email: michael.bishop@microsoft.com

https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc7627
http://www.rfc-editor.org/info/rfc7627

Thomson & Bishop Expires April 21, 2016 [Page 11]

