
HTTP M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track M. Bishop
Expires: July 25, 2016 Microsoft
 January 22, 2016

Reactive Certificate-Based Client Authentication in HTTP/2
draft-thomson-http2-client-certs-01

Abstract

 Some HTTP servers provide a subset of resources that require
 additional authentication to interact with. HTTP/1.1 servers rely on
 TLS renegotiation that is triggered by a request to a protected
 resource. HTTP/2 made this pattern impossible by forbidding the use
 of TLS renegotiation. While TLS 1.3 provides an alternate mechanism
 to obtain client certificates, this mechanism does not map well to
 usage in TLS 1.2.

 This document describes a how client authentication might be
 requested by a server as a result of receiving a request to a
 protected resource.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 25, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Thomson & Bishop Expires July 25, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft HTTP/2 Client Certs January 2016

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Reactive Certificate Authentication in HTTP/1.1 4
1.1.1. Using TLS 1.2 and previous 4
1.1.2. Using TLS 1.3 . 5

1.2. Reactive Client Authentication in HTTP/2 5
1.3. Terminology . 7

 2. Presenting Client Certificates at the HTTP/2 Framing Layer . 7
2.1. The CERTIFICATE_REQUIRED frame 7
2.2. The USE_CERTIFICATE Frame 8
2.3. The CERTIFICATE_REQUEST Frame 9
2.4. The CERTIFICATE frame 10
2.4.1. The Certificate structure 12

2.5. The CERTIFICATE_PROOF Frame 13
 3. Indicating failures during HTTP-Layer Certificate
 Authentication . 14
 4. Indicating Support for HTTP-Layer Certificate Authentication 15

5. Security Considerations 15
6. IANA Considerations . 15
6.1. HTTP/2 SETTINGS_HTTP_CERT_AUTH Setting 15
6.2. New HTTP/2 Frames . 16
6.2.1. CERTIFICATE_REQUIRED 16
6.2.2. CERTIFICATE_REQUEST 16
6.2.3. CERTIFICATE . 16
6.2.4. CERTIFICATE_PROOF 16
6.2.5. USE_CERTIFICATE 16

6.3. New HTTP/2 Error Codes 17
6.3.1. BAD_CERTIFICATE 17
6.3.2. UNSUPPORTED_CERTIFICATE 17
6.3.3. CERTIFICATE_REVOKED 17
6.3.4. CERTIFICATE_EXPIRED 17
6.3.5. BAD_SIGNATURE . 17
6.3.6. CERTIFICATE_GENERAL 18

7. Acknowledgements . 18
8. Normative References . 18

 Authors' Addresses . 19

http://trustee.ietf.org/license-info

Thomson & Bishop Expires July 25, 2016 [Page 2]

Internet-Draft HTTP/2 Client Certs January 2016

1. Introduction

 Many existing HTTP [RFC7230] servers have different authentication
 requirements for the different resources they serve. Of the
 bountiful authentication options available for authenticating HTTP
 requests, client certificates present a unique challenge for
 resource-specific authentication requirements because of the
 interaction with the underlying TLS RFC5246 [I-D.ietf-tls-tls13]
 layer.

 For servers that wish to use client certificates to authenticate
 users, they might request client authentication during or immediately
 after the TLS handshake. However, if not all users or resources need
 certificate-based authentication, a request for a certificate has the
 unfortunate consequence of triggering the client to seek a
 certificate. Such a request can result in a poor experience,
 particularly when sent to a client that does not expect the request.

 The TLS 1.3 CertificateRequest can be used by servers to give clients
 hints about which certificate to offer. Servers that rely on
 certificate-based authentication might request different certificates
 for different resources. Such a server cannot use contextual
 information about the resource to construct an appropriate TLS
 CertificateRequest message during the initial handshake.

 Consequently, client certificates are requested at connection
 establishment time only in cases where all clients are expected or
 required to have a single certificate that is used for all resources.
 Many other uses for client certificates are reactive, that is,
 certificates are requested in response to the client making a
 request.

 In Yokohama, there was extensive working group discussion regarding
 why certificate authentication could not easily be done at the HTTP
 semantic layer. However, in subsequent discussion, it became
 apparent that the HTTP _framing_ layer did not suffer from the same
 limitation.

 In this document, a mechanism for doing certificate-based client
 authentication via HTTP/2 frames is defined. This mechanism can be
 implemented at the HTTP layer without requiring new TLS stack
 behavior and without breaking the existing interface between HTTP and
 applications which employ client certificates.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5246

Thomson & Bishop Expires July 25, 2016 [Page 3]

Internet-Draft HTTP/2 Client Certs January 2016

1.1. Reactive Certificate Authentication in HTTP/1.1

1.1.1. Using TLS 1.2 and previous

 In HTTP/1.1, a server that relies on client authentication for a
 subset of users or resources does not request a certificate when the
 connection is established. Instead, it only requests a client
 certificate when a request is made to a resource that requires a
 certificate. TLS 1.2 [RFC5246] accomodates this by permitting the
 server to request a new TLS handshake, in which the server will
 request the client's certificate.

 Figure 1 shows the server initiating a TLS-layer renegotiation in
 response to receiving an HTTP/1.1 request to a protected resource.

 Client Server
 -- (HTTP) GET /protected -------------------> *1
 <---------------------- (TLS) HelloRequest -- *2
 -- (TLS) ClientHello ----------------------->
 <------------------ (TLS) ServerHello, ... --
 <---------------- (TLS) CertificateRequest -- *3
 -- (TLS) ..., Certificate ------------------> *4
 -- (TLS) Finished -------------------------->
 <-------------------------- (TLS) Finished --
 <--------------------------- (HTTP) 200 OK -- *5

 Figure 1: HTTP/1.1 Reactive Certificate Authentication with TLS 1.2

 In this example, the server receives a request for a protected
 resource (at *1 on Figure 1). Upon performing an authorization
 check, the server determines that the request requires authentication
 using a client certificate and that no such certificate has been
 provided.

 The server initiates TLS renegotiation by sending a TLS HelloRequest
 (at *2). The client then initiates a TLS handshake. Note that some
 TLS messages are elided from the figure for the sake of brevity.

 The critical messages for this example are the server requesting a
 certificate with a TLS CertificateRequest (*3); this request might
 use information about the request or resource. The client then
 provides a certificate and proof of possession of the private key in
 Certificate and CertificateVerify messages (*4).

 When the handshake completes, the server performs any authorization
 checks a second time. With the client certificate available, it then
 authorizes the request and provides a response (*5).

https://datatracker.ietf.org/doc/html/rfc5246

Thomson & Bishop Expires July 25, 2016 [Page 4]

Internet-Draft HTTP/2 Client Certs January 2016

1.1.2. Using TLS 1.3

 TLS 1.3 [I-D.ietf-tls-tls13] introduces a new client authentication
 mechanism that allows for clients to authenticate after the handshake
 has been completed. For the purposes of authenticating an HTTP
 request, this is functionally equivalent to renegotiation. Figure 2
 shows the simpler exchange this enables.

 Client Server
 -- (HTTP) GET /protected ------------------->
 <---------------- (TLS) CertificateRequest --
 -- (TLS) Certificate, CertificateVerify ---->
 <--------------------------- (HTTP) 200 OK --

 Figure 2: HTTP/1.1 Reactive Certificate Authentication with TLS 1.3

 TLS 1.3 does not support renegotiation, instead supporting direct
 client authentication. In contrast to the TLS 1.2 example, in TLS
 1.3, a server can simply request a certificate.

1.2. Reactive Client Authentication in HTTP/2

 An important part of the HTTP/1.1 exchange is that the client is able
 to easily identify the request that caused the TLS renegotiation.
 The client is able to assume that the next unanswered request on the
 connection is responsible. The HTTP stack in the client is then able
 to direct the certificate request to the application or component
 that initiated that request. This ensures that the application has
 the right contextual information for processing the request.

 In HTTP/2, a client can have multiple outstanding requests. Without
 some sort of correlation information, a client is unable to identify
 which request caused the server to request a certificate.

 Thus, the minimum necessary mechanism to support reactive certificate
 authentication in HTTP/2 is an identifier that can be use to
 correlate an HTTP request with a request for a certificate.

 Such an identifier could be added to TLS 1.2 by means of an
 extension, but many TLS 1.2 implementations do not permit application
 data to continue during a renegotiation. This is problematic for a
 multiplexed protocol like HTTP/2. Instead, this draft proposes
 bringing the TLS 1.3 CertificateRequest, Certificate, and
 CertificateVerify messages into HTTP/2 frames, making client
 certificate authentication TLS-version-agnostic.

 This could be done in a naive manner by replicating the messages as
 HTTP/2 frames on each stream. However, this would create needless

Thomson & Bishop Expires July 25, 2016 [Page 5]

Internet-Draft HTTP/2 Client Certs January 2016

 redundancy between streams and require frequent expensive signing
 operations. Instead, this draft lifts the bulky portions of each
 message into frames on stream zero and permits the on-stream frames
 to incorporate them by reference as needed.

 On each stream where certificate authentication is required, the
 server sends a "CERTIFICATE_REQUIRED" frame, which the client answers
 with a "USE_CERTIFICATE" frame either indicating the certificate to
 use, or indicating that no certificate should be used. These frames
 are simple, referencing information previously sent on stream zero to
 reduce redundancy.

 "CERTIFICATE_REQUIRED" frames reference a "CERTIFICATE_REQUEST" on
 stream zero, analogous to the CertificateRequest message.
 "USE_CERTIFICATE" frames reference a sequence of "CERTIFICATE" and
 "CERTIFICATE_PROOF" frames on stream zero, analogous to the the
 Certificate and CertificateVerify messages.

 The exchange then looks like this:

 Client Server
 -- (streams 1,3) GET /protected ------------>
 <---------- (stream 0) CERTIFICATE_REQUEST --
 <------ (streams 1,3) CERTIFICATE_REQUIRED --
 -- (stream 0) CERTIFICATE ------------------>
 -- (stream 0) CERTIFICATE_PROOF ------------>
 -- (streams 1,3) USE_CERTIFICATE ----------->
 <-------------------- (streams 1,3) 200 OK --

 Figure 3: HTTP/2 Reactive Certificate Authentication

 To avoid the extra round-trip per stream required for a challenge and
 response, the "AUTOMATIC_USE" flag enables a certificate to be
 automatically used by the server on subsequent requests without
 sending a "CERTIFICATE_REQUIRED" exchange.

Section 2 describes how certificates can be requested and presented
 at the HTTP/2 framing layer using several new frame types which
 parallel the TLS 1.3 message exchange. Section 3 defines new error
 types which can be used to notify peers when the exchange has not
 been successful. Finally, Section 4 describes how an HTTP/2 client
 can announce support for this feature so that a server might use
 these capabilities.

Thomson & Bishop Expires July 25, 2016 [Page 6]

Internet-Draft HTTP/2 Client Certs January 2016

1.3. Terminology

RFC 2119 [RFC2119] defines the terms "MUST", "MUST NOT", "SHOULD" and
 "MAY".

2. Presenting Client Certificates at the HTTP/2 Framing Layer

 An HTTP/2 request from a client that has signaled support for
 reactive certificate authentication (see Section 4) might cause a
 server to request client authentication. In HTTP/2 a server does
 this by sending at least one "CERTIFICATE_REQUEST" frame (see

Section 2.3) on stream zero and sending a "CERTIFICATE_REQUIRED"
 frame (see Section 2.1) on the affected stream(s). The
 "CERTIFICATE_REQUEST" and "CERTIFICATE_REQUIRED" frames are
 correlated by their "Request-ID" field. Subsequent
 "CERTIFICATE_REQUIRED" frames with the same Request-ID MAY be sent on
 other streams where the server is expecting client authentication
 with the same parameters.

 A server MAY send multiple concurrent "CERTIFICATE_REQUIRED" frames
 on the same stream. If a server requires that a client provide
 multiple certificates before authorizing a single request, it MUST
 send a "CERTIFICATE_REQUIRED" frame with a different request
 identifier and a corresponding "CERTIFICATE_REQUEST" frame describing
 each required certificate.

 Clients respond to requests by sending one or more "CERTIFICATE"
 frames (see Section 2.4), followed by a "CERTIFICATE_PROOF" frame
 (see Section 2.5), on stream zero containing the "Request-ID" to
 which they are responding. The "USE_CERTIFICATE" (see Section 2.2)
 frame is sent on-stream to notify the server the stream is ready to
 be processed.

 To reduce round-trips, the client MAY set the "AUTOMATIC_USE" flag on
 a "CERTIFICATE_PROOF" frame, indicating that the server SHOULD
 automatically apply the supplied certificate to any future streams
 matching that request, rather than sending a "CERTIFICATE_REQUIRED"
 frame.

2.1. The CERTIFICATE_REQUIRED frame

 The "CERTIFICATE_REQUIRED" frame (0xFRAME-TBD2) is sent by servers to
 indicate that processing of an HTTP request is blocked pending
 certificate authentication. The frame includes a request identifier
 which can be used to correlate the stream with a previous
 "CERTIFICATE_REQUEST" frame received on stream zero. The
 "CERTIFICATE_REQUEST" describes the client certificate the server
 requires to process the request.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Thomson & Bishop Expires July 25, 2016 [Page 7]

Internet-Draft HTTP/2 Client Certs January 2016

 The "CERTIFICATE_REQUIRED" frame contains 1 octet, which is the
 authentication request identifier. A client that receives a
 "CERTIFICATE_REQUIRED" of any other length MUST treat this as a
 stream error of type "PROTOCOL_ERROR". Frames with identical request
 identifiers refer to the same "CERTIFICATE_REQUEST".

 The "CERTIFICATE_REQUIRED" frame MUST NOT be sent by clients. A
 "CERTIFICATE_REQUIRED" frame received by a server SHOULD be rejected
 with a stream error of type PROTOCOL_ERROR.

 The server MUST NOT send a "CERTIFICATE_REQUIRED" frame on stream
 zero, a server-initiated stream or a stream that does not have an
 outstanding request. In other words, a server can only send in the
 "open" or "half-closed (remote)" stream states.

 A client that receives a "CERTIFICATE_REQUIRED" frame on a stream
 which is not in a valid state ("open" or "half-closed (local)" for
 clients) SHOULD treat this as a connection error of type
 "PROTOCOL_ERROR".

2.2. The USE_CERTIFICATE Frame

 The "USE_CERTIFICATE" frame (0xFRAME-TBD5) is sent by clients in
 response to a "CERTIFICATE_REQUIRED" frame to indicate that the
 requested certificate has been provided (or will not be).

 A "USE_CERTIFICATE" frame with no payload expresses the client's
 refusal to use the associated certificate (if any) with this stream.
 If the request was originally issued for a different stream, servers
 MAY create a new "CERTIFICATE_REQUEST" and permit the client to offer
 a different certificate. Alternatively, servers MAY process the
 request as unauthenticated, likely returning an authentication-
 related error at the HTTP level (e.g. 403).

 Otherwise, the "USE_CERTIFICATE" frame contains the "Request-ID" of
 the now-completed certificate request. This MUST be an ID previously
 issued by the server, and for which a matching certificate has
 previously been presented along with a supporting certificate chain
 in one or more "CERTIFICATE" frames, and for which proof of
 possession has been presented in a "CERTIFICATE_PROOF" frame.

 Use of the "USE_CERTIFICATE" frame by servers is not defined by this
 document. A "USE_CERTIFICATE" frame received by a client MUST be
 ignored.

 The client MUST NOT send a "USE_CERTIFICATE" frame on stream zero, a
 server-initiated stream or a stream that does not have an outstanding
 request. In other words, a client can only send in the "open" or

Thomson & Bishop Expires July 25, 2016 [Page 8]

Internet-Draft HTTP/2 Client Certs January 2016

 "half-closed (local)" stream states. The client MUST NOT send a
 "USE_CERTIFICATE" frame except in response to a
 "CERTIFICATE_REQUIRED" frame from the server.

 A server that receives a "USE_CERTIFICATE" frame on a stream which is
 not in a valid state ("open" or "half-closed (remote)" for servers),
 on which it has not sent a "CERTIFICATE_REQUIRED" frame, or
 referencing a certificate it has not previously received SHOULD treat
 this as a connection error of type "PROTOCOL_ERROR".

2.3. The CERTIFICATE_REQUEST Frame

 TLS 1.3 defines the "CertificateRequest" message, which prompts the
 client to provide a certificate which conforms to certain properties
 specified by the server. This draft defines the
 "CERTIFICATE_REQUEST" frame (0xFRAME-TBD1), which contains the same
 contents as a TLS 1.3 "CertificateRequest" message, but can be sent
 over any TLS version.

 The "CERTIFICATE_REQUEST" frame MUST NOT be sent by clients. A
 "CERTIFICATE_REQUEST" frame received by a server SHOULD be rejected
 with a stream error of type "PROTOCOL_ERROR".

 The "CERTIFICATE_REQUEST" frame MUST be sent on stream zero. A
 "CERTIFICATE_REQUEST" frame received on any other stream MUST be
 rejected with a stream error of type "PROTOCOL_ERROR".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Request-ID (8)| Algorithm-Count (16) | Algorithms ...
 +---+
 | CA-Count (16) | Certificate-Authorities(?) ...
 +---+
 | Cert-Extension-Count (16) | Cert-Extensions(?) ...
 +---+

 Figure 4: CERTIFICATE_REQUEST frame payload

 The frame contains the following fields:

 Request-ID: "Request-ID" is an 8-bit opaque identifier used to
 correlate subsequent certificate-related frames with this request.
 The identifier MUST be unique in the session.

 Algorithm-Count and Algorithms: A list of the hash/signature
 algorithm pairs that the server is able to verify, listed in
 descending order of preference. Any certificates provided by the

Thomson & Bishop Expires July 25, 2016 [Page 9]

Internet-Draft HTTP/2 Client Certs January 2016

 client MUST be signed using a hash/signature algorithm pair found
 in "Algorithms". Each algorithm pair is encoded as a
 "SignatureAndHashAlgorithm" (see [I-D.ietf-tls-tls13] section

6.3.2.1), and the number of such structures is given by the 16-bit
 "Algorithm-Count" field, which MUST NOT be zero.

 CA-Count and Certificate-Authorities: "Certificate-Authorities" is a
 series of distinguished names of acceptable certificate
 authorities, represented in DER-encoded [X690] format. These
 distinguished names may specify a desired distinguished name for a
 root CA or for a subordinate CA; thus, this message can be used to
 describe known roots as well as a desired authorization space.
 The number of such structures is given by the 16-bit "CA-Count"
 field, which MAY be zero. If the "CA-Count" field is zero, then
 the client MAY send any certificate that meets the rest of the
 selection criteria in the "CERTIFICATE_REQUEST", unless there is
 some external arrangement to the contrary.

 Cert-Extension-Count and Cert-Extensions: A list of certificate
 extension OIDs [RFC5280] with their allowed values, represented in
 a series of "CertificateExtension" structures (see
 [I-D.ietf-tls-tls13] section 6.3.5). The list of OIDs MUST be
 used in certificate selection as described in
 [I-D.ietf-tls-tls13]. The number of Cert-Extension structures is
 given by the 16-bit "Cert-Extension-Count" field, which MAY be
 zero.

 Some certificate extension OIDs allow multiple values (e.g. Extended
 Key Usage). If the sender has included a non-empty
 certificate_extensions list, the certificate MUST contain all of the
 specified extension OIDs that the recipient recognizes. For each
 extension OID recognized by the recipient, all of the specified
 values MUST be present in the certificate (but the certificate MAY
 have other values as well). However, the recipient MUST ignore and
 skip any unrecognized certificate extension OIDs.

 PKIX RFCs define a variety of certificate extension OIDs and their
 corresponding value types. Depending on the type, matching
 certificate extension values are not necessarily bitwise-equal. It
 is expected that implementations will rely on their PKI libraries to
 perform certificate selection using these certificate extension OIDs.

2.4. The CERTIFICATE frame

 The "CERTIFICATE" frame (0xFRAME-TBD3) allows the sender to provide
 elements of a certificate chain which can be used as authentication
 for previous or subsequent requests.

https://datatracker.ietf.org/doc/html/rfc5280

Thomson & Bishop Expires July 25, 2016 [Page 10]

Internet-Draft HTTP/2 Client Certs January 2016

 The "CERTIFICATE" frame defines no flags.

 The payload of a "CERTIFICATE" frame contains elements of a
 certificate chain, terminating in an end certificate. Multiple
 "CERTIFICATE" frames MAY be sent with the same Request-ID, to
 accomodate certificate chains which are too large to fit in a single
 HTTP/2 frame (see [RFC7540] section 4.2).

 Particularly when a certificate contains a large number of Subject
 Alternative Names, it might not fit into a single "CERTIFICATE" frame
 even as the only provided certificate. Senders unable to transfer a
 requested certificate due to the recipient's
 "SETTINGS_MAX_FRAME_SIZE" value SHOULD increase their own
 "SETTINGS_MAX_FRAME_SIZE" to a size that would accomodate their
 certificate, then terminate affected streams with
 "CERTIFICATE_TOO_LARGE".

 Use of the "CERTIFICATE" frame by servers is not defined by this
 document. A "CERTIFICATE" frame received by a client MUST be
 ignored.

 The "CERTIFICATE" frame MUST be sent on stream zero. A "CERTIFICATE"
 frame received on any other stream MUST be rejected with a stream
 error of type "PROTOCOL_ERROR".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Request-ID (8)| Cert-Count(8) | Cert-List (*) ...
 +---+

 Figure 5: CERTIFICATE frame payload

 The fields defined by the "CERTIFICATE" frame are:

 Request-ID: The ID of the "CERTIFICATE_REQUEST" to which this frame
 responds.

 Cert-Count and Cert-List: A sequence of Certificate objects (see
Section 2.4.1), each representing one certificate in the sender's

 certificate chain. For the first or only "CERTIFICATE" frame with
 a given Request-ID and Cert-ID, the sender's certificate MUST be
 the first in the list. Each subsequent certificate SHOULD
 directly certify the certificate immediately preceding it. A
 certificate which specifies a trust anchor MAY be omitted,
 provided that the recipient is known to already possess the
 relevant certificate. (For example, because it was included in a

https://datatracker.ietf.org/doc/html/rfc7540#section-4.2

Thomson & Bishop Expires July 25, 2016 [Page 11]

Internet-Draft HTTP/2 Client Certs January 2016

 "CERTIFICATE_REQUEST"'s Certificate-Authorities list.) "Cert-
 Count" describes the number of certificates provided.

 The "Request-ID" field MUST contain the same value as the
 corresponding "CERTIFICATE_REQUEST" frame, and the provided
 certificate chain MUST conform to the requirements expressed in the
 "CERTIFICATE_REQUEST" to the best of the client's ability.
 Specifically:

 o If the "CERTIFICATE_REQUEST" contained a non-empty "Certificate-
 Authorities" element, one of the certificates in the chain SHOULD
 be signed by one of the listed CAs.

 o If the "CERTIFICATE_REQUEST" contained a non-empty "Cert-
 Extensions" element, the first certificate MUST match with regard
 to the extension OIDs recognized by the client.

 o Each certificate that is not self-signed MUST be signed using a
 hash/signature algorithm listed in the "Algorithms" element.

 If these requirements are not satisfied, the server MAY at its
 discretion either process the request without client authentication,
 or respond with a stream error [RFC7540] on any stream where the
 certificate is used. Section 3 defines certificate-related error
 codes which might be applicable.

 A client cannot provide different certificates in response to the
 same "CERTIFICATE_REQUEST" for use on different streams. A client
 that has already sent and proven a certificate, but does not wish to
 use it on a particular stream SHOULD send an empty "USE_CERTIFICATE"
 frame, refusing to use that certificate on that stream.

2.4.1. The Certificate structure

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Cert-Length (24) | Cert (*) ...
 +---+

 Figure 6: Certificate structure

 The Certificate structure is a length-prefixed X.509v3 [RFC5280]
 certificate. The certificate MUST be signed with an acceptable hash/
 signature algorithm pair, if the recipient's list of acceptable pairs
 is known.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc5280

Thomson & Bishop Expires July 25, 2016 [Page 12]

Internet-Draft HTTP/2 Client Certs January 2016

2.5. The CERTIFICATE_PROOF Frame

 The "CERTIFICATE_PROOF" frame proves possession of the private key
 corresponding to an end certificate previously shown in a
 "CERTIFICATE" frame, along with its certificate chain in the same or
 other "CERTIFICATE" frames.

 The "CERTIFICATE_PROOF" frame defines one flag:

 AUTOMATIC_USE (0x01): Indicates that the certificate can be used
 automatically on future requests.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Request-ID (8)| Algorithm (16) | Signature(*)...
 +---+

 Figure 7: CERTIFICATE_PROOF frame payload

 The "CERTIFICATE_PROOF" frame (0xFRAME-TBD4) contains an "Algorithm"
 field (a "SignatureAndHashAlgorithm", from [I-D.ietf-tls-tls13]

section 6.3.2.1), describing the hash/signature algorithm pair being
 used. The signature is performed as described in
 [I-D.ietf-tls-tls13], with the following values being used:

 o The context string for the signature is "HTTP/2 CERTIFICATE"

 o The "specified content" is an [RFC5705] exported value, with the
 following parameters:

 * Disambiguating label string: "EXPORTER HTTP/2 CERTIFICATE"

 * Length: 1024 bytes

 Because the exported value can be independently calculated by both
 sides of the TLS connection, the value to be signed is not sent on
 the wire at any time. The same signed value is used for all
 "CERTIFICATE_PROOF" frames in a single HTTP/2 connection.

 A "CERTIFICATE_PROOF" frame MUST be sent only after all "CERTIFICATE"
 frames with the same Request-ID and Cert-ID have been sent, and MUST
 correspond to the first certificate presented in the first
 "CERTIFICATE" frame with that Request-ID and Cert-ID. Receipt of
 multiple "CERTIFICATE_PROOF" frames for the same Request-ID and Cert-
 ID, receipt of a "CERTIFICATE_PROOF" frame without a corresponding
 "CERTIFICATE" frame, or receipt of a "CERTIFICATE" frame after a

https://datatracker.ietf.org/doc/html/rfc5705

Thomson & Bishop Expires July 25, 2016 [Page 13]

Internet-Draft HTTP/2 Client Certs January 2016

 corresponding "CERTIFICATE_PROOF" MUST be treated as a session error
 of type "PROTOCOL_ERROR".

 If the "AUTOMATIC_USE" flag is set, the server MAY omit sending
 "CERTIFICATE_REQUIRED" frames on future streams associated with this
 request and use the referenced certificate for authentication without
 further notice to the client. This behavior is optional, and receipt
 of a "CERTIFICATE_REQUIRED" frame does not imply that previously-
 presented certificates were unacceptable to the server.

 Use of the "CERTIFICATE_PROOF" frame by servers is not defined by
 this document. A "CERTIFICATE_PROOF" frame received by a client MUST
 be ignored.

3. Indicating failures during HTTP-Layer Certificate Authentication

 Because this draft permits client certificates to be exchanged at the
 HTTP framing layer instead of the TLS layer, several certificate-
 related errors which are defined at the TLS layer might now occur at
 the HTTP framing layer. In this section, those errors are restated
 and added to the HTTP/2 error code registry.

 BAD_CERTIFICATE (0xERROR-TBD1): A certificate was corrupt, contained
 signatures that did not verify correctly, etc.

 UNSUPPORTED_CERTIFICATE (0xERROR-TBD2): A certificate was of an
 unsupported type or did not contain required extensions

 CERTIFICATE_REVOKED (0xERROR-TBD3): A certificate was revoked by its
 signer

 CERTIFICATE_EXPIRED (0xERROR-TBD4): A certificate has expired or is
 not currently valid

 BAD_SIGNATURE (0xERROR-TBD5): The digital signature provided did not
 match

 CERTIFICATE_TOO_LARGE (0xERROR-TBD6): The certificate cannot be
 transferred due to the recipient's "SETTINGS_MAX_FRAME_SIZE"

 CERTIFICATE_GENERAL (0xERROR-TBD7): Any other certificate-related
 error

 As described in [RFC7540], implementations MAY choose to treat a
 stream error as a connection error at any time. Of particular note,
 a stream error cannot occur on stream 0, which means that
 implementations cannot send non-session errors in response to
 "CERTIFICATE_REQUEST" and "CERTIFICATE" frames. Implementations

https://datatracker.ietf.org/doc/html/rfc7540

Thomson & Bishop Expires July 25, 2016 [Page 14]

Internet-Draft HTTP/2 Client Certs January 2016

 which do not wish to terminate the connection MAY either send
 relevant errors on any stream which references the failing
 certificate in question or process the requests as unauthenticated
 and provide error information at the HTTP semantic layer.

4. Indicating Support for HTTP-Layer Certificate Authentication

 Clients that support HTTP-layer certificate authentication indicate
 this using the HTTP/2 "SETTINGS_HTTP_CERT_AUTH" (0xSETTING-TBD)
 setting.

 The initial value for the "SETTINGS_HTTP_CERT_AUTH" setting is 0,
 indicating that the client does not support reactive certificate
 authentication. A client sets the "SETTINGS_HTTP_CERT_AUTH" setting
 to a value of 1 to indicate support for HTTP-layer certificate
 authentication as defined in this document. Any value other than 0
 or 1 MUST be treated as a connection error (Section 5.4.1 of
 [RFC7540]) of type "PROTOCOL_ERROR".

5. Security Considerations

 Failure to provide a certificate on a stream after receiving
 "CERTIFICATE_REQUIRED" blocks server processing, and SHOULD be
 subject to standard timeouts used to guard against unresponsive
 peers.

 Implementations need to be aware of the potential for confusion about
 the state of a connection. The presence or absence of a validated
 client certificate can change during the processing of a request,
 potentially multiple times, as "USE_CERTIFICATE" frames are received.
 A server that uses certificate authentication needs to be prepared to
 reevaluate the authorization state of a request as the set of
 certificates changes.

6. IANA Considerations

 The HTTP/2 "SETTINGS_HTTP_CERT_AUTH" setting is registered in
Section 6.1. Five frame types are registered in Section 6.2. Five

 error codes are registered in Section 6.3.

6.1. HTTP/2 SETTINGS_HTTP_CERT_AUTH Setting

 The SETTINGS_HTTP_CERT_AUTH setting is registered in the "HTTP/2
 Settings" registry established in [RFC7540].

 Name: SETTINGS_HTTP_CERT_AUTH

 Code: 0xSETTING-TBD

https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540

Thomson & Bishop Expires July 25, 2016 [Page 15]

Internet-Draft HTTP/2 Client Certs January 2016

 Initial Value: 0

 Specification: This document.

6.2. New HTTP/2 Frames

 Four new frame types are registered in the "HTTP/2 Frame Types"
 registry established in [RFC7540].

6.2.1. CERTIFICATE_REQUIRED

 Frame Type: CERTIFICATE_REQUIRED

 Code: 0xFRAME-TBD1

 Specification: This document.

6.2.2. CERTIFICATE_REQUEST

 Frame Type: CERTIFICATE_REQUEST

 Code: 0xFRAME-TBD2

 Specification: This document.

6.2.3. CERTIFICATE

 Frame Type: CERTIFICATE

 Code: 0xFRAME-TBD3

 Specification: This document.

6.2.4. CERTIFICATE_PROOF

 Frame Type: CERTIFICATE_PROOF

 Code: 0xFRAME-TBD4

 Specification: This document.

6.2.5. USE_CERTIFICATE

 Frame Type: USE_CERTIFICATE

 Code: 0xFRAME-TBD5

 Specification: This document.

https://datatracker.ietf.org/doc/html/rfc7540

Thomson & Bishop Expires July 25, 2016 [Page 16]

Internet-Draft HTTP/2 Client Certs January 2016

6.3. New HTTP/2 Error Codes

 Five new error codes are registered in the "HTTP/2 Error Code"
 registry established in [RFC7540].

6.3.1. BAD_CERTIFICATE

 Name: BAD_CERTIFICATE

 Code: 0xERROR-TBD1

 Specification: This document.

6.3.2. UNSUPPORTED_CERTIFICATE

 Name: UNSUPPORTED_CERTIFICATE

 Code: 0xERROR-TBD2

 Specification: This document.

6.3.3. CERTIFICATE_REVOKED

 Name: CERTIFICATE_REVOKED

 Code: 0xERROR-TBD3

 Specification: This document.

6.3.4. CERTIFICATE_EXPIRED

 Name: CERTIFICATE_EXPIRED

 Code: 0xERROR-TBD4

 Specification: This document.

6.3.5. BAD_SIGNATURE

 Name: BAD_SIGNATURE

 Code: 0xERROR-TBD5

 Specification: This document.

https://datatracker.ietf.org/doc/html/rfc7540

Thomson & Bishop Expires July 25, 2016 [Page 17]

Internet-Draft HTTP/2 Client Certs January 2016

6.3.6. CERTIFICATE_GENERAL

 Name: CERTIFICATE_GENERAL

 Code: 0xERROR-TBD6

 Specification: This document.

7. Acknowledgements

 Eric Rescorla pointed out several failings in an earlier revision.
 Andrei Popov contributed to the TLS considerations.

8. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-11 (work in progress),
 December 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-11
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
http://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc5705
http://www.rfc-editor.org/info/rfc5705
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230

Thomson & Bishop Expires July 25, 2016 [Page 18]

Internet-Draft HTTP/2 Client Certs January 2016

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI
 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [X690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO ISO/IEC 8825-1:2002, 2002,
 <http://www.itu.int/ITU-T/studygroups/com17/languages/

X.690-0207.pdf>.

Authors' Addresses

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

 Mike Bishop
 Microsoft

 Email: michael.bishop@microsoft.com

https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf

Thomson & Bishop Expires July 25, 2016 [Page 19]

